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LOWER BOUNDS ON THE ESSENTIAL DIMENSION OF REDUCTIVE

GROUPS

DANNY OFEK

Abstract. We introduce a new technique for proving lower bounds on the essential di-
mension of split reductive groups. As an application, we strengthen the best previously
known lower bounds for various split simple algebraic groups, most notably for the excep-
tional group E8. In the case of the projective linear group PGLn, we recover A.Merkurjev’s
celebrated lower bound with a simplified proof. Our technique relies on decompositions of
loop torsors over valued fields due to P. Gille and A. Pianzola.
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1. Introduction

Let G be a smooth linear algebraic group over a field k0 and γ ∈ H1(L,G) a G-torsor over
a field k0 ⊂ L. A field of definition for γ is a subfield k0 ⊂ F ⊂ L such that γ lies in the
image of the natural map:

H1(F,G) → H1(L,G).

Danny Ofek was partially supported by a graduate fellowship from the University of British Columbia.
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The essential dimension of γ is the minimal number of parameters needed to define γ. It is
given by the formula:

ed(γ) = min
{

trdegk0(F ) | F is a field of definition of γ
}

.

The essential dimension of G is defined as the supremum ed(G) = sup{ed(γ)} taken over all
torsors γ ∈ H1(L,G) and all fields k0 ⊂ L. It should be thought of as the minimal number
of algebraically independent parameters needed to define an arbitrary G-torsor. Often G-
torsors correspond bijectively to a class of algebraic objects, in which case ed(G) is the
minimal number of independent parameters needed to define a member of that class. For
example:

• The essential dimension of the symmetric group Sd is the number of independent vari-
ables required to define an arbitrary field extension of degree d. In this form, math-
ematicians have tried to compute it as early as the 17th century. For an overview,
see [22],[10] and [9].

• The essential dimension of PGLd is the number of independent variables required
to define an arbitrary central division algebra of degree d. This quantity has been
studied since generic division algebras were first defined by C. Procesi [51, Section 2].

The problem of computing ed(G) for a general algebraic group G has been studied by many
authors since it was first posed by J. Buhler-Z. Reichstein [9] and Reichstein [52]. For a
comprehensive survey of the developments in the field, we refer the reader to [44].

Let p be a prime integer. The essential dimension at p of G, denoted ed(G; p), measures
how many parameters are required to construct an arbitrary G-torsor up to prime-to-p
extensions. See Section 2 for a precise definition. The inequality ed(G) ≥ ed(G; p) always
holds, and almost all existing techniques to prove lower bounds on ed(G) apply to ed(G; p)
as well; See [53, Section 5]. The same is true of the new technique introduced in this paper.

1.1. Overview of previous techniques. B.Youssin-Z.Reichstein gave the first systematic
way to prove lower bounds on the essential dimension of algebraic groups. We recall their
main theorem, commonly referred to as “the fixed-point method” because it was proven by
an analysis of fixed points on generically free G-varieties. See [27],[14] for generalizations to
positive characteristic.

Theorem 1.1. [55, Theorem 7.7] Assume G is defined over an algebraically closed field of
characteristic zero k0 and G◦ is semisimple. Let A ⊂ G(k0) be a finite abelian group and p
a prime number.

(1) If CG(A ∩G◦) is finite, then ed(G) ≥ rank(A).
(2) If A is a p-group and CG(A ∩G◦) is finite, then ed(G; p) ≥ rank(A).

While Theorem 1.1 applies to many groups, it usually gives bounds which are far from
tight. This is partially explained by the fact that the G-torsors witnessing the lower bound
can be constructed over an iterated Laurent series field k0((t1)) . . . ((tr)) which is a relatively
simple field when k0 is algebraically closed (here r = rank(A)).

P.Brosnan-A.Vistoli-Reichstein [8], [6] and later A.Merkurjev-N.Karpenko [32] introduced
stack-theoretic techniques to construct G-torsors of high essential dimension over function
fields of Severi-Brauer varieties. Stack-theoretic techniques give much stronger lower bounds
than is possible using Theorem 1.1 for some groups, like finite p-groups and algebraic tori
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[32],[36]. However, they give trivial lower bounds for most semisimple groups, including all
adjoint simple groups. In [43], Merkurjev overcame this limitation of the stack-theoretic
methods for adjoint groups of type An by proving ed(PGLn; p) ≥ ed(T ; p) for a certain torus
T . He then computed ed(T ; p) using [36] to obtain the lower bounds

(1.1) ed(PGLpr ; p) ≥ (r − 1)pr + 1

which are orders of magnitude stronger than the lower bounds previously obtained by The-
orem 1.1. Merkurjev’s arguments are specific to groups of type An because they rely on
explicit computations in the Brauer group (see [13] for generalizations to SLn /µd).

1.2. Main results. In this paper, we introduce a new technique to prove lower bounds on
ed(G), ed(G; p), which applies whenever G◦ is split reductive. We proceed in two steps:

(1) We first prove ed(G) ≥ ed(CG(A)) for any finite split diagonalizable subgroup A ⊂ G
satisfying certain conditions.

(2) We choose A in a systematic way, so that CG(A) is an extension of a torus by a finite
group. This allows us to apply the results of [37] to give a strong lower bound on
ed(CG(A)).

In this way we obtain new lower bounds on the essential dimension of some simple groups as
well as recover (1.1), see Theorem 1.5 below and Section 14. The next theorem gives sufficient
conditions for the inequality ed(G) ≥ ed(CG(A)) to hold. Note that we do not assume G◦

is split. Recall that a G-torsor [cσ] ∈ H1(F,G) is called anisotropic if the twisted group cG
contains no copy of Gm. A finite algebraic group A over k0 is called split-diagonalizable, if it
is isomorphic to µn1 × · · · × µnr

for some n1, . . . , nr coprime to char k0.

Theorem 1.2. Let G be a smooth linear algebraic group over a field k0. Assume either k0
is perfect or G◦ is reductive. Let A ⊂ G be a finite split-diagonalizable subgroup.

(1) Let p 6= char k0 be a prime. If A is a p-group and CG(A) admits an anisotropic torsor
over some p-closed field k0 ⊂ k, then we have:

ed(G; p) ≥ ed(CG(A); p).

(2) Assume char k0 is good for G (see Definition 2.1). If CG(A) admits an anisotropic
torsor over some field k0 ⊂ k, then we have:

ed(G) ≥ ed(CG(A)).

Let F be a Henselian valued field with value group of finite rank. Our proof of Theorem 1.2
relies on the decompositions of loop torsors over F . Loop torsors and their decompositions
were introduced by P. Gille-A. Pianzola for iterated Laurent series over a characteristic zero
field in the context of the classification of loop algebras [25]. We will use both [25] and the
recent generalizations to valuation rings of positive characteristic obtained by Gille [24].

Remark 1.3. Theorem 1.1 is a special case of Theorem 1.2. Indeed, if CG(A∩G◦) is finite,
then so is CG(A). Combining [9, Lemma 4.1] and [9, Theorem 6] gives:

ed(CG(A)) ≥ ed(A) = rank(A).

Since CG(A) is finite, all CG(A)-torsors are anisotropic. Therefore Theorem 1.2 implies:

ed(G) ≥ ed(CG(A)) ≥ rank(A).
3



Note that the above argument works under the assumption |CG(A)| < ∞, which is strictly
weaker than |CG(A ∩G◦)| <∞.

As noted in the previous remark, any CG(A)-torsor is anisotropic when CG(A) is fi-
nite. However, in general, there is no simple criterion to determine whether CG(A) admits
anisotropic torsors. J. Tits classified the simple simply connected split groups that do not
admit anisotropic torsors [63]. For a generalization of his work to arbitrary simple groups and
for semisimple groups of certain types, see [48]. We have no examples where the inequalities
of Theorem 1.2 fail, so it is natural to ask if one may improve the theorem as follows:

Question 1.4. Is the conclusion of Theorem 1.2 true without the assumption that CG(A)
admits anisotropic torsors?

After the proof of Theorem 1.2 in Section 10, we give an example where all CG(A)-torsors
are isotropic and our proof breaks down. However, we have no reason to expect a negative
answer to Question 1.4.

In Section 12, we give a streamlined root-theoretic approach to choosing split-diagonalizable
subgroups of split groups that satisfy the conditions of Theorem 1.2. This leads to the fol-
lowing new lower bounds:

Theorem 1.5. Assume char k0 6= 2, 3.

(1) ed(E8; 2) = ed(HSpin16; 2) ≥ 56
(2) ed(E8; 3) ≥ 13
(3) ed(Ead

6 ; 3) ≥ 6
(4) ed(Ead

7 ; 2) ≥ 19
(5) If n = 2rm ≥ 4 for r ≥ 1 and m is odd, then

ed(PGO+
2n; 2) ≥ (r − 1)2r+1 + n.

(6) If n ≥ 3 is odd, then

ed(PGO+
2n; 2) ≥ 3n− 4.

The inequalities in Theorem 1.5 improve on long-standing lower bounds. To put them
into context, we include a list indicating the best lower and upper bounds for these groups
that were known prior to this paper.

Previously known bounds. Assume char k0 6= 2, 3.

(1) 120 ≥ ed(E8; 2) ≥ 9
(2) 73 ≥ ed(E8; 3) ≥ 5
(3) 21 ≥ ed(Ead

6 ; 3) ≥ 4
(4) 57 ≥ ed(Ead

7 ; 2) ≥ 8
(5) If n = 2rm for some r ≥ 0 and m ≥ 3 is odd, then

(m− 1)22(r+1) − n ≥ ed(PGO+
2n; 2) ≥ 2n− 2.

(6) If n = 2r for some r ≥ 2, then

n2 − n ≥ ed(PGO+
2n; 2) ≥ r2r.

All of the lower bounds in (1)-(4) follow from the characteristic-free versions of Theo-
rem 1.1; See [14] and [27]. For references for the upper bounds in (1)-(4), see [44, 3h]. The
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upper bounds in (5) and (6) are due to M. Macdonald [39, Section 0.2]. For the lower bounds
in (5),(6), see [14, Theorem 13] and [1, Lemma 2.6] respectively. We note that (5) implies

3n− 4 ≥ ed(PGO+
2n; 2)

for odd n; See also [1, Corollary 3.2]. Therefore the inequality in Theorem 1.5(6) is tight.
Recall that the reductive rank of G is the dimension of a maximal torus in T ⊂ G. Clearly

if H ⊂ G is a subgroup, then rank(H) ≤ rank(G). A subgroup H is said to be of maximal
rank if rank(H) = rank(G). In Section 11, we use Theorem 1.2 to prove

ed(G) ≥ ed(H), ed(G; p) ≥ ed(H ; p)

for reductive subgroups H ⊂ G of maximal rank under certain conditions; See Corollary 11.1.
We use this corollary to establish Parts (1),(2) and (4) of Theorem 1.5. The proof relies on
Borel–de Siebenthal’s theorem on reductive subgroups of maximal rank [4].

1.3. Outline of the paper. The rest of the paper is structured as follows. Sections 2-4
deal with notation and preliminaries. In Section 5 we introduce the definition of loop torsors
and their decompositions. In Section 6 we adapt of a theorem of Gille-Pianzola about the
uniqueness of decompositions of anisotropic loop torsors to our needs. Section 7 deals with
the functoriality of decompositions of loop torsors with respect to extension of scalars. In
Section 8 we give criteria to determine whether a G-torsor is a loop torsor. The proof of
Theorem 1.2 is completed in Section 10. Section 12 contains a method of choosing subgroups
A ⊂ G that satisfy the conditions of Theorem 1.2 and such that CG(A)

◦ is a split torus. The
last four sections contain the computations needed to prove Theorem 1.5.

1.4. Acknowledgments. I am grateful to A. Soofiani for many fruitful discussions, and to
V. Chernousov for pointing out the connection between my ideas and his work with P. Gille
and A. Pianzola. This connection was further explained to me by Gille and it simplified this
paper greatly. Finally, I would like to thank my supervisor Z. Reichstein for many useful
meetings, suggestions and advice throughout the work on this project.

2. Notation

Throughout this paper, G will denote a smooth linear algebraic group over a base field k0.
All fields and rings we consider will contain k0. We will sometimes assume G and k0 satisfy
the following additional assumptions.

Definition 2.1. Let Ru(G) ⊂ G◦ denote the unipotent radical of G and set G = G/Ru(G);
See [46, Definition 6.44] for the definition of Ru(G). We say that the characteristic of k0 is
good for G if the following hold:

(1) The group G
◦
is reductive.

(2) There exists a maximal torus T ⊂ G split by a prime-to-char k0 extension of k0 and

such that |NG(T )/T | is prime to char k0 (note that |NG(T )/T | is finite because G
◦
is

reductive).

Note that condition (1) is automatic if G◦ is reductive or k0 is perfect [46, Proposition 19.11].

We fix a system of compatible primitive roots of unity ζn ∈ k0,sep for all n not divisible by
char k0. Let k0 ⊂ k be a field. We will denote the cyclotomic character of k by:

θ : Gal(k) → (Ẑ′)∗.
5



Here Ẑ′ =
∏

p 6=char k0
Ẑp is the prime-to-char k0 part of the profinite integers Ẑ. The cyclo-

tomic character is the unique homomorphism satisfying:
σζn = ζθ(σ)n

for all n not divisible by char k0 and σ ∈ Gal(k). We will identify étale groups A over k with
their Gal(k)-group of points A(ksep). This will be particularly convenient when working with
finite split-diagonalizable subgroups A ⊂ G. Recall that a finite split-diagonalizable group A
over k is an étale group scheme isomorphic to µn1 × · · ·×µnr

for some n1, . . . , nr coprime to
char k0. The following characterization of split-diagonalizable groups will be used implicitly
throughout the paper. We leave the proof as an exercise to the reader.

Fact 2.2. Let A be an abelian étale group over k such that |A| is prime to char k. Then A
is split-diagonalizable if and only if for any a ∈ A and σ ∈ Gal(k):

(2.1) σa = aθ(σ).

The letter O will denote a Henselian valuation ring containing k0. We set F = Frac(O)
and let ν : F ∗ → ΓF be the corresponding valuation. The residue field of ν will be denoted
k. Note there exists a natural embedding k0 ⊂ k induced from the inclusion k0 ⊂ O. Since ν
is Henselian, it admits a unique extension to any algebraic extension F ⊂ L. We will denote
the extension of ν to L by ν again by abuse of notation. Unless explicitly stated we always
assume:

Assumption 2.3. The value group ΓF is a finitely generated (free) abelian group.

We will say (F, ν) is an iterated Laurent series field, if it is isomorphic to k((t1)) . . . ((tr))
equipped with the usual (t1, . . . , tr)-adic valuation for some r ≥ 0; See [62, Section 1.1].
Let Fin ⊂ Ftr be the maximal inertial and tamely ramified extensions of F inside a fixed
separable closure Fsep. The corresponding Henselian valuation rings are denoted Oin ⊂ Otr.
We will use the following notation for the tamely ramified part of the absolute Galois group
of F :

Galtr(F ) = Gal(Ftr/F ).

We will denote the homomorphism G(Otr) → G(ksep) induced from the residue homomor-
phism Otr → ksep by g 7→ g. We refer the reader to [18], [62, Appendix A] for general results
on valuation theory.

Remark 2.4. All of O,Oin,Otr are stabilized by Galtr(F ) because the extension of ν to
Ftr is preserved by Galtr(F ). Moreover, Galtr(F ) stabilizes the maximal ideal of Otr and so
it acts on its residue field ksep. Therefore Galtr(F ) acts on G(Oin), G(Otr), G(ksep) and the
induced map G(Otr) → G(ksep) is Galtr(F )-equivariant.

The symbol H1(F,G) will stand for the Galois cohomology set H1(Gal(F ), G(Fsep)). We
will denote cohomology classes in H1(F,G) by [cσ] where cσ ∈ Z1(Gal(F ), G(Fsep)) is a
Gal(F )-cocycle. Let F ⊂ L be a field extension and assume Fsep ⊂ Lsep. The restriction
map of absolute Galois groups

Gal(L) → Gal(F ), σ 7→ σ|Fsep

gives rise to inflation maps

H1(F,G) → H1(L,G), γ 7→ γL.
6



Here γL is the cohomology class of the inflation of cσ to L given by

InfL/F (c)σ = cσ|Fsep
.

The set of tamely ramified torsors will be denoted:

H1
tr(F,G) = H1(Galtr(F ), G(Ftr)).

There is always a natural inclusion H1
tr(F,G) ⊂ H1(F,G) which is a bijection if G◦ is

reductive and char k0 is good for G in the sense of Definition 2.1 (see Proposition 8.1).
The morphism SpecOin → SpecO is the universal pro-étale cover of SpecO and therefore

there is a natural identification π1(SpecO) = Gal(Fin/F ) [45, Example 5.2.(d)]. For any
cocycle aσ ∈ Z1(Gal(Fin/F ), G(Oin)), we will write aG for the twist of GO by the G-torsor
defined by aσ over O ; See [23, Section 2.2].

