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We address pattern selection problems in nonlinear interface dynamics by maximizing the entropy
of the most probable (classical) scenario associated with the processes. This variational principle
we applied to well-known selection problems in a Hele-Shaw cell: stationary Saffman-Taylor finger
in a channel [1] and self-similar finger in a wedge [2]. The obtained results excellently agree with
experiments. We also address the universal fjord opening angle [3]. This principle complements a
non-variational selection developed earlier [4]. Surface tension is not needed for selection in both
approaches, contrary to the common belief.

I. INTRODUCTION

Selection problems. Of the many unstable nonlin-
ear phenomena, we will address here only those de-
scribing front propagation, pattern formation, and self-
organization. Besides being of obvious interests for math-
ematics, physics, geophysics, chemistry, and biology, they
are indispensable in oil/gas recovery, metallurgy, and
medicine (malignant growth), to name just a few appli-
cations. These processes often exhibit the problem of
selecting the most stable member from a family of sta-
tionary or self-similar solutions.

List of pioneers. The first work in this subject was
in gene propagation (Kolmogorov et al. [5]). Based on
citations, selections of fluid/fluid interfaces named after
Taylor (Rayleigh-Taylor [6] and Saffman-Taylor [1] insta-
bilities) attracted most of attention. Comparable efforts
were also in calculating of asymptotic velocities in flame
propagation (Landau [7], Zeldovich [8], Gelfand [9]),
crack propagation (Mott [10], Barenblatt [11]), and den-
dritic growth (Ivantsov [12], Langer [13]). These impres-
sive names reflect both importance and difficulty of se-
lection problems.

Extremum principle. Selection problems are challeng-
ing both in physics (to identify the selection mechanism)
and in mathematics (to handle a small singular term).
The desire to find a functional, whose extremal describes
the selected pattern, is understandable. But since all
these processes are out of equilibrium, minimizing ther-
modynamic potentials here is out of help. Importance of
the extremum principle was clearly indicated by one of
pioneers in dendritic growth selection, J. S. Langer: After
noticing “[t]he big, unsolved part of the problem is how
these complex shapes are selected”, he asks: “. . .might
there be some meaningful and useful variational formu-
lation that describes these processes?” [13].

Minimal dissipation is out of help. There is one such
functional applicable out of equilibrium – the principle
of minimal dissipation in viscous hydrodynamics, dis-
covered by Helmholtz and Korteveg in XIX century (see
[14]), and also valid in kinetics of weakly non-equilibrium
systems, as discovered by Onsager in 1931 [15]. In fact,

the authors of [1] tried to apply this functional to select
the observed inviscid finger with a relative width of 1/2 in
a Hele-Shaw cell. However, it turned out that complete
dissipation (friction between plates and oil) does not de-
pend on the finger shape at all, and thus is out of help.
This was one of motivations to include surface tension as
the largest factor neglected in deriving a continuum fam-
ily of stationary fingers (see Section II below), for solving
the selection problem.
Goals of the paper. Being mostly dissipative, these

processes do not possess the action, which minimum pro-
vides their dynamics in the form of Euler-Lagrange equa-
tions. Earlier we developed a stochastic theory [16, 17],
where we obtained dissipative deterministic growth equa-
tions by varying an entropy associated with stochastic
processes. In this article, we maximize the entropy for
deterministic processes to address well-known selection
problems in a Hele-Shaw cell. The obtained results excel-
lently agree with experiments and do not require surface
tension, contrary to common belief.
Structure of the paper. There are two sections, which

follow the introduction. The first one contains a back-
ground of non-variational approaches to selection both
with and without surface tension. Then the second sec-
tion follows, which is fully devoted to the variational ap-
proach, where our stochastic theory and a variational
principle are presented and applied to three selections
in a Hele-Shaw cell: a finger in a channel [1], a finger in
a wedge [2], and a fjord angle [3]. A conclusion is stated
at the end of the article.

