Radius estimates for nearly stable H-hypersurfaces of dimension 2, 3, and 4.

G. Tinaglia and A. Zhou

Abstract

In this paper we study the geometry of complete constant mean curvature (CMC) hypersurfaces immersed in an $(n + 1)$ -dimensional Riemannian manifold N $(n = 2, 3)$ and 4) with sectional curvatures uniformly bounded from below. We generalise radius estimates given by Rosenberg $[32]$ $(n = 2)$ and by Elbert, Nelli and Rosenberg $[13]$ and Cheng $[2]$ $(n = 3, 4)$ to nearly stable CMC hypersurfaces immersed in N. We also prove that certain CMC hypersurfaces effectively embedded in N must be proper.

1 Introduction

Throughout this paper, we refer to a hypersurface M immersed in a manifold N with constant mean curvature H as an H-hypersurface. Let N be an $(n + 1)$ -dimensional Riemannian manifold N ($n = 2, 3$ and 4) with sectional curvatures uniformly bounded from below. In their seminal papers, Rosenberg $[32]$ $(n = 2, \text{ see also } [29, 31])$ $(n = 2, \text{ see also } [29, 31])$ $(n = 2, \text{ see also } [29, 31])$ $(n = 2, \text{ see also } [29, 31])$ and Elbert, Nelli and Rosenberg [\[13\]](#page-15-0) and Cheng [\[2\]](#page-14-0) $(n = 3, 4)$ prove radius estimates for stable H-hypersurfaces immersed in N . In this paper we generalise these estimates to nearly stable H -hypersurfaces.

Theorem 1.1. Let N be an $(n + 1)$ -dimensional Riemannian manifold $(n = 2, 3 \text{ and } 4)$ with sectional curvatures uniformly bounded from below and let M be a complete, δ_n -stable, H-hypersurface with $\delta_n < \frac{27}{32}, \frac{7}{12}, \frac{19}{64}$ respectively. Then, if $|H| > 2\sqrt{|\min(0, K)|}$ (where $\mathcal{K} := \mathcal{K}(N)$ denotes the infimum of the sectional curvatures of N), there exists a constant $c := c(n, \delta_n, H, \mathcal{K}) > 0$ such that for any $p \in M$,

 $dist_M(p, \partial M) \leq c$.

See Section [2](#page-1-0) for a result involving the scalar curvature of N when $n = 2$ that generalizes

the main theorem in [\[32\]](#page-16-0).

Near stability was a notion widely employed in Colding-Minicozzi Theory, that is [\[5,](#page-14-1) [6,](#page-14-2) [7,](#page-14-3) [8,](#page-14-4) 10, to study the geometry of embedded minimal $(H = 0)$ disks. Many results about minimal hypersurfaces have employed near stability directly or extended the concept of stability to near stability (see for instance [\[3,](#page-14-6) [4,](#page-14-7) [14,](#page-15-1) [16,](#page-15-2) [17,](#page-15-3) [35\]](#page-16-3)).

In Section [3](#page-9-0) we use the radius estimates mentioned above together with the Stable Limit Leaf Theorem by Meeks, Perez and Ros [\[19\]](#page-15-4) to prove the following theorem.

Theorem 1.2. With N as in Theorem [1.1,](#page-0-0) let M be a complete H-hypersurface effectively embedded in N . Suppose that the norm of the second fundamental form of M is locally bounded (bounded in compact extrinsic balls) and $|H| > 2\sqrt{|\min(0,\mathcal{K})|}$. Then M is proper.

See Remark [3.2](#page-11-0) for a stronger statement when $n = 2$ and [\[11,](#page-14-8) [12,](#page-14-9) [30\]](#page-16-4) for examples of complete H-surfaces embedded in \mathbb{H}^3 and $\mathbb{H}^2 \times \mathbb{R}$ that are not proper.

Theorem [1.2](#page-1-1) is motivated by several results in the literature. In their seminal paper [\[9\]](#page-14-10), Colding and Minicozzi proved that a complete, minimal surface embedded in \mathbb{R}^3 with finite topology must be proper, see also [\[5,](#page-14-1) [6,](#page-14-2) [7,](#page-14-3) [8,](#page-14-4) [10\]](#page-14-5). Meeks and Rosenberg generalised this to complete minimal surfaces embedded in \mathbb{R}^3 with positive injectivity radius [\[21\]](#page-15-5), see also [\[20\]](#page-15-6). Finally, Meeks and Tinaglia further generalised both these results to constant mean curvature (CMC) surfaces [\[24\]](#page-15-7), see also [\[23,](#page-15-8) [25,](#page-16-5) [26,](#page-16-6) [27,](#page-16-7) [28\]](#page-16-8).

2 Radius estimates for nearly stable H-hypersurfaces

We begin this section by reminding the reader of the notion of δ -stability.

Definition 2.1. For $\delta \in [0,1]$, we say that a *H*-hypersurface *M* immersed in *N* is δ -stable if

$$
\int_M \left(|\nabla f|^2 - (1 - \delta)(|A|^2 + \overline{Ric}(\nu))f^2 \right) \ge 0,
$$

for $f \in C_0^{\infty}(M)$.

When $\delta = 0$, then M is stable.

In what follows, we generalize the radius estimates given in Theorem 1 in [\[32\]](#page-16-0) and Theorem 1 in [\[13\]](#page-15-0) for stable H-hypersurfaces to δ -stable H-hypersurfaces. We begin by generalizing Theorem 1 in [\[13\]](#page-15-0), that is the Theorem [1.1](#page-0-0) when $\delta = 0$.

Proof of Theorem [1.1.](#page-0-0) Our proof draws from the methods established in [\[13\]](#page-15-0).