A variety X over k0 is a reduced (but possibly reducible) quasi-projective scheme of finite
type. Finally, we recall the definition of the essential dimension of G at a prime.

Definition 2.5. Let γ ∈ H1(F,G) be a G-torsor over a field k0 ⊂ F and p a prime integer.
An algebraic extension F ⊂ L is called a prime-to-p extension if any finite subextension
F ⊂ L′ ⊂ L is of degree prime to p. The essential dimension at p of γ is the minimal
number of parameters required to define γ if one ignores prime-to-p extensions:

ed(γ; p) = min
{

ed(γL) | F ⊂ L is a prime-to-p field extension
}

.

We define the essential dimension at p of G by ed(G; p) = sup{ed(γ; p)}, the supremum
taken over all G-torsors as before.

3. Preliminaries about Henselian valued fields

3.1. A fundamental exact sequence. Recall that the Galois extensions F ⊂ Fin ⊂ Ftr

give us the exact sequence

(3.1) 1 → Galtr(Fin) → Galtr(F ) → Gal(Fin/F ) → 1.

The groups Galtr(Fin) and Gal(Fin/F ) can be understood in terms of the value group ΓF

and the residue field k respectively. There is a natural isomorphism Gal(Fin/F ) ∼= Gal(k)
given by taking an automorphism σ ∈ Gal(Fin/F ) to the unique automorphism σ ∈ Gal(k)
satisfying for all x ∈ O :

(3.2) σ(x) = σ(x),

where x ∈ k is the residue class of x [62, Theorems A.23].

Remark 3.1. We will often identify Gal(Fin/F ) and Gal(k) using this isomorphism. For
example, we might act on G(Fin) using Gal(k) or act on G(ksep) using Gal(Fin/F ).

The group Galtr(Fin) is the tame inertia group of F . Let Ẑ′ =
∏

p 6=char k Ẑp be the prime-

to-char k part of Ẑ and set Γ∨
F := Hom(ΓF , Ẑ

′). There is a natural isomorphism (depending
only on our choice of roots of unity)

(3.3) Φ : Galtr(Fin)→̃Γ∨
F .

7



The isomorphism Φ is uniquely determined by the following equation, which holds for all n
prime to char k, x ∈ F ∗ and σ ∈ Galtr(Fin):

(3.4)
σ(x1/n)

x1/n
= ζn

Φ(σ)(ν(x)).

See [62, Theorem A.24] for example. Note that the above expression does not depend on a
choice of an n-th root of x because Fin contains all n-th roots of unity.

Remark 3.2. Since we are assuming ΓF
∼= Zr for some r, we have Γ∨

F
∼= Hom(Zr, Ẑ′) ∼= Ẑ′r.

In particular, any finite quotient of Γ∨
F is an abelian group of order prime to char k.

Next we introduce uniformizers. They will help us describe splittings of (3.1) in a system-
atic way.

Definition 3.3. A left inverse π : ΓF → F ∗ to ν : F ∗ → ΓF will be called a uniformizing
parameter. Since the group operation in ΓF is written additively while F ∗ is written multi-
plicatively, it will be convenient for us to use the exponential notation πγ in place of π(γ),
for any γ ∈ ΓF .

The next proposition gives a convenient splitting of (3.1). It is originally due to J.Neukirch
[47, Satz 2].

Proposition 3.4. Let π : ΓFtr → F ∗
tr be a uniformizer such that πγ ∈ F for all γ ∈ ΓF .

(1) The field Fπ := F (πγ; γ ∈ ΓFtr) is a complement of Fin in Ftr. That is, it satisfies
FπFin = Ftr and Fπ ∩ Fin = F .

(2) There exists a unique section sπ : Gal(Fin/F ) → Galtr(F ) of the homomorphism
Galtr(F ) → Gal(Fin/F ) in (3.1) whose image fixes Fπ.

(3) Let Φ : Galtr(Fin) → Γ∨
F be the isomorphism (3.3) and denote by

sπ : Gal(k) → Galtr(F )

the composition of sπ with the isomorphism Gal(k)→̃Gal(Fin/F ). There exists an
isomorphism:

Ψπ : Gal(k)⋉ Γ∨
F→̃Galtr(F ), (σ, f) 7→ sπ(σ)Φ

−1(f)

Here the Gal(k)-action on Γ∨
F is given by pointwise multiplication with the cyclotomic

character θ : Gal(k) → (Ẑ′)∗.
(4) For any (σ, f) ∈ Gal(k)⋉ Γ∨

F , u ∈ Fin, m coprime to char(k) and γ ∈ ΓF , we have:

(3.5) Ψπ(σ, f)(uπ
γ/m) = σ(u)ζθ(σ)f(γ)m πγ/m.

Here we let Gal(k) act on Fin as in Remark 3.1.

Proof. Let γ1, . . . , γr be a Z-basis for ΓF . The field Fn = F (π
γ1/n
1 , . . . , π

γr/n
r ) is totally tamely

ramified with value group 1
n
ΓF for all n prime to char k. Since ΓFtr =

⋃

n prime to p
1
n
ΓF [62,

Theorem A.24], we have:

Fπ =
⋃

n prime to p

Fn.

Therefore residue field of Fπ is k and ΓFπ
= ΓFtr. This implies Parts (1) and (2) by [47,

Satz 2] and the discussion following it; See also the proof of [18, Theorem 22.1.1]. Part (3)
8



follows from the fact that sπ splits the exact sequence (3.1); See [18, Corollary 22.1.2]. To
prove Part (4), we compute using Part (3):

Ψπ(σ, f)(uπ
γ/m) = sπ(σ)Φ

−1(uπγ/m)

= sπ(σ)(uζ
f(γ)
m πγ/m)

= σ(uζf(γ)m )sπ(σ)(π
γ/m)

= σ(u)ζθ(σ)f(γ)m πγ/m.

Here the last three inequalities follow from (3.4), (3.2) and the fact that sπ(σ) fixes Fπ. �

Remark 3.5. From now on, whenever we use a uniformizer π of Ftr, we will always assume
πγ ∈ F for all γ ∈ ΓF . For any π1, . . . , πr ∈ F ∗ such that ν(π1), . . . , ν(πr) is a basis for ΓF

there exists a uniformizer π for F such that for all 1 ≤ i ≤ r:

πν(πi) = πi.

Moreover, π may be extended to a uniformizer of Ftr. To see this pick a compatible system
of roots π1/n for all n prime to q = char k0 as in [54, Lemma 3.2]. By [18, Section 16.2],
ΓFtr = Z(q) ⊗Z ΓF , where:

Z(q) = {
m

n
∈ Q | n prime to q}.

Therefore ν(π1), . . . , ν(πr) ∈ ΓFtr is a Z(q) basis and the homomorphism

Z(q) ⊗Z ΓF → Ftr,
∑

i=1,...,r

mi

ni
ν(πi) 7→

∏

i=1,...,r

π
mi/ni

i ,

is a uniformizer for Ftr extending π.

3.2. Extensions of Henselian fields. Let L/F be an extension of Henselian fields and
denote the corresponding extension of residue fields by l/k . Pick separable closures such
that Fsep ⊂ Lsep. Then we have Ftr ⊂ Ltr and Fin ⊂ Lin. Therefore there are well-defined
restriction maps:

Galtr(L) → Galtr(F ), Gal(Lin/L) → Gal(Fin/F ), Galtr(Lin) → Galtr(Fin).

There is also a restriction map Γ∨
L → Γ∨

F , f 7→ f|F , given by restricting a homomorphism
f ∈ Γ∨

L to ΓF ⊂ ΓL. Next we state a functoriality lemma for the decomposition of Galtr(F ).

Lemma 3.6. Let F ⊂ L be an extension of Henselian valued fields and denote by ν the
valuation on L. Denote the residue field of F, L by k and l respectively. Let π, τ be uni-
formizers for Ftr and Ltr respectively. Denote the induced section sτ : Gal(l) → Galtr(L) and
isomorphisms as in Proposition 3.4 by

ΨF
π : Gal(k)⋉ Γ∨

F → Galtr(F ), Ψ
L
τ : Gal(l)⋉ Γ∨

L → Galtr(L).

For any γ ∈ ΓFtr set u
γ = πγτ−γ. For any σ ∈ Gal(l), there exists a unique homomorphism

χσ ∈ Γ∨
F satisfying the equation:

(3.6)
sτ (σ)(u

γ/n)

uγ/n
= ζχσ(γ)

n

for all γ ∈ ΓF and n prime to char k. We have for all σ ∈ Gal(l), f ∈ Γ∨
L:

ΨL
τ (σ, f)|Ftr = ΨF

π (σ|ksep , f|F + θ(σ)−1χσ).
9



Proof. For any γ ∈ ΓF and n prime to char k, uγ/n is an n-th root of uγ ∈ Lin. Since uγ is
a unit and the residue field of Lin is separably closed, Hensel’s lemma implies uγ/n ∈ Lin. In
particular, we have:

sτ (σ)(u
γ/n) = σ(uγ/n).

Therefore for any v ∈ Fin, γ ∈ ΓF applying (3.5) twice gives:

ΨL
τ (σ, f)(vπ

γ/n) = ΨL
τ (σ, f)(vu

γ/nτγ/n)

=(3.5) σ(v)σ(uγ/n)ζθ(σ)f(γ)n τγ/n

= σ(v)
σ(uγ/n)

uγ/n
ζθ(σ)f(γ)n uγ/nτγ/n

= σ(v)ζχσ(γ)
n ζθ(σ)f(γ)n πγ/n

= σ(v)ζθ(σ)f(γ)+χσ(γ)
n πγ/n

=(3.5) ΨF
π (σksep , f|F + θ(σ)−1χσ)(vπ

γ/n)

The claim follows because elements of the form vπγ/n generate Ftr over F by Proposi-
tion 3.4(1). �

Next, we recall A. Ostrowski’s foundational theorem in valuation theory. It will be used
often and sometimes implicitly; See [18, Theorem 17.2.1] for a modern proof.

Theorem 3.7. [49] Let F ⊂ L be a finite extension of Henselian valued fields with value
groups ΓF ⊂ ΓL and residue fields k ⊂ l. There exists an integer δ such that:

[L : F ] = δ[ΓL : ΓF ][l : k].

If char k > 0, then δ is a power of char k and δ = 1 otherwise. In particular, both [ΓL : ΓF ]
and [l : k] divide [L : F ].

We finish this section with a technical lemma that will be used to avoid working with
infinite algebraic extensions.

Lemma 3.8. Let (F, ν) be an ascending union of a countable chain of valued field F1 ⊂
F2 ⊂ . . . and let L/F be a tamely ramified Galois extension. For all large enough i there
exists a tamely ramified Galois extension Li/Fi such that L is a compositum L = LiF and
the restriction map Gal(L/F ) → Gal(Li/Fi) is an isomorphism.

Proof. Let x ∈ L be an element such that L = F (x) and let P (t) ∈ F [t] be the minimal
polynomial of x. For large enough i, P (t) ∈ Fi[t] and so P (t) is also the minimal polynomial
of x over Fi. Set Li := Fi(x) and note

[Li : Fi] = deg P = [L : F ].

By enlarging i further we can make P (t) factor fully over Li so that Li/Fi is Galois. Let li/ki
denote the residue field extension of Li/Fi. A similar argument shows that li/ki is Galois
of degree [l : k] for large enough i. One also easily checks that for large enough i we have
[ΓLi

: ΓFi
] = [ΓL : ΓF ]. Combining all of this together, we find that for large i:

[Li : Fi] = [L : F ] = [ΓL : ΓF ][l : k] = [ΓLi
: ΓFi

][li : ki].
10



Therefore Li/Fi is defectless and tamely ramified. The restriction map Gal(L/F ) → Gal(Li/Fi)
is an isomorphism because it is injective and

|Gal(L/F )| = [L : F ] = [Li : Fi] = |Gal(Li/Fi)|.

Indeed, any two different elements σ, τ ∈ Gal(L/F ) differ on Li for large enough i. �

4. Preliminaries about anisotropic torsors

In this final section of preliminaries, we record a couple of facts about versal torsors and
anisotropic torsors. We first recall the definition of a versal torsor.

Definition 4.1. A versal torsor γ ∈ H1(l, G) is the generic fiber of a G-torsor for the étale
topology T → B such that:

(1) B is an irreducible smooth variety over k0.
(2) For any field extension E/k0 with |E| = ∞ and open dense subset U ⊂ B, there

exists u ∈ U(E) such that:

η ∼= Tu := T ×u SpecE.

Note that there exists a versal G-torsor [59, Section 5.3]. A G-torsor T → B is called
isotropic if there exists an embedding Gm → TG over B, where TG denotes the twisted group
defined by T ; See [23, Page 6]. The following technical lemma shows the notion of isotropy
plays well with inductive limits of base rings.

Lemma 4.2. Let T → B be a G-torsor over an irreducible variety B over k0.

(1) If T is isotropic, then so is Tu for any k0-algebra R and u ∈ B(R).
(2) Let (Λ,≤) be a partially ordered filtered set with minimal element 0 ∈ Λ. Let (Rλ)λ∈Λ

be an inductive system of k0-algebras over Λ with transition maps σλµ : Rλ → Rµ for
all λ ≤ µ. Let u0 : SpecR0 → B be a point and set uλ = u0 ◦ σ0λ for any λ ∈ Λ.
Assume (Rλ)λ∈Λ has an inductive limit R and let u = u0 ◦ ι, where ι : SpecR →
SpecR0 is the canonical morphism. If Tu is isotropic, then Tuλ

is isotropic for some
λ ∈ Λ.

(3) Let u ∈ B(L) be the generic point of B. If Tu is isotropic, then there exists an open
U ⊂ B such that TU is isotropic.

(4) Let γ ∈ H1(k,G) be a torsor over a field extension k/k0. If γl is isotropic for some
l/k, then γl′ is isotropic for some finitely generated subextension k ⊂ l′ ⊂ l.

Proof. Let G′ = TG be the twisted group over B defined by T . For any u ∈ B(R), let
G′

u = Tu
G denote the group G′ ×u SpecR over SpecR.

(1) If T is isotropic, then there exists an embedding Gm,B ⊂ G′. This embedding special-
izes to an embedding Gm,R ⊂ G′

u and so Tu is isotropic.

(2) Since Tu is isotropic, there exists an embedding Gm,R ⊂ G′
u. This embedding is

induced from an embedding Gm,Rλ
⊂ G′

uλ
for some λ ∈ Λ by [30, Lemma 10.62]. Therefore

Tuλ
is isotropic.

(3) Assume without loss of generality that B = SpecR for some integral domain R of
finite type over k0. Let L be the fraction field of R. The generic point u corresponds to the
inclusion R ⊂ L . Since L is the inductive limit of all localization R[f−1] for f ∈ R \ {0},
the result follows from Part (2).
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(4) The result follows immediately from Part (2) because l is the inductive limit of all
finitely generated subextensions k ⊂ l′ ⊂ l. �

Before the next lemma, recall that a field k is called p-closed for some prime p if it admits
no proper prime-to-p extension. An algebraic extension k(p)/k is called a p-closure of k if
k(p) is p-closed and any finite subextension k ⊂ k′ ⊂ k(p) is of degree prime-to-p. Any field
k admits p-closures for any p 6= char k. We refer the reader to [19, Proposition 101.16] for
more details.

Proposition 4.3. Let γ ∈ H1(k,G) be a versal torsor over some field k/k0.

(1) If G admits an anisotropic torsor η over some other field k0 ⊂ l, then γ is anisotropic.
(2) Let p 6= char k0 be a prime. If G admits an anisotropic torsor η over some a p-closed

field k0 ⊂ l, then γk(p) is anisotropic for any p-closure k(p)/k.

Proof. Assume γ is the generic fiber of a G-torsor T → B as in Definition 4.1. Let η be an
arbitrary G-torsor over a field extension k0 ⊂ l.

(1) Let u ∈ B(k) be a generic point such that γ = Tu is isotropic. By Lemma 4.2(3),
there exists a dense open U ⊂ B such that TU is isotropic. We may assume |l| = ∞ because
passing to l((t)) does not affect whether η is anisotropic or not; See e.g. [24, Proposition
4.8]. By versality, there exists a point v ∈ U(l) such that Tv = η. Therefore η is isotropic by
Lemma 4.2(1). This proves Part (1).

(2) Assume l is p-closed. If γk(p) is isotropic, then γk′ is isotropic for some prime-to-p
extension k ⊂ k′ ⊂ k(p) by Lemma 4.2(4). The extension k ⊂ k′ is induced from a morphism
f : V → B of varieties for some irreducible variety V over k0 with function field k0(V ) = k′.
By Lemma 4.2(3), we may replace V with an open subset to assume TV = T×f V is isotropic.
Since f is generically finite, there exist dense opens U ⊂ B, W ⊂ V such that f(W ) ⊂ U
and the restriction f : W → U is finite and flat [60, Tag 02NX]. Replace B by U and V by
W to assume f is finite and flat. Now let u ∈ B(l) be a point such that Tu = η (note that l
is infinite because it contains all roots of unity of order prime to p and char k0). Since f is
flat, finite of degree prime-to-p and l is p-closed, we can lift u to a point v ∈ V (l) such that

f(v) = u.