II. NON-VARIATIONAL APPROACHES TO
SELECTION

A. Selection via surface tension

Problems with including surface tension. To see how
surface tension explains the Saffman-Taylor finger (STF)
selection, one has to include the surface tension term into
the equation for a family of steady state solutions written
in scaled units as x = Ut + 2(1 − λ) log(cos(y/2λ)) [1].
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Here x and y are Cartesian coordinates in a physical
plane, x(t, y) is a moving interface parameterized by y,
t is time, and λ is a ratio of the finger width to the lat-
eral width of a Hele-Shaw channel. The task is to select
λ = 1/2 from the continuum, 0 < λ < 1, as the most sta-
ble member of this family by including surface tension.
But inclusion of surface tension is non-trivial, because the
term with surface tension provides a singular perturba-
tion. In other words this term, added to the equation of
motion (eq. (7) below) presents the highest spatial deriva-
tive multiplied by a small number (surface tension), thus
all regular perturbative corrections are zero. So including
surface tension for solving selection problem appeared as
a problem by itself.

WKB. This singular perturbation problem was solved
by using the WKB approximation developed in 1926 in
quasi-classical quantum mechanics [18], because of the
striking similarity between the surface tension term and
a square of the (small) Planck constant, ℏ, multiplied by
the highest (second) derivative in the Schrödinger equa-
tion. This method, based on analytic continuation into
a complex plane, helped to answer many questions in
quantum mechanics, such as quantum tunneling, Bohr-
Sommerfeld quantization, and presenting the action as
an adiabatic invariant. The WKB-based analytic con-
tinuation approach (the so-called “Zwaan method” [19])
was resurrected in 1961 by Pokrovsky and Khalatnikov
working on the over-barrier reflection [20].

Selection problem solved. To adapt WKB to selec-
tion problems Kruskal and Segur developed a theory of
“Asymptotic beyond all orders” [21]. This theory allowed
one to catch exponentially small terms after analytic con-
tinuation from the real axis to a complex plane, and so
to find a discrete spectrum of branches converging to
λ = 1/2 in zero surface tension limit. Then it was demon-
strated with computational help that the lowest branch
is the most stable one. These results were culminated in
1986 when several independent groups simultaneously re-
ported in (the same issue of) PRL [22–24] the successful
completion of the STF selection problem. These achieve-
ments were summarized and presented in various books
and reviews [25–28].

B. Selection without surface tension

Integrability. However, it was shown in 1998 that STF
selection does not require surface tension [4], [29]. The
result [4] was achieved due to integrability of the Lapla-
cian growth (LG) [30], that is the interface dynamics in
a Hele-Shaw cell without surface tension. This remark-
able property, which allows to obtain various classes of
exact unsteady solutions, is rather an exception than a
rule among nonlinear PDEs or other infinitely dimen-
sional dynamical systems. Integrability, as a new branch
of mathematical physics, was born in 1967 after the dis-
covery of striking and unusual (at that time) properties
of the Korteveg de Vries equation [31]. This field has

been booming since then with no signs of slowing down
up to date.
Hadamard ill-posedness. LG is linearly unstable, and

all exact unsteady solutions of LG are either singular, i.e.,
cease to exist in a finite time [32–34], or regular, i.e., ex-
ist at all times and therefore allow analysis in long-term
asymptotics, t → ∞ [35–39]. Because of instability and
divergent solutions, the LG equation is ill-posed in the
Hadamard sense [40], which is typical for many important
equations correctly describing physical processes [41]. In
the 1960s, Hadamard’s counterexample, which gave birth
to the whole concept of ill-posed problems, was found
to be wrong [42]. But reluctance of mathematicians to
take seriously such ill-posed equations, instead of claim-
ing them meaningless, slowed down progress in certain
areas of physics in 1920-1950s [43] by delaying important
development in these fields.
Tikhonov regularization. Converting ill-posed (in the

Hadamard sense) equations into well-posed ones was de-
veloped in 1950-1960s in USSR and based on these ef-
forts a rigorous theory was created by Tikhonov [44] and
named after him. This procedure eliminates all initial
data leading to singular solutions as unphysical and non-
observable. If all the initial interfaces can be approxi-
mated as closely as desired by the data remaining after
elimination, then the problem is proven to be well-posed,
and these data are called the set of well-posedness [45].
External and internal regularizations. Unlike widely

