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A CURVATURE VARIFOLD WHOSE WEAK SECOND

FUNDAMENTAL FORM IS NOT PRESERVED UNDER

DECOMPOSITIONS

NICOLAU S. AIEX

November 7, 2024

Abstract. We construct a curvature varifold that does not admit a decom-
position whose components are curvature varifolds.

1. Introduction

The notion of a curvature varifold was introduced by Hutchinson in [4] and it
describes a weak version of second fundamental form on varifolds. This allows to
use the theory of varifolds to study geometric functionals that involve curvature,
see for example [8]. Furthermore, Hutchinson also proved a regularity result when
the curvature is sufficiently integrable see [3] and [1] for the complete proof.

The concept of weakly differentiable functions on varifolds introduced by Menne
in [6] establishes the connection between the weak second fundamental form and the
tangent map of the varifold that is naturally defined. In fact, Menne [6, Theorem
15.6] proves in particular that the weak second fundamental form corresponds to
the weak derivative of the tangent map.

The theory of weakly differentiable functions and the properties developed in
[6] were essential to complete the proof of graphical representation of curvature
varifolds in [1]. An important part of the proof was to construct partitions of the
varifold at small scale in which every element of the partition is a curvature varifold
and carries tilt-excess estimates at all scales.

These notes will, in some sense, show that the above is optimal and it cannot
be improved to construct a decomposition instead of a partition. The difference
between a decomposition and a partition is that in the former one requires the
elements to be indecomposable, that is, they cannot be further separated into pieces
and are essentially connected.

As one would expect, regular varifolds are curvature varifolds with respect to
the usual second fundamental form. A simple example of a varifold that is not
a curvature varifold (see Remark 3.5) is a union of 3 half-planes meeting along a
common line at 120◦ angle. However, the varifold given by a union of 3 planes
intersecting along a common line at 60◦ angle is a (non-regular) curvature varifold.
This simple example can be decomposed into two separate triple junctions, which
are not curvature varifolds, but it is also decomposable into 3 planes.
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A curvature varifold with two possible decompositions: triple
junction components and curvature varifold components.

In [7, Example 5.10] Menne-Scharrer construct a varifold and a weakly differ-
entiable function for which there is no decomposition that preserves weakly differ-
entiability. Since the notion of curvature varifold is directly related to the weak
differentiability of the tangent map function, which is intrinsically given by the
varifold, one might ask if it is always possible to decompose a varifold such that
all components preserve the differentiability property. We will answer it in the
negative by constructing a decomposable curvature varifold for which every possi-
ble component is not a curvature varifold. The curvature varifold we obtain has
a unique decomposition and its components are curvature varifolds with bound-
ary in the sense of Mantegazza [5]. However, one should be able to make a minor
modification to our example so that its unique components are not even curvature
varifolds with boundary.

The article is divided as follows. In section 2 we compile the necessary definitions
to describe decompositions of a varifold and the notion of curvature varifolds with
boundary introduced by Mantegazza [5]. In section 3 we give a full description of
the example and prove all its desired properties.

Acknowledgements: We would like to thank professor Ulrich Menne for several
relevant discussions. The author was funded by NSTC grant 113-2115-M-003-001.

2. Preliminaries

Notation. Let n ∈ P be a positive integer, we denote {ei}i=1,...,n the canonical
basis of Rn, U (x, r) = {y ∈ R

n : |y − x| < r} and B (x, r) its closure. When-
ever U ⊂ R

n is an open set, m,n ∈ P with m ≤ n we denote by Vm(U),
RVm(U) and IVm(U) the set of varifolds, rectifiable varifolds and integral var-
ifolds on U respectively. Given V ∈ Vm(U) and A ⊂ U we denote (V xA)(B) =
V (B∩A×G(n,m)). When R ⊂ U is a Hm-rectifiable set we write υ(R) for the cor-
responding induced rectifiable m-varifold with density 1 and Tan(R) : U → Gm(U)
as Tan(R)(x) = (x,Tanm(R, x)), which is well defined (Hm

xR)-almost everywhere.

Whenever P ∈ G(n,m) we write P♯ ∈ Hom(Rn,Rn) ⊂ R
n2

for the corresponding
projection map in R

n. We denote D(U,Rm) and K(U,Rm) the spaces of Rm-valued
smooth compactly supported functions and continuous compactly supported func-
tions in U respectively (see [6, Definition 2.13] for the corresponding topologies).
The dual space D′(U,Rm) denotes the space of distributions of type R

m in U .