See Lemma 4.4 below. Associativity of fiber products gives a canonical G-equivariant iso-
morphism:

Tu = T ×u Spec l ∼= TV ×v Spec l.

Therefore
η = Tu = TV ×v Spec l

is isotropic by Lemma 4.2(1). �

Lemma 4.4. Let k0 ⊂ l be a p-closed field for some prime p 6= char k0. Let f : V → U be
a finite flat map of varieties over k0. If the degree of f is prime-to-p, then the induced map
V (l) → U(l) is surjective.

Proof. Let u : Spec l → U be a point. The scheme Spec l ×U V is finite of degree prime to p
over Spec l by our assumption on f . Therefore Spec l×U V = SpecR for some finite l-algebra
R of dimension prime to p. By the structrue theorem for Artin rings there exist local Artin
rings R1, . . . , Rn such that:

R ∼= R1 × · · · × Rn

12



as l-algebras. Comparing dimensions, we see that dimlRi is prime to p for some 1 ≤ i ≤ n.
Let m ⊂ Ri be its maximal ideal and d = [Ri/m : l] the residue field degree. By [20, Lemma
A.1.3], we have:

diml(Ri) = d len(Ri),

where len(Ri) denotes the length of Ri as a module over itself. In particular, d is prime to
p. Since l has no prime-to-p extensions, it follows that Ri/m = l. The composition:

R→̃R1 × · · · × Rn ։ Ri → Ri/m = l,

gives a section of the inclusion l ⊂ R. Dualizing, we obtain a section of the left column of
the following Cartesian square:

SpecR = Spec l ×U V V

Spec l U

f∗(u)

fs

u

The composition f ∗(u) ◦ s : Spec l → V is a lift of u to V (l). �

The next lemma will be used in Section 9 to reduce the proof of Theorem 1.2 to the case
where G◦ is reductive.

Lemma 4.5. Let f : G → H be a homomorphism of smooth linear algebraic groups over
k0. Let k0 ⊂ k be a field and denote the induced pushforward map by f∗ : H1(k,G) →
H1(k,H). If γ ∈ H1(k,G) is anisotropic and one of the following conditions hold, then
f∗(γ) is anisotropic.

(1) f is an embedding and dimG = dimH.
(2) The base field k0 is perfect and f is a quotient map with a unipotent kernel.

Proof. Assume γ = [cσ] for some cocycle cσ and denote its pushforward to H by f∗(c).
Consider the homomorphism of twisted groups defined by f :

cf : cG→ f∗(c)H.

(1) If f is an embedding, then so is cf . By assumption we have:

dim(cG) = dim(f∗(c)H).

Therefore cf restricts to an isomorphism cG
◦ ∼= f∗(c)H

◦. A split torus T ⊂ f∗(c)H is contained
in f∗(c)H

◦ because it is connected. Since cG
◦ ∼= f∗(c)H

◦ is anisotropic, this implies T = {e}.
Therefore [f∗(c)] = f∗(γ) is anisotropic.

(2) Assume f is a quotient map with unipotent kernel U ⊂ G. Let T ⊂ f∗(c)H be a split
torus and denote by S the (scheme-theoretic) preimage of T under cf . Restricting cf to S
gives an exact sequence [46, Theorem 5.55]:

(4.1) 1 → U → S → T → 1.

Since k0 is perfect and T is connected the exact sequence (4.1) splits by [26, Expose XVII,
Theorem 5.1.1]. We obtain an embedding T → S ⊂ cG. Since cG is anisotropic, we conclude
T must be trivial. This shows [f∗(c)] = f∗(γ) is anisotropic.

�
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5. Loop torsors

Loop torsors were introduced by Gille and Pianzola in the monograph [25]. They can be
defined in a few equivalent ways. The useful point of view for us will be:

Definition 5.1. A torsor γ ∈ H1
tr(F,G) is called a loop torsor if it can be represented by

a Galtr(F )-cocycle taking values in G(Oin). We denote the subset of all loop torsors by
H1

loop(F,G) ⊂ H1
tr(F,G).

We use loop torsors for two reasons. They can be decomposed in tandem with the
decomposition of Galtr(F ), and they are integral, so one can apply the homomorphism
G(Oin) → G(ksep) to obtain G(ksep)-valued cocycles from them. We start by describing the
decomposition of loop torsors introduced in [25, Section 3.3].

Let ΨF
π : Gal(k) ⋉ Γ∨

F → Galtr(F ) be the isomorphism induced by a uniformizer π as
in Proposition 3.4. Any loop cocycle cτ ∈ Z1(Galtr(F ), G(Oin)) defines a Gal(k)-cocycle
aσ ∈ Z1(Gal(k), G(Oin)) and a homomorphism ϕ : Γ∨

F → G(Oin) by the formulas:

aσ = cΨπ(σ,0), ϕ(x) = cΨπ(1,x).

Note that ϕ is a homomorphism because the tame inertia group of F acts fixes G(Fin). The
cocycle aσ is called the arithmetic part of cτ and ϕ is called its geometric part. Clearly cτ is
uniquely determined by aσ and ϕ. We will use the notation:

cτ = 〈aσ, ϕ〉π,

to denote a loop cocycle cτ with arithmetic part aσ and geometric part ϕ. The corresponding
loop torsor will be denoted:

[aσ, ϕ]π := [〈aσ, ϕ〉π] ∈ H1
loop(F,G).

Any torsor γ ∈ H1
loop(F,G) is by definition of the form γ = [aσ, ϕ]π for some aσ, ϕ, but the

symbol 〈aσ, ϕ〉π is not defined for an arbitrary pair aσ, ϕ.

Definition 5.2. We will call a cocycle aσ ∈ Z1(Gal(k), G(Oin)) and homomorphism ϕ :
Γ∨
F → G(Oin) compatible if there exists a cocycle cτ ∈ Z1(Galtr(F ), G(Oin)) such that cτ =

〈aσ, ϕ〉π.

Let θ : Gal(k) → (Ẑ′)∗ be the cyclotomic character. One can check that a cocycle aσ and
a homomorphism ϕ as above are compatible if and only if they satisfy:

(5.1) aσ
σϕ(f)a−1

σ = ϕ(f)θ(σ),

for all f ∈ Γ∨
F , σ ∈ Gal(k); See [25, Lemma 3.7] for a similar computation. Using this, we

see that centralizers of finite abelian subgroups are a natural source for loop torsors.

Example 5.3. Let ϕ : Γ∨
F → G(Oin) be a continuous homomorphism onto a finite split-

diagonalizable subgroup A ⊂ G(Oin) and let aσ ∈ Z1(Gal(k), CG(A)(Oin)) a cocycle. The
formula:

cΨπ(σ,f) = aσ
σϕ(f)

defines a loop cocycle cτ = 〈aσ, ϕ〉π because
σϕ(f) = ϕ(f)θ(σ)

for all σ ∈ Gal(k), f ∈ Γ∨
F by (2.1). That is, aσ and ϕ are compatible in the sense of

Definition 5.2.
14



One can often assume a loop torsor is of the form given in Example 5.3 using the next
lemma.

Lemma 5.4. Let cτ = 〈aσ, ϕ〉π be a loop cocycle and set A = imϕ. If the group

A := {a ∈ G(ksep) | a ∈ A}

is split-diagonalizable, then aσ ∈ CG(A)(ksep) for all σ ∈ Gal(k).

Proof. Let θ : Gal(k) → (Ẑ′)∗ denote the cyclotomic character. Since cτ is a cocycle, (5.1)
gives:

aσ
σϕ(f)a−1

σ = ϕ(f)θ(σ).

Reducing modulo the maximal ideal of Oin we get:

aσ
σϕ(f)aσ

−1 = ϕ(f)
θ(σ)

.

We have
σϕ(f) = ϕ(f)

θ(σ)

because A is split-diagonalizable by Fact 2.2. Therefore aσ centralizers σϕ(f). Since f ∈ Γ∨
F

was arbitrary, we conclude that aσ ∈ CG(A)(ksep). �

We finish this section by examining when do two loop cocycles 〈aσ, ϕ〉π, 〈aσ, ϕ〉π give rise
to the same class in H1

tr(F,G(Oin)).

Lemma 5.5. Two loop cocycle 〈aσ, ϕ〉π, 〈bσ, ψ〉π are cohomologous in H1
tr(F,G(Oin)) if and

only if there exists s ∈ G(Oin) such that:

(5.2) s−1aσ
σs = bσ, s−1ϕs = ψ.

Proof. For any s ∈ G(Oin), σ ∈ Gal(k), f ∈ Γ∨
F , τ := Ψπ(σ, f) we have:

s−1〈aσ, ϕ〉π(τ)
τs = s−1aσ

σϕ(f)σs

= s−1aσ
σsσ(s−1ϕ(f)s) = 〈s−1aσ

σs, s−1ϕs〉π(τ).

This proves the claim. �

6. A theorem of Gille and Pianzola

Recall that a valued field (F, ν) is an iterated Laurent series field, if it is isomorphic to
k((t1)) . . . ((tr)) equipped with the usual (t1, . . . , tr)-adic valuation. In this section we prove
the following adaptation of a theorem of Gille and Pianzola.

Theorem 6.1. Let (F, ν) be an iterated Laurent series field and assume G◦ is reductive.
Two anisotropic loop torsors [aσ, ϕ]π, [bσ, ψ]π ∈ H1

loop(F,G)an are cohomologous if and only
if there exists s ∈ G(ksep) such that:

(6.1) s−1ϕ(f)s = ψ(f), s−1aσ
σs = bσ

for all f ∈ Γ∨
F , σ ∈ Gal(k).
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Since F is an iterated Laurent series field, it admits a coefficient field. That is, there
exists an inclusion k ⊂ O splitting the map onto the residue field O → k. This inclusion
extends to an embedding ksep ⊂ Oin splitting the homomorphism Oin → ksep, which in turn
gives a section G(ksep) ⊂ G(Oin) of the homomorphism G(Oin) → G(ksep). Gille proved
Theorem 6.1 in case aσ, ϕ, bσ, ψ all take values in G(ksep) ⊂ G(Oin) [24, Corollary 4.11]
(before that Gille-Pianzola proved it under the additional assumption char k = 0 in [25]).
Thus in order to prove Theorem 6.1 it suffices to establish the following proposition:

Proposition 6.2. Let G(ksep) ⊂ G(Oin) denote the inclusion induced from the inclusion of
a coefficient field ksep ⊂ Oin. The corresponding map of cohomology sets

(6.2) H1
tr(F,G(ksep)) → H1

tr(F,G(Oin))

is a bijection.

For the proof of this proposition we will need the following consequences of Hensel’s lemma.

Lemma 6.3. Let ϕ, ψ : Γ∨
F → G(Oin) be two continuous homomorphisms and let ϕ, ψ : Γ∨

F →
G(ksep) be the composition of ϕ, ψ with the reduction homomorphism G(Oin) → G(ksep), g 7→
g. If sϕs−1 = ψ for some s ∈ G(ksep), then s̃ϕs̃

−1 = ψ for some s̃ ∈ G(Oin).

Proof. Let Γ∨
F → A be a large enough finite quotient of Γ∨

F so that both ϕ and ψ factor
through A. Let ϕ′, ψ′ : A → GOin

denote the induced homomorphisms and denote by
TranG(ϕ

′, ψ′) the transporter of ϕ′ and ψ′. This is a closed subscheme of GOin
such that for

any ring homomorphism Oin → R:

TranG(ϕ
′, ψ′)(R) = {g ∈ G(R) | gϕ′

Rg
−1 = ψ′

R}.

Note that A is a finite abelian group of order prime to char k by Remark 3.2. Therefore
TranG(ϕ

′, ψ′) is smooth because A is of multiplicative type; See [26, Expose XI, Corol-
laire 5.2]. By assumption TranG(ϕ

′, ψ′)(ksep) 6= ∅. It follows from Hensel’s lemma that
TranG(ϕ

′, ψ′)(Oin) 6= ∅ and the result follows.
�

Lemma 6.4. For any smooth algebraic group C over O, the reduction homomorphism
C(Oin) → C(ksep) induces a bijection on Galois cohomology sets:

H1(Gal(k), C(Oin)) → H1(Gal(k), C(ksep)).

Proof. Any C-torsor for the étale topology over SpecO is split by the universal cover
SpecOin → SpecO because SpecO is local. The fundamental group of SpecO is Gal(k)
by [45, Section 5, Example 5.2.d]. Therefore [23, Section 2.2] gives isomorphisms

H1(Gal(k), C(Oin))→̃H1
étale(SpecO, C), H1(Gal(k), C(ksep))→̃H1

étale(Spec k, C).

Now the lemma follows from [26, Expose XXIV,Proposition 8.1], which states that the
bottom row in the following commutative square is a bijection:

H1(Gal(k), C(Oin)) H1(Gal(k), C(ksep))

H1
étale(SpecO, C) H1

étale(Spec k, C)

�
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Next we prove that any loop torsor is represented by a cocycle taking values in G(ksep).
Note that Galtr(F ) acts on the coefficient field ksep ⊂ Oin and on G(ksep) ⊂ G(Oin) because
k ⊂ F is fixed by Galtr(F ) and ksep/k is Galois. Let [aσ, ϕ]π ∈ H1

loop(F,G) be a loop torsor.
Denote the images of aσ under the reduction homomorphism G(Oin) → G(ksep) by aσ and
define ϕ : Γ∨

F → G(ksep) by the formula

ϕ(f) = ϕ(f)

for all f ∈ Γ∨
F . By Remark 2.4, the map :

〈aσ, ϕ〉π : Gal(k)⋉ Γ∨
F → G(Oin), (σ, f) 7→ aσ

σϕ(f)

is a Galtr(F )-cocycle in G(Oin). Therefore aσ, ϕ are compatible in the sense of Definition 5.2
and the loop torsor [aσ, ϕ]π ∈ H1

loop(F,G) is defined.

Lemma 6.5. Let G(ksep) ⊂ G(Oin) denote the inclusion induced from the inclusion of a
coefficient field ksep ⊂ Oin. Any loop cocycle 〈aσ, ϕ〉π is cohomologous in H1

tr(F,G(Oin)) to
〈aσ, ϕ〉π. In particular, we have:

[aσ, ϕ]π = [aσ, ϕ]π.

Proof. Let 〈aσ, ϕ〉π be a loop cocycle. We need to prove 〈aσ, ϕ〉π and 〈aσ, ϕ〉π are cohomol-
ogous in H1

tr(F,G(Oin)). By Lemma 5.5, it suffices to find s ∈ G(Oin) such that:

(6.3) s−1aσ
σs = aσ, s−1ϕ(f)s = ϕ(f)

for all σ ∈ Gal(k), f ∈ Γ∨
F . We start by tackling the special case where ϕ(f) ∈ G(ksep) for

all f and so ϕ = ϕ. Define for all σ ∈ Gal(k):

cσ = aσa
−1
σ .

It is simple to check that cσ is a cocycle in aG(Oin) (here aG is the twisted group defined by
a, see Section 2). We check cσ centralizes imϕ. Since both aσ, ϕ and aσ, ϕ are compatible
(5.1) gives for any f ∈ Γ∨

F :

aσ−1
σ−1

ϕ(f)aσ−1 = ϕ(f)θ(σ
−1) = aσ−1

σ−1

ϕ(f)aσ−1
−1.

Therefore aσ−1
−1aσ−1 centralizes σ−1

ϕ(f). Applying σ(·) to both sides and using the cocycle
identity we get:

C
aG(ϕ(f))(Oin) ∋

σ(aσ−1
−1aσ−1) = σaσ−1

−1σaσ−1 = aσa
−1
σ = cσ.

Since f ∈ Γ∨
F was arbitrary this shows cσ ∈ C

aG(imϕ). The class [cσ] ∈ H1(Gal(k), C
aG(ϕ)(Oin))

clearly goes to zero under the map

H1(Gal(k), C
aG(ϕ)(Oin)) → H1(Gal(k), C

aG(ϕ)(ksep)).

This implies [cσ] is split in H1(Gal(k), C
aG(ϕ)(Oin)) by Lemma 6.4. Therefore there exists

s ∈ C
aG(ϕ)(Oin) such that for all σ ∈ Gal(k):

aσa
−1
σ = cσ = s−1aσ

σsa−1
σ .

Multiply by aσ on the right to obtain

s−1aσ
σs = aσ.

Since s centralizes ϕ = ϕ, we conclude that it satisfies (6.3).
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We now tackle the case where ϕ 6= ϕ. By Lemma 6.3, ϕ and ϕ are conjugate by an element
s ∈ G(Oin). That is, for any f ∈ Γ∨

F we have:

s−1ϕ(f)s = ϕ(f).

Applying the reduction map G(Oin) → G(ksep), g 7→ g to the above equation we get:

s−1ϕ(f)s = ϕ(f).

Therefore the element t = ss−1 ∈ G(Oin) satisfies t = 1 and

(6.4) t−1ϕ(f)t = ss−1(f)ss−1 = sϕ(f)s−1 = ϕ(f).