used ”external” regularizations when small dispersive
terms are added to ill-posed equations (such as sur-
face tension regularization discussed above), a less con-
ventional Tikhonov procedure of eliminating all initial
data leading to divergent solutions, is the ”internal” one.
Sometimes internal regularization is more advantageous
than external one. It is clearly the case for Laplacian
growth, which subtle integrable structure retains intact
after Tikhonov regularization, but is totally ruined by
including surface tension. Selection without surface ten-
sion in [4] was performed precisely by this procedure1,
which converted the problem into a well-posed one.
Bubble selection. The approach developed in [4] for fin-

ger selection without surface tension was later applied to
bubble selection in a channel [46–49]. In [46, 48] the au-
thors obtained new classes of exact unsteady solutions for
a bubble with an arbitrary shape. By applying these solu-
tions to the single bubble selection problem, posed in [50],
they reproduced the selected value obtained by including
surface tension and then applying asymptotics beyond
all orders mentioned above [51]. Recently asymptotic ve-
locity selection was predicted for an arbitrary number of
nonlinearly interacted bubbles in a channel [49].
The only attractor. The key observation common to

all these works is that the observed pattern selected from

1 The reference to Tikhonov regularization was absent in [4], since
the author of [4] was unaware of Tikhonov regularization at that
time.



3

continuum is the only attractor of (and, as such, is built
in) zero surface tension dynamics. These results became
possible due to a rich set of exact unsteady regular solu-
tions of LG because of its integrable structure as well as
due to the Tikhonov regularization, which converted the
ill-posed problem to the well-posed one.

These selections came from differential equations, but
not from variation of a functional, so Langer’s question
in [13] about variational formulation still persists. Af-
ter applying the entropy functional defined below to the
Saffman-Taylor selection problems in the next section,
we believe the answer is “yes”.

III. VARIATIONAL SELECTION

A. Stochastic growth theory

Stochastic growth in a nutshell. Assume K tiny Brow-
nian particles of the area ℏ, issued from infinity and land
on a boundary ∂D(t) of a growing domain D(t) [16, 17]
within each time unit. This process is a bridge (crossover)
between K = 1, describing DLA process [52], and K →
∞, ℏ → 0, which corresponds to a deterministic Lapla-
cian growth (LG) described by the bilinear equation (7)
below. K = 1 is a quantum limit because of the maximal
correlation between Brownian particles, while K → ∞ is
a classical limit since all K issued particles are indepen-
dent (fully uncorrelated). The correspondence with the
classical limit requires the condition

Kℏ = Qδt. (1)

This is the area of a (thin) layer, δD(t), attached to
the domain D(t) during a (small) time interval δt, and Q
is a strength of a fluid source in a deterministic Laplacian
growth.

Multinomial stochasticity. Let’s partition the bound-
ary ∂D(t) onto N ≫ 1 equal fragments (bins) and define
µi to be a probability of a single particle to land to i-th
fragment (bin), hence the constraint

N∑
i=1

µi = 1. (2)

For LG µi is a harmonic measure [53] of the i-th frag-
ment of a boundary, which equals

µi = −∂nG(ξi,∞)

2π
|dξi|. (3)

Here G(ξi,∞) is the Green function of the Laplace op-
erator, defined as a function harmonic outside a growing
pattern, diverging logarithmically at ∞, and vanishing
at the boundary, ∂D(t); ξi here is (any) point of the ith

bin, introduced above.

The statistical weight that ki particles lands to the i-
th bin (i = 1, 2, . . . , N) within a (small) time unit, δt, is
given by the multinomial distribution:

P (k1, . . . , kN ) = KN
N∏
i=1

µki
i

ki!
, (4)

which after the Stirling approximation, by assuming ki ≫
1, amounts to

P (k1, . . . , kN ) = exp
{
K logK

−
N∑
i=1

ki log(ki/(µiK)
}
= expS[δD(t)], (5)

where S[δD(t)] is the entropy of the layer, δD(t).
Maximal (classical) entropy. By varying this entropy

functional with respect to a stochastic ki, subject to the
constraint (2), we find that S[δD(t)] reaches the maxi-
mum when

k̄i = Kµi. (6)

By equating a small displacement of the i-th fragment
of a boundary, Vn(ξi) δt, where Vn(ξi) is a normal inter-
face velocity at the point ξi, to k̄i = Kµi, we immediately
derive the deterministic (classical) equation of growth, as
the Euler-Lagrange equation of motion, or in other words
the extremal of the action equaled to a negative entropy,
−S[δD(t)]. For the Laplacian growth this equation takes
a form