Since M is δ -stable, we can find a smooth function $u > 0$ on M such that the δ -stability operator satisfies

$$
L^{\delta}u = \Delta u + (1 - \delta)(|A|^2 + \overline{Ric}(\nu))u = 0,
$$

see for instance Lemma 2.1 in [\[18\]](#page-15-9). By decomposing the symmetric shape operator into the mean curvature and the trace-less part, $A = HI + \Phi$, the square norm of Φ is

$$
|\Phi|^2 = |A|^2 - n|H|^2,
$$

so we can write the near-stability operator as

$$
L^{\delta} = \Delta + (1 - \delta)(|\Phi^2| + nH^2 + \overline{Ric}(\nu)).
$$

We use ds^2 to denote the induced metric on M by N and conformally change the metric to $d\tilde{s}^2 = u^{2k}ds^2$, where we will choose k later. Fix $p \in M$ and take $r > 0$ small enough such that the geodesic ball $B_M(p,r)$ centred at p and of ds-radius r is contained in the interior of M. Let γ be a ds-geodesic which joins p to $\partial B_M(p,r)$. Let a be the ds-length of γ and \tilde{a} be the ds-length of γ . Then we have $a \geq r$ and it suffices to prove that there exists a constant $c = c(n, H, K, \delta) > 0$ such that $a \leq c$. To this end, let R and \tilde{R} be the curvature tensors of M in the metrics ds and ds respectively. Choose an orthonormal basis $\{\tilde{e}_1 = \frac{\partial \gamma}{\partial \tilde{s}}, \tilde{e}_2, \ldots, \tilde{e}_n\}$ for $d\tilde{s}$ such that $\tilde{e}_2, \ldots, \tilde{e}_n$ are parallel along γ and let $\tilde{e}_{n+1} = \nu$. This yields an orthonormal basis $\{e_1 = \frac{\partial \gamma}{\partial s} = u^k \tilde{e}_1, e_2 = u^k \tilde{e}_2, \dots, e_n = u^k \tilde{e}_n\}$ for ds. Let \overline{R} be the curvature tensor for the ambient manifold N. Using this notation, R_{11} (respectively \widetilde{R}_{11}) is the Ricci curvature in the direction of e_1 for the metric ds (respectively $d\tilde{s}$), and $\overline{R}_{n+1,n+1}$ is $\overline{Ric}(\nu)$.

Since γ is ds-minimising, by the second variation formula for length, we have

$$
\int_0^{\widetilde{a}} \left((n-1) \left(\frac{d\phi}{d\widetilde{s}} \right) - \widetilde{R}_{11} \phi^2 \right) d\widetilde{s} \ge 0,
$$

for any smooth function ϕ with $\phi(0) = \phi(\tilde{a}) = 0$. We use the formula for Ricci curvature under conformal change of metric, (see for instance the appendix in [\[13\]](#page-15-0) for a full calculation)

$$
\widetilde{R}_{11} = u^{-2k} \left(R_{11} - k(n-2) (\log u)_{ss} - k \frac{\Delta u}{u} + k \frac{|\nabla u|^2}{u^2} \right).
$$

Then by δ -stability, $L^{\delta}u = \Delta u + (1 - \delta)(|\Phi^2| + nH^2 + \overline{Ric}(\nu))u = 0$, so we can replace the Laplacian term yielding

$$
\widetilde{R}_{11} = u^{-2k} (R_{11} - k(n-2)(\log u)_{ss}
$$

+ $k(1 - \delta)(|\Phi|^2 + nH^2 + \overline{R}_{n+1,n+1}) + k \frac{|\nabla u|^2}{u^2}).$

Next, the Gauss equation relates the ambient curvature to the intrinsic curvature

$$
R_{ijij} = \overline{R}_{ijij} + h_{ii}h_{jj} - h_{ij}^2 = \overline{R}_{ijij} + (\Phi_{ii} + H)(\Phi_{jj} + H) - (\Phi_{ij} + H\delta_{ij})^2.
$$

Letting $i = 1$ and summing over $j = 2, \ldots, n$ gives

$$
R_{11}
$$

= $\sum_{j=2}^{n} \overline{R}_{1j1j} + \sum_{j=2}^{n} \Phi_{11} \Phi_{jj} + (n-1)\Phi_{11}H + \sum_{j=2}^{n} \Phi_{jj}H + (n-1)H^{2} - \sum_{j=2}^{n} \Phi_{1j}^{2}$
= $\sum_{j=2}^{n} \overline{R}_{1j1j} + \sum_{j=2}^{n} \Phi_{11} \Phi_{jj} + (n-2)\Phi_{11}H + \sum_{j=1}^{n} \Phi_{jj}H + (n-1)H^{2} - \sum_{j=2}^{n} \Phi_{1j}^{2}$

Using the traceless property $\sum_{j=1}^{n} \Phi_{jj} = 0$ on the second and fourth terms gives

$$
R_{11} = \sum_{j=2}^{n} \overline{R}_{1j1j} - \Phi_{11}^{2} + (n-2)\Phi_{11}H + (n-1)H^{2} - \sum_{j=2}^{n} \Phi_{1j}^{2}.
$$

We substitute this expression into the formula for \widetilde{R}_{11} to obtain

$$
R_{11}
$$

= $u^{-2k} \left(\sum_{j=2}^{n} \overline{R}_{1j1j} - \Phi_{11}^{2} + (n-2)\Phi_{11}H + (n-1)H^{2} - \sum_{j=2}^{n} \Phi_{1j}^{2}$
 $- k(n-2)(\log u)_{ss} + k(1-\delta)(|\Phi|^{2} + nH^{2} + \overline{R}_{n+1,n+1}) + k\frac{|\nabla u|^{2}}{u^{2}} \right).$
= $u^{-2k} \left(\sum_{j=2}^{n} \overline{R}_{1j1j} + k(1-\delta)\overline{R}_{n+1,n+1} + (kn(1-\delta) + n - 1)H^{2} + (n-2)\Phi_{11}H \right)$
+ $u^{-2k} \left(k(1-\delta)|\Phi|^{2} - \Phi_{11}^{2} - \sum_{j=2}^{n} \Phi_{1j}^{2} - k(n-2)(\log u)_{ss} + k\frac{|\nabla u|^{2}}{u^{2}} \right).$

