
POTENTIALS WITH FINITE-BAND SPECTRUM AND
FINITE-DIMENSIONAL REDUCTIONS OF BKM SYSTEMS

ANDREY YU. KONYAEV AND VLADIMIR S. MATVEEV

Abstract. We repeat, using methods developed for BKM systems, the famous re-
sults of S. Novikov [45], J. Moser [42, 43], and A. Veselov [50] that relate Schrödinger-
Hill operators with finite-band spectra, solutions of the Neumann system, and certain
solutions of the KdV equations. Our general motivation is to determine whether it is
possible to apply inverse scattering methods to BKM systems, and in the conclusion,
we indicate initial observations in this direction.

1. Introduction

Jürgen Moser, in his very influential and widely cited works [41, 42, 43] attracted
attention to relation of the following three a priory independent objects of interest
of mathematical physics, namely the KdV equation, which is an ∞-dimensional inte-
grable system, finite-band spectrum of Schrödinger-Hill operators, and classical finitely-
dimensional integrable systems corresponding to the geodesics of ellipsoid and the Neu-
mann system. We give necessary definitions later, in §2.2. The works [41, 42, 43],
though containing new interesting results, are of rather survey nature. Certain connec-
tions discussed by Moser were published by other authors. In particular, the relation
between the orbits of the Neumann system and the finite-gap solutions of the KdV
equation is discussed in [1, 50]. The relation between geodesics on ellipsoid and solu-
tions of the Neumann system is understood at least in [30]. In [45], it was shown that
stationary solutions of KdV give potentials such that the corresponding Schrödinger-
Hill operators have finitely many connected components of spectrum. In [24] it was
shown that any quasi-periodic potential with finitely many connected components of
spectrum of the corresponding Schrödinger-Hill operator is generated by this way. See
also [26, 25].

J. Moser, and also many other mathematics of that time, were very excited about the
relations and possibly viewed them as a wondeful coincidence, a kind of mathematical
magic. The goal of the paper is to give a short proof of the relations. We will use new
understanding coming from the recently found connection between finitely-dimensional
integrable systems and geodesically equivalent metrics, see e.g. [36, 8] and also the very
recent results of [14] on finite-dimensional reductions of BKM-systems1

Our note is organised as follows. First we introduce and discuss Benenti systems.
All systems which we consider: the Neumann system, geodesics on the ellipsoid and
the finite-dimensional reductions of the KdV equation can be described by certain

1BKM systems is a family of multicomponent integrable PDE-systems introduced in [9]. In the
present note we mostly concentrate on KdV equation, which is a BKM system. In the Conclusion and
Outlook section 5, we comment on possible generalizations for other BKM systems.
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2 ANDREY YU. KONYAEV AND VLADIMIR S. MATVEEV

Benenti systems, which we explicitly write. Next, we prove a relatively simple Lemma
3.1 which explains when two Benenti system share the same solutions. The relation
of the KdV system to the Neumann system and of the geodesic flow of the metric
geodesically equivalent to the metric of ellipsoid follows directly from this Lemma.
Lemma 4.1 specifies the conditions that the parameters of the solutions of the KdV
equation corresponding to the Neumann system must satisfy.

Next, we consider the Sturm-Liouville-Schrödinger equation whose potential comes from
a solution of the finite-dimensional reduction of the KdV equation. We show in Lemma
4.4 that one can explicitly write the solutions of this equation using solutions of the
Benenti systems used in the finite-dimensional reduction of the KdV equation. Next,
solutions of finite-dimensional reduction of the KdV equation that correspond to solu-
tions of the Neumann systems can be studied using method of separation of variables.
Employing this method, we show that the spectrum contains finitely many bands.

2. Preliminaries

2.1. Benenti systems. By Benenti systems2 we understand a class of integrable finite-
dimensional Hamiltonian systems on the cotangent bundle T ∗M . The Hamiltonian is
the sum of the kinetic energy 1

2
gijpipj, where g is a metric of any signature, and a

potential energy V : M → R. The metric g and the potential energy U satisfy certain
differential-geometric and nondegeneracy conditions which we introduce and discuss
now. We will describe these systems, and give a local classification of them in this
section. We will see that, under nondegeneracy assumptions which are fulfilled in the
cases we consisder in the present paper, Benenti systems are given by two functions, f
and U , of one variable.

We start with a pair (metric g, g-seladjoint (1,1)-tensor L) satisfying the following
condition:

(1) Lij,k = λjgij + λigjk.

In the equation above we use g for index manipulation and denote by comma the
covariant derivative with respect to the Levi-Civita connection of g. The 1-form λi
staying on the right hand side is necessarily λi = 1

2
d traceg(L).

The equations (1) appeared many times independently in different branches of mathe-
matics. In particular, in the context of integrable systems, solutions L of this equation,
for a given g, are called in [22, 23] special conformal Killing tensors. See also [3, 34].

In differential geometry, (1) appeared at least in [46], in the context of geodesically
equivalent metrics, see also [19, 39]. The equation (1) is now called geodesic or projective
compatibility equation, see e.g. [10, 21]. Recall that two metrics g and ḡ on the same
manifold are geodesically (or, which is the same, projectively) equivalent, if every g-
geodesic, after an appropriate reparameterisation, is a ḡ-geodesic. The relation of (8)
to geodesic equivalence is as follows: if L is nondegenerate and satisfies (1), then the
metric ḡij whose matrix is given by

(2) ḡ = 1
det(L)

gL−1

2The terminology was suggested in [19, 29]
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is geodesically equivalent to g. Moreover, if ḡ is geodesically equivalent to g, then L
reconstructed by (2) satisfies (1).

Given Li
j satisfying (1), one can construct a family of commutative integrals for the

geodesic flow of g. Namely, consider the following family of functions on the tangent
bundle T ∗M of the manifold M of dimension N , which is a polynomial in λ of degree
N − 1:
(3)

p ∈ T ∗M 7→ Iλ(p) =
1
2 det(λId−L)g∗((L∗−λId)−1p, p) = I0(p)λ

N−1+I1(p)λ
N−2+· · ·+IN−1(p).

In the above formula, g∗ is the induced bilinear form on the cotangent bundle, and L∗

is the induced operator on the cotangent bundle. In the matrix notation, the matrix of
g∗ is the inverse of the matrix g and the matrix of L∗ is the transposed of the matrix
L. In the index notation, the middle part of (3) reads

1
2

det(λId − L)gij
(
(L− λId)−1

)s
i
pspj.

Theorem 2.1 ([36, 19, 23, 22, 48, 49]). The functions Ii commute with respect to the
standard Poisson structure on T ∗M .

Note that the function I0 is the Hamiltonian 1
2
g∗(p, p) of the geodesic flow.

The number of functionally independent integrals Ii is the degree of the minimal poly-
nomial of L at least at one point, see [39, Lemma 5.6 and Corollary 5.7] or [48, Theorem
2 and Proposition 3]. Later we assume that L is differentially nondegenerate3 almost
everywhere. Then, by [15, §4.2], at almost every point, the degree of the minimal
polynomial of L equals the dimension of the manifold4 which implies that the geodesic
flow of g is Liouville integrable. As it will be clear later, near almost every point, the
integrable system can be effectively analyzed by the method of separation of variables.

Let us give two examples of geodesically compatible pairs (g, L) such that L is differentially-
nondegenerate. The first is classical and is essentially due to T. Levi-Civita [32]. The
metric gij and the tensor Li

j are given by the formulas

gfLC =
N∑
i=1

(
dq2i
f(qi)

N∏
s=1,s ̸=i

(qi − qs)

)
,(4)

Ldiag = diag(q1, q2, . . . , qN).(5)

Above f is an arbitrary function of one variable such that it is never zero. Note that in
a more standard way to write the formula (4), the functions f(qi) in the denominators
may be different functions, so the ith term in the sum (4) reads(

dq2i
fi(qi)

N∏
s=1,s ̸=i

(qi − qs)

)
.

This way is clearly equivalent to the one in (4), at least in a sufficiently small neigh-
borhood, since the formula gives a non-degenerate metric only if qi ̸= qj for i ̸= j, and
under this assumption we can define the functions f(qi) as fi(qi) restricted to the range
of the coordinate qi.