Decomposition of Varifolds. The notion of a decomposition of varifolds is in-
troduced in [6, Section 6] and we include it here for completion.

Definition 2.1 ([6, 5.1]). Let m,n ∈ P, U ⊂ R
n be an open set, V ∈ Vm(U)

with ‖δV ‖ a Radon measure and E ⊂ U be a ‖V ‖ + ‖δV ‖-measurable set. The
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distributional boundary of E with respect to V is given by

V ∂E = (δV ) xE − δ(V xE).

Definition 2.2 ([6, 6.2]). Let m,n ∈ P, U ⊂ R
n be an open set, V ∈ Vm(U) with

‖δV ‖ a Radon measure. The varifold V is said to be indecomposable if there exists
no ‖V ‖+ ‖δV ‖-measurable set E ⊂ U satisfying ‖V ‖(E) > 0, ‖V ‖(U \E) > 0 and
V ∂E = 0.

Definition 2.3 ([6, 6.6]). Let m,n ∈ P, U ⊂ R
n be an open set, V ∈ Vm(U)

with ‖δV ‖ a Radon measure. A varifold W ∈ Vm(U) is called a component of V if
W 6= 0, W is indecomposable and there exists a ‖V ‖+ ‖δV ‖-measurable set E ⊂ U

with V ∂E = 0 such that W = V xE.

Definition 2.4 ([6, 6.9]). Let m,n ∈ P, U ⊂ R
n be an open set, V ∈ Vm(U)

with ‖δV ‖ a Radon measure. A collection of varifolds Ξ ⊂ Vm(U) is called a
decomposition of V if

(i) Every element of Ξ is a component of V ;
(ii) V (f) =

∑

W∈ΞW (f) for every f ∈ K(Gm(U),R) and
(iii) ‖δV ‖(g) = ∑

W∈Ξ ‖δW‖(g) for every g ∈ K(U,R).

We refer to [6] for further discussions and consequences of the above definitions.

Curvature Varifolds with Boundary Represented by Functions.

If ϕ ∈ C1
c (Gm(U)), then we write D and D∗ for the derivative of ϕ(x, P ) with

respect to x and P respectively.
The following definition was introduced in [5].

Definition 2.5 ([5, 3.1]). Let m,n ∈ P be positive integers with m < n and
U ⊂ R

n be an open set. We say that V ∈ Vm(U) is a curvature varifold with

boundary if there exists A ∈ L1
loc(Gm(U),Rn3

;V ) and a R
n-valued Radon vector

measure ∂V on Gm(U) such that
∫

Gm(U)

PijDjϕ(x, P ) +D∗
jkϕ(x, P )Aijk(x, P ) + ϕ(x, P )Ajij (x, P )dV (x, P )

= −
∫

Gm(U)

ϕ(x, P )d∂iV (x, P )

for all ϕ ∈ C1
c (Gm(U)) and i = 1, . . . , n. In the above we sum over repeated indices

and ∂iV is the signed measure ∂iV = 〈 ∂V, ei 〉. We denote by AVm(U) the space
of curvature m-varifolds with boundary in U . Whenever needed we will simplify
notation and write Bi(V, ϕ) to denote the left-hand side of the above definition and
B(V, ϕ) = (Bi)i=1,...,n. In particular V is a curvature varifold (without boundary)
in the sense of Hutchinson [4, 5.2.1] if ∂V = 0 and its space is denoted by CVm(U).

Remark 2.6. We say that a finite dimensional vector measure is Radon if each
coordinate signed measure is Radon.

Let n ∈ P, Ω ⊂ R
n−1 be an open set, g : Ω → R be a function of class C2.

Denote by Σ = {(y, g(y)) ∈ Ω×R : y ∈ Ω} the graph of g and υ(Σ) ∈ IVn−1(Ω×R)
the integral varifold corresponding to the graph of g with density 1. We write

T (x) = Tann−1(Σ, x)♯ ∈ R
n2

for x ∈ Σ and compute

Tij = δij(1 + ∂ig
2)−1, i, j = 1, . . . , n− 1;

Tin = Tni = (1 + ∂ig
2)−1∂ig, i = 1, . . . , n− 1;

Tnn =

m
∑

i=1

(1 + ∂ig
2)−1∂ig

2.
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We note that if Ω has regular boundary then υ(Σ) is a curvature varifold with
boundary with respect to A(x)ijk = T (x)il∂lT (x)jk. A direct computation gives