Now let $\varphi = \phi \circ \tilde{s}$ so that $\varphi(0) = \varphi(a) = 0$. We combine the above expression with the first

inequality and $d\tilde{s}^2 = u^{2k} ds^2$ to obtain

$$
(n-1)\int_0^a (\varphi_s)^2 u^{-k} ds \ge \int_0^a \varphi^2 u^{-k} \left(\sum_{j=2}^n \overline{R}_{1j1j} + k(1-\delta) \overline{R}_{n+1,n+1} \right) ds
$$

+
$$
\int_0^a \varphi^2 u^{-k}
$$

$$
\left((kn(1-\delta) + n-1)H^2 + (n-2)\Phi_{11}H + k(1-\delta)|\Phi|^2 - \Phi_{11}^2 - \sum_{j=2}^n \Phi_{1j}^2 \right) ds
$$

-
$$
\int_0^a \varphi^2 u^{-k} \left(k(n-2)(\log u)_{ss} + k \frac{|\nabla u|^2}{u^2} \right) ds.
$$

We replace φ by $\varphi u^{k/2}$ to eliminate the u^{-k} . Then differentiation gives $(\varphi u^{k/2})_s = \varphi_s u^{k/2} +$ k $\frac{k}{2}\varphi u^{(k-2)/2}u_s$ which yields

$$
(n-1)\int_0^a (\varphi_s)^2 ds + k(n-1)\int_0^a \varphi \varphi_s u_s u^{-1} ds + \frac{k^2(n-1)}{4} \int_0^a \varphi^2 u_s^2 u^{-2} ds
$$

\n
$$
\geq \int_0^a \varphi^2 \left(\sum_{j=2}^n \overline{R}_{1j1j} + k(1-\delta) \overline{R}_{n+1,n+1} \right) ds
$$

\n
$$
+ \int_0^a \varphi^2
$$

\n
$$
\left((kn(1-\delta) + n-1)H^2 + (n-2)\Phi_{11}H + k(1-\delta) |\Phi|^2 - \Phi_{11}^2 - \sum_{j=2}^n \Phi_{1j}^2 \right) ds
$$

\n
$$
- \int_0^a \varphi^2 \left(k(n-2)(\log u)_{ss} + k \frac{|\nabla u|^2}{u^2} \right) ds.
$$

Using the divergence theorem, we have $\int \varphi^2(\log u)_{ss} ds = -2 \int \varphi \varphi_s u_s u^{-1} ds$. Furthermore, we have $k^2 \int \varphi^2 u_s^2 u^{-2} ds = \int \varphi^2 (\log u^k)_s^2 ds = k^2 \int \varphi^2 |\nabla u|^2 u^{-2} ds$. This allows us to combine the terms in the first and last lines as follows

$$
(n-1)\int_0^a (\varphi_s)^2 ds \ge k(n-3)\int_0^a \varphi \varphi_s u_s u^{-1} ds + \left(\frac{1}{k} - \frac{n-1}{4}\right) \int_0^a \varphi^2 (\log u^k)_s^2 ds
$$

+
$$
\int_0^a \varphi^2 \left(\sum_{j=2}^n \overline{R}_{1j1j} + k(1-\delta)\overline{R}_{n+1,n+1}\right) ds
$$

+
$$
\int_0^a \varphi^2
$$

$$
\left((kn(1-\delta) + n-1)H^2 + (n-2)\Phi_{11}H + k(1-\delta)|\Phi|^2 - \Phi_{11}^2 - \sum_{j=2}^n \Phi_{1j}^2\right) ds.
$$

We now use the basic inequality $a^2 + b^2 \ge -ab$ with $a = (n-2)H$ and $b = \Phi_{11}/2$ which

yields

$$
(n-2)^2H^2 + \frac{\Phi_{11}^2}{4} \ge -(n-2)H\Phi_{11}.
$$

Replacing this in our inequality gives

$$
(n-1)\int_0^a (\varphi_s)^2 ds \ge k(n-3)\int_0^a \varphi \varphi_s u_s u^{-1} ds + \left(\frac{1}{k} - \frac{n-1}{4}\right) \int_0^a \varphi^2 (\log u^k)_s^2 ds
$$

+
$$
\int_0^a \varphi^2 \left(\sum_{j=2}^n \overline{R}_{1j1j} + k(1-\delta) \overline{R}_{n+1,n+1} + (kn(1-\delta) - n^2 + 5n - 5)H^2\right) ds
$$

+
$$
\int_0^a \left(k(1-\delta)|\Phi|^2 - \frac{5}{4}\Phi_{11}^2 - \sum_{j=2}^n \Phi_{1j}^2\right) ds.
$$

We claim that the last term is greater than zero. Using the crude estimate

$$
|\Phi|^2 \ge \sum_{j=1}^n \Phi_{jj}^2 + 2\sum_{j=2}^n \Phi_{1j}^2,
$$

and the traceless property $\sum_{j=1}^{n} \Phi_{jj} = 0$ gives us

$$
|\Phi|^2 \ge \frac{n}{n-1}\Phi_{11}^2 + 2\sum_{j=2}^n \Phi_{1j}^2.
$$

We now need to choose

$$
k > \frac{5(n-1)}{4n(1-\delta)}\tag{1}
$$

and combine it with the last inequality to estimate the last term as

$$
\begin{aligned} &|k(1-\delta)|\Phi^2|^2-\frac{5}{4}\Phi_{11}^2-\sum_{j=2}^n\Phi_{1j}^2)\\ &\geq \frac{5}{4}\Phi_{11}^2+\frac{5(n-1)}{2n}\sum_{j=2}^n\Phi_{1j}^2-\frac{5}{4}\Phi_{11}^2-\sum_{j=2}^n\Phi_{1j}^2=\frac{3n-5}{2n}\sum_{j=2}^n\Phi_{1j}^2\geq 0,\end{aligned}
$$

as required. Consequently, we now have

$$
(n-1)\int_0^a (\varphi_s)^2 ds \ge k(n-3)\int_0^a \varphi \varphi_s u_s u^{-1} ds + \left(\frac{1}{k} - \frac{n-1}{4}\right) \int_0^a \varphi^2 (\log u^k)_s^2 ds
$$