Im(z̄tzϕ) =
Q

2π
, (7)

where z(t, w) is the conformal map from the exterior of
the unit circle on the w-plane to the domain D(t) on
the physical z-plane, where z = x + iy; the boundary
of D(t) is z(t, exp(iϕ)) parametrized by ϕ ∈ [0, 2π], and
subscripts denote partial derivatives. We skip a simple
derivation of (7) from (6) by using (1) (see [16, 17]) for
want of space.
Rich structure. The negative entropy in (5) after sim-

ple transformations becomes the action with a symplectic
structure and the Hamilton-Jacobi formalism. Besides
(and quite surprisingly), eq. (7) is equivalent to the classi-
cal Hadamard formula for a change of the Green function
G(ξ,∞) after variation of D(t) [54]. (More information
about this remarkable structure underlying the eq. (7)
and its relations to 2D quantum gravity, quantum Hall
phenomena, random matrices, and integrable hierarchies
can be found in [30, 55–57].)
Entropy = Scaled area. Bearing in mind that Kℏ is

the area of a single layer of growth, we obtain after plug-
ging (6) into (5), the maximal (deterministic) entropy for
a process, described by (6), in a strikingly simple form:

S[D(T )] = K(T/δt) logN = C ·Area[D(T )], (8)
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Figure 1. Moving finger in a rectangular channel, described
by eq. (9). Constants of motion, B± = B±iπ are indicated by
little red circles at the channel’s walls. The stagnation points,
the interface moves to exponentially slow, equal, B± − 2(1−
λ) log 2, are also located at the walls (little blue circles). The
dashed rectangle is the unphysical part of the total finger area.

where K is the same for each time interval δt, T is a total
time of growth, so K(T/δt)ℏ is the area spanned by the
growing pattern during time T , and C = logN/ℏ.
Variational selection. Since Nature always favors the

largest entropy scenario, then in view of (8) to solve the
selection problem is to find a value of a parameter to
select from (it is λ in the STF case), which maximizes
the area spanned by the growing domain D(t).

B. Selection in a channel

We cannot apply the maximal area principle to the
family of the Saffman-Taylor fingers

x = Ut+ 2(1− λ) log(cos(y/2λ)), (9)

since they are infinitely long, so their interior area di-
verges. Fortunately, there is an unsteady solution for a
finite finger [4, 37–39, 58] shown in Fig. 1:

z = r(t) + iϕ+ 2(1− λ) log(1− a(t) exp(−iϕ)), (10)

where r(t) and a(t) can be found from the following two
equations:

A = t = r(t) + 2(1− λ)2 log(1− a(t)2),

B = z(t, 1/a(t)) = r(t) + 2(1− λ) log(1− a(t)2),
(11)

where A is the area inside the finger, which equals time,
t, in our scaled units, Q = 2π, in (7). B is a constant of
motion, as follows from (7), and stems from integrability
of the system, but more precisely from the Herglotz theo-
rem on singularity correspondence [16, 17, 59, 60]; r(t) is
the moving fingertip, and a(t) relates to a finger length,
2(1−λ)2 log[1/(1−a(t)2)], which diverges when a(t) → 1.
Initially, at t = 0, the finger is almost flat, so a(0) ≪ 1.
Then a starts to grow and because da(t)/dt > 0 it moves
(exponentially slow when t → ∞) toward 1.

After eliminating r(t) in these two equations by sub-
tracting B from A in (11), we obtain:

A(λ, a(t)) = B + 2λ(1− λ) log
1

1− a(t)2
. (12)

Geometrically this subtraction is a removal of the un-
physical part of the total finger area, that is the rectangle,
shown in Fig. 1. Prior the interface reaches a stagnation
point, B−2(1−λ)2 log 2, at the walls, there is a nonlinear
competition of different fingers until the survival of the
leading one2 [4, 39]. The point of intersection of the in-
terface with walls gradually slows down and finally stops
at (speaking strictly, it continues to move exponentially
slow to) the stagnation point. This completes formation
of the finger, which propagates since then without defor-
mation.
As the eq. (12) shows, the area, A(λ, a(t)), is maximal

at λ = 1/2, which is the selected value in accordance with
the classical experiment [1]. This selection is achieved
by a simple variational principle, which favors the most
probable scenario (see above) and amounts to the max-
imal area spanned by the evolving pattern. This vari-
ational principle is the second selection without surface
tension, complementing the dynamical selection with the
same result obtained earlier [4] from the exact unsteady
solutions of the regularized eq. (7).