By Lemma 5.5, (6.4) implies 〈aσ, ϕ〉π and 〈t−1aσ
σt, ϕ〉π represent the same class inH1

tr(F,G(Oin)).
By the first case we tackled and because t = 1, we conclude:

[〈t−1aσ
σt, ϕ〉π] = [〈t−1aσ

σt, ϕ〉π] = [〈aσ, ϕ〉π] in H
1
tr(F,G(Oin)).

Therefore 〈aσ, ϕ〉π and 〈aσ, ϕ〉π represent the same class in H1
tr(F,G(Oin)). This finishes the

proof. �

We now prove Proposition 6.2, which completes the proof of Theorem 6.1.

Proof. The map (6.2) is injective because it has a left inverse induced by the reduction
homomorphism G(Oin) → G(ksep), g 7→ g. To prove surjectivity, one needs to show any
loop cocycle is cohomologous in H1

tr(F,G(Oin)) to a cocycle taking values in G(ksep). This
is immediate from Lemma 6.5. �

7. Functoriality of decompositions of loop torsors

Let L/F be an extension of Henselian valued fields with uniformizers π and τ . It is clear
from the definition that γL is a loop torsor for any γ ∈ H1

loop(F,G). Therefore there is

an induced map H1
loop(F,G) → H1

loop(L,G). Our goal in this section is to understand the
functoriality of the decompositions γ = [aσ, ϕ]π. That is, we wish to write γL = [bσ, ψ]τ for
some compatible bσ, ψ explicitly described in terms of aσ and ϕ. The following lemma shows
we have to account for the choice of uniformizers π, τ .

Lemma 7.1. For any σ ∈ Gal(l), let χσ ∈ Γ∨
F be as in (3.6) (note that χσ depends on π

and τ). The following holds for any compatible pair aσ, ϕ.

([aσ, ϕ]π)L = [ϕ(χσ) Inf l/k(a)σ, ϕ|L]τ .

Here Inf l/k(a) is the inflation of aσ to l and ϕ|L is the composition of ϕ with the restriction
map Γ∨

L → Γ∨
F .

Proof. Let ΨF
π : Gal(k)⋉ Γ∨

F → Galtr(F ), Ψ
L
τ : Gal(l)⋉ Γ∨

L → Galtr(L) be the isomorphisms
of Proposition 3.4. Lemma 3.6 gives for any σ ∈ Gal(l), f ∈ Γ∨

L:

〈aσ, ϕ〉π(Ψ
L
τ (σ, f)|Ftr) = 〈aσ, ϕ〉π(Ψ

F
π (σ|ksep , f|F + θ(σ)−1χσ))

= aσ|ksep

σ(ϕ(χσ)
θ(σ)−1

ϕ(f|F ))

= aσ|ksep

σϕ(χσ)
θ(σ)−1σϕ(f|F )

=(5.1) ϕ(χσ)aσ|ksep

σϕ(f|F )

= 〈ϕ(χσ) Infl/k(a)σ, ϕ|L〉τ(Ψ
L
τ (σ, f)).
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The result follows. �

Corollary 7.2. If ΓF = ΓL, then the following holds for any compatible pair aσ, ϕ:

([aσ, ϕ]π)L = [Inf l/k(a)σ, ϕ]π.

Note that π is a uniformizer for Ltr because ΓFtr = ΓLtr.

Proof. The result is immediate from Lemma 7.1 once we note that χσ = 1 for all σ ∈ Gal(l)
by (3.6). �

To improve Lemma 7.1 we need to understand the cocycle ϕ(χσ) ∈ Z1(Gal(l), A) for
arbitrary uniformizers τ of L.

Lemma 7.3. Let ϕ : Γ∨
F → A be a continuous homomorphism onto A = µn1 × · · · × µnr

for
some n1, . . . , nr coprime to char k.

(1) There are elements γ1, . . . , γr ∈ ΓF such that for all f ∈ Γ∨
F :

(7.1) ϕ(f) = (ζf(γ1)n1
, . . . , ζf(γr)nr

).

(2) Let uγ = πγτ−γ for γ ∈ ΓFtr as in Lemma 3.6. The class [ϕ(χσ)] ∈ H1(l, A) represents
(uγ1, . . . , uγr) under the Kummer isomorphism H1(l, A) ∼= l∗/l∗n1 × · · · × l∗/l∗nr .

Proof. One proves Part (1) by choosing a basis for ΓF . The details are left to the reader.
We prove Part (2). Recall that by the definition of χσ in (3.6), we have:

ζχσ(γi)
ni

=
sτ (σ)(u

γi/ni)

uγi/ni
,

for any 1 ≤ i ≤ r. Note that ν(uγi/ni) = 0, so the residue class uγi/ni ∈ lsep is defined. Since
sτ is a section of Galtr(L) → Gal(l), applying (3.2) gives:

(7.2) ζχσ(γi)
ni

= ζ
χσ(γi)
ni =

σ(uγi/ni)

uγi/ni

.

Since uγi/ni is an ni-th roof of uγi, the right hand side in (7.2) is a cocycle representing uγi

under the classical kummer isomoprhism H1(l, µni
) ∼= l∗/l∗ni. Now Part (2) follows from

Part (1) which states:

ϕ(χσ) = (ζχσ(γ1)
n1

, . . . , ζχσ(γr)
nr

).

�

Corollary 7.4. Let π be a uniformizer for Ftr and ϕ : Γ∨
F → G(Oin) a continuous homo-

morphism onto a split-diagonalizable subgroup A ⊂ G(Oin). If [L : F ] and |A| are coprime,
then there exists a uniformizer τ : ΓLtr → L∗

tr such that

([aσ, ϕ]π)L = [Inf l/k(a)σ, ϕ|L]τ

for any Gal(k)-cocycle aσ ∈ G(Oin) centralizing A.

Proof. There exists a basis e1, . . . , er of ΓL and integers d1, . . . , dr such that d1e1, . . . , drer is
a basis for ΓF and

∏

i di = [ΓL : ΓF ] [34, Theorem III.7.8]. By Ostrowski Theorem, [ΓL : ΓF ]
is prime to |A|. Choose integers m1, . . . , mr such that:

(7.3) midi ≡ 1 mod |A|.
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Let xi ∈ L∗ be such that ν(xi) = ei. Set πi = πdiei and define

τi := xi(πix
−di
i )mi.

We have for any 1 ≤ i ≤ r :

ν(τi) = ν(xi) +mi(ν(πi)− diν(xi)) = ei +mi(diei − diei) = ei.

Therefore there exists a uniformizer τ for Ltr such that τ ei = τi for all i by Remark 3.5. For
this uniformizer we have:

πdieiτ−diei = πiτ
−di
i = πix

−di
i (πix

−di
i )−dimi = (πix

−di
i )1−dimi .

Therefore πdieiτ−diei is an |A|-th power for all i by (7.3). This gives [χσ] = 1 in H1(k, A) by
Lemma 7.3(2). Let a ∈ A be such that for all σ ∈ Gal(k):

χσ = a−1 σa.

We use Lemma 7.1 and the fact that aσ centralizes A to get:

([aσ, ϕ]π)L = [a−1σa Inf l/k(a)σ, ϕ|L]τ = [a−1 Inf l/k(a)σ
σa, ϕ|L]τ .

We finish the proof by noting that Lemma 5.5 gives:

[a−1 Inf l/k(a)σ
σa, ϕ|L]τ = [Inf l/k(a)σ, aϕ|La

−1]τ = [Inf l/k(a)σ, ϕ|L]τ .

�

Let F be an iterated Laurent series field and ϕ : Γ∨
F → G(ksep) be a continuous homo-

morphism onto a split-diagonalizable p-group A ⊂ G. Let aσ ∈ Z1(Gal(k), CG(A)(ksep)) be
a cocycle and set

γ = [aσ, ϕ]π

as in Example 5.3. If G◦ is reductive, [24, Proposition 4.8] implies γ is anisotropic if and
only if [aσ] ∈ H1(k, CG(A)) is anisotropic. We will use Corollary 7.4 to upgrade this to a
criterion deciding whether γ is anisotropic over a p-closure of F .

Lemma 7.5. Assume G◦ is reductive. If k is p-closed, and [aσ] ∈ H1(k, CG(A)) is anisotropic,
then for any prime-to-p extension F ⊂ L:

(1) imϕ|L = A
(2) γL is anisotropic

Proof. The residue field of L is a prime-to-p extension of k by Ostrowski’s theorem and so
it must be k because k is p-closed. Since A is a p-group, Corollary 7.4 implies there exists
uniformizer τ : ΓLtr → L∗

tr such that:

([aσ, ϕ]π)L = [aσ, ϕ|L]τ .

The inclusion ΓF → ΓL induces an exact sequence:

Γ∨
L → Γ∨

F → Ext1Z(ΓL/ΓF , Ẑ
′).

Since Ext1Z(ΓL/ΓF , Ẑ
′) is killed by [ΓL : ΓF ], so is the cokernel of Γ∨

L → Γ∨
F . In particular,

this cokernel is of order prime to p because [ΓL : ΓF ] divides [L : F ] by Ostrowski’s Theorem.
Since imϕ = A is a p-group, it follows that

ϕ|L : Γ∨
L → A
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is a surjection (recall that ϕ|L is the composition of ϕ with the restriction map Γ∨
L → Γ∨

F ).
The torsor [aσ] ∈ H1(k, CG(A)) is anisotropic because γ = [aσ, ϕ]π is anisotropic by [24,
Proposition 4.8]. Applying [24, Proposition 4.8] once more, we get that γL = [aσ, ϕ|L]τ is
anisotropic because CG(ϕ|L) = CG(A). �

Corollary 7.6. Let A ⊂ G be a finite split-diagonalizable p-subgroup for some prime p 6=
char k0. Assume G◦ is reductive and CG(A) admits an anisotropic torsor over some p-closed
field k0 ⊂ k. There exists a valued field k0 ⊂ F with residue field k such that G admits
anisotropic torsors over any p-closure F (p) of F .

Proof. Set r = rank(A). Let F = k((t1)) . . . ((tr)) be an iterated Laurent series field equipped
with its (t1, . . . , tr)-adic valuation and let π be a uniformizer for Ftr. Since ΓF = Zr, we have

Γ∨
F = Hom(ΓF , Ẑ

′) = Ẑ′r.

Therefore there exists a surjection ϕ : Γ∨
F → A. If [aσ] ∈ H1(k, CG(A)) is anisotropic, then

γ = [aσ, ϕ]π ∈ H1
loop(F,G)

is anisotropic over any prime-to-p extension F ⊂ F ′ by Lemma 7.5. Therefore γF (p) is
anisotropic for any p-closure F ⊂ F (p) by Lemma 4.2. �

8. Almost all torsors are loop torsors

In the proof of Theorem 1.2, we will need to show certain G-torsors are in fact loop torsors.
To achieve this, in this section we collect propositions that show all torsors under reductive
groups are loop torsors ”up to wild ramification”. In particular, when G◦ is reductive and
the characteristic of k0 is good for G, all G-torsors are loop torsors.

Proposition 8.1. Assume G◦ is reductive. If the characteristic of k0 is good for G (see
Definition 2.1), then

H1
loop(F,G) = H1

tr(F,G) = H1(F,G).

Proof. A torsor induced from a finite subgroup S ⊂ G of order prime to char k0 is a loop
torsor; See [25, Lemma 3.12]. If the characteristic of k0 is good for G, then all G-torsors
are induced from some such subgroup S ⊂ G defined over k0 [38, Corollary 18]. The result
follows. �

The next lemma is the only occasion on which we relax Assumption 2.3. The proof is
inspired by [25, 6.2].

Lemma 8.2. Let (F, ν) be a Henselian valued field with residue field k and value group ΓF

not necessarily finitely generated. Assume Ftr = Fsep = Falg. If G◦ is a torus, then

H1
loop(F,G) = H1

tr(F,G) = H1(F,G).

Proof. Set T = G◦ and W = G/T . We have an exact sequence:

1 → T → G→W → 1.

Since G is smooth, W is an étale group over k0 [26, Expose VI, Proposition 5.5.1]. This
implies that Wk0,sep is a constant finite group and in particular

W (k0,sep) = W (Oin) = W (Fsep).
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Therefore T (Oin) ⊂ G(Fsep) is a normal subgroup. Consider the induced exact sequence:

(8.1) 1 → T (Fsep)/T (Oin) → N(Fsep)/T (Oin) →W (k0,sep) → 1.

Let γ ∈ H1(F,N) and denote by γ′ ∈ H1(F,N(Fsep)/T (Oin)) the image of γ under the
natural map:

H1(F,N) → H1(F,N(Fsep)/T (Oin)).

The torsor γ lies in the image of H1(F,N(Oin)) → H1(F,N) if and only if γ′ lies in the
image of the map

H1(F,N(Oin)/T (Oin)) → H1(F,N(Fsep)/T (Oin)).

See for example [48, Lemma 3.1].
The exact sequence (8.1) splits. Indeed, the subgroup

N(Oin)/T (Oin) ⊂ N(Fsep)/T (Oin)

intersects T (Fsep)/T (Oin) trivially and it surjects ontoW (k0,sep) because N(k0,sep) ⊂ N(Oin).
Therefore we may rewrite (8.1) as:

(8.2) 1 → T (Fsep)/T (Oin) → T (Fsep)/T (Oin)⋊N(Oin)/T (Oin) →W (k0,sep) → 1.

Since (8.2) is split, to show that γ is induced from H1(F,N(Oin)/T (Oin)) it suffices to prove
that T (Fsep)/T (Oin) is a uniquely divisible abelian group by Lemma 8.3 below. Let X∗(T )
be the Gal(F )-module of cocharacters of T . We have isomorphisms of Gal(F )-modules:

T (Fsep) ∼= X∗(T )⊗Z F
∗
sep, T (Oin) ∼= X∗(T )⊗Z O∗

in.

Therefore to show
T (Fsep)/T (Oin) ∼= X∗(T )⊗ F ∗

sep/O
∗
in

is uniquely divisible it suffices to show F ∗
sep/O

∗
in is uniquely divisible. The group F ∗

sep/O
∗
in

is divisible because F ∗
sep = F ∗

alg is divisible. To show F ∗
sep/O

∗
in is torsion-free, let α ∈ F ∗

sep

be such that αn ∈ O∗
in. Our goal is to prove α ∈ O∗

in. Let n = qrm for some m prime to
q = char k and integer r. The polynomial xm − αn is separable and splits fully over the
residue field of ksep of Fin. By Hensel’s lemma, it follows that all roots of xm −αn lie in O∗

in.
In particular, αqr ∈ O∗

in. Since F is perfect, so is Fin. Therefore the unique qr-th root of αqr

must already lie in Fin. That is, α ∈ Fin. Since ν(α) = 0 we conclude that α ∈ O∗
in. This

shows F ∗
sep/O

∗
in is torsion-free and finishes the proof. �

Lemma 8.3. Let A,B be Gal(F ) groups for some field F such that B acts on A compatibly
with the Gal(F )-action. If A is a uniquely divisible abelian group, then the natural map:

(8.3) H1(Gal(F ), B) → H1(Gal(F ), A⋊ B)

is a bijection.

Proof. The map (8.3) is injective because it is split by the map

(8.4) H1(Gal(F ), A⋊ B) → H1(Gal(F ), B)

induced by the projection A ⋊ B → B. Moreover, (8.3) is surjective because its left in-
verse (8.4) is injective. Indeed, the fibers of (8.4) over [bσ] ∈ H1(Gal(F ), B) is in bijective
correspondence with H1(Gal(F ), bA) by [58, Page 52, Corollary 2] and H1(Gal(F ), bA) is a
singleton because A is uniquely divisible [28, Corollary 4.2.7]. This shows (8.3) is a bijec-
tion. �
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We will need the following definition from valuation theory.

Definition 8.4. Let q = charF be non-zero. An extension of Henselian valued fields F ⊂ L
with value groups ΓF ⊂ ΓL and residue fields k ⊂ l is called purely wild if the following
conditions hold:

(1) The group ΓL/ΓF is a q-group.
(2) The field extension l/k is algebraic and purely inseparable.

We will use the following proposition in the proof of part (1) of Theorem 1.2 to avoid
assuming char k is good for G.

Proposition 8.5. Assume G◦ is reductive. For any G-torsor γ ∈ H1(F,G) there exists a
purely wild extension F ⊂ L of degree a power of char k = q such that γL is a loop torsor.

Proof. Let F ⊂ L to be a maximal algebraic purely wild extension of F ; See [33, Section 4].
The field L satisfies

Ftr · L = Falg, Ftr ∩ L = F, Ltr = Lsep = Lalg.

See [33, Theorem 4.3] and [33, Lemma 6.3] respectively. Moreover, L/F is a pro-q extension.
Indeed, for any finite subextension F ⊂ L′ ⊂ L with residue field extension l′/k, both
[ΓL′ : ΓF ] and [l′ : k] are powers of q because L′/F is purely wildly ramified [33, Section 4].
Therefore [L′ : F ] is a power of q by Ostrowski’s theorem.