+
$$
\int_0^a \varphi^2 \left(\sum_{j=2}^n \overline{R}_{1j1j} + k(1-\delta)\overline{R}_{n+1,n+1} + (kn(1-\delta) - n^2 + 5n - 5)H^2\right) ds.
$$

After choosing k such that

$$
\frac{1}{k} - \frac{n-1}{4} > 0 \quad \text{(that is } k < \frac{4}{n-1}),\tag{2}
$$

we can use the inequality $a^2 + b^2 \ge -ab$ again with $a = \left(\frac{1}{k} - \frac{n-1}{4}\right)$ $(\frac{-1}{4})^{1/2} \varphi(\log u^k)_s$ and $b =$ $n-3$ $\frac{-3}{2}(\frac{1}{k} - \frac{n-1}{4})^{-1/2}\varphi_s$ to obtain

$$
\left(\frac{1}{k} - \frac{n-1}{4}\right)\varphi^2(\log u^k)_s^2 + \frac{(n-3)^2}{4}\left(\frac{1}{k} - \frac{n-1}{4}\right)^{-1}\varphi_s^2 \ge -(n-3)\varphi\varphi_s(\log u^k)_s.
$$

Hence,

$$
(n-1)\int_0^a (\varphi_s)^2 ds \ge -\frac{(n-3)^2}{4} \left(\frac{1}{k} - \frac{n-1}{4}\right)^{-1} \int_0^a (\varphi_s)^2
$$

+
$$
\int_0^a \varphi^2 \left(\sum_{j=2}^n \overline{R}_{1j1j} + k(1-\delta)\overline{R}_{n+1,n+1} + (kn(1-\delta) - n^2 + 5n - 5)H^2\right) ds.
$$

Rearranging the terms, we now have an inequality of the form

$$
A \int_0^a (\varphi_s)^2 ds \ge \int_0^a \varphi^2 \left(\sum_{j=2}^n \overline{R}_{1j1j} + k(1-\delta) \overline{R}_{n+1,n+1} + (kn(1-\delta) - n^2 + 5n - 5)H^2 \right) ds
$$

where $A := \frac{4(k(2-n)+(n-1))}{4-k(n-1)}$ is positive, thanks to the condition [\(2\)](#page-6-0). We now want to choose $B > 0$ such that

$$
B \le \sum_{j=2}^{n} \overline{R}_{1j1j} + k(1 - \delta)\overline{R}_{n+1,n+1} + (kn(1 - \delta) - n^2 + 5n - 5)H^2
$$

and therefore this would give

$$
A \int_0^a (\varphi_s)^2 ds \ge B \int_0^a \phi^2 ds. \tag{3}
$$

Recall that K denotes the infimum of the sectional curvatures of N. If $K \geq 0$ we can set $B := (kn(1-\delta)-n^2+5n-5)H^2$, which is indeed positive if $|H| > 0$ and $k > \frac{5(n-1)}{4n(1-\delta)}$ (that is assumption [\(1\)](#page-5-0)), when $n = 2, 3$ or 4. Otherwise, note that

$$
\sum_{j=2}^{n} \overline{R}_{1j1j} + k(1 - \delta) \overline{R}_{n+1,n+1} \ge (kn(1 - \delta) + n - 1)\mathcal{K}.
$$
 (4)

Therefore setting $B := (kn(1 - \delta) - n^2 + 5n - 5)H^2 + (kn(1 - \delta) + n - 1)\mathcal{K}$ we have

$$
B \le \sum_{j=2}^{n} \overline{R}_{1j1j} + k(1 - \delta)\overline{R}_{n+1,n+1} + (kn(1 - \delta) - n^2 + 5n - 5)H^2
$$

and if

$$
H^{2} > \frac{kn(1-\delta) + n - 1}{kn(1-\delta) - n^{2} + 5n - 5}\mathcal{K}
$$

then B is also greater than zero.

Using our assumptions [\(1\)](#page-5-0) and [\(2\)](#page-6-0), that is $\frac{5(n-1)}{4n(1-\delta)} < k < \frac{4}{n-1}$, we can estimate the quotient

$$
\frac{kn(1-\delta)+n-1}{kn(1-\delta)-n^2+5n-5} < \frac{16n+4(n-1)^2}{5(n-1)^2+4(n-1)(-n^2+5n-5)} \\
= \frac{4(n+1)^2}{(n-1)(n-5)(5-4n)} < 4.
$$

Therefore B is positive provided that $|H| > 2\sqrt{|K|}$.

Integrating equation [\(3\)](#page-6-1) by parts now gives

$$
\int_0^a (\varphi_{ss}A + B\varphi)\varphi \, ds \le 0.
$$

Choose $\varphi = \sin(\pi s a^{-1})$, for $s \in [0, a]$ so that

$$
\int_0^a \left(B - \frac{A\pi^2}{a^2} \right) \sin(\pi s a^{-1}) ds \le 0,
$$

which implies

$$
B - \frac{A\pi^2}{a^2} \le 0,
$$

that is $a < \sqrt{A\pi}/\sqrt{B}$. Setting $c := \sqrt{A\pi}/\sqrt{B}$, this finishes the proof of the theorem, provided that we can show that we can find $\delta > 0$ and k such that

$$
\frac{5(n-1)}{4n(1-\delta)} < k < \frac{4}{n-1}.\tag{5}
$$

This inequality is consistent for $n = 2$ when $\delta < \frac{27}{32}$, for $n = 3$ when $\delta < \frac{7}{12}$ and for $n = 4$ when $\delta < \frac{19}{64}$. \Box

As in the original paper, we can prove a corollary which asserts the non-existence of

certain H-hypersurfaces.