3see [15, Definition 2.10]
4(1,1)-tensors such that the degree of the minimal polynomial of L equals the dimension of the

manifold are called gl-regular, see [16]



4 ANDREY YU. KONYAEV AND VLADIMIR S. MATVEEV

Remark 2.1. In the examples interesting for the present paper, the function f is a real-
analytic function. This is not a special property of our examples, but a rather general
phenomenon. Indeed, the metric in the examples is real analytic. By [31], L satisfying
(1) is real analytic as well. If L is differentially nondegenerate, which is the case for
the Benenti systems coming from finite-dimensional reductions of BKM system, by [15,
Theorem 6.2] f must be a globally defined real-analytic function. Moreover, if g is
Riemannian and L is gl-regular at least in one point, which is the case for the Benenti
systems coming from the Neumann systems and from the geodesic flow of the ellipsoid,
f again must be a globally defined real-analytic function by [38].

For the further use, note that the metric ḡfLC geodesically equivalent to gfLC constructed
by (2) reads

ḡfLC =
N∑
i=1

(
(qi)N−3dq2i

f(qi)

N∏
s=1,s ̸=i

(qi − qs)

qiqs

)
.(6)

Let us also note that, if we call g1LC the metric (4) with f(t) ≡ 1, then one can obtain

the metric (4), i.e., the metric gfLC , by the formula

(7) gfLC = g1LCf(L)−1,

see e.g. [21, §1.3] for the definition and discussion of analytic functions of (1, 1)-tensors.
Observe also that the metric g1 can be invariantly characterised within g satisfying (1)
with respect to a fixed differentially nondegenerate L. Indeed, the coordinates such
that (g, L) are given by (4, 5) are geometrically distinguished as they are eigenvalues
of L.

The second example was studied in particular in [15, Proposition 6.1], see also [12]. In
the context of integrable systems, it can be found e.g. in [4, §V]. We first start with
the contravariant metric g and the (1,1)-tensor Li

j given by

(8) gij1 =


0 · · · 0 0 1
0 · · · 0 1 w1

... . .
.

. .
.

. .
.

w2

0 1 w1 . .
. ...

1 w1 w2 · · · wN−1

 Lcomp =


−w1 1 0 · · · 0

−w2 0 1
. . .

...
...

...
. . .

. . . 0
−wN−1 0 . . . 0 1
−wN 0 . . . 0 0

 .

The metric g1 in this example is flat and is of splitted signature. By [15, Theorem
6.2.], in the real-analytic category, any (contravariant) metric g which is geodesically
compatible with Lcomp from (8) is given by

(9) gf = f(Lcomp)g1.

Note that the visual difference between the formulas (7) and (9) is artificial since (9)
is for a contravariant metric and (7) is for a covariant metric. In fact, the formulas (9)
and (7) are equivalent. Moreover, the pair (gf , Lcomp) given by (8), in a neighborhood
of any point such that L has N real different eigenvalues, it isomorphic by a coordinate
change to the pair (gfLC , Ldiag). The coordinate change w(q) transforming (gf , Lcomp)
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to (gfLC , Ldiag) is given by the following relation:

(10) det(λId − Ldiag(q)) = det(λId − Lcomp(w))

Note that as Lcomp is in the companion form,

(11) det(λId − Lcomp) = λN + w1λ
N−1 + · · · + wN ,

so (10) gives an explicit formula w(q) in terms of symmetric polynomials of q-variables:

w1 = −q1−q2−· · ·−qN , w2 = q1q2+q1q3+· · ·+qN−1qN , . . . , wn = (−1)N det(Ldiag).

This observation holds, with necessary natural amendments, in the case when some
different eigenvalues of L are complex-valued; of course in this case the coordinates
in which (g, L) has the form (4, 5) may also be complex-valued. See [15, 20] for a
discussion of complex eigenvalues of L satisfying (1) and of Nijenhuis5 operators with
complex eigenvalues.

Let us now discuss the integrals. It appears that the metric gfLC , in coordinates qi, can
be obtained by the so-called Stäckel construction, see e.g. [14]. Indeed, take the Stäckel
matrix

(12) Sij =


(q1)

N−1 (q1)
N−2 · · · 1

(q2)
N−1 (q2)

N−2 · · · 1
...

...
(qN)N−1 (qN)N−2 · · · 1


and construct the functions I0, . . . , IN−1 on R2N(q, p), quadratic in p-variables, by the
formula

(13)


(q1)

N−1 (q1)
N−2 · · · 1

(q2)
N−1 (q2)

N−2 · · · 1
...

...
(qN)N−1 (q1)

N−2 · · · 1



I0
I1
...
IN

 =


−1

2
f(q1)(p1)

2

−1
2
f(q2)(p2)

2

...
−1

2
f(qN)(pN)2

 .

It is known, see e.g. [14, Fact 1.2], that the functions Poisson commute with respect
to the standard Poisson structure. Moreover, the functions I0, . . . , IN−1 staying in (13)
coincide with those obtained via (3). In particular, the function I0 is the Hamiltonian

of the geodesic flow of the metric gfLC given by (4).

It is also known how to “introduce” the potential energy in the formula (13). Locally,
in coordinates q1, . . . , qN used in (13), the freedom is the choice of N functions of one
variable. In our context, these functions are essentially the same function, so we proceed
with the construction under this assumption6. In order to do it, we slightly modify (13)

5(1,1)-tensor is called Nijenhuis operator, if its Nijenhuis torsion vanished. BKM systems were
constructed in [9] within the Nijenhuis geometry project initiated in [11, 15]

6Actually, if the (g, L) are given by (8), in the analytic category and near the point (w1 =
0, . . . , wN = 0), these N functions can be glued in one function; this again follows from [15, The-
orem 6.2]
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to obtain

(14)


(q1)

N−1 (q1)
N−2 · · · 1

(q2)
N−1 (q2)

N−2 · · · 1
...

...
(qN)N−1 (qN)N−2 · · · 1




Ĩ0
Ĩ1
...

ĨN−1

 =


−1

2
f(q1)(p1)

2 + U(q1)
−1

2
f(q2)(p2)

2 + U(q2)
...

−1
2
f(qN)(pN)2 + U(qN)

 .

The functions Ĩi given by (14) Poisson commute. Each of them is the sum of the
quadratic in momenta part which is Ii given by (13), and a function which depends on
the position (q1, . . . , qN) only. In particular, the function Ĩ0 is the sum of the kinetic

energy coming from the metric gfLC and a potential energy.

We will also need the formula for obtained system in the companion coordinates, in
which g and L are given by (8). In order to do it, for a real analytic function U of one
variable and for a pair (g, L) satisfying (1) and such that L is gl-regular, consider the
functions U1, U2, . . . , UN defined by the following relation:

(15) U(L) = U0L
N−1 + U1L

N−1 + · · · + UN−1Id.

The left hand side is an analytic function of L, it is well-defined (1,1)-tensor provided
U is defined at the eigenvalues of L, see e.g. the discussion in [15, 21]. The right hand
side is a polynomial of order N − 1 in L. Since L is gl-regular, (15) viewed as a system
of linear equations on functions U0, ..., UN−1 determines the functions U0, . . . , UN−1 on
the manifold.

Lemma 2.2. Suppose (g, L) are geodesically compatible and L is gl-regular.

Then, for any real-analytic function U , the functions Ĩi := Ii +Ui, where Ii is as in (3)
and Ui are from (15), pairwise commute.

Lemma 2.2 was obtained within and is a natural component of the theory of conservation
laws and symmetries of Nijenhuis operators developed in [17, 13, 16], where its more
general versions are proved. The version staying above is easy to prove directly: the
formula (15) is invariant with respect to coordinates changes, so one can prove it in
any coordinate system. In the “diagonal” coordinate system, in which g and L have
the form (4,5), the formula (15) is equivalent to (14).