Aijk = −2δjk(1 + ∂ig
2)−1(1 + ∂jg

2)−2∂jg∂k∂jg, for i, j, k = 1, . . . , n− 1;

Anij = −2δij(1 + ∂jg
2)−2∂jg

n−1
∑

l=1

(1 + ∂lg
2)−1∂lg∂l∂jg, for i, j = 1, . . . , n− 1;

Ainj = Aijn = (1 + ∂ig
2)−1(1 + ∂jg

2)−2(1 − ∂jg
2)∂i∂jg, for i, j = 1, . . . , n− 1;

Anni = Anin = (1 + ∂ig
2)−2(1 − ∂ig

2)

n−1
∑

l=1

(1 + ∂lg
2)−1∂lg∂l∂ig,

for i = 1, . . . , n− 1;

Ainn = 2(1 + ∂ig
2)−1

n−1
∑

l=1

(1 + ∂lg
2)−2∂lg∂i∂lg, for i = 1, . . . , n− 1;

Annn = 2

n−1
∑

m,l=1

(1 + ∂lg
2)−2(1 + ∂mg

2)−1∂lg∂mg∂m∂lg.

Remark 2.7. We note that |Aijk(x)| ≤ C(n) sup{1, |Dg(x)|, |Dg(x)|2}|D2g(x)| for
all i, j, k = 1, . . . , n and some constant C(n) depending only on n.

Lemma 2.8. If Ω has C1 boundary and g is C1 along ∂Ω with respect to the inward
conormal, then the above choice of Aijk makes υ(Σ) into a curvature varifold with
boundary ∂υ(Σ) = Tan(Σ)♯(νHn−1

x ∂Σ), where ν is the inward conormal of ∂Σ.

Proof. It follows directly from the divergence theorem. �

3. Main Example

First we take Φ : R → R a bump function with the following properties:

(a) 0 ≤ Φ ≤ 1, Φ(0) = 1;
(b) suppΦ ⊂ (−1, 1);
(c) Φ(−t) = Φ(t) for all t ≥ 0;
(d) Φ′(t) ≤ 0 for all t ≥ 0;
(e) sup |Φ′| ≤ 4 and sup |Φ′′| ≤ 4 and
(f)

∫

R
Φ(t)dL1t = 1.

Let us define Ω = {x ∈ R
2 : x1 > 0} and a function g : Ω → R as

g(x1, x2) =
1√
3

∫

R

Φ

(

t

x1

)

sign(x2 − t)dL1t

=
1√
3

∫ x2

−x2

Φ

(

t

x1

)

dL1t

=
x1√
3

∫

x2
x1

− x2
x1

Φ (τ) dL1τ.

Lemma 3.1. The function g defined above is smooth and satisfies:

(i) g(x1, 0) = 0;
(ii) g(x1, x2) =

x1√
3
sign(x2) on {x ∈ Ω : |x2| > x1} and

(iii)
∫

K∩Ω |D2g|dL2 <∞ for all compact set K ⊂ R
2.
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Proof. First we note that properties (i) and (ii) follow from trivial calculations.
Next we compute the first partial derivatives of g

∂1g =
−1√
3x21

∫

R

tΦ′
(

t

x1

)

sign(x2 − t)dL1t

=
1√
3

∫

x2
x1

− x2
x1

Φ(τ)dL1τ − 2x2

x1
√
3
Φ

(

x2

x1

)

,

∂2g =
2√
3
Φ

(

x2

x1

)

.

It follows that |∂1g| ≤ 3√
3
and |∂2g| ≤ 2√

3
whenever |x2| < x1.

We compute the second partial derivatives:

∂21g =
2x22
x31

√
3
Φ′

(

x2

x1

)

,

∂1∂2g = ∂2∂1g =
−2x2

x21
√
3
Φ′

(

x2

x1

)

and

∂22g =
2

x1
√
3
Φ′

(

x2

x1

)

.

Hence, D2g(x) = 0 on {x ∈ Ω : x1 < |x2|} so we conclude by using polar coordinates
that

∫

(0,1]×[−1,1]

|D2g|(x)dL2x <∞,

which is sufficient to prove the final statement. �

Remark 3.2. We observe that g can be extended smoothly to Ω̄ \ {(0, 0)}. If
we define Aijk(x) for x ∈ R

3 and i, j, k = 1, 2, 3 with respect to the above func-
tion g as in Lemma 2.8, then we have Aijk(x) = 0 on {x ∈ R

3 : 0 < x1 ≤
|x2|, x3 = g(x1, x2)} and |Aijk(x)| ≤ C|D2g(x)| on {x ∈ R

3 : |x2| < x1, x3 =
g(x1, x2)} for all i, j, k = 1, 2, 3 and some positive constant C > 0 (see Remark
2.7). Therefore

∫

K∩graph(g)Aijk(x)dH2x < ∞ for every compact set K ⊂ R
3 and

i, j, k = 1, 2, 3. Furthermore, from the same calculations as above it follows that
∫

U(0,ε)∩graph(g) |Aijk|dH2x tends to 0 as ε tends to 0.