Corollary 2.1. With N as in Theorem [1.1,](#page-0-0) let M be a complete, δ_n -stable, H-hypersurface with $\delta_n < \frac{27}{32}, \frac{7}{12}, \frac{19}{64}$ respectively. If $|H| > 2\sqrt{|\min(0, \mathcal{K})|}$, then $\partial M \neq \emptyset$.

Proof. From the previous theorem, the radius of an intrinsic geodesic disk of M that does not meet ∂M is at most $c = c > 0$. Assuming that the boundary of M is empty, the diameter of M is at most c, so the Hopf-Rinow theorem implies that M is compact. By δ -stability, there exists a function $u > 0$ on M such that $L^{\delta}u = 0$. By compactness, let $p \in M$ be the minimum of the function u . Then

$$
0 \le \Delta u(p) = -(1 - \delta)(|\Phi|^2(p) + nH^2 + \overline{R}_{n+1,n+1}(p))u(p).
$$

The choice of H guarantees that the potential is positive, hence the right hand side is negative which yields a contradiction. \Box

Next we generalize Theorem 1 in [\[32\]](#page-16-0), that is the theorem below when $\delta = 0$.

Theorem 2.2. Let N be a 3-dimensional Riemannian manifold with scalar curvature uniformly bounded from below by S and let M be a complete, δ -stable, H-surface with $\delta < \frac{3}{4}$. If $3H^2 + S > 0$ then for any $p \in M$,

$$
dist_M(p, \partial M) \leq 2\pi \sqrt{\frac{1-\delta}{(3-4\delta)(3H^2+\mathcal{S})}}.
$$

Proof. In order to prove this theorem, one can follow the proof of Theorem [1.1](#page-0-0) with $n = 2$. Note that when $n = 2$, condition [\(5\)](#page-7-0) becomes $\frac{5}{8(1-\delta)} < k < 4$ and thus we can take $k = \frac{1}{1-\delta}$ as long as $\delta < \frac{3}{4}$. With this choice of k, note that instead of equation [\(4\)](#page-6-2) we have

$$
\sum_{j=2}^{n} \overline{R}_{1j1j} + k(1 - \delta) \overline{R}_{n+1,n+1} = \overline{R}_{1212} + \overline{R}_{3,3} \ge S.
$$
 (6)

The proof then continues after defining $B := 3H^2 + S$, and noting that when $n = 2$, we have $A := 4\frac{1-\delta}{3-4\delta}$. \Box

Just like before, one can prove a corollary which asserts the non-existence of certain H-surfaces.

Corollary 2.3. With N as in Theorem [2.2,](#page-8-0) let M be a complete, δ -stable, H-surface with $\delta < \frac{3}{4}$. If $3H^2 + S > 0$, then $\partial M \neq \emptyset$.

3 Properness of effectively embedded H-hypersurfaces

In this section we prove Theorem [1.2.](#page-1-1) We begin by defining "effectively embedded."

Definition 3.1. Let $\phi: M \rightarrow N$ be an *H*-hypersurface. We say that M is effectively embedded if at any point $p \in \phi(M)$, there exists $\epsilon > 0$ such that either

- 1. $\phi^{-1}(p)$ consists of a single point $p_1 \in M$ and the connected component of $B_N(p, \epsilon) \cap$ $\phi(M)$ containing p is an embedding of the connected component of $\phi^{-1}(B_N(p, \epsilon) \cap$ $\phi(M)$) that contains p_1 , or
- 2. $\phi^{-1}(p)$ consists of two points p_1 and p_2 , ϕ restricted to the connected component Σ_i of $\phi^{-1}(B_N(p, \epsilon) \cap \phi(M))$ that contains p_i , $i = 1, 2$, is an embedding, the connected component of $B_N(p, \epsilon) \cap \phi(M)$ containing p is equal to $\phi(\Sigma_1 \cup \Sigma_2), \phi(\Sigma_1)$ and $\phi(\Sigma_2)$ meet tangentially at p and their mean curvature vectors point in opposite directions.

Note that if M is embedded, then it is effectively embedded. This definition is natural as it includes limits of a converging sequence of embedded H-hypersurfaces, see for example [\[1\]](#page-13-0). Abusing the notation, when dealing with effectively embedded hypersurfaces, we will ignore the immersion ϕ and when Case 2 of Definition [3.1](#page-9-1) occurs, we might refer to either of the $\phi(\Sigma_i)$ (that is Σ_i), $i = 1, 2$, as the connected component of $B_N(p, \epsilon) \cap \phi(M)$ (that is $B_N(p, \epsilon) \cap M$ containing p.

The proof of Theorem [1.2](#page-1-1) is going to use the Stable Limit Leaf Theorem in [\[19\]](#page-15-4). To that end, we need to recall a few definitions.

Definition 3.2. Given $H > 0$, a codimension one H-lamination \mathcal{L} of N is a collection of immersed (not necessarily injectively) H-hypersurfaces $\{L_{\alpha}\}_{{\alpha}\in I}$, called the leaves of \mathcal{L} , satisfying the following properties:

- 1. $\mathcal{L} = \bigcup_{\alpha \in I} \{L_{\alpha}\}\$ is a closed subset of N.
- 2. Given a leaf L_{α} of $\mathcal L$ and a small disk $\Delta \subset L_{\alpha}$, there exists an $\epsilon > 0$ such that, if (q, t) denote the normal coordinates for $\exp_q(t\eta_q)$ (here exp is the exponential map of N and η is the unit normal vector field to L_{α} pointing to the mean convex side of L_{α}), then:
- (a) The exponential map $\exp: U(\Delta, \epsilon) = \{(q, t) | q \in \text{Int}(\Delta), t \in (-\epsilon, \epsilon)\}\)$ is a submersion.
- (b) The inverse image $\exp^{-1}(\mathcal{L}) \cap \{q \in \text{Int}(\Delta), t \in [0, \epsilon)\}\)$ is a lamination of $U(\Delta, \epsilon)$.