We see that a Benenti system with potential is given by the following data: we can
choose L and functions f, U of one variables. Our nondegeneracy condition on the pair
is that L is differentially nondegenerate almost everywhere. This condition implies that
the pair (g, L) is given by (8) almost everywhere, and by (4, 5) almost everywhere
provided we allow some of the coordinates to be complex-valued.

Remark 2.2. If L = Lold is a solution of (1), then for any constants const1 and const2
the (1,1)-tensor Lnew = const1Lold + const2 Id is also a solution. The change from Lold

to Lnew corresponds to the following change of f and U :

(16) fold(t) = (const1)
−1−Nfnew(const1 t+ const2) , Uold = Unew(const1 t+ const2).

This change does not affect the vector space generated by the integrals Ĩ0, . . . , ĨN−1.

2.2. Neumann system, geodesic flow on ellipsoid and stationary solutions of
the KdV equation as Benenti systems.
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2.2.1. Neumann system, geodesic flow of the metric of the ellipsoid, and the geodesic
flow of the metric geodesically equivalent to ellipsoid as Benenti systems. Neumann sys-
tem is the Hamiltonian system describing the movement of a particle on the sphere in a
quadratic potential. That is, we consider the standard sphere SN ⊂ RN+1(X1, . . . , XN+1)
with the standard metric which we denote gs, and the function V : SN → R which is
the restriction of the function

∑N+1
i=1 (Xi)

2ai to the sphere. We assume that all ai are
different, without loss of generality a1 < a2 < · · · < aN+1. Note that adding a constant
to the potential energy does not affect the equations of motion and adds the constant
to all ai, so we can assume without loss of generality that 0 < a1. The Hamiltonian of
the Neumann system is the sum of the kinetic energy coming from gs and the potential
energy V .

We will also consider the ellipsoid in RN+1 defined by the equation

(17)
N+1∑
i=1

X2
i

ai
= 1.

We assume that all ai are positive and different7 and order them by 0 < a1 < · · · < aN+1.

The restriction of the standard metric to the ellipsoid will be denoted by ge. The
corresponding geodesic flow is the Hamiltonian system whose Hamiltonian is the kinetic
energy corresponding to ge.

Fact 2.1. The metric ge of the ellipsoid and the standard metric gs of the sphere admits
L satisfying (8) which is differentially nondegenerate at almost every point.

For the standard sphere, Fact 2.1 follows from a result of E. Beltrami8, see e.g. [37].
For the ellipsoid, Fact 2.1 was independently and almost simultaneously obtained in
[36, 47], see also [40].

Let us give a short proof of Fact 2.1, whose ingredients will be useful later. We
start with the ellipsoid and consider the ellipsoidal coordinates q1, ..., qN related to
the standard coordinates X1, ..., XN+1 in the quadrant {(X1, . . . , XN) ∈ RN+1 | ε1X1 >
0, . . . , εN+1XN+1 > 0}, where εi ∈ {−1, 1}, by the formula

(18) Xi = εi

√√√√ai

∏N
j=1(ai − qj)∏N+1

j=1,j ̸=i(ai − aj)
.

In the ellipsoidal coordinates, the metric ge of the ellipsoid has the form (4) with

(19) f(t) = −4
t

N+1∏
j=1

(t− aj).

Then, L = diag(q1, . . . , qN) is a solution of (8).

The calculations have shown the local existence of such L in a neighborhood of a point
where elliptic coordinates are defined. Since ellipsoid is simply-connected, the metric

7The assumption that all ai are different is indeed important for us; the assumption that they are
positive can be omitted and instead of ellipsoid we can consider a noncompact quadric and make sense
of the case when one ai = 0

8who constructed examples of metrics geodesically equivalent to the metric of the sphere



8 ANDREY YU. KONYAEV AND VLADIMIR S. MATVEEV

of ellipsoid is real analytic. Next, recall that (8) viewed as a system of PDEs on L is of
finite type9. Then, the local existence implies the global existence.

See [36, §7] and [40, §7] for the formulas for the geodesically equivalent metric and the
(1,1)-tensor L in the coordinates X1, . . . , XN+1.

Later, we will use also the formula, in the ellipsoidal coordinates, for the metric geodesi-
cally equivalent to the metric of the ellipsoid. In view of (2), it is given by

ḡe = −1
4

N∑
i=1

(
qN−2
i (dqi)

2
N∏

s=1,s ̸=i

(qi−qs)
qiqs

N+1∏
s=1

1
(as−qi)

)
(20)

= −1
4

N+1∏
s=1

ai

N∑
i=1

qi

((
d 1
qi

)2 N∏
s=1,s ̸=i

(
1
qs
− 1

qi

)N+1∏
s=1

1
1
qi

− 1
as

)
(21)

= −1
4

N+1∏
s=1

1
āi

N∑
i=1

(dyi)
2

(
1
yi

N+1∏
s=1

1
yi−ās

)(
N∏

s=1,s ̸=i

(ys − yi)

)
,(22)

where the new coordinates yi are given by yi = 1
qi

and āi = 1
ai
. We see that the metric

(22) is the metric (4) corresponding to the functions

(23) f(t) = −4t
N+1∏
s=1

(t− ās)
N+1∏
s=1

ās.

Similarly, for the standard sphere consider the sphero-ellipsoidal coordinates10 related
to standard coordinates X1, ..., XN+1 in RN+1 by

(24) Xi = εi

√√√√ ∏N
j=1(ai − qj)∏N+1

j=1,j ̸=i(ai − aj)
.

In these coordinates, the standard metric of the sphere has the form (4) with

(25) f(t) = −4
N+1∏
j=1

(t− aj).

We again see that L = diag(q1, . . . , qN) satisfies (1).

Now, by direct calculations we see that the potential energy of the Neumann system
has the form

(26)
N+1∑
i=1

X2
i ai = 1

2

(
N+1∑
i=1

ai −
N∑
i=1

qi

)
.

9It closes after 2 prolongations, see e.g. [27]
10Also called sphero-conical coordinates.
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By direct calculations we see that it corresponds to the function11

(27) U(t) = −tN + tN−1

N+1∑
i=1

ai.

Let us summarise the content of this section. We recalled that two finitely-dimensional
systems of interest, the geodesic flow of the metric geodesically equivalent to the metric
of the ellipsoid, and the Neumann system, belong to the class of Benenti systems. They
correspond to the following functions f, U used in (14): The geodesic flow of the metric
geodesically equivalent to the metric of the ellipsoid corresponds to f given by (20) and
to U = 0, and the Neumann system corresponds to f given by (25) and to U given by
(27).

Remark 2.3. Let us observe from (26) that the potential energy corresponding to the
Neumann system is equal to const − trace(L). In coordinates such that L is given by
(8), trace of L clearly equals −w1.

Remark 2.4. The range of the coordinates (q1, . . . , qN), both in the case of ellipsoidal
coordinates and sphero-ellipsoidal coordinates, is given by a1 < q1 < a2 < q2 < · · · <
qN < aN+1.

2.2.2. KdV equation as BKM system with n=1 and its finite-dimensional reductions.
The KdV equation is the following partial differential equation on the unknown function
u of two variables x and t:

(28) ut = −1
2
uxxx + 3

2
uux.

There are different almost equivalent forms of the equation. For example, by re-scaling
of x and t one can change the coefficients on the right hand side of the equation, and
by multiplying u and t by −1 one can change the signs on the right hand side. In
particular, the version of the KdV equation staying in [41] and in Wikipedia is

(29) ut = −uxxx + 6uux.

Note also that the transformation unew = uold + const makes from (28) the equation

(30) ut = −1
2
uxxx + 3

2
uux + const 3

2
ux.

Similarly the transformation unew(x, t) = uold(x+ const t, t) makes from (28) the equa-
tion

(31) ut = −1
2
uxxx + 3

2
uux − constux.

Combining (30) with (31), we see that by the appropriate choice of constants the
transformations compensate one another.

One may view the KdV equation, and actually all BKM systems, as dynamical systems
on the space of real-analytic curves. Indeed, for a real-analytic function x 7→ u(x),
the solution u(x, t) of the KdV equation such that u(x, 0) = u(x) exists and is unique
by the Kovalevskaya Theorem and can be viewed as a family of functions x 7→ u(x, t)
depending on the parameter t.