Let us denote Σ1 = {(x, g(x)) ∈ R
3 : x ∈ Ω}, Ω± = {x ∈ Ω : ±x2 > 0},

L = {x ∈ R
3 : x1 = x3 = 0} and L± = {x ∈ L : ±x2 > 0}. We define Σ±

1 =
{(x, g(x)) ∈ R

3 : x ∈ Ω±} and observe that the inward conormal vector field of

Σ±
1 along L± is given by ν±1 = (

√
3
2 , 0,± 1

2 ). Let R 2π
3
, rx1x3

: R
3 → R

3 denote

the rotation by 2π
3 around the x2-axis and the reflection across the x1x3-plane

respectively.
Next we define:

Σ2 = rx1x3
(Σ1),

Σ3 = R 2π
3
(Σ1),

Σ5 = R 2π
3
(Σ3),

Σ4 = R 2π
3
(Σ2),

Σ6 = R 2π
3
(Σ4)

and similarly Σ±
i for i = 2, . . . , 6. We also define ν±2 = (

√
3
2 , 0,∓ 1

2 ) and ν±i =

R 2π
3
(ν±i−2) for i = 3, . . . , 6. Note that ν±i is the inward conormal of Σ±

i along the

boundary component L±.
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Finally, we write Wi = υ(Σi) for i = 1, . . . , 6 and the main example is given by

V =
∑6

i=1Wi. We further write Z1 = W1 +W3 +W5 and Z2 = W2 +W4 +W6.
It follows trivially from the definition of V that Z1 and Z2 are indecomposable
and Ξ = {Z1, Z2} is a decomposition of V . In the remainder of the section we
will prove that V is a curvature varifold (without boundary), Ξ = {Z1, Z2} is the
unique decomposition of V and each Z1, Z2 are not curvature varifolds (without
boundary).

Denote t1 = e1, t2 = R 2π
3
(t1), t3 = R 2π

3
(t2), Tk = {λtk : λ > 0} for k = 1, 2, 3

and T = ∪3
k=1Tk. Let Ck = {x ∈ R

3 \ {0} : 〈 x
|x| , tk 〉 > 1√

2
} be the open half-cone

with central axis Tk and angle π
4 for k = 1, 2, 3, C = ∪3

k=1Ck, D = R
3\C̄ and D± =

{x ∈ D : ±x2 > 0}. We also define η±1 = ±
√

3
7 (0, 1,

2√
3
), η±2 = ±

√

3
7 (0, 1,− 2√

3
)

and η±i = R 2π
3
(η±i−2) for i = 3, . . . , 6. Note that η±i is the inward conormal of Σ±

i

along the boundary component T⌈ i
2
⌉ = (Σ̄±

i \ Σ±
i ) ∩ C⌈ i

2
⌉.

x1

x3

x2

t1

C1L+

L−

Non-planar region C1 and boundary of planar region L+, L−.

We note that Σ2k+1 ∩Σ2k = Tk for k = 1, 2, 3 and the intersection is transversal.
Define the planes P±

i = {λν±i + µe2 : λ, µ ∈ R} for i = 1, . . . , 6 and observe that

Σ±
i ∩D = P±

i ∩ {x ∈ D± : 〈x, ν±i 〉 > 0} for i = 1, . . . , 6. Therefore, Tan2(Wi, x) =
P±
i for all x ∈ supp ‖Wi‖ ∩D± and i = 1, . . . , 6.

x1

x3

ν+1

ν+3

ν+5

ν+4

ν+6
ν+2

Conormal on planar region at x2 > 0.

x1

x3

ν−2
ν−4

ν−6

ν−3

ν−5
ν−1

Conormal on planar region at x2 < 0.
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Remark 3.3. With the above notation and definitions we have the following iden-
tities:

ν+1 + ν+6 = 0, P+
1 = P+

6

ν+3 + ν+2 = 0, P+
3 = P+

2

ν+5 + ν+4 = 0, P+
5 = P+

4

ν−1 + ν−4 = 0, P−
1 = P−

4

ν−3 + ν−6 = 0, P−
3 = P−

6

ν−5 + ν−2 = 0, P−
5 = P−

2 and

ν±1 +ν±3 + ν±5 = ν±2 + ν±4 + ν±6 = 0.