Definition 3.3. Let \mathcal{L} be an H-lamination of N and let L be a leaf of \mathcal{L} . We say that L is a *limit leaf* if L is contained in the closure of $\mathcal{L} - L$.

A properly effectively embedded H-hypersurface is an H-lamination with one leaf. We can now state the Stable Limit Leaf Theorem.

Theorem 3.1 (Theorem 1 in [\[19\]](#page-15-4)). The limit leaves of a codimension one H-lamination of a Riemannian manifold are stable.

Finally, we are ready to begin the proof of Theorem [1.2.](#page-1-1)

Proof of Theorem [1.2.](#page-1-1) Recall that M having locally bounded norm of the second fundamental form means that the intersection of M with any closed extrinsic ball of N has norm of the second fundamental form bounded from above by a constant that only depends on the ball.

Arguing by contradiction, suppose M is not proper. The first step in the proof is to observe that \overline{M} , the closure of M, has the structure of an H-lamination.

Let $p \in \overline{M}$. Since |A| is locally bounded, we can apply Theorem [4.2](#page-13-1) to give a sufficiently small harmonic chart $(U, \phi, B_N(p, r))$ such that for any $\epsilon \in (0, r)$, if Σ denotes the set of connected components of $\phi^{-1}(M \cap B_N(p,r))$ intersecting the Euclidean ball $B_{\mathbb{R}^3}(0,\epsilon)$, then there exist $\epsilon > 0$, $\rho \in (\epsilon, r)$, and $C' < \infty$ and a rotation $R \in O(\mathbb{R}^3)$ such that:

- 1. Every connected component of $\Sigma := R(\Sigma) \cap B(\rho) \times \mathbb{R}$ is the graph of a function u over $B(\rho)$.
- 2. For all such functions u, we have $||u||_{C^{2,\alpha}(B(\rho))} \leq C'$.

Note that $\Sigma = \Sigma_+ \cup \Sigma_-,$ where Σ_+ (Σ_- respectively) is the collection of components whose mean curvature vector is pointing "upward" ("downward").

If $p \in M$ and M is proper in a neighbourhood W of p then $M \cap W = \overline{M} \cap W$ and, after possibly using a smaller chart, Σ consists of a finite number of connected components and \overline{M} has the structure of an H-lamination in a neighbourhood of p. Else, the number

of connected components in Σ is infinite and there exists a sequence of connected components $\sigma_n \in \Sigma$ such that $p \notin \sigma_n$ but $p \in \lim_{n \to \infty} \sigma_n$. After passing to a sub-sequence and without loss of generality, we can assume that $\sigma_n \in \Sigma_{+}$, for all n. Moreover, a standard compactness argument gives that σ_n converges $C^{2,\alpha}$ to a graph σ containing p, with constant mean curvature H , bounded |A| and upward pointing mean curvature vector. Note that if $\phi^{-1}(\sigma) \not\subset M$ then, by definition, $\phi^{-1}(\sigma) \subset \overline{M}$. Furthermore, observe that if σ_- is a component in $\Sigma_-\$ that is above σ , then $\sigma_-\$ cannot be arbitrarily close to p, see for instance [\[22,](#page-15-10) Lemma 3.1]. Therefore, after possibly using an even smaller chart, no component of Σ is above σ . Therefore, by taking $\Delta = \sigma$ in Definition [3.2,](#page-9-2) this discussion shows that \overline{M} satisfies condition 2 of Definition [3.2.](#page-9-2)

Using more or less the previous arguments, it is fairly standard to show that $\overline{M} - M$, and therefore \overline{M} is a collection of H-hypersurfaces. Finally, by definition, \overline{M} is a closed subset of N. This finishes to prove the observation that $\mathcal{L} := \overline{M}$ is an H-lamination.

Next, we claim that $\overline{M} \neq M$. Arguing by contradiction, suppose that $\overline{M} = M$ is the only leaf in the lamination L. Since M is not proper and $\overline{M} = M$, M contains a limit point, namely there is a point $p \in M$ and a sequence of points $p_n \in M$ converging to p extrinsically, but not intrinsically. It's not hard to see that the set of limit points is open and closed. This implies that every point $x \in M$ is a limit point. Let U in M be a small geodesic ball centred at x which is the limit as n goes to infinity of a sequence of pairwise disjoint balls U_n in M centered at p_n . Performing this construction again for all $p_n \in U_n$, we obtain pairwise disjoint balls $U_{n,m} \subset M$ which converge to U_n in N as m goes to infinity. We can then repeat this process, for example next on $U_{n,m}$ and again on the resulting balls. This iterative process yields an uncountable number of disjoint balls on M which contradicts the second countable intrinsic property of the topology of a manifold. This shows that $\overline{M} - M$ is not empty.

Let L be a leaf $\overline{M} - M$. Then, by definition, L is a limit leaf of L. By Theorem [3.1,](#page-10-0) L is stable and by Theorem 1 in [\[32\]](#page-16-0), when N is a 3-dimensional manifold (see Remark [3.2\)](#page-11-0), and Theorem 1 in [\[13\]](#page-15-0), when N is a 4 or 5-dimensional manifold, L cannot exist (see Corollary [2.1](#page-8-1)) with $\delta = 0$). This final contradiction proves that M must be proper. \Box

Remark 3.2. Analogously to what happened in Section [2,](#page-1-0) thanks to Theorem 1 in [\[32\]](#page-16-0) (see Theorem [2.2](#page-8-0) and Corollary [2.3](#page-9-3) with $\delta = 0$) when the dimension of N is 3, one can replace the condition $|H| > 2\sqrt{\min(0,\mathcal{K})}$ with $3H^2 + \mathcal{S} > 0$ (where $\mathcal S$ is a uniform bound from

below for the scalar curvature of N), and prove a stronger properness result.