11The second term tN−1
∑N+1

i=1 ai in (27) can be ignored as it corresponds to the addition of the

constant
∑N+1

i=1 ai in (26) and does not change the equations of motion
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By a finite-dimensional reduction of the KdV equation one understands a finite-dimensional
family of functions x 7→ u(x) such that the family is invariant with respect to the dy-
namical system above12. This notion naturally generalises to the BKM systems.

The finite-dimensional reduction of the KdV equation related to the topic of the paper
was suggested in [45], where S. Novikov considered the so called stationary solutions;
we will call it stationary reduction. The corresponding family of functions is defined as
follows.

It is known, that the KdV equation admits symmetries, that are partial differential
equations of the form

(32) ut = B[u],

where B[u] is a differential polynomial, that is, a polynomial in ux := ∂u
∂x

, uxx := ∂u
∂x

etc. satisfying the following property: The system of equations

(33) ut = −1
2
uxxx + 3

2
uux and uτ = B[u],

viewed as a system of equations on the unknown function u(x, t, τ) is compatible.

It is known and easy to see that the KdV equation has a trivial symmetry of differential
degree 1

(34) ut = ux.

The right hand side of this symmetry will be denoted by B0, so the trivial symmetry
reads ut = B0[u].

The KdV equation itself is also a symmetry of differential degree 3, we denote its
right hand side by B1. The next symmetry has differential degree 5, we denote the
corresponding right hand side by B2 and so on, so the Nth nontrivial symmetry, whose
right hand side is denoted by BN , has differential degree 2N + 1.

It is known that for any i, j the differential symmetry constructed by Bi is symmetry
for the differential symmetry constructed by Bj.

As a finite-dimensional family of curves, S. Novikov [45] considered the family of solu-
tions of the ordinary differential equation on u given by

(35) BN [u] + λ1B1[u] + ...+ λN−1BN−1[u] = 0

with constant coefficients λ1, . . . , λN−1. Because for every i, j the differential symmetry
constructed by Bj is a symmetry of that constructed by Bi, the family of curves is
invariant with respect to the flow of all differential symmetries. Indeed, if we take a
solution u(x, t) of the PDE ut = Bi[u] such that the curve x 7→ u(x, 0) is a solution
of BN [u] = 0, then for any t the curve x 7→ u(x, t) is a solution of BN [u] = 0, so the
family of curves is invariant with respect to the flow of (28). For the fixed choice of
λ1, . . . , λN−1, the dimension of this family of the curves is 2N+1, as 2N+1 initial data
determine the solution of ODE of degree 2N + 1 on one unknown function u(x). If we
identify curves of the form u(x) and u(x + const), the dimension of the family is 2N ,
it coincides with the dimension of the cotangent space to the N -dimensional manifold.

12In other words, if u(x) belongs to this family, then for the solution u(x, t) of the KdV equation
such that u(x, 0) = u(x), the curves x 7→ u(x, t) lies in this family for any sufficiently small t
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The solutions of the KdV equations such that for any t the curve x 7→ u(x, 0) solves
the ODE (35) are called stationary solutions13.

As explained in [9, Example 3.1], KdV equation in the form (28) is the BKM IV system
corresponding to a special choice of parameters. In [14], a finite-dimensional reduction
of BKM systems is studied. Though visually the finite-dimensional reduction procedure
in [14] is different from that of in e.g. [45], it appears that for the KdV systems the
finite-dimensional reduction constructed in [14] coincides with the one considered in
[45].

The following results of [14] are relevant to the present paper. The parameters of the
finite-dimensional reduction from [14] are the number N (which has nothing to do with
the natural number N from the construction of BKM systems) and a monic polynomial

(36) C(µ) = µ2N+1 + 0µ2N + c2µ
2N−1 + · · · + c2N+1

of degree 2N + 1, whose second highest coefficient is zero. The reduction is constructed
as follows: consider the following polynomial in µ whose coefficients depend on x:

(37) w(x;µ) = µN + µN−1w1(x) + µN−2w2(x) + · · · + wN(x)

Next, consider the system of ODEs on the functions w1, . . . , wn given by

(38) C(µ) = m0

(
wxxw − 1

2
w2

x

)
+ (µ− 1

2
w1)w

2.

We observe that both sides of (38) are polynomial in µ of degree 2N + 1 such that the
free terms and linear terms on the right and left side coincide, so (38) is a system of 2N
ordinary differential equations of the second order on n unknown functions w1, ..., wN .
The system depends on 2N parameters c2, c3, . . . , c2N+1 and on the parameter m0.

14

Next, for any coefficients c2, c3, . . . , c2N+1 consider the following family of 1-dimensional
curves given by x 7→ u(x) = 2w1(x), where w1(x) comes from a solution of (38).

Theorem 2.3 ([14]). For every coefficients c2, c3, . . . , c2N+1, the family of the curves
above is invariant with respect to the flow of KdV .

This gives us a finite-dimensional reduction of the KdV equation. Actually, the result
of [14] is valid for all BKM systems, not only for the KdV. For the KdV systems the
reduction is essentially the stationary reduction to the one constructed in [45]. Namely,
for every function x 7→ u(x) from the family corresponding to the finite-dimensional
reduction from [45], there exist constants c2, . . . , c2N+1 such that the function lies in
the family described above.

The next result of [14] which will be used in the present paper, and which also explains
why the visually overdetermined system of equations (38) has solutions, is as follows:

13There exist different nonequivalent definitions of stationary solutions of KdV in the literature. In
particular, in [7] a much more restrictive stationarity condition BN [u] = 0 is considered

14Though a generic system of 2N ordinary differential equation on N functions does not have
a solutions, the system (38) can be solved for any values of the parameters c2, c3, . . . , c2N+1 and
the solution depends on the choice of initial values w1(x0), ..., wN (x0), so for fixed initial constants
c2, . . . , c2N+1 the family of functions is, locally, N -dimensional. In fact, solutions of the system are
trajectories of a Lagrangian system whose Lagrangian is the sum of kinetic energy coming from a flat
metric and the potential energy of a special form.
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We consider the Benenti system constructed by (g, Lcomp) from (8), so the function
f(t) = 1, and by the function15

(39)

U(t) = 1
m0

(
t2N+1 +

N+1∑
i=2

cit
2N−i+1

)
= 1

m0

(
C(t) − cN+2t

N−1 − cN+3t
N−2 − · · · − c2N+1

)
.

Theorem 2.4 ([14]). For every parameters c2, . . . , cN+1, the trajectories of this Benenti
systems viewed as functions x 7→ w(x) on RN are solutions of (38) corresponding to the
polynomial C. Moreover, any solution of (38) is a trajectory of this Benenti system.

Let us give additional explanations on the relations between parameters c2, . . . , cN+1 of
the potential energy in the Benenti system and the parameters c2, . . . , c2N+1 of (38).
The parameters of the Benenti system are the first N parameters of (38). The additional
N parameters cN+2, . . . , c2N+1 can be thought as the values of the integrals Ĩ0, ..., ĨN−1

corresponding to the Benenti system, so a solution of (38) corresponding to the param-
eters c2, . . . , c2N+1 corresponds to a trajectory of the Benenti system corresponding to
the parameters c2, . . . , cN+1 such that the values of the integrals Ĩ0, . . . , ĨN−1 on this
trajectory are Ĩ0 = −cN+2, Ĩ1 = −cN+1, . . . , ĨN−1 = −c2N+1.

Combining Theorems 2.3 and 2.4, we see that, for a fixed t, all stationary solutions of
KdV, viewed as the curves x 7→ u(x), can be described as follows: we take the Benenti
system above, and for any its solution (w1(x), ..., wN(x)) set u(x) = 2w1(x). The curves
u(x) constructed by this method are stationary solutions of KdV and for any stationary
solution u(x, t) of KdV the curve x 7→ u(x, t) can be obtained by this procedure.