C. Selection in a wedge

Formulations of a selection problem in rectangular and
wedge geometries are quite similar: to select the observ-
able (and thus the most stable) member of the continuum
of self-similar solutions for a finger in a wedge. These so-
lutions are labeled by the wedge angle, θ = πκ, and by
the angle, α = π(κ − β), between two tangents to the
finger at the wedge apex. The parameter of selection is
ratio of these angles

λ(θ) =
α

θ
= 1− β

κ
, (13)

which becomes a function of θ after selection. The con-
tinuum of self-similar solutions in a wedge [2, 61–63] (a
counterpart of the eq. (9) for a channel) reads

z(t, w) = r(t)w(1− w−2/κ)β2F1

(
β, β − κ

1− κ
;w−2/κ

)
.

(14)
Here z(t, exp(iϕ)) is an interface of a growing fin-
ger, parametrized by ϕ ∈ [0, 2π], r(t) is a confor-
mal radius of the conformal mapping, z(t, w), r(t) =
limw→∞ |∂wz(t, w)|.

2 Eqs. (10) and (11) are simplifications of the exact multi-finger
solution (see [4, 37–39]). This simplification, of course, does not
change the selection λ = 1/2, presented here.
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Figure 2. Growing finger in a wedge, described by eq. (15).
Constants of motion, B± = B exp(±iπκ/2) are indicated by
little red circles at the channel’s walls. We do not indicate
here the stagnation points since they almost coincide with
B±. The dashed sector is the unphysical part of the total
area.

Again, as in a rectangular geometry, we need instead of
self-similar solutions (14) to find the family of unsteady
non-self-similar solutions for a growing finger in a wedge
(a counterpart of (10) for a channel)3. We found this
unsteady asymptotic solution, valid when the unsteady
finger evolution’s shape is close to the self-similar one
described by (14). We found it by taking the evolution
of isobars (level sets in front of the self-similar interface).
The solution is:

z = r
w

a

(
1−

(w
a

)−2/κ
)β

2F1

(
β, β − κ

1− κ
;
(w
a

)−2/κ
)
,

(15)
and the criterion of its validity is 1−a ≪ 1. A typical in-
terface described by this solution is schematically shown
in blue in Fig. 2.

The finger area A is readily calculated, by plugging
z(t, w) from the last equation into the identity

A =
1

2πi

∮
|w|=1

z̄(1/w)dz(w). (16)

Just as in a rectangular geometry (above), there is a con-
stant of motion, B = z(t, 1/a(t)), which connects r(t)

3 But this need is of different nature than need for (10) in the
channel.

and a(t) in (15):

B = ra−2
(
1− a4/κ

)β

2F1

(
β, β − κ

1− κ
; a4/κ

)
(17)

Geometrically B is a distance from the origin, z = 0, to
the intersections of the interface with walls of the wedge
(minus a tiny positive correction, not written here to save
space). There are two of these intersections, equaled in
size because of the symmetry of the growing finger with
respect to its central line as shown in Fig. 2.
Analytically B is the branching point of a Riemann

surface of a Schwarz function, defined at the interface
as z̄ = S(t, z) (see details in [30, 64]). Remarkably all
singularities of S(t, z) outside the interface are constant
in time, so B does not depend on time.
Reduced area. Just as in a channel case, we eliminate

the unphysical part of the growing finger, which is the
circular sector with a radius B (see Fig. 2), since it de-
pends on the initial conditions. In other words, a pat-
tern completes its formation and acquires the asymptotic
shape when the intersection of the interface with the walls
reaches the stagnation point. In experiments, this hap-
pens after competition between interacting fingers, when
a single finger survived. Thus only the finger area with-
out this unphysical part is considered for selection.
Selection. So, we subtract from the full finger area, A,

the area of this circular sector,

A0(β, κ, r(t), a(t)) = A(β, κ, r(t), a(t))−
− πB(β, κ, r(t), a(t))2κ/2, (18)

maximize this A0 with respect to β at given κ = θ/π,
r(t), and a(t), and plot resulting λ = π(1 − β)/θ as a
function of θ in Fig. 3.
By comparing our results (orange circles) with results

obtained by using the “asymptotic beyond all orders”
with inclusion of surface tension (blue triangles) we ob-
serve an excellent agreement (the maximal discrepancy
is about 1.5%).
The eq. (18) is accurately approximated as