4 Properties of effectively embedded H-hypersurfaces with bounded $||A||$

To keep the paper self-contained, in this section we state a few properties of hypersurfaces effectively embedded in a manifold with bounded second fundamental form that were used in the proof of Theorem [1.2.](#page-1-1) These statements are generalizations of existing results.

Given a point x in a hypersurface M in \mathbb{R}^n , a neighbourhood of x is always graphical over the tangent plane of M at x. However, the size of such neighbourhood depends on x and, in general, it could be very small. However, when the norm of the second fundamental form of M is bounded, then the size of such neighbourhood is uniformly bounded from below independently of the point, see for example [\[36\]](#page-16-9).

Analogous results are true for hypersurfaces in a manifold N. We begin by referencing a result by Hebey and Herzlich [\[15\]](#page-15-11) that establishes that the metric respect to some harmonic coordinates is locally uniformly $C^{1,\alpha}$ -controlled for any $\alpha \in (0,1)$, depending only on the bounds on the injectivity radius and sectional curvatures of N. The version stated below is presented by Rosenberg, Souam and Toubiana in the appendix of [\[33\]](#page-16-10). Note that the version in [\[33\]](#page-16-10) is stated for 3-dimensional manifolds. It is not hard to see that the proof works in higher dimensions [\[15\]](#page-15-11).

Theorem 4.1. Let $\alpha \in (0,1)$ and $\delta > 0$. Let (N, g) be a complete Riemannian manifold with absolute sectional curvature bounds $|K| \leq \Lambda < \infty$. Let Ω be an open subset of N and define the fattening

$$
\Omega(\delta) := \{ x \in N : \text{dist}_N(x, \Omega) < \delta \}.
$$

Suppose that there exists an $i > 0$ such that for all $x \in \Omega(\delta)$, we have $\text{inj}_N(x) > i$. Then there exists a constant $Q_0 > 1$ and a radius $r_0 > 0$ which depend only on i, δ , Λ and α , but not on N, such that for any $x \in \Omega$, there exists a harmonic chart $(U, \phi, B_N(x, r_0))$ with $\phi(0) = x$. Furthermore, we have $C^{1,\alpha}$ -control over the metric tensor, that is

$$
Q_0^{-1}\delta_{ij} \le g_{ij} \le Q_0 \delta{ij}
$$

as quadratic forms, and $\|(\phi^*g)_{ij}\|_{C^{1,\alpha}(U)} \leq Q_0$

Using the result above, by transferring the problem onto Euclidean space, in the appendix of [\[34\]](#page-16-11), Saturnino proves the following theorem. Once again this result is stated there for surfaces in a 3-dimensional Riemannian manifold but its proof works in higher dimensions.

Theorem 4.2. Suppose (N, g) is a manifold with absolute sectional curvature bounds $|K| \leq$ $\Lambda < \infty$ and let $M \subset N$ be an effectively embedded H-hypersurface. Let $\Omega \subset N$ be an open set lying away from the boundary of N , and suppose the norm of the second fundamental form of M in Ω is bounded above by a constant $C < \infty$. Fix any $\alpha \in (0,1)$ and suppose δ, i, r_0 , and Q_0 are as in Theorem [4.1.](#page-12-0) Fix an $r \in (0,r_0)$ and let $x \in \Omega$ be such that $d_M(x, \partial M) > r.$

Choose a harmonic chart $(U, \phi, B_N(x, r))$ as in Theorem [4.1.](#page-12-0) For any $\epsilon \in (0, r)$, let Σ be the set of connected components of $\phi^{-1}(M \cap B_N(x,r))$ intersecting the Euclidean ball $B_{\mathbb{R}^3}(0,\epsilon)$. Then there exist $\epsilon > 0$, $\rho \in (\epsilon, r)$, and $C' < \infty$ depending only on Λ , C , i, and α , and a rotation $R \in O(\mathbb{R}^3)$ such that:

- 1. Every connected component of $R(\Sigma) \cap B(\rho) \times \mathbb{R}$ is the graph of a function u over $B(\rho)$.
- 2. For all such functions u, we have $||u||_{C^{2,\alpha}(B(\rho))} \leq C'$.

In fact, in [\[34\]](#page-16-11) the hypersurfaces are assumed to be properly embedded but the proof works for effectively embedded hypersurfaces. Note that in this more general case the number of connected components in Σ could be infinite and connected component must be intended in the sense described in Definition [3.1.](#page-9-1)

Giuseppe Tinaglia at giuseppe.tinaglia@kcl.ac.uk

Department of Mathematics, King's College London, London, WC2R 2LS, U.K.

Alex Zhou at alex.zhou@kcl.ac.uk

Department of Mathematics, King's College London, London, WC2R 2LS, U.K.

References

[1] Theodora Bourni, Ben Sharp, and Giuseppe Tinaglia. Cmc hypersurfaces with bounded morse index. Journal fur die Reine und Angewandte Mathematik, 2022(786):175–203, May 2022.