Lemma 3.4. Wi ∈ AV2(R
3) is a curvature varifold with boundary given by

∂Wi = Tan(Wi)♯(ν
+
i H1

xL+ + ν−i H1
xL−)

for each i = 1, . . . , 6. In particular Z1 and Z2 are curvature varifolds with non-zero
boundary.

Proof. Let ϕ ∈ C1
c (G2(R

3)) be an arbitrary function and ε > 0. Take ψε : R
3 → R

a smooth cut-off function satisfying:

(a) 0 ≤ ψε(x) ≤ 1,
(b) ψε(x) = 1 for all x ∈ U (0, ε),
(c) suppψε ⊂ U (0, 2ε) and
(d) |∇ψε| ≤ 2

ε
.

Define ϕε(x, P ) = ψε(x)ϕ(x, P ) and ϕ̄ε(x, P ) = (1 − ψε(x))ϕ(x, P ) so that ϕ =
ϕε + ϕ̄ε, suppϕε ⊂ U (0, 2ε) × G(3, 2) and supp ϕ̄ε ⊂ (R3 \ B (0, ε)) × G(3, 2).
Observe that for each l = 1, 2, 3 we have Bl(Wi, ϕ) = Bl(Wi, ϕε) + Bl(Wi, ϕ̄ε).

Let Aljk(x) be defined by g as in Lemma 2.8 and by abuse of notation we define
Aljk(x, P ) = Aljk(x) when P = TxΣi and 0 otherwise. It follows from Lemma 3.1

that A ∈ L1
loc(G2(R

3),R33 ;Wi). We compute for each l = 1, 2, 3:

Bl(Wi, ϕε) =

∫

G2(R3)

(TxΣi)ljDjϕε(x, TxΣi)

+D∗
jkϕε(x, TxΣi)Aljk(x) + ϕε(x, TxΣi)Ajlj(x)d‖Wi‖x

=

∫

U(0,2ε)×G(3,2)

(TxΣi)lj(Djψε(x)ϕ(x, TxΣi) + ψε(x)Djϕ(x, TxΣi))

+ ψε(x)(D
∗
jkϕ(x, TxΣi)Aljk(x) + ϕ(x, TxΣi)Ajlj(x))d‖Wi‖x

≤(
2n

ε
sup |ϕ|+ n sup |∇ϕ|)‖Wi‖(U (0, 2ε))

+ (n2 sup |∇∗ϕ|+ n sup |ϕ|) sup
jk

∫

U(0,2ε)

|Aijk(x)|d‖Wi‖x.

Hence, limε→0 Bl(Wi, ϕε) = 0, where the first term tends to 0 since |Dg|2 is uni-
formly bounded on U (0, 1) ∩ {x ∈ R

3 : x ∈ graph(g)} and the second term tends
to 0 from Remark 3.2. Similarly we compute

Bl(Wi, ϕ̄ε) =

∫

(R3\B(0,ε))×G(3,2)

(TxΣi)ljDjϕ̄ε(x, TxΣi)

+D∗
jkϕ̄ε(x, TxΣi)Aljk(x) + ϕ̄ε(x, TxΣi)Ajlj(x)d‖Wi‖x.
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It follows from the Divergence Theorem on Σi with respect to the vectorfield
ϕ̄ε(x, TxΣi)(TxΣi)♯el that

Bl(Wi, ϕ̄ε) =−
∫

L∩(R3\B(0,ε))

ϕ̄ε(x, TxΣi)〈 ν(Σi), el 〉H1x

=−
∫

L+\B(0,ε)

ϕ̄ε(x, TxΣi)〈 ν+i , el 〉H1x

−
∫

L−\B(0,ε)

ϕ̄ε(x, TxΣi)〈 ν−i , el 〉H1x.