A0(β, κ, r, a) =
πr2κ

2

Γ(1− κ)Γ(−κ)

Γ(β − κ)Γ(1− β − κ)
−

− πr2(κ− β)

2(κ/4)2β
Γ2(1− κ)Γ2(1− 2β)

Γ2(1− β − κ)Γ2(1− β)
(1− a)2β . (19)

The error between (18) and (19) is practically unnotice-
able as one can see in Fig. 3.
In a wedge with the right angle, θ = π/2, eq. (19) can

be further simplified. In the leading order in 1 − a ≪ 1
it reads:

A0(β, 1/2, r, a) =
πr2(1− 2β)

4

(
cosπβ − 22β(1− a)2β

)
.

(20)
For a = 1 − 10−7 (as shown in Fig. 3) this function
reaches its maximum when β = 0.077, so that the se-
lected λ = 0.85. It coincides with λ in the article [65]
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Figure 3. Blue triangles – selection by surface tension (data
taken from [62]), orange circles – our selection by exact for-
mula (18), green crosses – selection by approximation (19).
The parameter a(t) here equals a(t) = 1− 10−7.

about selection by surface tension in 90◦ wedge, but dif-
fers by .01 from the value λ = 0.86 in [62], which is also
selected by surface tension.

Two unexpected observations. When a(t) is not close
to 1 the finger has not yet formed its self-similar asymp-
totic shape, given by (14), so it is too early to test a
pattern for selection: one should wait until growing a(t)
enters the vicinity of 1, so that 1 − a ≪ 1. Then the
shape of the finger is finally formed at a(t) = 1 − 10−7

(as shown in Fig. 3), and subsequent evolution is not ex-
pected to change the selected value of β at given κ. For
earlier times the shape has not formed yet, as said above,
so it gives lesser than an asymptotic value of β.

(i) But as we unexpectedly found, for larger values of
a(t), that is for larger times, the selected value of β grad-
ually loses its accuracy. This is because the area A grows
in time contrary to the second term in the RHS of (18),
which stays constant in time, so in a long time limit a
contribution of the second term in (18), which is cru-
cial for selection, becomes negligible. This explains, we
believe, why the accuracy of the selected value worsens
for very large t, and in the limit t → ∞ the selection
disappears entirely.

(ii) It is also very surprising that the critical value of
a(t) given above is the same for all wedge angles, 0◦ <
θ ≤ 90◦.
Future work on selection in a wedge must shed light

on both these unexpected observations.
Inevitability of tip-splittings. A local curvature of

a self-similarly growing finger decreases as the inverse

square root of time. Since surface tension σ (neglected
here) is always multiplied by curvature, then the ef-
fective surface tension, σ(t), decreases in time in the
same way after rescaling to the time-independent pic-
ture with r(t) = 1. Thus the stability threshold, νc =

1.3 exp(−.6
√
(µV/σ(t))) [66, 67] (V is a local front ve-

locity, and µ is oil viscosity) decreases in time, so the
interface eventually loses stability via tip-splitting. The
finger in a channel, on the contrary, stays stable, if to
keep noise below the threshold. So the formulae for self-
similar patterns written above become invalid after the
the first bifurcation (tip-splitting).
No attractor. Motivated by the success of selections

in a channel [4, 46–48] without surface tension, we ex-
pected the attractor of (7) to be the selected pattern in
a wedge. Since we did not find the attractor (maybe there
is no such in a wedge, contrary to a channel), an extra in-
formation beyond eq. (7) was needed for selection. This
additional information appears to be the entropy (8) in
a form of the pattern area, A0, in (18) associated with
each member of the continuous family (15).