Remark 2.5. Though the unknown function u(x, t) in the KdV equation depends on
two variables, x and t, the dependence on the variable t was not used in Theorems
2.3, 2.4 and plays no role in our paper. The dependence on t, for general BKM sys-
tems, was understood as a part of the finite-dimensional-reduction approach of [14],
and corresponds to the flow of one of the integrals. The KdV case was understood ways
before.

Though we do not use the dependence of t at all in the present paper, let us note that
for a solution u(x, t) the curves x 7→ u(x, t1) and x 7→ u(x, t2) will correspond to the
same spectrum of the corresponding Schrödinger operator.

3. When solutions of one Benenti system are solutions of another

Lemma 3.1. Consider two families of Benenti systems sharing the same L: one con-
structed by U1(t) and f1(t), another by U2 and f2. Suppose for certain values of the
integrals Ĩ10 = H1

0 , ..., Ĩ
1
N−1 = H1

N−1 of the first system and for certain values of the

integrals Ĩ20 = H2
0 , ..., Ĩ

2
N−1 = H2

N−1 of the second system the products we have
(40)
(−U1(t)+H

1
0 t

N−1+· · ·+H1
N−2t+H

1
N−1)f1(t) = (−U2(t)+H

2
0 t

N−1+· · ·+H2
N−2t+H

2
N−1)f2(t).

Then, every solution of the first Benenti system, viewed as a curve on RN , corresponding
to the values of the integrals H1

0 , . . . , H
1
N−1, is a solution of the second Benenti system

corresponding to the values of the integrals H2
0 , . . . , H

2
N−1.

15The function U(t) depends on the choice of parameters c2, . . . , cN+1
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Proof. Without loss of generality we may assume that (g, L) are given by (4, 5). First
we view solutions of both system as curves (q(τ), p(τ)) on R2N = T ∗RN . In view of
(14), we have for any i = 1, . . . , N

(41) 1
2
f(qi)p

2
i = −U(qi) +H0q

N−1
i + · · · +HN−2qi +HN−1.

Applying Legendre transformation, we see that (41) is equivalent to the system of ODEs

(42) 1
2f(qi)

(
q̇i∏N

s=1;s ̸=i(qi−qs)

)2

= −U(qi) +H0q
N−1
i + · · · +HN−2qi +HN−1.

We see that the condition (40) implies that the solutions of both systems viewed now
as curves on RN(q) satisfy the same system of ODEs and therefore every solution of
one system is a solution of the other. □

Let us now compare, with the help of Lemma 3.1 and Remark 2.2, the systems in
question: the Neumann system, the geodesic flow of the metric geodesically equivalent
to the metric of ellipsoid, and the Benenti system coming from the finite-dimensional
reduction of the KdV system via Theorem 2.3.

For all of them, the product f(t)(−U(t)+H0t
N−1+· · ·+HN−1) is a polynomial of degree

2N + 1 with positive leading coefficient. Clearly, the value of the leading coefficient is
not important, once it is positive, as one can scale it by a positive constant by rescaling
the time. The polynomial f(t)(−U(t) +H0t

N−1 + · · · +HN−1) has certain restrictions
which we will discuss now.

The restriction in the KdV systems is that the second highest coefficient of f(t)(−U(t)+
H0t

N−1 + · · ·+HN−1) is zero. This restriction does not affect anything as the transfor-
mation Lnew = Lnew + constId can make the second highest coefficient arbitrary.

Next, in the Benenti systems describing the Neumann system and the geodesic flow of
the metric geodesically equivalent to the ellipsoid, the product f(t)(−U(t) +H0t

N−1 +
· · · + HN−1) has at least N + 1 real different zeros a1, . . . , aN+1. This restriction is
essential.

Note also that not all values of the integrals allow solutions. Indeed, the system of
ODEs (42) has no real solution if fα(t)(−U(t) +H0qt

N−1 + · · · +HN−1) < 0.

As it is clear from the introduction, for our paper the relation of the stationary solutions
of KdV and the solutions of the Neumann systems is most important. Lemma 3.1
implies that stationary solutions of KdV, viewed as curves x 7→ u(x), correspond to the
evolution of 2trace(L) along the solution of the Neumann system. By Remark 2.3, up
to addition of a constant, −trace(L) is the potential energy of the Neumann system.
This relates the potential energy of the Neumann system evaluated along a solution of
the Neumann system to stationary solutions of KdV. The relation is of course known
[42, 43, 50].

Concerning the relation of the geodesics on ellipsoid to stationary solutions of the KdV
system, Lemma 3.1 and the discussion above established such a relation between the
metric geodesically equivalent to the metric of ellipsoid and the KdV system. The
solutions of the Hamiltonian systems corresponding to the geodesic flow of the ellipsoid
and to the geodesic flow of the metric geodesically equivalent to the metric of the
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ellipsoid give the same curves on the manifold, but differently parameterised. And
indeed, in [42, §3.5] the reparameterisation is given.

Remark 3.1. Lemma 3.1 and discussion above links the solution of Neumann system,
geodesics of the metric geodesically equivalent to the metric of the ellipsoid and the
finite-dimensional reductions of the KdV system. The arguments used in the discussion
are essentially local calculations in a special coordinate chart, which, e.g. in the case of
Neumann system, covers almost whole but not the whole sphere. A natural question is
therefore whether the links between systems survives when the solution of the Neumann
system leaves the coordinate chart, or possibly never passes through the coordinate chart.

The answer is “yes”. Indeed, all considered systems are real-analytic, so if two solutions
coincide locally they coincide globally. Moreover, the limit of a sequence of solutions is
a solution, so even if the solution never passes through the special coordinate chart, the
link remains.

4. Stationary solutions corresponding to the Neumann system and
finite-bandness of the corresponding Sturm-Liouville-Hill problem

4.1. The property of the polynomial C(t) for solutions of KdV coming from
the solution of Neumann system. By Lemma 3.1, see also discussion short after,
the solutions of the Neumann system, viewed as curves on the N -dimensional sphere,
are closely related to finite-dimensional reductions of the KdV system corresponding to
the polynomial

(43) C(t) = 1
2
(tN +H0t

N−1 + · · · +HN−2t+HN−1)
N+1∏
s=1

(t− ai).

From the formula (43) we immediately see that the polynomial C(t) has N + 1 real
roots a1, . . . , aN+1. The condition that the sphero-ellipsoidal coordinates qi used for the
description of the Neumann system are necessarily real-valued and satisfy, see Remark
2.4,

(44) a1 < q1 < a2 < q2 < · · · < qN < aN+1,

give further assumptions on the roots of C(t), which we discuss now.

Lemma 4.1. Consider a solution of the Neumann system and the corresponding poly-
nomial C(t) given by (43), where H0, H1, . . . , HN−1 are the values of the integrals
Ĩ0, . . . , ĨN−1 corresponding to this solution.

Then, all roots of polynomial C(t) are real numbers. Moreover, if we denote roots,
counted with their multiplicities, by r1 ≤ r2 ≤ · · · ≤ r2N+1, and by q1 ≤ · · · ≤ qN the
eigenvalues of the (1,1)-tensor L, again counted with their multiplicities, then
(45)
r1 ≤ r2 ≤ q1 ≤ r3 ≤ r4 ≤ q2 ≤ r5 ≤ r6 ≤ q3 ≤ · · · ≤ r2N−2 ≤ r2N−1 ≤ q2N ≤ r2N+1,

that is, qi lies on the interval [r2i, r2i+1]).

We recall that in the sphero-ellipsoidal coordinate system q1, . . . , qN the operator L
has the form diag(q1, . . . , qN), so the notation qi used for eigenvalues in Lemma 4.1 is
compatible with that in §2.2. Note though that for the Neumann system the operator L
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is defined also at the points where the sphero-ellisoidal coordinate system is not defined.
These points are precisely the points where L has multiple eigenvalues.

Proof. As the property of a polynomial to have a complex root is an open property, we
may work at a point (q1, . . . , qN) of our sphero-ellipsoidal coordinate system and assume
that all component of the velocity vector (q̇1, . . . , q̇N) are different from 0. From (43),
we see that the leading coefficient of the polynomial is positive so for t << −1 we have
C(t) < 0. Next, from (42) we see that the value of C(t) are negative at each t = qi.