Let T ⊂ G be a maximal torus defined over k0 and N = NG(T ) its normalizer. Note that
N is smooth because T of multiplicative type and G is smooth [26, Expose XI, Corollaire
2.4]. By Lemma 8.2, we have

H1
loop(L,N) = H1(L,N).

Since H1(L,N) → H1(L,G) is surjective [29, Corollary 5.3], this gives

H1
loop(L,G) = H1(L,G).

Write L as a union L =
⋃

Li of a chain L1 ⊂ L2 ⊂ . . . of a chain of finite purely wild
extensions of F ⊂ Li of degree a power of q. We need to show γLi

is a loop torsor for some
i. Since γL is a loop torsor, it is represented by a cocycle:

cσ : Galtr(L) → G(OL,in).

Since c(·) is continuous it factors through Gal(E/L) for some finite Galois extension E/L.
By Lemma 3.8, for all large enough i, E is a compositum E = EiL for some tamely ramified
Galois extension Ei/Li such that the restriction map

resi : Gal(E/L) → Gal(Ei/Li)

is an isomorphism. We have OL,in =
⋃

iOLi,in, which implies G(OL,in) =
⋃

iG(OLi,in) by [30,
Lemma 10.62]. Choose an integer i large enough such that:

∀σ ∈ Gal(E/L), cσ ∈ G(OLi,in).

Therefore cσ is the inflation of the cocycle c
(i)
σ : Gal(Ei/Li) → G(OLi,in) given by:

c(i)σ = cres−1
i (σ).

Set η = [c
(i)
σ ] ∈ H1

loop(Li, G). Since cσ is the inflation of c
(i)
σ to L, we have

γL = ηL.
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Since H1(L,G) = colimH1(Li, G) by [40, Theorem 2.1], this implies

γLj
= ηLj

is a loop torsor for large enough i ≤ j. �

We have seen that in the absence of wild ramification all torsors are loop torsors. This
might lead one to guess that all tamely ramified torsors are loop torsors. We finish with an
example showing this is not the case.

Example 8.6. Let k be a field of characteristic 2 equipped with a surjective homomorphism

ε : Gal(k) → GL1(Z) = {±1}.

The homomorphism ε defines a 1-dimensional torus Tε := εGm. The Gal(k)-action on an
element α ∈ Tε(ksep) = k∗sep is given by:

σα = αε(σ).

Let F = k((t)) and consider the decomposition Ψt : Gal(k) ⋉ Ẑ′ → Galtr(F ) of Proposi-
tion 3.4. We claim the following Galtr(F )-cocycle represents a tamely ramified Tε-torsor
which is not a loop torsor:

cΨt(σ,n) =

{

t if ε(σ) = −1

1 if ε(σ) = 1

To see this, we assume that cτ is cohomologous to a cocycle taking values in Tε(Oin) and
reach a contradiction. Let s ∈ Tε(Ftr) = F ∗

tr be such that for all τ ∈ Galtr(F ):

(8.5) s−1cτ
τs ∈ Tε(Oin) = O∗

in.

We choose σ ∈ Gal(k) such that ε(σ) = −1 and compute:

s−1cΨt(σ,0)
Ψt(σ,0)s = ts−1σs = ts−1+ε(σ) = ts−2.

Let ν be the Henselian valuation on Ftr extending the t-adic valuation on F . Equation (8.5)
gives ν(ts−2) = 0 and therefore:

2ν(s) = ν(t).

This contradicts the fact that Ftr/F is a tamely ramified extension and so ΓFtr/ΓF contains
no 2-torsion by definition [62, Appendix A.1].

9. Proof of Theorem 1.2: First reduction

In this section we reduce Theorem 1.2 to the case where G◦ is reductive. We will assume
k0 is perfect throughout the section, because this is the only case in which G◦ being reductive
is an extra assumption. The following lemma is false over imperfect base fields; See [61].

Lemma 9.1. Let U ⊂ G be a normal smooth and connected unipotent subgroup. For any
p 6= char k0, we have:

ed(G) = ed(G/U), ed(G; p) = ed(G/U ; p).

Proof. This follows from the fact that the induced map

H1(k,G) → H1(k,G/U)

is a bijection for all fields k0 ⊂ k [57, Lemma 1.13]. �

24



Let A ⊂ G be a finite split-diagonalizable subgroup. Denote the unipotent radical of G by
Ru(G) and set G := G/Ru(G). Note that Ru(G) is normal in G because it is a characteristic
subgroup of G◦. Let π : G → G be the natural quotient map. By [3, Proposition 9.6] and
the remark following it, the restriction of π to CG(A) gives a quotient map:

π|CG(A) : CG(A) → C

onto a smooth subgroup C ⊂ CG(π(A)) with

(9.1) dim(C) = dim(CG(π(A))).

Let Ru(G)
A = Ru(G) ∩ CG(A) be the subgroup fixed by the conjugation action of A on

Ru(G). There is a short exact sequence:

1 → Ru(G)
A → CG(A)

π
→ C → 1.

The unipotent group Ru(G)
A is smooth and connected by [46, Theorem 13.7] and [3, Propo-

sition 9.4] respectively. Therefore Lemma 9.1 gives:

(9.2) ed(CG(A)) = ed(C), ed(CG(A); p) = ed(C; p).

Since dim(C) = dim(CG(π(A))), [44, Proposition 3.15] and (9.2) give:

(9.3) ed(CG(π(A))) ≥ ed(C) = ed(CG(A))

Similarly, we obtain for any prime p 6= char k0:

(9.4) ed(CG(π(A)); p) ≥ ed(CG(A); p)

To finish the reduction to the reductive case we will need the following lemma.

Lemma 9.2. If CG(A) admits anisotropic torsors over a field k0 ⊂ k, then so does CG(π(A)).

Proof. Assume γ ∈ H1(k, CG(A)) is anisotropic. The push-forward π∗(γ) ∈ H1(k, C) is
anisotropic by Lemma 4.5(2). The push-forward of π∗(γ) to H

1(k, CG(π(A))) is anisotropic
by Lemma 4.5(1) because dim(C) = dim(CG(π(A))). �

Proposition 9.3. To establish Theorem 1.2, it suffices to prove it under the additional
assumption that G◦ is reductive.

Proof. We assume that Theorem 1.2 holds for G/Ru(G) = G and show that it holds for G

(note that G
◦
= G◦/Ru(G) is reductive because k0 is perfect [46, Proposition 19.11]).

Let A ⊂ CG(A) be a finite split-diagonalizable subgroup such that CG(A) admits anisotropic
torsors over a field k0 ⊂ k. Then CG(π(A)) admits anisotropic torsors over k as well by
Lemma 9.2. We prove the two parts of Theorem 1.2 separately.

(1) Let p 6= char k0 be a prime. If k is p-closed, and A is a p-group, then Theorem 1.2(1)
gives:

ed(G; p) ≥ ed(CG(π(A)); p).

Combining this with Lemma 9.1 and (9.4), we get:

ed(G; p) = ed(G; p) ≥ ed(CG(π(A)); p) ≥ ed(CG(A); p).

Therefore the conclusion of Theorem 1.2(1) holds for G.

(2) If the characteristic of k0 is good for G, then it is good for G as well by Definition 2.1.
Therefore Theorem 1.2(2) gives:

ed(G) ≥ ed(CG(π(A))).
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By Lemma 9.1 and (9.3), we have:

ed(G) = ed(G) ≥ ed(CG(π(A))) ≥ ed(CG(A)).

This shows Theorem 1.2(2) holds for G.
�

10. Conclusion of the proof of Theorem 1.2

In this section, F will be an iterated Laurent series field k((t1)) . . . ((tr)) over k for some
field k0 ⊂ k. The valuation ν on F is the (t1, . . . , tr)-adic valuation. We can and shall
assume that G◦ is reductive by Proposition 9.3. We start the proof of Theorem 1.2 with an
elementary lemma.

Lemma 10.1. Let x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ G(ksep)
d be d-tuples of elements.

Assume that x1, . . . , xd generate a finite abelian group A ⊂ G(ksep) such that |A| is prime
to char k. Let G act on Gd by conjugation. If x, y are conjugate in G(lsep)

d for some field
extension k ⊂ l , then x, y are conjugate in G(ksep)

d.

Proof. Let X ⊂ Gd denote the G-orbit of x under the conjugation action on Gd. By assump-
tion y ∈ X(lsep). Since y ∈ Gd(ksep) and X ⊂ Gd is locally closed, we get

y ∈ X(lsep) ∩G
d(ksep) = X(ksep).

The stabilizer stabG(x) is CG(A) and so the orbit map induces an isomorphismX ∼= G/CG(A)
[46, Corollary 7.13] over ksep. The homomorphism

G(ksep) → G/CG(A)(ksep), g 7→ gxg−1

is surjective because CG(A) is smooth [46, Theorem 13.9]. Therefore y ∈ X(ksep) implies
y = gxg−1 for some g ∈ G(ksep). �

The following descent lemma is the main ingredient of the proof of Theorem 1.2.

Lemma 10.2. Let ϕ : Γ∨
F → A be a continuous surjection onto a split-diagonalizable sub-

group A ⊂ G and [aσ] ∈ H1
an(k, CG(A)(ksep)) an anisotropic torsor. Let F1 ⊂ F be a

Henselian subfield with ΓF1 = ΓF and choose a uniformizer π for F1,tr. If [aσ, ϕ]π ∈ H1(F,G)
descends to a loop torsor γ1 ∈ H1

loop(F1, G), then [aσ] descends to the residue field of F1.

Proof. Let k1 denote the residue field of F1. By assumption γ1 is a loop torsor and so we
can write γ1 = [a′σ, ϕ

′]τ for some ϕ′ : Γ∨
F1

→ G(OF1,in), a
′
σ ∈ G(OF1,in). Since ΓF1 = ΓF , we

have by Corollary 7.2:

[Infk/k1(a
′)σ, ϕ

′]π = (γ1)F = γ = [aσ, ϕ]π.

Since [aσ] is anisotropic, so is γ by [24, Proposition 4]. Therefore Theorem 6.1 implies there
exists s ∈ G(ksep) such that:

(10.1) s−1aσ
σs = Infk/k1(a

′)σ, s−1ϕ(x)s = ϕ′(x).

Let OF1,in denote the inertial closure of the valuation ring of F1. By Lemma 10.1, there
exists s1 ∈ G(k1,sep) such that

s−1
1 ϕ(x)s1 = ϕ′(x)
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Lift s1 to an element h ∈ G(OF1,in) using Hensel’s lemma to get

h
−1
ϕ(x)h = ϕ′(x).

We replace 〈a′σ, ϕ
′〉π by the cohomologous cocycle 〈h−1a′σ

σh, h−1ϕ′h〉π using Lemma 5.5 to
assume

ϕ′(x) = ϕ(x)

without loss of generality. Then (10.1) shows s ∈ CG(A)(ksep) because A = imϕ. Therefore

(10.2) [Infk/k1 a
′
σ] = [aσ] ∈ H1(k, CG(g)).

Moreover, a′σ ∈ CG(A)(k0,sep) for all σ ∈ Gal(k1) by Lemma 5.4. Therefore (10.2) proves
[aσ] ∈ H1(k, CG(A)) descends to k1 as we wanted to show. �

Without the assumption ΓF1 = ΓF in Lemma 10.2, we cannot say with certainty that
[aσ] descends to the residue field of F1. However, we can still get a lower bound on the
transcendence degree of F1 in terms of the essential dimension of [aσ].

Corollary 10.3. Let ϕ : Γ∨
F → A be a continuous surjection onto a split-diagonalizable

subgroup A ⊂ G and η = [aσ] ∈ H1
an(k, CG(A)(ksep)) be an anisotropic torsor. If [aσ, ϕ]π ∈

H1(F,G) descends to a loop torsor γ1 ∈ H1
loop(F1, G) for some Henselian subfield F1 ⊂ F

(with respect to ν|F1
), then trdegk0(F1) ≥ ed(η).

Proof. Set F2 = F1(π
γ; γ ∈ ΓF ) and let k2 denote the residue field of F2. Since ΓF2 = ΓF ,

Lemma 10.2 implies η descends to k2 and so trdegk0(k2) ≥ ed(η). Therefore:

trdegk0(F1) ≥ trdegk0(F2)− r ≥ trdegk0(k2) ≥ ed(η).

Here the first inequality follows because F2 is generated by r elements over F1. The second
inequality from the fact that k2 is the residue field of a valuation of rank r on F2; see [64,
Chapter VI, Theorem 3, Corollary 1]. �

We proceed to prove Theorem 1.2. Assume CG(A) admits an anisotropic torsor [aσ] = η ∈
H1

an(k, CG(g)) over k. We may assume that η is versal by Proposition 4.3 and so:

(10.3) ed(η) = ed(CG(g)) and ed(η; p) = ed(CG(g); p).

Set r = rank(A), let F = k((t1)) . . . ((tr)) be a field of iterated Laurent series equipped with

the (t1, . . . , tr)-adic valuation. Since ΓF = Zr, we have Γ∨
F = Hom(ΓF , Ẑ

′) = Ẑ′r. Choose a
surjection ϕ : Γ∨

F → A and set

γ = [aσ, ϕ]π ∈ H1
loop(F,G).

Note that [aσ, ϕ]π is well-defined by Example 5.3 and anisotropic by [24, Proposition 4]. We
prove the two parts of Theorem 1.2 separately. Starting from Part (2) because it is simpler.

Proof of Theorem 1.2(2). Assume γ descends to a field k ⊂ F1 ⊂ F with:

trdegk0(F1) = ed(γ).

We may replace F1 by its Henselization inside of F to assume F1 is Henselian; See [62,
Appendix A.3]. Under the characteristic assumptions in Part (2), γ descends to a loop
torsor over F1 by Lemma 8.1. Therefore Corollary 10.3 and (10.3) give

(10.4) ed(γ) = trdegk0(F1) ≥ ed(η) = ed(CG(g)).

This finishes the proof because ed(G) ≥ ed(γ) by definition. �
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Proof of Theorem 1.2(1). Assume A is a p-group and k is p-closed. Let L/F be a prime-to-p
extension and k0 ⊂ L1 ⊂ L a field such that γL descends to γ1 ∈ H1(L1, G) and:

(10.5) trdegk0(L1) = ed(γ; p).

We replace L1 by its Henselization inside of L to assume it is Henselian. By Proposition 8.5,
there exists a prime-to-p extension L′

1/L1 such that (γ1)L′
1
is a loop torsor. Note that L′

1

is contained in a prime-to-p extension L ⊂ L′ [41, Lemma 6.1]. The residue field of L′ is k
because k is p-closed by Ostrowski’s theorem. By Corollary 7.4, there exists a uniformizer τ
for L′

tr such that:
γL′ = [aσ, ϕ|L′]τ

Note that γL′ is anisotropic and imϕ|L′ = A by Lemma 7.5. The field L′ is isomorphic (as a
valued field) to an iterated Laurent series field because it is a finite extension of F ; See the
first paragraph of [27, Page 199]. Since γL′ descends to a loop torsor over L′

1, Corollary 10.3
implies

trdegk0(L
′
1) ≥ ed(η) ≥ ed(η; p).

Since L1 ⊂ L′
1 is an algebraic extension we get from (10.5):

ed(γ; p) = trdegk0(L1) = trdegk0(L
′
1) ≥ ed(η; p) = ed(CG(A); p)

This finishes the proof because ed(G; p) ≥ ed(γ; p) by definition. �

We end this section with an example showing why the assumption that CG(A) admits
anisotropic torsors is required for our approach to work.

Example 10.4. Let G = PGL(V ) be the projective linear group associated to the vector
space V = C4 ⊗ C2. Let A ⊂ G be the subgroup generated by the equivalence class of the
matrix

a = idC4 ⊗d

where d ∈ GL2(C) is the diagonal matrix:

d =

(

1 0
0 ζ3

)

.

We will prove that for any loop torsor [aσ] ∈ H1(k, CG(A)) and any surjection ϕ : Γ∨
F → A,

(10.4) fails for the loop torsor γ = [aσ, ϕ]π. That is, we will prove:

ed(γ) � ed(CG(A)).

The failure of (10.4) for all CG(A)-torsors is explained by the fact that, as we shall see,
CG(A) does not admits anisotropic torsors.

A choice of a basis b1, b2 ∈ C2 allows us to view matrices g ∈ GL(V ) as block matrices:

g =

(

g11 g12
g21 g22

)

,

where gij ∈ M4(C) are four by four matrices. The action of g on u⊗ bj is given by

gu⊗ bj = g1ju⊗ b1 + g2ju⊗ b2.

The corresponding block decomposition of a = idC4 ⊗d is

a =

(

I4 0
0 ζ3I4

)

.
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Here I4 ∈ M4(C) is the identity matrix. Using this, one see computes the centralizer of
A = 〈a〉:

CG(A) =
{

[(

g11 0
0 g22

)]

| g11, g22 ∈ GL4(C)
}

.