D. Universal fjord opening angle

Experimentalists at U. of Texas took a less traditional
path of studying viscous fingering in Hele-Shaw cells by
shifting attention from fingers to fjords, which separate
growing fingers [3]. Wedge geometry is typical and ubiq-
uitous in unstable growth since a growing interface is
full of virtual wedges – fragments between centerlines of
each pair of adjacent fjords surrounding a growing fin-
ger. These centerlines, which are virtual walls as shown
in Fig. 4, are streamlines, and so are impenetrable by
surrounding fluid. In other words they hermetically sepa-
rate adjacent virtual wedges (unless the cases when fjords
eventually merge).
Fjords are stable and robust, contrary to less pre-

dictable fingers because of their unstable evolution. This
is a good reason of attracting attention to fjords. Another
(and not less remarkable) feature of fjords is that they
are the building blocks of exact solutions of the Lapla-
cian growth equation without surface tension (7). More
precisely, all fjords geometric characteristics (vertices lo-
cations, directions, and shape details) are constants of
motion of the eq. (7) represented by the singularities of
the Schwarz function [37, 38, 57, 63, 68].
Scientists from Texas posed a new selection riddle

by discovering the universal fjords’ opening angle [3] –
their experiments in both rectangular and circular Hele-
Shaw cells yield fjords opening at a universal angle of
8.0◦ ± 1.0◦. This selection rule holds for a wide range of
pumping rates and fjord lengths, widths, and directions.
Previous subsection results must be applicable to these

virtual wedges if their centerlines (virtual walls) are
straight. The fjord angle (the difference between wedge
and finger angles) equals πβ in our terms defined above.
If it has a universal value, πβ0, which does not depend



7

Figure 4. A wedge-like fragment of growing interface in ra-
dial geometry (between dashed lines). The centerlines of two
fjords surrounding a growing finger form the walls of this vir-
tual wedge.

on the wedge angle for a noticeable range of θ, then the
plot in Fig. 3 should fit the formula,

λ(θ) = 1− πβ0/θ, (21)

for a constant β0.
This formula indeed fits our plot in Fig. 3 well for

πβ0 = 11.7◦ for 35◦ < θ < 90◦, and coincides with
one obtained numerically by using surface tension in [62].
The coincidence is unsurprising, since the result follows
from the same plot in Fig. 3, with (almost) no difference
between our data (orange circles in Fig. 3) and the data
used in [62] (blue triangles). Experiments in a wedge [2]

provide a somewhat lower value, that is 10.0◦ valid for
20◦ < θ < 90◦. The authors of [2] write about the for-
mula, λ(θ) = 1 − 10◦/θ, they obtained from measure-
ments: “This empirical law is unexplained and could be
due to a mere coincidence.”
To summarize, our results confirm the universal fjord

angle, 11.7◦ for wedges angles 35◦ < θ < 90◦, obtained
earlier in [62], but cannot explain the discrepancy with
somewhat lower experimental values 10.0◦ for real [2] and
8.0◦ ± 1.0◦ and for virtual [3] wedges respectively.

IV. CONCLUSION

A straightforward variational principle was derived and
applied to well-known pattern selection problems in a
Hele-Shaw cell in rectangular and wedge geometries. For
a finger in a channel this is the second demonstration of
selection without surface tension after [4]. The obtained
results are in excellent agreement with the experiments.
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de l’équation de la diffusion avec croissance de la quantité
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[36] D. Bensimon and P. Pelcé, “Tip-splitting solutions to a
Stefan problem,” Phys. Rev. A, vol. 33, pp. 4477–4478,
Jun 1986.

[37] M. B. Mineev-Weinstein and S. P. Dawson, “Class of
nonsingular exact solutions for Laplacian pattern forma-
tion,” Phys. Rev. E, vol. 50, pp. R24–R27, Jul 1994.

[38] S. P. Dawson and M. Mineev-Weinstein, “Long-time be-
havior of the N-finger solution of the Laplacian growth
equation,” Phys. D, vol. 73, no. 4, pp. 373–387, 1994.

[39] M. Mineev-Weinstein and O. Kupervasser, “Finger com-
petition and formation of a single Saffman-Taylor finger
without surface tension: an exact result,” arXiv:patt-

sol/9902007.
[40] J. Hadamard, “Sur les problèmes aux dérivées partielles
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