Since the polynomial
∏N+1

s=1 (t − ai) has different signs at t = xi and at t = qi+1, the
polynomial (tN +H0t

N−1 + · · · +HN−2t+HN−1) should also have different signs at qi
and at qi+1 implying the existence, in view of (44), of N − 1 real roots on the interval
[a1, aN+1]. Thus, 2N roots, counted with multiplicities, of our polynomial C of degree
2N + 1, are real, so the remaining root is real as well. □

By Theorems 2.3, 2.4, solutions of the KdV system coming from finite-dimensional
reduction correspond to the solutions of the Benenti system with f(t) = 1 and U(t) =
−(t2N+1 + c2t

2N−1 + · · · + c2N+1). By Lemmas 3.1, every solution of the Neumann
system corresponds to a solution of the Benenti system above. Lemma 4.1 tells which
solutions of the Benenti system above correspond to the solutions of some Neumann
system: necessary conditions are that all roots of the polynomial C(t) are real and
that the eigenvalues of the corresponding L are real and satisfy (45). The next Lemma
shows, in particular, that these are also sufficient conditions. It also implies that if all
eigenvalues of L are real and satisfy (45) at one point of the solution of the Benenti
system above, then it is true at every point.

Lemma 4.2. Suppose (w1(x), ..., wn(x)) is a solution of (38) such that the polynomial
C(t) has only real roots which we list with their multiplicities and denote by r1 ≤ · · · ≤
r2N+1. Denote by q1(x), . . . , qN(x) the zeros of the polynomial (37), listed with their
multiplicities. Assume that (w1(0), · · · , wN(0)) are such that all qi(0) are real valued
and satisfy r2i ≤ qi(0) ≤ r2i+1. Then, the solution (w1(x), ..., wn(x)), with the initial
values (w1(0), · · · , wN(0)), can be extended for all x ∈ R.

Moreover, suppose for a certain i and for certain x̃ we have r2i < qi(x̃) < r2i+1 and
denote by Ii the connected component of the set {x ∈ R | r2i < qi(x) < r2i+1} containing
0.

Then the function qi(x) smoothly depends on x for x ∈ Ii, moreover d
dx
qi ̸= 0 for all

x ∈ Ii and satisfies (42).

Proof. First assume that for each i we have r2i < qi(0) < r2i+1. Then, we take the Neu-
mann system such that ai = r2i for i < N+1 and aN = r2N+1. Next, take a point on SN

such that sphero-ellipsoidal coordinates of this points are (q1(0), . . . , qN(0)). The corre-

sponding function f(t) in the equation (42) is then equal to −4
∏N+1

s=1 (qi−as), see (25).
Next, take H0, . . . , HN−1 such that the right hand side of the equation (42) has roots
r1, r3, . . . , r2i−1, . . . , r2N−1. This is clearly possible since for the Neumann system U(t) is
given by (27), so the right hand side of (42) is polynomial of degree N in which we freely
choose all nonleading coefficients. Then, at out point (q1(0), . . . , qN(0)) of the sphere the
products f(qi(0))U(qi(0)) are positive and we can choose

(
d
dx
q1(0), . . . , d

dt
qN(0)

)
such

that the equation (42) is satisfied. The solution of the Neumann system with this initial
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data will correspond to the solution of (38) with the initial values (w1(0), · · · , wN(0)).
Since the solution of Neumann system is defined on a closed manifold and therefore
can be extended for the whole R, the solution of (38) can be extended to the whole
R as well. At the points of the interval Ii, the function C(qi(x)) is not zero, so (38)
implies that d

dt
qi(x) ̸= 0. Lemma 4.2 is proved under the assumption that all roots of

the polynomial C are different.

The remaining case when for a certain i we have r2i = qi(0) or r2i+1 = qi(0) can
be proved by passage to the limit. We take the sequence of the polynomials Cn(t)
satisfying the standard assumptions such that it converge to our polynomial C(t), and
the sequence of initial data satisfying assumptions used in the proof above such that it
converges to our initial data. The limit of the corresponding solutions of the Neumann
system is a solution of the Neumann system. As it lives on a compact manifold, it
exists for all x ∈ R.

Finally, for x ∈ Ii, qi(x) is an isolated root so it depends smoothly on x. Since the
equation (42) are fulfilled for the sequence of the solutions considered above, it is fulfilled
for the limit solution. But then (42) implies d

dx
qi ̸= 0. □

Corollary 4.2.1. Any solution of the KdV system corresponding to a solution of the
Neumann system is bounded.

Proof. Indeed, the solution is (up to a constant) the trace of L, which is the sum of xi,
which is clearly bounded from above by NaN and from below by Na1. □

An alternative proof: up to a constant, the solution is essentially the potential energy of
the Neumann system evaluated along a solution of the Neumann system. The potential
energy is clearly bounded as it is a continuous function on the sphere SN which is
compact. □

4.2. Proof that the Sturm-Liouville-Hill problem corresponding to the Neu-
mann system has finite-band spectrum. In the previous section we discussed the
conditions on the polynomial C(t) for the stationary solutions of the KdV equations
coming from the Neumann system, in particular, they should have only real roots. The
goal of this section is to prove the following Theorem:

Theorem 4.3. Denote by r1 ≤ r2 ≤ · · · ≤ r2N+1 the roots of the polynomial C, counted
with their multiplicities.

Then, 1
2
λ lies in the spectrum of − ∂

∂x2 + 1
2
u if and only if

(46) λ ∈ [r1, r2] ∪ [r3, r4] ∪ · · · ∪ [r2N−1, r2N ] ∪ [r2N+1,+∞).

We see that the spectrum consists of finitely many closed intervals and one half-line
[2r2N+1,+∞). In jargon, the intervals are called bands and the half-line [r2N+1,+∞)
is called the infinite band. Note that the number of (finite) bands is at most N . Since
ri may be equal to ri+1, the number of bands can be smaller than N and some of the
bands could be actually points.

Let us also observe that the set (46) coincides with

(47) {λ ∈ R | C(λ) ≥ 0} .



POTENTIALS WITH FINITE-BAND SPECTRUM AND BKM SYSTEMS 17

Lemma 4.4 and the discussion afterwards relates the KdV equation, via (38), to the
spectral problem for Schrödinger-Hill equation.

Lemma 4.4. Let w(x), σ(x) be smooth functions defined on an interval such that w > 0
and m ̸= 0, C be constants. Consider the primitive function ϕ(x) =

∫
ds

2w(s)
and the

functions

(48) ψ1(x) =
√
w(x) e

√
− 2C

m
ϕ(x) and sign(w(x))ψ2(x) =

√
w(x) e−

√
− 2C

m
ϕ(x).

Then, equation

(49) ψi,xx +
1

2

σ(x)

m
ψi = 0, i = 1, 2

holds if ans only if equation

(50) wxx(x)w(x) − 1

2
w2

x(x) +
σ(x)w2(x) − C

m
= 0.

holds.

Remark 4.1.

(1) The function ϕ(x) is defined up to an addition of a constant, which corresponds
to multiplication of the function ψ1 by a constant and division of ψ2 by the same
constant.

(2) The change of the sign of the function w does not affect the equation (50). If
w < 0 on the interval we work, the functions√

−w(x) e−
√

− 2C
m

ϕ(x) and −
√
−w(x) e

√
− 2C

m
ϕ(x)

are solution of (49).
(3) The functions ψ1, ψ2 clearly have the property ψ1ψ2 = w. One easily shows that,

within the 2-dimensional solution space of (49), the property ψ1ψ2 = w defines
(up to swapping, multiplication one by a constant and division of the second by
the same constant) two solutions of (49) which form a basis in the space of all
solutions.

Proof of Lemma 4.4. Note that the equations (49) and (50) are both second order ODEs
so substituting ψi given by (48) in (49) will give a second order differential equation on
w. We will show that the formula for ψi is chosen such that the obtained equation is
equivalent to (50).