We identify the right hand side with GL4×GL4 /λ(Gm), where λ : Gm → GL4×GL4 is the
embedding λ(s) = (sI4, sI4). Consider the diagonal embedding:

∆ : PGL4 → CG(A), [g] 7→ [g ⊗ I2] =

[(

g 0
0 g

)]

.

Let C ⊂ F be a field. By [11, Theorem A.1], the quotient map π : CG(A) → PGL4×PGL4

induces an embedding

π∗ : H
1(F,CG(A)) →֒ H1(F,PGL4)

×2

onto the diagonal subset consisting of all pairs (x, x) with x ∈ H1(F,PGL4). This subset is
precisely the image of π∗ ◦∆∗, where ∆∗ : H

1(F,PGL4) → H1(F,CG(A)) is the map induced
by ∆. We conclude that ∆∗ must be an isomorphism. In particular, we get:

ed(CG(A)) = ed(PGL4) = 5

by [42]. Let γ ∈ H1(F,G) be induced from a CG(A)-torsor. Since ∆∗ is an isomorphism,
γ is represented by a cocycle of the form ∆(cσ) for some cocycle cσ ∈ PGL4. Recall that
PGLn-torsors classify central simple algebras of degree n up to isomorphism; See for example
[28, Chapter 2]. If the cocycle cσ corresponds to some central simple algebra B of degree 4
over F , then the cocycle ∆(cσ) corresponds to the matrix algebra M2(B) = B⊗M2(C) over
B because ∆(cσ) = cσ ⊗ I2. Both the algebra M2(B) and γ descend to a field F0 ⊂ F with
trdegC(F0) ≤ 4 by [35, Corollary 1.4]. This gives the upper bound

ed(γ) ≤ 4.

In particular, for any loop torsor γ = [aσ, ϕ]π with imϕ = A over any Henselian field C ⊂ F
the essential dimension of γ is strictly smaller than ed(CG(A)):

ed(γ) ≤ 4 < 5 = ed(CG(A)).

This shows the assumption that γ is anisotropic is necessary for our proof of Theorem 1.2 to
work. Note that in this example any CG(A)-torsor η = [aσ] is isotropic because Z(CG(A)) ∼=
Gm embeds into the twisted group aσCG(A).

11. Reductive subgroups of maximal rank

Some of the inequalities in Theorem 1.5 follow from the next useful corollary of Theo-
rem 1.2 whose proof relies on Borel–de Siebenthal theory.

Corollary 11.1. Let G be a group over a field k0 with G
◦ reductive and assume char k0 6= 2, 3.

Let H ⊂ G be a (connected) reductive subgroup of maximal rank. Assume that Z(H) is finite
and split-diagonalizable.

(1) Let p 6= char k0 be a prime. If Z(H) is a p-group and H admits an anisotropic torsor
over some p-closed field k0 ⊂ k, then we have:

ed(G; p) ≥ ed(H ; p).
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(2) Assume char k0 is good for G (see Definition 2.1). If H admits an anisotropic torsor
over some field k0 ⊂ k, then we have:

ed(G) ≥ ed(H).

Proof. By Borel-de Siebenthal’s theorem, we have

CG(Z(H))◦ = CG◦(Z(H))◦ = H.

See [4] for the characteristic zero case and [50] for the general case. Therefore

dim(CG(Z(H))) = dimH.

By [7, Lemma 2.2], we get:

ed(CG(Z(H))) ≥ ed(H), ed(CG(Z(H)); p) ≥ ed(H ; p).

Now the corollary follows from Theorem 1.2. �

Corollary 11.1 allows us to prove the following parts of Theorem 1.5.

Proposition 11.2. Assume char k0 6= 2, 3.

(1) ed(E8; 2) = ed(HSpin16; 2)
(2) ed(E8; 3) ≥ 13
(3) ed(Ead

7 ; 2) ≥ 19

Proof. (1) There exists an embedding HSpin16 ⊂ E8 [21, Example 4.3] and an anisotropic
HSpin16-torsor over a 2-closed field k0 ⊂ k by Lemma 16.2. Therefore by Corollary 11.1

ed(E8; 2) ≥ ed(HSpin16; 2).

The inequality
ed(E8; 2) ≤ ed(HSpin16; 2)

follows from the fact that any E8-torsor admits reduction of structure to HSpin16 after an
odd degree extension; See the first paragraph of the proof of [21, Theorem 16.2].

(2) By [21, Example 4.4], SL9 /µ3 embeds into E8 and we have ed(SL9 /µ3; 3) = 13 by
results of S. Baek-Merkurjev [2] and Chernosouv-Merkurjev [13, Theorem 1.1]. Therefore
Corollary 11.1 will give:

ed(E8; 3) ≥ ed(SL9 /µ3; 3) = 13,

once we show SL9 /µ3 admits anisotropic torsors over a 3-closed field. This is simple to see
using the theory of central simple algebras. The reader is referred to [28] for the relevant
definitions. There exists a central division algebra D over a field k0 ⊂ k of period 3 and
index 9 [48, Lemma 4.8]. One can take k to be 3-closed because the index and period of D
are unaffected by passing to prime-to-3 extensions of k [56, Theorem 3.15]. The algebra D
corresponds to an anisotropic PGL9-torsor γ ∈ H1(k,PGL9) by [48, Lemma 5.4]. Let π∗ :
H1(k, SL9 /µ3) → H1(k,PGL9) be the pushforward map. There exists η ∈ H1(k, SL9 /µ3)
such that π∗(η) = γ by [48, Lemma 5.3] and η is anisotropic by [48, Corollary 3.4].

(3) There exists an embedding SL8 /µ4 ⊂ E8; See [15, Corollary 4.2] or [17, Table 4]. We
have ed(SL8 /µ4; 2) = 19 by [13, Corollary 1.2]. To deduce the inequality

ed(Ead
7 ; 2) ≥ ed(SL8 /µ4; 2) = 19

from Corollary 10.3, one needs to prove the existence of an anisotropic SL8 /µ4-torsor over
some 2-closed field. As in Part (2), this is done by first constructing a central division algebra
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D of index 8 and period 4 over some 2-closed field k0 ⊂ k, and then lifting the anisotropic
PGL8-torsor corresponding to D to an anisotropic SL8 /µ4-torsor using [48, Lemma 5.3].

�

Remark 11.3. In [48], a torsor γ ∈ H1(k,G) is defined to be isotropic if there exists
a proper parabolic subgroup P ⊂ G such that γ lies in the image of the induced map
H1(k, P ) → H1(k,G). In the proof of Proposition 11.2 above, we used the fact that this
alternative definition of isotropy is equivalent to our notion of isotropy when G is a quasi-
split semisimple group. To prove this fact, assume that G is quasi-split and semisimple.
Then γ is isotropic in the sense of [48] if and only if γG admits proper parabolic subgroups
[48, Lemma 2.2]. Since Z(γG) is finite, γG admits proper parabolic subgroups if and only if
it contains non-trivial split tori [5, Corollary 4.17]. Therefore γ is isotropic in the sense of
[48] if and only if it is isotropic according to our definition.

12. Abelian subgroups arising from gradings on the character lattice

In this section we assume G◦ is a split reductive group. Let T ⊂ G be a split maximal
torus defined over k0. We will give a systematic root-theoretic approach to choosing split-
diagonalizable p-subgroups A ⊂ T such that:

(1) The connected centralizer CG(A)
◦ is T .

(2) The group A satisfies the conditions of Theorem 1.2(1).

These conditions allow us to bound ed(CG(A); p) from below using [37] and to upgrade our
lower bound on ed(CG(A); p) to a lower bound on ed(G; p) using Theorem 1.2. We will
obtain a combinatorial formula for lower bounds on ed(G; p) in terms of gradings on the
character lattice X(T ).

Definition 12.1. Fix a prime p 6= char k0 and an abstract abelian p-group V. A V-grading
on X(T ) is a surjective homomorphism

ε : X(T ) → V.

Let X(V) = Hom(V, k∗0,sep) be the group of characters of V. The group X(V) is split-
diagonalizable of order |V|. Any V-grading induces an embedding ε∗ : X(V) → T (k0,sep) by
the anti-equivalence between finitely generated abelian groups and quasi-tori; See e.g. [5,
Corollary 8.3]. We will denote the image of this embedding by

(12.1) Aε := ε∗(X(V)).

The following lemma gives us a way to verify the condition CG(Aε)
◦ = T holds.

Lemma 12.2. Let Φ ⊂ X(T ) be the root system associated to T ⊂ G. We have CG(Aε)
◦ = T

if and only if

(12.2) ∀α ∈ Φ, ε(α) 6= 0.

Proof. The inclusion T ⊂ CG(Aε)
◦ holds because Aε ⊂ T . Therefore the equality CG(Aε)

◦ =
T is equivalent to:

(12.3) dimT = dimCG(Aε).

To check this equality of dimensions we can base change to k0,alg to assume that k0 is
algebraically closed. Moreover, we may assume G is connected by replacing G with G◦

31



because this does not affect (12.3). The proof is is a variation of [31, Theorem 2.2]. We
include the details for completeness. Let H ⊂ G be the subgroup generated by NG(T ) ∩
CG(Aε) and all root subgroup Uα with ε(α) = 0. It will suffice to prove

H = CG(Aε).

To prove the inclusion H ⊂ CG(Aε) it suffices to prove Uα ⊂ CG(Aε) for any α ∈ Φ such
that

ε(α) = 0.

The group Aε commutes with Uα if and only if

α(ε∗(V)) = 1.

Now note that α ◦ ε∗ is dual to the homomorphism ε ◦ α∗ : X(Gm) → V. Therefore:

(12.4) α(ε∗(Aε)) = 1 ⇐⇒ ε(α) = 0 ⇐⇒ Uα ⊂ CG(Aε).

To prove H ⊃ CG(Aε), choose representatives nw ∈ NG◦(T ) for Weyl group elements w ∈
W = NG(T )/T . Choose an ordering of the roots Φ and let U+, U− ⊂ G◦ be the corresponding
unipotent groups generated by the positive and negative root groups respectively. An element
x ∈ CG(Aε)(k0) has a unique Bruhat decomposition:

x = unwtv,

where v ∈ U+, t ∈ T, u ∈ U+ ∩ nwU−n
−1
w . The uniqueness of the decomposition forces

u, nw, v ∈ CG(Aε) because Aε normalizes U,NG(T ), U−. Therefore we can assume x = u or
x = v. The two cases are similar, we will focus on the case x = u ∈ U+. Up to an ordering
α1, . . . , αd of the positive roots, u can be written uniquely as a product:

u = pα1(t1) . . . pαd
(td),

where pα is a parameterization of Uα and ti ∈ k0. For any v ∈ V, u ∈ CG(Aε) implies:

pα1(t1) . . . pαd
(td) = ε∗(a)uε∗(a)−1 = pα1(α1(ε

∗(a))t1) . . . pαd
(αd(ε

∗(a))td).

By uniqueness of the decomposition, we get for all 1 ≤ i ≤ d:

αi(ε
∗(a))ti = ti.

If ti 6= 0, then αi(ε
∗(Aε)) = 1 and (12.4) implies ε(α) = 0. Therefore pαi

(ti) ∈ H for all
1 ≤ i ≤ d and u ∈ H , as we wanted to show. �

Let ε be a V-grading such that ε(α) 6= 0 for any α ∈ Φ. We denote the component group
by

W (ε) := CG(Aε)/CG(Aε)
◦.

Note that W (ε) acts naturally on CG(Aε)
◦ by conjugation. We have

CG(Aε)
◦ = T

by Lemma 12.2, so CG(Aε) acts on T and on the root lattice X(T ). Therefore we can consider
the natural inclusion into the Weyl group:

(12.5) W (ε) ⊂W = NG(T )/T.

Denote the natural action of W on χ ∈ X(T ) by w.χ. The subgroup W (ε) ⊂ W can be
explicitly described as the subgroup of W preserving ε:

(12.6) W (ε) = {w ∈ W | ε(w.χ) = ε(χ), for any χ ∈ X(T )}.
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Indeed, we have CG(Aε) ⊂ NG(T ) and therefore by definition:

CG(Aε) = {n ∈ NG(T ) | Ad(n) ◦ ε
∗ = ε∗}.

Here Ad(n) ∈ Aut(NG(T )) denotes conjugation by n. Since the functor A 7→ X(A) is an
anti-equivalence between the category finitely generated abelian groups and the category of
split-diagonalizable groups [5, Corollary 8.3], inn(n)◦ε∗ = ε∗ if and only if nT ∈ W preserves
ε.

To give a lower bound on the essential dimension of CG(Aε), it is useful to introduce the
following definition:

Definition 12.3. [39] Let S be a finite group acting on a finitely generated abelian group
U . A subset Γ ⊂ U is called p-generating if the subgroup generated by Γ is of finite and
prime to p index in U . Choose a Sylow p-subgroup Sp ⊂ S. The symmetric p-rank of the
S-action on U is the following integer:

Rank(S,U ; p) = min{|Γ| | Γ ⊂ U is Sp-invariant and p-generating}.

The notion of p-symmetric rank is related to essential dimension at p by work of M.
Macdonald-R. Lötscher-A. Meyer-Reichstein.

Proposition 12.4. [39, Theorem 1.10] Let N be a smooth linear algebraic group over k0
such that N◦ = T is a split torus. We have:

ed(N ; p) ≥ Rank(N/T,X(T ); p)− dimT.

Here the N/T action on X(T ) is induced from the conjugation action of N/T on T .

Note that while N is assumed to be the normalizer of a split maximal torus in a simple
algebraic group in [39, Theorem 1.10], this assumption is not used in the proof of the lower
bound ed(N ; p) ≥ Rank(N/T,X(T ); p). Setting CG(Aε) = N in Proposition 12.4, we obtain:

Corollary 12.5. If ε satisfies (12.2), then

ed(CG(Aε); p) ≥ Rank(W (ε), X(T ); p)− dim T.

Next we formulate a condition on ε that ensures the hypotheses of Theorem 1.2(1) hold
for Aε and G.

Lemma 12.6. Assume ε satisfies (12.2) and choose a Sylow p-subgroup W (ε)p ⊂ W (ε). If
we have

(12.7) X(T )W (ε)p = {0},

then CG(Aε) admits anisotropic torsors over some p-closed field k0 ⊂ k.

Proof. Let π : CG(Aε) → W (ε) = CG(Aε)/CG(Aε)
◦ be the natural projection. There exists

a finite p-group P ⊂ CG(Aε) such that π(P ) = W (ε)p by [37, Lemma 5.3]. By assumption
we have:

(12.8) X(T )P = {0}.

Replace k0 by its algebraic closure k0,alg to assume P is a constant group without loss of
generality. There exists a p-closed field k containing k0 and a surjection φ : Gal(k) → P .
For example, if k1 = k0,alg(t) and k1 ⊂ k is a p-closure of k1, then Gal(k) is a Sylow p-
subgroup of Gal(k1) [19, Proposition 101.16]. Therefore Gal(k) is a free p-group of infinite
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rank because its cohomological dimension is one; See [58, Page 80] and [58, Page 30]. In
particular, there exists a surjection φ : Gal(k) → P . This surjection defines a CG(Aε)-
torsor [φ] ∈ H1(k, CG(Aε)) because P is constant. The connected component of the twisted
group φCG(Aε) is the torus φT whose character Gal(k)-module is X(T ) equipped with the
Gal(k)-action given by:

σ.χ = φ(σ)(χ).

To show [φ] ∈ H1(k, CG(Aε)) is anisotropic we assume there exists an embedding f : Gm →

φT and reach a contradiction. The embedding f corresponds by duality to a P -invariant
surjection:

f ∗ : X(T ) → X(Gm).

See [5, Corollary 8.3]. Let χ ∈ X(T ) be such that f ∗(χ) 6= 0. By the P -invariance of f ∗ :

f ∗(
∑

p∈P

p.χ) = |P |f ∗(χ) 6= 0.

In particular,
∑

p∈P p.χ ∈ X(T )P is non-zero, contradicting (12.8). �

Lemma 12.6 allows us to apply Corollary 12.5 and Theorem 1.2 to get a lower bound on
ed(G; p).

Proposition 12.7. Let G, T and ε : X(T ) → V be as above. If ε satisfies (12.2) and (12.7),
then

(12.9) ed(G; p) ≥ Rank(W (ε), X(T ); p)− dimT.

Proof. Lemma 12.6 and Theorem 1.2(1) imply ed(G; p) ≥ ed(CG(Aε); p). Therefore (12.9)
follows from Corollary 12.5. �

13. Proof of Theorem 1.5: The overall strategy

13.1. Setup for the next sections. In the next four sections we prove all parts of Theo-
rem 1.5 except for Parts (2) and (4) which are included in Proposition 11.2. We also reprove
Merkurjev’s lower bound (1.1). In each section we focus on the essential dimension of a
group G at a prime p. We choose a grading ε on the character lattice X(T ) of a maximal
split torus T ⊂ G. We check that ε satisfies (12.2) and W (ε) satisfies (12.7). Applying
Proposition 12.7 then gives:

ed(G; p) ≥ Rank(W (ε), X(T ); p)− dimT.