- [2] Xu Cheng. On constant mean curvature hypersurfaces with finite index. Arch. Math. (Basel), 86:365–374, 04 2006.
- [3] Xu Cheng and Detang Zhou. Manifolds with weighted Poincaré inequality and uniqueness of minimal hypersurfaces. Comm. Anal. Geom., 17(1):139–154, 2009.
- [4] Otis Chodosh and Chao Li. Generalized soap bubbles and the topology of manifolds with positive scalar curvature. Ann. of Math. (2) , 199 (2) :707–740, 2024.
- [5] Tobias H. Colding and William P. Minicozzi, II. The space of embedded minimal surfaces of fixed genus in a 3-manifold i; estimates off the axis for disks. Annals of Mathematics, 160:27–68, 2002.
- [6] Tobias H. Colding and William P. Minicozzi, II. The space of embedded minimal surfaces of fixed genus in a 3-manifold ii; multi-valued graphs in disks. Annals of Mathematics, 160:69–92, 2002.
- [7] Tobias H. Colding and William P. Minicozzi, II. The space of embedded minimal surfaces of fixed genus in a 3-manifold iii; planar domains. Annals of Mathematics, 160:523–572, 2002.
- [8] Tobias H. Colding and William P. Minicozzi, II. The space of embedded minimal surfaces of fixed genus in a 3-manifold iv; locally simply connected. Annals of Mathematics, 160:573–615, 2002.
- [9] Tobias H. Colding and William P. Minicozzi, II. The calabi-yau conjectures for embedded surfaces. Annals of Mathematics, 167(1):211–243, 2008.
- [10] Tobias H. Colding and William P. Minicozzi, II. The space of embedded minimal surfaces of fixed genus in a 3-manifold v; fixed genus. Annals of Mathematics, 181:1– 153, 2012.
- [11] Baris Coskunuzer, William H. Meeks III, and Giuseppe Tinaglia. Non-properly embedded *h*-planes in \mathbb{H}^3 . Journal of Differential Geometry, 105(3):405 - 425, 2017.
- [12] Baris Coskunuzer, William H. Meeks III, and Giuseppe Tinaglia. Non-properly embedded h-planes in $\mathbb{H}^2 \times \mathbb{R}$. Mathematische Annalen, 370(3):1491–1512, 2018.
- [13] Maria Fernanda Elbert, Barbara Nelli, and Harold Rosenberg. Stable constant mean curvature hypersurfaces. *Proceedings of the American Mathematical Society*, 135(10):3359–3366, 2007.
- [14] Hai-Ping Fu. On complete δ -stable minimal hypersurfaces in \mathbb{R}^{n+1} . Far East J. Math. Sci. (FJMS), 34(1):69–79, 2009.
- [15] Emmanuel Hebey and Marc Herzlich. Harmonic coordinates, harmonic radius and convergence of riemannian manifolds. Rendiconti di Matematica e delle sue Applicazioni. Serie VII, 17, 01 1997.
- [16] Han Hong, Haizhong Li, and Gaoming Wang. On δ -stable minimal hypersurfaces in \mathbb{R}^{n+1} . 2024. arXiv 2407.03222.
- [17] William H. Meeks, III, Joaquín Pérez, and Antonio Ros. Liouville-type properties for embedded minimal surfaces. Comm. Anal. Geom., 14(4):703–723, 2006.
- [18] William H. Meeks, III, Joaquín Pérez, and Antonio Ros. Stable constant mean curvature surfaces. In Handbook of geometric analysis. No. 1, volume 7 of Adv. Lect. Math. (ALM) , pages 301–380. Int. Press, Somerville, MA, 2008.
- [19] William H. Meeks, III, Joaquín Pérez, and Antonio Ros. Limit leaves of an H lamination are stable. J. Differential Geom., 84(1):179–189, 2010. MR2629513, Zbl 1197.53037.
- [20] William H. Meeks, III and Harold Rosenberg. The uniqueness of the helicoid. Annals of Mathematics, 161(2):727–758, 2005.
- [21] William H. Meeks, III and Harold Rosenberg. The minimal lamination closure theorem. Duke Mathematical Journal, 133, 06 2006.
- [22] William H. Meeks, III and Giuseppe Tinaglia. Existence of regular neighborhoods for H-surfaces. Illinois J. Math., 55(3):835–844, 2011.
- [23] William H. Meeks, III and Giuseppe Tinaglia. Chord arc properties for constant mean curvature disks. Geometry & Topology, 22(1):305–322, October 2017.
- [24] William H. Meeks, III and Giuseppe Tinaglia. Curvature estimates for constant mean curvature surfaces. Duke Math. J., 168(16):3057–3102, 2019.
- [25] William H. Meeks, III and Giuseppe Tinaglia. Limit lamination theorems for Hsurfaces. J. Reine Angew. Math., 748:269–296, 2019.
- [26] William H. Meeks, III and Giuseppe Tinaglia. One-sided curvature estimates for Hdisks. Camb. J. Math., 8(3):479–503, 2020.
- [27] William H. Meeks, III and Giuseppe Tinaglia. Limit lamination theorem for H-disks. Invent. Math., 226(2):393–420, 2021.
- [28] William H. Meeks, III and Giuseppe Tinaglia. Geometry of constant mean curvature surfaces in \mathbb{R}^3 . J. Eur. Math. Soc., 2024.
- [29] Barbara Nelli and Harold Rosenberg. Global properties of constant mean curvature surfaces in $\mathbb{H}^2 \times \mathbb{R}$. *Pacific J. Math.*, 226(1):137-152, 2006.
- [30] Magdalena Rodríguez and Giuseppe Tinaglia. Nonproper Complete Minimal Surfaces Embedded in $\mathbb{H}^2 \times \mathbb{R}$. International Mathematics Research Notices, 2015(12):4322-4334, 05 2014.
- [31] Antonio Ros and Harold Rosenberg. Properly embedded surfaces with constant mean curvature. Amer. J. Math., 132(6):1429–1443, 2010.
- [32] Harold Rosenberg. Constant mean curvature surfaces in homogeneously regular 3 manifolds. Bulletin of the Australian Mathematical Society, 74(2):227–238, 2006.
- [33] Harold Rosenberg, Rabah Souam, and Eric Toubiana. General curvature estimates for stable h-surfaces in 3-manifolds and applications. Journal of Differential Geometry, 84(3), 2009.
- [34] Artur B. Saturnino. On the genus and area of constant mean curvature surfaces with bounded index. The Journal of Geometric Analysis, 31(12):11971–11987, 2021.
- [35] Luen-Fai Tam and Detang Zhou. Stability properties for the higher dimensional catenoid in \mathbb{R}^{n+1} . Proc. Amer. Math. Soc., 137(10):3451-3461, 2009.
- [36] Giuseppe Tinaglia. On curvature estimates for constant mean curvature surfaces. In Geometric analysis: partial differential equations and surfaces, volume 570 of Contemp. Math., pages 165–185. Amer. Math. Soc., Providence, RI, 2012.