Let us do the corresponding calculations. To simplify the formulas, we assume w > 0,

denote k =
√

−2C
m

and consider ψ := ψ1. We get

ψx =
1

2

wx√
w
ekϕ +

k

2
√
w
ekϕ,

ψxx =
1

2

wxx√
w
ekϕ − 1

4

w2
x

w3/2
ekϕ +

k

2

wx

w3/2
ekϕ − k

2

wx

w3/2
ekϕ +

k2

4w3/2
ekϕ − 1

2
σ(λ)

√
wekϕ =

=
1

2

(
wxx

w
− 1

2

w2
x

w2
− C

mw2

)
√
wekϕ = −1

2

σ

m
ψ1.

Thus, the equation (49) holds for the function ψ1. The proof for ψ2 is analogous.
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Let us now prove the Lemma in the other direction. Assume that (49) holds. The same
computation give us

0 =

(
wxx

w
− 1

2

w2
x

w2
− C

mw2
+
σ

m

)
ψ1.

As w is not zero by assumptions, (48) implies that ψ1 is not zero so (50) holds. □

The equation (49) is just the Sturm-Liouville equation corresponding to the potential
1
2
σ(x)
m

; its operator is

H = ∂2

∂x2 +
1

2

σ(x)

m
Id .

In this notation, the equation (49) reads

(51) Hψ = 0.

Next, note that (50) is just the equation (38) with m = m0 and σ(x, λ) = λ− 1
2
w1. We

assume m0 = 1 for simplicity, see the discussion around (28). In this case, (50) has the
form

(52) wxx(x, λ)w(x, λ) − 1

2
w2

x(x, λ) + σ(x, λ)︸ ︷︷ ︸
λ−1

2
w1

w2(x, λ) = C(λ).

In view of Theorem 2.3, the corresponding Sturm-Liouville equation from Lemma 4.4
reads then

(53) ψxx + 1
2

(λ− u)ψ = 0.

It is the so-called Hill-Schrödinger equation, i.e., the equation on the eigenfunctions
with eigenvalue 1

2
λ for the operator

(54)
(
− ∂

∂x2 + 1
2
u
)
ψ = 1

2
λψ.

Note that (54) is an ordinary linear differential equation of the second order, so it has
precisely two linearly independent solutions for each λ, on any connected open interval
where u is defined. We say that 1

2
λ ∈ R lies in spectrum, if u is defined on the whole R

and there exists a bounded non-zero solution ψ of (54).

Proof of Theorem 4.3. First, let us show, that the bands, indeed, lie in the spectrum.
First, observe that the roots r1, ..., r2N+1 lie in the spectrum. Under the assumption
λ = ri, both solutions from (48) coincide and give us a solution

(55) ψ(x, λ) =
√
|w(x, λ)|

which is bounded in view of Corollary 4.2.1.

Next, consider λ from the open interval (r2i−1, r2i). For each λ ∈ (r2i−1, r2i) we have
C(λ) > 0, as no root of the characteristic polynomial of L lies in such an interval.
Therefore, w(x, λ) does not change the sign and we may assume w(λ) > 0. Since

C(λ) is positive,
√

−2C(λ) is purely imaginary so e
√

−2C(λ)ϕ(x) is bounded. Then, the

solution ψ1 =
√
w(x)e

√
−2C(λ)ϕ(x) from (48) is bounded as well. Thus, 1

2
λ lies in the

spectrum.
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The infinite band can be handled using a similar argument: Take λ ∈ [r2N+1,+∞). We
again have that λ cannot be a root of the characteristic polynomial of L. Therefore,
w(x;λ) does not change the sign and we may think that it is positive. Since C(λ) is

positive,
√
−2C(λ) is purely imaginary so e

√
−2C(λ)ϕ(x) is bounded. Finally, the solution

ψ1 =
√
|w(x)|e

√
−2C(λ)ϕ(x) from (48) is bounded as well. Thus, 1

2
λ lies in the spectrum.

Next, let us show that for λ ∈ R such that C(λ) < 0 the ODE (54) does not have
bounded solutions. We start with the case when λ < r1. In this case, w(x) is separated
from zero, we may assume that it is positive. The function ϕ(x) =

∫
ds

2w(s)
is therefore

unboundend. Since
√

−2C(λ) is a real positive number, the function ψ1 from (48) is
unbounded for x → ∞ and goes to zero for x → −∞. The function ψ1 from (48) is
unbounded for x → −∞ and goes to zero for x → ∞. Therefore, no nontrivial linear
combination of ψ1 and ψ2 is bounded.

Finally, let us consider the most complicated case λ ∈ (r2i, r2i+1). Without loss of
generality, we may assume that i = 1 and λ = 0, so r2 < 0 and r3 > 0. As above,
we denote by q1, . . . , qN the eigenvalues of L and consider their dependence on the
“time” x, that is, the functions qi(x). We reserve the notation x̃ for values such that
q1(x̃) = λ = 0. Note also that the assumption λ = 0 implies w(x) = q1(x)q2(x) · · · qN(x)
with all qi ≥ r3 > 0 for i ≥ 2. The functions qi are well-defined at least continuous
functions. We know from Lemma 4.2 that the derivative dq1

dx
is not zero at x̃ such that

q1(x̃) = 0. Actually, by (42), it is given at any point x by

(56) dq1(x)
dx

= ±
√

−2C(0)

(q2(x) − q1(x)) (q3(x) − q1(x)) · · · (qN(x) − q1(x))
,

so at x = x̃ it is given by

(57)
dq1(x̃)

dx
= ±

√
−2C(0)

q2(x̃)q3(x̃) · · · qN(x̃)
.

This in particular implies that, at the point x̃, the derivative of w is given by

(58)
dw(x̃)

dx
=

dq1(x̃)q2(x̃) · · · qN(x̃)

dx
= q2(x̃) · · · qN(x̃)

dq1(x̃)

dx
= ±

√
−2C(0).

We see that as C(0) ̸= 0, the derivative of q1 and of w is not zero at x̃. The sign ±
depends on whether the functions q1, w are locally increasing or decreasing at a small
neighborhood of x̃. Note also that the derivative of w at the points such that q1 = 0 has
the same absolute value and its sign depends on whether the sign of w changes from
“+” to “−” or from “−” to “+” when x passes this point.

This in particular implies that the points x̃ such that q1(x̃) = 0 exist, as the derivative
of the function q1(x) is nonzero for x such that r1 < q1(x) < r2 , q1(x) ̸= 0 by (42).

Lemma 4.4 gives us two eigenfunctions ψ1 and ψ2 of the equation (54) at the interval
where w does not change sign. Note that as ψ1, ψ2 are solutions of a linear ODE
with smooth coefficients, they can be extended to solutions defined and smooth on the
whole R. The solutions ψ1, ψ2 are linearly independend and therefore form a basis in
the two-dimensional linear space of the solutions of (54).
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Let us understand how the solutions ψ1, ψ2 behave near zeros of w. At a zero x̃ of w,
using (57), we have that the primitive function ϕ(x) =

∫ x√−2C(0) 1
2w(s)

ds behaves

asymptotically, for x→ x̃, as const± 1
2

ln |w(x)|. This implies that one of the functions
ψ1(x) and ψ2(x) behaves asymptotically, for x→ x̃, as

const · w and another as 1/const

(for a certain nonzero constant const which of course may depend on the choice of the
point x̃ at which q1 = 0).

Next, observe that as objects we considered were real-analytic, we can think that our
parameter x is complex-valued, x ∈ C. The solutions w(x) and q1(x) are then holomor-
phic functions of x ∈ C. Since the derivatives of q1 and of w are not zero at the points
x̃ such that q1 = 0, such points are isolated in a small neighborhood of the real line.
We denote this neighborhood by W .

We denote by · · · < x̃−1 < x̃0 < x̃1 < x̃2 < . . . the points of R such that q1(x̃i) = 0,
the sequence of such x̃i could be unbounded in both directions, in one direction, or
can simply be finite. Assume without loss of generality that w > 0 on the interval
(x̃0, x̃1) ⊂ R. Then it changes sign from “+” to “−” at the points x0, x1, so it is negative
on the intervals (x−1, x0) and (x1, x2), positive on the intervals (x̃2, x̃3), (x̃−2, x̃−1),
negative on the intervals (x̃−3, x̃−2), (x̃3, x̃4) and so on. The intervals such that w is
positive will be called positive intervals, and such that w is negative will be called
negative intervals.