By letting ε tend to zero we have Bl(Wi, ϕ) = limε→0 Bl(Wi, ϕ̄ε), that is,

Bl(Wi, ϕ) =−
∫

L∩(R3\{0})
ϕ(x, TxΣi)(〈 ν+i , el 〉+ 〈 ν−i , el 〉)H1x

=−
∫

G2(R3)

ϕ(x, P )∂lWi,

where ∂lWi = Tan(Wi)♯(〈 ν+i , el 〉H1
xL+ + 〈 ν−i , el 〉H1

xL−). �

Remark 3.5. Denote by π : G2(D) → G(2, 3) the projection onto the Grassman-
nian space. It follows that π♯∂Wi = ν±i δP±

i
, where δP±

i
is the Dirac measure cen-

tered at P±
i . Therefore π♯∂Zk =

∑3
j=1 ν

+
2j−kδP+

2j−k
+ ν−2j−kδP−

2j−k
6= 0 for k = 1, 2.

That is, Z1, Z2 are not curvature varifolds (without boundary).

x1

x3
x2

W1

Σ+
1 ∩D+

Σ+
1 ∩ C1

Σ−
1 ∩ C1

Σ−
1 ∩D−

Building block W1 and partitioning of Σ1.

Lemma 3.6. The distributional boundary of Σ±
i with respect to V is given by

V ∂Σ±
i (Y ) =

∫

L±

〈Y (x), ν±i 〉dH1x+

∫

T
⌈ i
2
⌉

〈Y (x), η±i 〉dH1x,

for all Y ∈ D(R3,R3) and i = 1, . . . , 6.

Proof. Note that Lemma 3.1 implies that the generalized mean curvature of V is
in L1

loc(R
3,R3; ‖V ‖) so the result follows from from [2, 4.7] and a similar cut-off

function argument as in Lemma 3.4. �
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Corollary 3.7. The distributional boundary of Σi with respect to V is given by

V ∂Σi(Y ) =

∫

L+

〈Y (x), ν+i 〉dH1x+

∫

L−

〈Y (x), ν−i 〉dH1x,

for all Y ∈ D(R3,R3) and i = 1, . . . , 6.

Proof. Follows directly from the above result and η+i = −η−i . �

Lemma 3.8. Let X ∈ V2(R
3) be a component of V and i ∈ {1, . . . , 6}. If

‖X‖(Σ±
i ) > 0, then Σ±

i ⊂ supp ‖X‖.

Proof. Let E ⊂ R
3 be a ‖V ‖ + ‖δV ‖-measurable set with V ∂E = 0 and X =

V xE. Suppose by contradiction that ‖X‖(Σ+
i ) > 0 and Σ+

i \ supp ‖X‖ 6= ∅. Then
there exists x ∈ Σ+

i and ε > 0 such that ‖X‖(U (x, ε)) = 0, which implies that
Σ+

i ∩U (x, ε) ⊂ Σ+
i \ E. Hence, ‖V ‖(Σ+

i \ E) ≥ ‖V ‖(Σ+
i ∩U (x, ε)) > 0.

Since Σ+
i is a regular surface, suppV − υ(Σ+

i ) ⊂ R
3 \ Σ+

i and V ∂E = 0, then
the above contradicts the Constancy Lemma [7, Lemma 6.1]. Similarly we obtain
a contradiction in the case of Σ−

i , which concludes the proof. �

Lemma 3.9. Let X ∈ V2(R
3) be a component of V and i ∈ {1, . . . , 6}. Then

‖X‖(Σ+
i ) > 0 if and only if ‖X‖(Σ−

i ) > 0. In particular, if either ‖X‖(Σ+
i ) > 0 or

‖X‖(Σ−
i ) > 0, then Σi ⊂ supp ‖X‖.

Proof. Let E ⊂ R
3 be a ‖V ‖+‖δV ‖-measurable set with V ∂E = 0 and X = V xE.

Suppose by contradiction that ‖X‖(Σ+
i ) > 0 and ‖X‖(Σ−

i ) = 0. It follows from
Lemma 3.8 that Σ+

i ⊂ supp ‖X‖, hence supp ‖X‖ ∩ C⌈ i
2
⌉ 6= ∅.

Let J = {j ∈ {1, . . . , 6} : ‖X‖(Σj ∩ C⌈ i
2
⌉) > 0}. Observe that supp ‖V ‖ ∩ Ck =

(Σ2k−1∪Σ2k)∩Ck for k = 1, 2, 3, that is, card J ≤ 2. In particular, if i is even then
either J = {i} or J = {i, i− 1} and if i is odd then either J = {i} or J = {i, i+1}.