Finally, we prove a lower bound on Rank(W (ε), X(T ); p) using Lemma 13.1. This last step
involves proving lower bounds on the size ofW (ε)-orbits. We will use the following notation:

• For any set I and ring R, RI is the free R-module with standard basis {ei|i ∈ I}.
The coordinates of an element x ∈ RI in the standard basis are denoted (xi)i∈I .

• The group of permutations of a set X is denoted Sym(X). If a finite group S acts
on X , we denote the S-orbit of x ∈ X by Sx and its stabilizer by StabS(x).

• If G is an adjoint simple group of type ∆, we identify the character lattice X(T ) with
the root lattice Q(∆). We use the description of the roots Φ ⊂ Q(∆) and the Weyl
group W action given in [16].

• We always assume char k0 6= p.
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We also note that for any subgroup S ⊂ W (ε) we have:

(13.1) Rank(W (ε), X(T ); p) ≥ Rank(S,X(T ); p).

To see this, choose Sylow p-subgroup Sp,W (ε)p of S and W (ε) such that Sp ⊂ W (ε)p. Then
(13.1) follows from the fact that p-generatingW (ε)-invariant subset Γ ⊂ X(T ) is S-invariant.

13.2. A lower bound on the symmetric rank. Let p be a prime and S a finite p-group.
Assume S acts on a finitely generated abelian group U . The next elementary lemma gives a
useful lower bound on Rank(S,U ; p).

Lemma 13.1. Let ε : U → Fd
p be an S-invariant surjective homomorphism and assume we

are given a direct sum decomposition L1 ⊕ L2 = Fd
p. Let εi : U → Li be the composition of ε

with the projection πi : U → Li for i = 1, 2. If |Su| ≥ Ci whenever εi(u) 6= 0, then:

Rank(S,U ; p) ≥ C1 dimFp
L1 + C2 dimFp

L2.

Proof. Denote d1 = dimFp
L1 and d2 = dimFp

L2. Let Γ ⊂ U be an S-invariant, p-generating
subset such that

|Γ| = Rank(S,U ; p).

The image ε(Γ) is p-generating in Fd
p because ε is surjective. Because Fd

p contains no proper

subgroups of index prime to p, ε(Γ) has to generate Fd
p. Therefore Γ contains elements

γ1, . . . , γd such that ε(γ1), . . . , ε(γd) is a basis for Fd
p. We denote bi = ε(γi) for all 1 ≤ i ≤ d.

An elementary linear algebra argument shows that, up to relabeling, we can assume that
the projections π1(b1), . . . , π1(bd1) to L1 are a basis for L1, and the projections π2(bd1+1), . . . , π2(bd2)
are a basis for L2. We have for all 1 ≤ i ≤ d1:

ε1(γi) = π1ε(γi) = π1(bi) 6= 0.

By our assumptions,this implies |Sγi| ≥ C1. Similarly, we have

|Sγi| ≥ C2 for all d1 < i ≤ d2.

Since ε is S-invariant, the orbits Sγ1, . . . , Sγd are disjoint. We conclude:

Rank(S,U ; p) = |Γ| ≥ |Sγ1|+ · · ·+ |Sγd| ≥ C1d1 + C2d2.

�

14. Essential dimension of PGLpn at p

Our first application of Proposition 12.7 is to give a new proof of Merkurjev’s lower bound
on ed(PGLpn; p) (1.1). By Proposition 12.7, it suffices to prove:

Proposition 14.1. Let p 6= char k0 be a prime and n ≥ 1. Let T ⊂ PGLpn be a maximal
split torus with corresponding Weyl group W . There exists an Fn

p -grading ε : X(T ) → Fn
p

satisfying (12.2) and (12.7) such that

(14.1) Rank(W (ε), X(T ); p) ≥ npn.
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Definition of ε. We start by introducing the notation needed to define ε. We set V = Fn
p

and identify the character lattice X(T ) of the diagonal torus T ⊂ PGLpn with the following
sublattice of ZV as in [16, Section 6]:

ZV
0 = {x ∈ ZV |

∑

v∈V

xv = 0}

Define ε : ZV
0 → V to be the surjective homomorphism given by:

ε(x) =
∑

v∈V

xvv.

Verification of Condition (12.2). The roots of Φ ⊂ ZV
0 are the vectors eu − ev ∈ ZV

0 with
u 6= v. For any such root we have:

ε(eu − ev) = u− v 6= 0.

Therefore ε satisfies (12.2)

Description of the Weyl group. The Weyl group W is the symmetric group Sym(V)
acting on ZV

0 by permuting the standard basis vectors. For any u ∈ V, let λu ∈ Sym(V)
be the translation by u. The subgroup W (ε) ⊂ Sym(V) of permutations preserving ε is the
subgroup consisting of all such translations. Indeed, if u ∈ V and x ∈ ZV

0 then λu ∈ W (ε)
because:

ε(λu(x)) =
∑

v∈V

xv(u+ v) =
∑

v∈V

xvv + (
∑

v∈V

xv)u =
∑

v∈V

xvv = ε(x).

Here the second to last equality follows from the fact that
∑

v∈V xv = 0. Conversely, if
σ ∈ Sym(V) preserves ε, then for all v ∈ V:

v = ε(e0 − ev) = ε(eσ(0) − eσ(v)) = σ(0)− σ(v).

Therefore σ(v) = v + σ(0). That is, σ = λσ(0). This proves:

W (ε) = {λu | u ∈ V}.

We will identify W (ε) with V using the isomorphism V→̃W (ε), u 7→ λu.

Verification of Condition (12.7). Note that V is its own Sylow p-subgroup. If an element
x ∈ ZV

0 is fixed by V, then for any u, v ∈ V we have:

(14.2) xv = xu+v.

Since x ∈ ZV
0 this implies

0 =
∑

v∈V

xv = |V|x0.

Therefore xv = x0 = 0 for all v ∈ V by (14.2). We conclude that W (ε) = V satisfies (12.7).
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Proof of the lower bound on Rank(W (ε), X(T ); p). To finish the proof of (14.1) we will
show that for any element x ∈ ZV

0 with ε(v) 6= 0 we have

(14.3) |Vx| = pn.

Once we do so, Lemma 13.1 will give:

Rank(W (ε), X(T ); p) ≥ dimFp
V · pn = npn.

By the stabilizer-orbit formula, (14.3) is equivalent to

StabV(x) = {0}.

Therefore we need to prove that StabV(x) = {0} for all x ∈ ZV
0 with ε(x) 6= 0. We prove a

slightly more general lemma which will be used again in Section ??.

Lemma 14.2. Let x ∈ ZV . Assume either p is odd, or
∑

v∈V xv is divisible by four. If
StabV(x) 6= {0}, then

∑

v∈V

xvv = 0.

In particular, if ε(x) 6= 0 for some x ∈ ZV
0 , then StabV(x) = {0}.

Proof. Assume that x is fixed by 0 6= u ∈ V and let C ⊂ V be a set of coset representatives
for the quotient V/〈u〉. Since x is fixed by u, we have for all v ∈ V:

xv = xu+v.

Using this, we compute:
∑

v∈V

xvv =
∑

c∈C

∑

i=0,1,...,p−1

xc+iu(c+ iu)

=
∑

c∈C

xc
∑

i=0,1,...,p−1

(c+ iu)

=
∑

c∈C

xc(pc+

(

p

2

)

u)

= (
∑

c∈C

xc)

(

p

2

)

u.

Here in the last equality we used the fact that pc = 0 in V. If p is odd, then it divides
(

p
2

)

and we get
∑

v∈V

xvv = (
∑

c∈C

xc)

(

p

2

)

u = 0.

Otherwise p = 2 and 4 |
∑

v∈V xv. We have:
∑

v∈V

xv =
∑

c∈C

xc + xc+b = 2
∑

c∈C

xc.

Since
∑

v∈V xv is divisible by four, this implies
∑

c∈C xc is even. Therefore in V = Fn
2 :

∑

v∈V

xvv = (
∑

c∈C

xc)

(

p

2

)

u = 0.

�
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15. Essential dimension of PGO+
2n at 2

In this section we prove Parts (5) and (6) of Theorem 1.5. By Proposition 12.7, it suffices
to prove:

Proposition 15.1. Let n = 2rm ≥ 4 be an integer with r ≥ 0 and m odd. Let T ⊂ PGO+
2n be

a split maximal torus with corresponding Weyl group W . There exists a grading ε : X(T ) →
Fr+m−1
2 satisfying (12.2) and (12.7) such that

(15.1) Rank(W (ε), X(T ); 2) ≥

{

(r +m− 1)2r+1 if r ≥ 1

4(m− 1) if r = 0.

Definition of ε. We set notation in order to describe X(T ) and define ε. Define V = Fr
2,

K = V × {1, . . . , m} and

(Fm
2 )0 = {x ∈ Fm

2 |
∑

i=1,...,m

xi = 0}.

Since PGO+
2n is the split adjoint group of type Dn, we can choose a split maximal torus

T ⊂ PGO+
2n such that the character lattice X(T ) = Q(Dn) is identified with the following

sublattice of ZK [16, Section 7.1]:

Q(Dn) = {x ∈ ZK |
∑

k∈K

xk is even}.

Pick a basis {b1, . . . , bm} for Fm
2 and let ε : Q(Dn) → V ⊕ (Fm

2 )0 be the grading given by

ε(x) =
∑

(v,i)∈K

xv,i(v + bi) ∈ V ⊕ (Fm
2 )0.

Note that ε is surjective because for any i 6= j and v ∈ V we have:

ε(e0,i + e0,j) = bi + bj , ε(e0,1 + ev,1) = (v, 0).

Verification of Condition (12.2). The roots Φ ⊂ Q(Dn) are given by:

Φ = {±ek ± es | k, s ∈ K, k 6= s}.

For any root α = ±e(v,i) ± e(v′,j) we have:

ε(α) = v + v′ + bi + bj 6= 0.

Therefore ε satisfies (12.2).

Description of the Weyl group. The Weyl group of G is Sym(K)⋉(FK
2 )0, where Sym(K)

is the group of permutations of K and (FK
2 )0 is the group:

(FK
2 )0 = {δ ∈ FK

2 |
∑

k

δk = 0}.

The action of (σ, δ) ∈ Sym(K) ⋉ (FK
2 )0 on Q(Dn) is the restriction of the action on ZK

defined by:

(15.2) (σ, δ)ek = (−1)δkeσ(k)

for all k ∈ K.
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Lemma 15.2. Identify V with the subgroup of Sym(K) consisting of all translations λu :
K → K by an element u ∈ V:

λu(v, i) = (u+ v, i).

We have W (ε) = V ⋉ (FK
2 )0.

Proof. The inclusion (FK
2 )0 ⊂ W (ε) is easy to see. The inclusion V ⊂W (ε) follows from the

computation:

ε(λu(x)) =
∑

xv,i(u+ v + bi)

=
∑

xv,i(v + bi) +
∑

xv,iu

= ε(x) +
∑

xv,iu = ε(v).

Here in the last equality we used the fact that
∑

xv,i is even. To verify the inclusion
W (ε) ⊂ V ⋉ (FK

2 )0, we assume w = (σ, δ) ∈ W (ε) and show σ = λu for some u ∈ V. Since
(FK

2 )0 ⊂ W (ε), we can assume w = σ without loss of generality. We start by denoting for
any (v, i) ∈ K:

σ(v, i) = (f(v, i), g(v, i)) ∈ K.

For any (v, i), (v′, j) ∈ K we have:

(15.3) f(v, i)+ f(v′, j) + bg(v,i) + bg(v′,j) = ε(σ(ev,i + ev′,j)) = ε(ev,i + ev′,j) = v+ v′ + bi + bj .

Assume i 6= j. Then if g(v, i) 6= i, (15.3) implies

g(v, i) = j.

Since m is odd if i 6= j then m ≥ 3. Therefore repeating the same argument with 1 ≤ j′ ≤ m
different from i and j gives the contradiction g(v, i) = j′. Therefore we see that

g(v, i) = i

for all (v, i) ∈ K. Setting v′ = 0, j = 1 in (15.3), we get for all (v, i) ∈ K:

f(v, i)− v = f(0, 1).

Therefore σ = λf(0,1) is the translation by f(0, 1). This finishes the proof. �

Verification of Condition (12.7). Let x ∈ Q(Dn)
W (ε) be fixed by W (ε) and let k ∈ K be

some element. Since |K| = n ≥ 3 there exists δ ∈ (FK
2 )0 such that δk = 1. The equation

δx = x

implies xk = 0 because δ flips the sign of the k-th coordinate. Since k ∈ K was arbitrary,
we conclude that x = 0. Therefore

Q(Dn)
W (ε) = {0}.

Since W (ε) is its own Sylow 2-subgroup, (12.7) follows.
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Proof of the lower bound on Rank(W (ε), X(T ); 2). For the proof we will need the
following elementary lemma.

Lemma 15.3. Let Y ⊂ K be a non-empty finite subset of K = V × {1, . . . , m}. For any
u ∈ V denote:

u+ Y = {(u+ v, i) | (v, i) ∈ Y }.

There are at most |Y | elements u ∈ V such that:

(15.4) u+ Y = Y.

Proof. Replace Y with u+Y for some u ∈ V such that (−u, i) ∈ Y to assume that (0, i) ∈ Y
without loss of generality. Then u+ Y = Y implies (u, i) ∈ Y and so there are at most |Y |
elements satisfying (15.4). �

Proof of (15.1). Note that W (ε) is its own Sylow 2-subgroup. By Lemma 13.1, it suffices to
prove that for any x ∈ Q(Dn) with ε(x) 6= 0, we have

|W (ε)x| ≥

{

2r+1 if r ≥ 1

4 if r = 0.

Let x ∈ Q(Dn) be such that ε(x) 6= 0. We define

Yx = {(v, i) ∈ K | xa,i 6= 0},

and split into cases.

Assume r = 0. We have |Yx| ≥ 2. Otherwise, x = xkek for some k ∈ K, xk ∈ 2Z and so
ε(v) = 0. Write:

x = xk1ek1 + xk2ek2 +
∑

k 6=k1,k2

xkek,

for some xk1 , xk2 6= 0. Since |K| = n ≥ 3, for any (δ1, δ2) ∈ F2
2 there exists δ ∈ (FK

2 )0 such
that δk1 = δk2 = 1. Therefore the orbit W (ε)x contains elements of the form:

(−1)δ1xk1ek1 + (−1)δ2xk2ek2 +
∑

k 6=k1,k2

x′kek,

for some x′k ∈ Z. We conclude that |W (ε)x| ≥ 4.

Assume r ≥ 1. The stabilizer-orbit formula gives:

|W (ε)x| = |W (ε)|/| StabW (ε)(x)| = 2r+n−1/| StabW (ε)(x)|.

Therefore our goal is to show:

(15.5) | StabW (ε)(x)| ≤ 2n−2

If w = (u, δ) ∈ W (ε) fixes x, then:
u+ Yx = Yx.

Therefore the projection onto the first component gives a short exact sequence:

0 → Stab(FK
2 )0(x) → StabW (ε)(x) → StabV(Yx).

Here StabV(Yx) is the stabilizer of Yx with respect to the action of V on subsets of K by
translation. Thus we get an inequality:

(15.6) | StabW (ε)(x)| ≤ | Stab(FK
2 )0(x)|| StabV(Yx)|.
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By (15.2), the stabilizer Stab(FK
2 )0(x) is the following subspace of (FK

2 )0:

(15.7) (F
K\Yx

2 )0 := {δ ∈ (FK
2 )0 | ∀k ∈ Yx : δk = 0}.

If Yx = K then (F
K\Yx

2 )0 = {0} and (15.6) gives:

| StabW (ε)(x)| ≤ | StabV(Yx)| = |V| = 2r.

One can check that 2r ≤ 2n−2 using n ≥ 3 (recall that n = 2rm). Therefore (15.5) holds if
Yx = K. Assume Yx 6= K. We have:

|(FK\Yx

2 )0| = |F|K\Yx|−1
2 | = 2n−|Yx|−1.

Since x 6= 0, Yx is non-empty. Applying Lemma 15.3 gives:

| StabV(Yx)| ≤ |Yx|.

Plugging this inequality into (15.6) we get:

| StabW (ε)(x)| ≤ 2n−|Yx|−1|Yx| ≤ 2n−|Yx|−12|Yx|−1 = 2n−2.

Here the last inequality follows from the inequality n ≤ 2n−1 which holds for all natural
numbers n. This shows (15.5) holds and finishes the proof.

�

Remark 15.4. Assume r ≥ 1 and let v1, . . . , vr be a basis for V. One can check that the
following is a W (ε)-invariant generating set of size (r +m− 1)2r+1:

Γ =
⊔

i = 1, . . . , r

W (ε)(e0,1 + evi,1) ∪
⊔

j = 2, . . . , m

W (ε)(e0,1 + ev1,j).

Therefore (15.1) is in fact an equality if r ≥ 1.