Next, denote by W̃ the neighborhood W without negative intervals. As at the endpoints
of the negative intervals the the derivatives of w at x̃i and x̃i+1 coincide in absolute
values but have different signs by (58), the corresponding residues cancels. Then, the

primitive function ϕ =
∫

1
2w(s)

ds from Lemma 4.4 is well-defined on the whole W̃ . This

implies that the formula (48) globally defined the restriction of global solutions of (49)

to W̃ .

Recall now that the product ψ1ψ2 equals ω, and at the points x ∈ R with |q1(r)| > ε > 0
the function w is separated from zero. Our next goal is to show now that for x ∈ R>0

the function ψ1 achieves arbitrary big values. Recall that the equation (49) is a linear

second order ODE and its solution space is 2-dimensional, so any solution ψ on W̃ is
given by

(59) const1ψ1 + const2ψ2.

At the points where ψ1 is big in its absolute value, the function ψ2 is small so a bounded
linear combination const1ψ1 + const2ψ2 for unbounded ψ1 implies const1 = 0.

In order to do it, let us decompose the function w(x) in the product q1(x)w̄(x), where
w̄(x) = q2q3 · · · qN . In our setup, w̄(x) is positive for all x. Consider a pair (a(x), b),
where a is a function and b is a sufficiently small positive constant such that

(60) a(x)w̄(x) + bq1(x) = 1.
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The existence of such a pair (a(x), b) is clear. Indeed, if we take b > 0 sufficiently small,
then 1 − bq1(x) > ε > 0 for all x. Then the function a(x) is given by

a(x) =
1 − bq1(x)

w̄(x)
.

If b is small enough, a(x) is separated from zero.

The condition (60) implies that

1

q1(x)w̄(x)
=

a(x)

q1(x)
+

b

w̄(x)
.

Combining this formula with (48), we obtain

(61) ψ1 =

(
√
q1e

√
−2C(0)

∫ a(s)
2q1(s)

ds

)
·
(√

w̄e
√

−2C(0)
∫

b
2w̄(s)

ds
)
.

The second factor on the right hand side of (61) is unbounded for x → +∞ as the

function b
2q1(s)

is positive,
√
−2C(0) is positive and w̄ is separated from zero. Note that

the second factor (√
w̄e

√
−2C(0)

∫
b

2w̄(s)
ds
)

can be extended to the whole real line R, as the integrand b
2w̄(s)

has no poles.

The function q1(s) in the first factor must, for certain arbitrary large s, be different
from zero, as its derivative is different from zero by Lemma 4.2 at the points where
q1 = 0. Its derivative d

dx
q1(x) satisfies (42) and therefore for every fixed q̃1 ∈ (r1, r2)

the derivative d
dx
q1(x) is bounded from zero on the set {s ∈ R | q1(s) = q̃1}. Then, the

first bracket (61) cannot be arbitrarily close to zero implying that (61) unbounded for
x→ +∞. As explained above, this means that const1 in (59) is zero,

Similarly, the function ψ2 is bounded for x → −∞ implying const2 = 0. Theorem is
proved. □

5. Conclusion and outlook

The goal of this note was to understand the famous results of [45, 42, 43] using new
approach and new methods coming from recent investigation [9, 14] of BKM systems.
We have shown that it is possible, at least for a part of results, and the proofs in the
present paper are shorter than that of [42, 43]. Of course the proofs use the preliminary
work done in [9, 14]. But still, at least in our eyes, we replaced the “mathematics magic”
by “mathematical methods”; in particular the wonderful observations of H. Knörrer
[30] relating the geodesics of ellipsoid to the solutions of the Neumann systems, and of
Veselov [50] relating finite-gap solutions of the KDV to the solutions of the Neumann
system are direct corollaries of Lemma 3.1, which can be applied to a much wider class
of systems.

But in fact the main motivation behind this investigation is as follows: the de-facto
main approach of tackling KdV equations is the so-called inverse scattering method.
Inverse scattering method is based on the understanding of the eigenfunctions of the
Schrödinger operator − d2

dx2 + u(t, x), where u(t, x) is essentially a solution of the KdV
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equation, and studying their evolution when we change t. It is clearly related to the
problem we consider, and actually the results and methods of [45, 42, 43] came from
this approach, see also [5, 33, 6] for recent developments. A natural question on which
we will concentrate in our next investigation is how to adapt the inverse scattering
method for studying general BKM systems, with the goal to generalise famous results
on the KdV equation for all BKM systems.

Let us indicate first observation in this direction. First let us recall that in the finite-
dimensional reduction of BKM systems studied in [14] the analog of (38) is

(62) wxx(x, λ)w(x, λ) − 1

2
w2

x(x, λ) +
σ(w, λ)w2(x, λ) − C(λ)

m(λ)
= 0.

Above m(λ) is a polynomial of degree ≤ n with constant coefficients used for the con-
struction of the BKM system, C is a polynomial of degree 2N+1, w = w(x) is the monic
polynomial (37) of degree N . The function σ(w, λ) is the monic polynomial of degree

n in λ, whose coefficients are uniquely defined by the condition that σ(w,λ)w2(x,λ)−C(λ)
m(λ)

is

a monic polynomial of degree 2N − 1. They are functions of w1, w2, . . . , wn.

The system (62) is polynomial in λ of degree 2N − 1, so it is equivalent to a system
of 2N ODEs of the second order on N functions w1, . . . , wN . This system is equivalent
to the system of Euler-Lagrange equation, whose Lagrangian is the sum of the kinetic
energy coming from the flat metric (8) and a certain potential energy depending on
parameters. As in the KdV case, the system is a Benenti system. The potential is
slightly more complicated compared to that in the KdV case and the corresponding
function U is a polynomial of a possibly higher degree, if m(λ) = const, or a rational
function if m(λ) ̸= const.

Having a solution of this system of ODEs, one constructs a solution of the corresponding
BKM system as follows: recall that in order to choose a BKM system we should choose
a differentially nondegenerate Nijenhuis operator L̃ on Rn with coordinates u1, . . . , un.
The solution (u1, . . . , un) corresponding to the BKM system is constructed by the so-
lution w of the (62) by the formula

(63) σ(w, λ) = det(λId − L̃).

For a given L̃, the right hand side of (63) is an explicit expression in u from which
we may reconstruct u. In particular, if in the coordinates u the operator L̃ has the
companion form (8) (with w replaced by u and N replaced by n), then det(λId− L̃) =
λn + u1λ

n−1 + · · · + un, so the formula (63) gives us an explicit formula for u1, . . . , un,

Note that the equation (62) has the form (38). The dependence on λ is though different
from that of in the KdV case. The analog of the equation (53) in this case is the equation

(64) ψxx + 1
2

det(λId − L̃(u(x))

m(λ)
ψ = 0.

We see that for n ≥ 2 the dependence on the λ is not linear, differently from the Hill-

Schrödinger equation. Indeed, the function 1
2
det(λId−L̃(u(x))

m(λ)
is a rational function in λ

whose coefficients depend on x.
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The special case m(λ) = const = m0 of this equation appeared in the literature,
see e.g. [35, 2], under the name “energy-dependent potentials”, in the relation to
multicomponent integrable systems. The scattering problem for such systems were
studied quite recently, see e.g. [44, 28].

We say that λ lies in the spectrum of (64), if there exists a bounded nonzero solu-
tion ψ. For certain u coming from finite-dimensional reductions of the BKM systems,
the spectrum is the finite-band one, in the sense it contains finitely many connected
components. It will be interesting to understand whether in the class of quasi-periodic
coefficients of the equation (64) the finite-bandness of the spectrum is equivalent to
the property that the coefficients came from a BKM system. Moreover, as mentioned
above, it will be generally interesting to develop the inverse scattering approach to
BKM systems; the corresponding Sturm-Liouville equation is expected to be (64).
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