Without loss of generality we may assume that i is odd. If J = {i} then ‖X‖((E\
Σ+

i ) ∩ C⌈ i
2
⌉) = 0 by the contradiction assumption and from Lemma 3.6 we have

V ∂E(Y ) =

∫

T
⌈ i
2
⌉

〈Y (x), η+i 〉dH1x,

for every vector field Y compactly supported in C⌈ i
2
⌉. Which contradicts V ∂E = 0

with a suitable choice of Y .
Now, suppose J = {i, i+1} at least one of the following must hold: ‖X‖(Σ+

i+1) >

0 or ‖X‖(Σ+
i+1) > 0. If both are true then Lemma 3.8 implies that ‖X‖((E \ (Σ+

i ∪
Σ+

i+1 ∪ Σ−
i+1)) ∩ C⌈ i

2
⌉) = 0. We obtain the same contradiction as above, since

η+i+1 + η−i+1 = 0. If only one holds, say ‖X‖(Σ+
i+1) > 0, then we have ‖X‖((E \

(Σ+
i ∪ Σ+

i+1)) ∩ C⌈ i
2
⌉) = 0 and

V ∂E(Y ) =

∫

T
⌈ i
2
⌉

〈Y (x), η+i + η+i+1 〉dH1x,

for every vector field Y compactly supported in C⌈ i
2
⌉. Since η

+
i +η+i+1 6= 0 we again

obtain a contradiction with V ∂E = 0 and conclude the proof. �

Lemma 3.10. Let X ∈ V2(R
3) be a component of V and i ∈ {1, . . . , 6}. Suppose

‖X‖(Σi) > 0, then either:

(i) i is odd and ‖X‖(Σj) > 0 for all j ∈ {1, 3, 5} or
(ii) i is even and ‖X‖(Σj) > 0 for all j ∈ {2, 4, 6}.
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Proof. Let E ⊂ R
3 be the ‖V ‖+ ‖δV ‖-measurable set with V ∂E = 0 that defines

X .
Without loss of generality we may assume ‖X‖(Σ1) > 0. It follows from Lemma

3.9 that Σ1 ⊂ E.
Define J = {j ∈ {1, . . . , 6} : ‖X‖(Σi) > 0} so that 1 ∈ J by assumption and

note that Lemma 3.9 implies ‖X‖(E \ ∪j∈JΣj) = 0. Thus, from Corollary 3.7 we
have

0 = V ∂E(Y ) =

∫

L+

〈Y (x),
∑

j∈J

ν+j 〉dH1x+

∫

L−

〈Y (x),
∑

j∈J

ν−j 〉dH1x,

for all Y ∈ D(R3,R3). Therefore
∑

j∈J ν
+
j =

∑

j∈J ν
−
j = 0 and we may assume

that J 6= {1}, otherwise we obtain a contradiction.
Now, suppose by contradiction that at least one of the following happens: 3 6∈

J or 5 6∈ J . We will consider every possible configuration of J and obtain a
contradiction in each case.

Claim 1. We must have ‖X‖(Σ+
6 ) > 0 and ‖X‖(Σ−

4 ) > 0.

In fact, suppose ‖X‖(Σ+
6 ) = 0, so Lemma 3.9 implies 6 6∈ J , and consider

(V ∂E) xD+ = 0. If neither 3, 5 6∈ J then the only possibilities left for J are {1, 2},
{1, 4} or {1, 2, 4}. Since 〈 ν+1 , ν+k 〉 > 0 for k = 2, 4 and ν+2 + ν+4 6= 0 it contradicts
∑

j∈J ν
+
j 6= 0. Similarly suppose 3 ∈ J and 5 6∈ J , so the possibilities are {1, 3, 2},

{1, 3, 4} or {1, 3, 2, 4} and note:

• if 2 ∈ J then we have a contradiction since ν+2 + ν+3 = 0 and ν+1 + ν+4 6= 0;
• if 2 6∈ J then we also produces a contradiction from 〈 ν+4 , ν+k 〉 > 0 for

k = 1, 3 and ν+1 + ν+3 6= 0.

Alternatively, we may suppose 3 6∈ J and 5 ∈ J to obtain the same contradiction.
Arguing as above but with respect to (V ∂E) xD− we obtain ‖X‖(Σ−

4 ) > 0 which
concludes the proof of the claim.

It follows from Lemma 3.9 that in fact we must have 4, 6 ∈ J .

Claim 2. We must have ‖X‖(Σ+
2 ) > 0.

Suppose by contradiction that ‖X‖(Σ+
2 ) = 0, so Lemma 3.9 implies 2 6∈ J ,

and consider (V ∂E) xD+ = 0. We are assuming that {3, 5} 6⊂ J and we already
know {4, 6} ⊂ J so the only remaining possibilities for J are {1, 4, 6}, {1, 3, 4, 6} or
{1, 5, 4, 6}. All three cases contradict

∑

j∈J ν
+
j = 0, which proves the claim.