16. Essential dimension of HSpin16 at 2

In this section we prove Part (1) of Theorem 1.5. We have already proven

ed(E8; 2) = ed(HSpin16; 2)

in Proposition 11.2(1). It remains to show ed(HSpin16; 2) ≥ 56. By Proposition 12.7 it
suffices to prove:

Proposition 16.1. Let T ⊂ HSpin16 be a split maximal torus with corresponding Weyl group
W . There exists a grading ε : X(T ) → F4

2 satisfying (12.2) and (12.7) such that

(16.1) Rank(W (ε), X(T ); 2) ≥ 26.
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Definition of ε. We start by introducing the notation needed to define ε. We set:

V = F3
2 and ν =

1

2

∑

v∈V

ev ∈ QV .

There exists a split maximal torus T ⊂ HSpin16 such that X(T ) is the following sublattice
of QV [39, Section 3]:

X(T ) = Q(D8) ∪ (ν +Q(D8))(16.2)

=

{

x ∈ QV
∣

∣

∣

∑

v∈V xv is even.
For all v ∈ V, xv ∈ Z or

for all v ∈ V, xv ∈ 1/2 + Z

}

(16.3)

Here, as in the previous section, Q(D8) ⊂ ZV is the sublattice:

Q(D8) = {x ∈ ZV |
∑

v∈V

xv is even}.

Let ε0 : Q(D8) → V be the grading from the previous section given by:

ε0(y) =
∑

v∈V

yvv.

Any vector x ∈ X(T ) can be written uniquely as x = dν+y, where d ∈ {0, 1} and y ∈ Q(D8).
We define ε : X(T ) → V ⊕ F2 by

(16.4) ε(x) = ε(dν + y) = (ε0(y), d) ∈ V ⊕ F2.

One can check that ε is a surjective homomorphism.

Verification of Condition (12.2). Any root α ∈ X(T ) lies in Q(D8) ⊂ X(T ) because it
is a root of PGO+

16. We have ε0(α) 6= 0 because we have shown ε0 satisfies (12.2) in the
previous section. Therefore:

ε(α) = (ε0(α), 0) 6= 0.

Description of the Weyl group. As in the previous section, the Weyl group of HSpin16

is the group
W = Sym(V)⋉ (FV

2 )0.

The action of (σ, δ) ∈ Sym(V)⋉ (FV
2 )0 on X(T ) is the restriction of the action on QV defined

by:

(16.5) (σ, δ)ev = (−1)δveσ(v)

for all v ∈ V. Since ε0 : Q(D8) → V is the grading we considered in the previous section,
Lemma 15.2 implies that the subgroup of W preserving ε0 is the 2-group:

W (ε0) = V ⋉ (FV
2 )0.

Note that W (ε) ⊂ W (ε0) by the definition of ε. Since ε is a homomorphism, an automor-
phism w ∈ W (ε0) is in W (ε) if and only if it satisfies:

ε(wν) = ε(ν) = (0, 1).

Let w = (u, δ) ∈ W (ε0). We compute:

ε(wν) = ε(ν −
∑

δv=1

ev) = (
∑

δv=1

v, 1).
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Therefore w ∈ W (ε) if and only if δ ∈ (FV
2 )1, where:

(FV
2 )1 = {δ ∈ (FV

2 )0 |
∑

δv=1

v = 0}.

Clearly, (FV
2 )1 is the kernel of the surjective homomorphism:

(FV
2 )0 → V, δ 7→

∑

v∈V

δvv.

Therefore we have dimF2(F
V
2 )1 = dimF2(F

V
2 )0 − dimF2 V = 7− 3 = 4 and:

|W (ε)| = |V ⋉ (FV
2 )1| = 23+4 = 27.

Verification of Condition (12.7). The element (1, . . . , 1) ∈ (FA
2 )1 ⊂ W (ε) acts on X(T )

by multiplication with −1. Therefore X(T )W (ε) = {0} and (12.7) is satisfied. We note that
this implies a fact we used earlier in the proof of Proposition 11.2(1).

Lemma 16.2. There exists an anisotropic HSpin16-torsor over some 2-closed field k con-
taining k0.

Proof. Let Aε ⊂ HSpin16 be the finite split-diagonalizable 2-subgroup defined by ε as in
(12.1). By Lemma 12.6, CG(Aε) admits anisotropic torsors over some 2-closed field k0 ⊂ k
because ε satisfies (12.7). Therefore the result follows from Corollary 7.6. �

Proof of the lower bound on Rank(W (ε), X(T ); 2).

Proof of (16.1). By Lemma 13.1, in order to prove (16.1) it suffices to prove that for any
x ∈ X(T ) with ε(x) = (v, d) 6= 0, we have

|W (ε)x| ≥ 24.

We handle the cases d 6= 0 and v 6= 0 separately.

Assume d 6= 0. Then (16.4) implies

x = ν + y

for some y ∈ Q(D8). In particular, the coordinates xv = 1
2
+ yv are all half-integers and

therefore non-zero. We conclude that (FV
2 )1 acts freely on x by sign changes and we have:

|W (ε)x| ≥ |(FV
2 )1x| = 24.

Assume v 6= 0. If d 6= 0, then |W (ε)x| ≥ 24 by the previous case. Therefore we can
assume d = 0, which implies x ∈ Q(D8) by (16.4). We set:

Yx = {v ∈ V | xv 6= 0}.

The stabilizer-orbit formula gives:

|W (ε)x| = |W (ε)|/| StabW (ε)(x)| = 27/| StabW (ε)(x)|.

Therefore to show |W (ε)x| ≥ 24 it suffices to prove:

(16.6) | StabW (ε)(x)| ≤ 23.

A similar argument to the proof of (15.6) shows:

(16.7) | StabW (ε)(x)| ≤ | Stab(FV
2 )1(x)|| StabV(Yx)|.
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By (16.5), the stabilizer Stab(FV
2 )1(x) is the following subspace of (FV

2 )1:

(F
V\Yx

2 )1 =

{

δ ∈ (FV
2 )1

∣

∣

∣
∀v ∈ Yx : δv = 0

}

.

The set (F
V\Yx

2 )1 can also be described as the set of all relations satisfied by an even number
of elements of V \ Yx in V. This gives the explicit formula:

(16.8) |(F
V\Yx

2 )1| =

∣

∣

∣

∣

{

C ⊂ V \ Yx

∣

∣

∣

|C| is even
∑

c∈C c = 0

}
∣

∣

∣

∣

We divide further into three cases based on |V \ Yx|. If |V \ Yx| ≤ 3, then (F
V\Yx

2 )1 = {0}.

Indeed, if (F
V\Yx

2 )1 6= {0}, then (16.8) implies there exists a pair {u, v} ⊂ V \ Yx such that

u+ v = 0.

This is impossible because in characteristic two, the above equation implies u = v. Plugging

(F
V\Yx

2 )1 = {0} into (16.7) gives:

| StabW (ε)(x)| ≤ | StabV(Yx)| ≤ |V| = 23.

Therefore (16.6) holds if |V \ Yx| ≤ 3.

If |V \ Yx| = 4, then by the previous case, the only non-empty subset of V \ Yx that might
show up in the set (16.8) is V \ Yx itself. Therefore (16.8) gives:

|(F
V\Yx

2 )1| ≤ 2.

Together with (16.7) this implies:

| StabW (ε)(x)| ≤ |(F
V\Yx

2 )1|| StabV(Yx)| ≤ 2| StabV(Yx)|.

Apply Lemma 15.3 to get:

| StabW (ε)(x)| ≤ 2| StabV(Yx)| ≤ 2|Yx|.

This implies (16.6) because |Yx| = |V| − |V \ Yx| = 4.

If |V \ Yx| ≥ 5, then V \ Yx contains an F2-basis v1, v2, v3 for V and two other vectors.
Therefore V \ Yx contains either 0 or vi + vj for some i 6= j. Either way, the homomorphism

f : (F
V\Yx

2 )0 → V, δ 7→
∑

v∈V

δvv

is easily seen to be surjective in this case (here (F
V\Yx

2 )0 is defined as in (15.7)). Since

(F
V\Yx

2 )1 = ker f , this gives:

dim(F
V\Yx

2 )1 = dim(F
V\Yx

2 )0 − dimV = |V \ Yx| − 4.

In particular, we have

|(F
V\Yx

2 )1| = 2|V\Yx|−4.

Plugging this into (16.7) and applying Lemma 15.3 we get:

| StabW (ε)(x)| ≤ |(F
V\Yx

2 )1|| StabV(Yx)| ≤ 2|V\Yx|−4|Yx|.
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Note that we can apply Lemma 15.3 because x 6= 0 implies Yx 6= ∅. Using the inequality
|Yx| ≤ 2|Yx|−1 we find:

| StabW (ε)(x)| ≤ 2|V\Yx|−42|Yx|−1 = 2|V|−5 = 23.

Therefore (16.6) holds in all cases and (16.1) follows.
�

17. Essential dimension of E6 at 3

In this section we prove Part (3) of Theorem 1.5. By Proposition 12.7 it suffices to prove:

Proposition 17.1. Let T ⊂ Ead
6 be a split maximal torus with corresponding Weyl group

W . There exists a grading ε : X(T ) → F2
3 satisfying (12.2) and (12.7) such that

(17.1) Rank(W (ε), X(T ); 3) ≥ 12.

Definition of ε. We start by introducing the notation needed in order to define ε. We
identify the character lattice X(T ) of a split maximal torus T ⊂ Ead

6 with the root lattice
Q(E6). We will use the following labeling of the extended Dynkin diagram of E6:

α

β11

β12

β21

β22

β31

β32

Here −β11 is the highest root given by

−β11 = 3α + β12 + 2β21 + β22 + 2β31 + β32.

Since the simple roots form a basis for Q(E6), any element in x ∈ Q(E6) can be written
uniquely as

(17.2) x = dα +
∑

i,j

aijβij,

for some d ∈ {0, 1, 2} and integers aij ∈ Z. We define a grading ε : Q(E6) → F2
3 by:

ε(x) = ε(dα+
∑

i,j

aijβij) = (
∑

i,j

aij , d).

Note that ε is surjective.

Verification of Condition (12.2). Let β ∈ Φ be a root and express it as above:

β = dα+
∑

i,j

aijβij ,

for some d ∈ {0, 1, 2} and integers aij ∈ Z. If d 6= 0, then clearly

ε(β) = (
∑

i,j

aij , d) 6= 0.
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If d = 0, then β lies in the closed subsystem A×3
2 ⊂ E6 generated by the βij’s; See [12,

Section 4]. Therefore there exists 1 ≤ i ≤ 3 such that:

±β ∈ {βi1, βi2, βi1 + βi2}i=1,2,3.

This implies ε(β) 6= 0 and so ε satisfies (12.2).

Description of the Weyl group. For any root β ∈ Φ ⊂ Q(E6), let rβ ∈ W be the
corresponding reflection. Set σi = rβi1

rβi2
for 1 ≤ i ≤ 3 and define:

σ := σ1σ2σ3.

By [12, Section 4], there exists an element τ ∈ W whose action on the set of roots Φ is
determined by a 2π/3-rotation of the extended Dynkin diagram above. Explicitly, we have
τ(α) = α and for any 1 ≤ i ≤ 3, 1 ≤ j ≤ 2 we have:

(17.3) τ(βij) = βi+1,j,

where we set β4,j := β1,j.

Lemma 17.2. The elements σ, τ generate a subgroup 〈σ, τ〉 ⊂ W (ε) isomorphic to Z/3Z×
Z/3Z.

Proof. Since τ fixes α and satisfies (17.3), τ commutes with σ and preserves ε. To check
that σ preserves ε, one first computes:

σi(α) = rβi1
rβi2

(α) = rβi1
(α+ βi2) = α + βi1 + βi2.

Since σi(βjk) = βjk for any j 6= i, this gives:

(17.4) σ(α) = σ1σ2σ3(α) = α+
∑

i,j

βij .

Here we are summing over all 1 ≤ i ≤ 3, 1 ≤ j ≤ 2. Therefore in F2
3:

(17.5) ε(σ(α)) = (6, 1) = (0, 1) = ε(α).

Any vector x ∈ Q(E6) is of the form:

x = dα +
∑

i,j

aijβij,

as in (17.2). By (17.5), to prove ε(σ(x)) = ε(x) it suffices to check:

(17.6) ε(σ(
∑

i,j

aijβij)) = ε(
∑

i,j

aijβij) = (
∑

i,j

aij, 0).

A computation shows for all 1 ≤ i ≤ 3:

(17.7) σ(βi1) = βi2, σ(βi2) = −βi1 − βi2, σ(−βi1 − βi2) = βi1.

Therefore we have:

σ(
∑

i,j

aijβij) =
∑

i,j

aijσ(βij)

=
∑

i

−ai2βi1 + (ai1 − ai2)βi2.

46



Now (17.6) follows from the following computation in F2
3:

ε(σ(
∑

i,j

aijβij)) = (
∑

i

ai1 − 2ai2, 0) = (
∑

i

ai1 + ai2, 0) = (
∑

i,j

aij, 0)

�

Remark 17.3. One can show that 〈σ, τ〉 is a Sylow 3-subgroup of W (ε). We do not include
this computation because it is not required for the proof of Theorem 1.5.

Verification of Condition (12.7). Using (17.7) one sees that for any 1 ≤ i ≤ 3, 1 ≤ j ≤ 2:

βij + σ(βij) + σ2(βij) = 0.

Since the βij’s generate a subgroup of finite index in Q(E6), it follows that:

(17.8) idQ(E6)+σ + σ2 = 0.

If σ(x) = x for some x ∈ Q(E6), then (17.8) implies x = 0 because

0 = (idQ(E6) +σ + σ2)x = 3x.

Therefore Q(E6)
W (ε)3 = {0} for any Sylow 3-subgroup W (ε)3 ⊂W (ε) containing σ.

Proof of the lower bound on Rank(W (ε), X(T ); 3). We start with two lemmas that help
us understand the 〈σ, τ〉-stabilizers of elements of Q(E6).

Lemma 17.4. Let x ∈ Q(E6) be an element and set ε(x) = (u, v) ∈ F2
3.

(1) If σ(x) = x then x = 0.
(2) If σ(x) ∈ {x, τ(x), τ 2(x)} then u = 0.
(3) If τ(x) = x then u = 0.

Proof. We proved Part (1) during the verification of Condition (12.7) above. To prove Part
(2), we can assume σ(x) = τk(x) for k = 1 or k = 2 by Part (1). Apply (17.8) to get:

(17.9) 0 = (idQ(E6)+σ + σ2)x = x+ τk(x) + τ 2k(x) = x+ τ(x) + τ 2(x).

Here in the last equality we used that τ 3 = 1. Express x as a sum

x = dα +
∑

i,j

aijβij.

for some d ∈ {0, 1, 2} and integers aij ∈ Z. Comparing coefficients in (17.9) we see that for
all 1 ≤ j ≤ 2:

a1j + a2j + a3j = 0.

Therefore:

(u, v) = ε(x) = (
∑

j

a1j + a2j + a3j , d) = (0, d).

To prove Part (3), we assume:

τ(x) = x.

Comparing coefficients of both sides we get for all 1 ≤ j ≤ 2:

a1j = a2j = a3j .
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This gives:

(u, v) = ε(x) = (
∑

j

a1j + a2j + a3j , d) = (
∑

j

3a1j , d) = (0, d).

�

Lemma 17.5. Let X be a set equipped with an V ×C-action for some abelian group V and
cyclic group C = 〈σ〉 of prime order p. If StabV(x) = {0} and σ.x 6∈ Vx for some x ∈ X,
then StabV×C(x) = {0}.

Proof. Let (v, σn) ∈ V × C be such that

vσn(x) = x.

It suffices to prove n is divisible by p because then σn = 1 and v ∈ StabV(x) = {0}. If n is
prime to p, then there exists m prime to p such that mn = 1 modulo p. By associativity of
the action of V × C on X :

σ(x) = σmn(x) = v−m(x) ∈ Vx

This contradicts our assumption σ(x) 6∈ Vx, and so n is divisible by p. �

Corollary 17.6. Let x ∈ Q(E6) be an element and denote ε(x) = (u, v) for some u, v ∈ F3.
We note:

(1) If u 6= 0, then |〈σ, τ〉x| = 9.
(2) If v 6= 0, then |〈σ, τ〉x| ≥ 3.

Proof. If u 6= 0, then τ(x) 6= x and σ(x) 6∈ {x, τ(x), τ 2(x)} by Lemma 17.4. Applying
Lemma 17.5 gives Stab〈σ,τ〉(x) = {1}. Therefore 〈σ, τ〉 acts freely on x and we have:

|〈σ, τ〉x| = 9.

If v 6= 0, then σ(x) 6= x by Lemma 17.4(1). Therefore

|〈σ, τ〉x| ≥ |〈σ〉x| = 3.

�

Combining Corollary 17.6 and Lemma 13.1 gives

Rank(〈σ, τ〉, X(T ); 3) ≥ 9 + 3 = 12.

This proves (17.1) because by (13.1) we have

Rank(W (ε), X(T ); 3) ≥ Rank(〈σ, τ〉, X(T ); 3).
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