Once again, Lemma 3.9 implies 2 ∈ J . Finally, the only remaining possibilities
for J are {1, 2, 4, 6}, {1, 3, 2, 4, 6} or {1, 5, 2, 4, 6}, all of which contradict

∑

j∈J ν
+
j =

0 since ν+2 + ν+4 + ν+6 = 0, ν+1 + ν+3 6= 0 and ν+1 + ν+5 6= 0. Which concludes the
proof for i = 1.

The assumption of i = 1 was arbitrary and a similar proof can be repeated with
i = 3 or i = 5. The even case also follows the same argument. �

Lemma 3.11. Let X ∈ V2(R
3) be a component of V . Suppose X is a curvature

varifold (without boundary), then the following statement hold for any i = 1, . . . , 6:
If ‖X‖(Σ±

i ) > 0 then ‖X‖(Σ±
j±(i)) > 0, where j±(i) ∈ {1, . . . , 6} is such that

ν±i + ν±
j±(i) = 0.

Proof. Without loss of generality let us assume that i = 1 and consider the case
‖X‖(Σ+

1 ) > 0, in which case j+(1) = 6.
Suppose by contradiction that ‖X‖(Σ+

6 ) = 0. It follows from Lemma 3.8 that
Σ+

1 ⊂ supp ‖X‖ and for each j = 2, 3, 4, 5 either ‖X‖(Σ+
j ) = 0 or Σ+

j ⊂ supp ‖X‖.
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We may define the set J = {j ∈ {1, 2, 3, 4, 5} : Σ+
j ⊂ supp ‖X‖} and note that

1 ∈ J . In particular X xD+ =
∑

j∈J υ(Σ
+
j ) xD

+.

Let φ, ψ : R → R be a arbitrary functions of class C1 with compact support
satifying:

(a) suppφ ⊂ (1, 3) and suppψ ⊂ (− 1
2 ,

1
2 );

(b)
∫

R
φ(t)dL1t = 1 and ψ(0) = 1.

Observe that P1 6= Pj for all j = 2, 3, 4, 5 and take ε > 0 such that d(P+
1 , P

+
j ) >

2ε for all j = 2, 3, 4, 5, where the distance is with respect to G(2, 3). Now choose
a function f : G(2, 3) → R of class C1 with compact support such that supp f ⊂
U

(

P+
1 , ε

)

and f(P+
1 ) = 1. Finally we define ϕ : G2(R

3) → R as ϕ(x, P ) =

φ(x2)ψ(x
2
1 + x23)f(P ) and observe that ϕ is a function of class C1 with compact

support and suppϕ ⊂ D+. It follows that

B(X,ϕ) =
∑

j∈J

ν+j

∫

L+

φ(x2)ψ(0)f(P
+
j )dH1x2

=ν+1 ,

which contradicts the assumption that X is a curvature varifold (without bound-
ary). The proof of all other cases are exactly the same. �

Remark 3.12. The statement above is in accordance with the identities described
on Remark 3.3.

Theorem 3.13. Let V = W1 +W2 +W3 +W4 +W5 +W6, Z1 = W1 +W3 +W5

and Z2 =W2 +W4 +W6. The collection Ξ = {Z1, Z2} is the unique decomposition
of V .

Proof. Suppose X ∈ V2(R
3) is a component of V and X 6∈ {Z1, Z2}. Since X 6= 0

and supp ‖V ‖ = ∪6
i=1Σ̄i we must have ‖X‖(Σi0) > 0 for some i0 ∈ {1, . . . , 6}.

Let us first assume that i0 is odd, hence Lemmas 3.10 and 3.9 imply that Σi ⊂
supp ‖X‖ for all i = 1, 3, 5. By assumption X 6= Z1, that is, there exists j0 ∈
{2, 4, 6} such that ‖X‖(Σj0) > 0. Again by Lemmas 3.10 and 3.9 we have Σj ⊂
supp ‖X‖ for all j = 2, 4, 6, which implies X = V and contradicts the fact that X
is indecomposable.

Had we begun by assuming i0 to be even, we would have obtained the same
contradiction, which concludes the proof. �

Corollary 3.14. The varifold V = W1 +W2 +W3 +W4 +W5 +W6 ∈ CV2(R
3)

is a curvature varifold (without boundary) that does not admit a decomposition by
curvature varifolds (without boundary).
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