
ar
X

iv
:2

41
1.

04
23

1v
1 

 [
m

at
h.

D
G

] 
 6

 N
ov

 2
02

4 On the Work of Cartan and Münzner

on Isoparametric Hypersurfaces

Thomas E. Cecil

November 8, 2024

Abstract

A hypersurface Mn in a real space form R
n+1, Sn+1, or Hn+1

is isoparametric if it has constant principal curvatures. This paper
is a survey of the fundamental work of Cartan and Münzner on the
theory of isoparametric hypersurfaces in real space forms, in particu-
lar, spheres. This work is contained in four papers of Cartan [3]–[6]
published during the period 1938–1940, and two papers of Münzner
[44]–[45] that were published in preprint form in the early 1970’s, and
as journal articles in 1980–1981. These papers of Cartan and Münzner
have been the foundation of the extensive field of isoparametric hy-
persurfaces, and they have all been recently translated into English by
the author. The paper concludes with a brief survey of the recently
completed classification of isoparametric hypersurfaces in spheres in
Section 4.

1 Introduction

A hypersurface Mn in a real space form Rn+1, Sn+1, or Hn+1 is isopara-
metric if it has constant principal curvatures. This paper is a survey of the
fundamental work of Cartan and Münzner on the theory of isoparametric hy-
persurfaces in real space forms. During the period 1938–1940, Cartan [3]–[6]
published four papers that classified isoparametric hypersurfaces inRn+1 and
Hn+1, and laid the groundwork for the theory of isoparametric hypersurfaces
in the sphere Sn+1, especially in the case where the principal curvatures of
the hypersurface all have the same multiplicity.
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Approximately thirty years later in the early 1970’s, Münzner [44]–[45]
published two preprints which extended some of Cartan’s main results to
the arbitrary case where there are no assumptions on the multiplicities of
the principal curvatures. Münzner then proved his major result that the
number g of distinct principal curvatures of an isoparametric hypersurface
in a sphere satisfies the restriction g = 1, 2, 3, 4 or 6. Münzner’s articles were
later published as journal articles in 1980–1981.

These papers of Cartan and Münzner have proven to be the foundation for
the extensive theory of isoparametric hypersurfaces, which has been devel-
oped by many researchers over the years. The classification of isoparametric
hypersurfaces in spheres has been recently completed (see Chi [20]), and this
paper concludes with a brief survey of the classification results in Section 4.

The author has recently published English translations of all six of these
papers Cartan and Münzner at CrossWorks, the publishing site for the Col-
lege of the Holy Cross. References for these translations are listed together
with the references for the papers of Cartan and Münzner in the bibliography.

In general, this paper follows the treatment of the theory of isoparametric
hypersurfaces in the book of Cecil and Ryan [13, pp. 85–137], and some
passages are taken directly from that book. Several proofs of theorems are
omitted in this paper, but they are included in the book [13], and detailed
references are given for the proofs.

The author wishes to acknowledge valuable collaborations over many
years on the theory of isoparametric hypersurfaces with Quo-Shin Chi, Gary
Jensen, and Patrick Ryan.

2 Cartan’s Work

2.1 Families of Isoparametric Hypersurfaces

We begin with some preliminary notation and definitions, which generally
follow those in the book [13]. By a real space form of dimension n, we

mean a complete, connected, simply connected manifold M̃n(c) with constant

sectional curvature c. If c = 0, then M̃n(c) is the n-dimensional Euclidean

space Rn; if c = 1, then M̃n(c) is the unit sphere Sn ⊂ Rn+1; and if c = −1,

then M̃n(c) is the n-dimensional real hyperbolic space Hn (see, for example,
[38, Vol. I, pp. 204–209]). For any value of c > 0, this subject is basically
the same as for the case c = 1, and for any value of c < 0, it is very similar to
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the case c = −1. So we will restrict our attention to the cases c = 0, 1,−1.
The original definition of a family of isoparametric hypersurfaces in a real

space form M̃n+1 was formulated in terms of the level sets of an isoparametric
function, as we now describe. Let F : M̃n+1 → R be a nonconstant smooth
function. The classical Beltrami differential parameters of F are defined by

∆1F = |grad F |2, ∆2F = ∆F (Laplacian of F ), (1)

where grad F denotes the gradient vector field of F .
The function F is said to be isoparametric if there exist smooth functions

φ1 and φ2 from R to R such that

∆1F = φ1(F ), ∆2F = φ2(F ). (2)

That is, both of the Beltrami differential parameters are constant on each
level set of F . This is the origin of the term isoparametric. The collection
of level sets of an isoparametric function is called an isoparametric family of
sets in M̃n+1.

An isoparametric family inRn+1 consists of either parallel planes, concen-
tric spheres, or coaxial spherical cylinders, and their focal sets. This was first
shown for n = 2 by Somigliana [56] (see also B. Segre [52] and Levi-Civita
[40]), and for arbitrary n by B. Segre [53].

In the late 1930’s, shortly after the publication of the papers of Levi-
Civita and Segre, Cartan [3]–[6] began a study of isoparametric families in
arbitrary real space forms. Cartan began his first paper [3] with an extract
of a letter that he had recently written to B. Segre. Cartan states that he
can extend Segre’s results for isoparametric families in Rn+1 to isoparametric
families in hyperbolic space Hn+1, and that he has made progress in the study
of isoparametric families in the sphere Sn+1. Cartan notes that he employs a
different technique than the one that Segre used. Cartan uses the method of
moving frames and the theory of parallel hypersurfaces, which we will briefly
review here.

2.2 Parallel Hypersurfaces

Let f :Mn → M̃n+1(c) be an oriented hypersurface with field of unit normals
ξ. For x ∈ Mn, let TxM

n denote the tangent space to Mn at x. For any
vector X in the tangent space TxM

n, we have the fundamental equation

∇̃f∗(X)ξ = −f∗(AξX), (3)
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where ∇̃ is the Levi-Civita connection in M̃ , f∗ is the differential of f , and
Aξ is the shape operator determined by the normal vector field ξ.

The shape operator Aξ is a symmetric tensor of type (1, 1) on Mn. An
eigenvalue λ of Aξ is called a principal curvature of Aξ, and a corresponding
eigenvector is called a principal vector. We often write A instead of Aξ, in
the case where the choice of field of unit normals ξ has been specified.

The parallel hypersurface to f(Mn) at signed distance t ∈ R is the map

ft : M
n → M̃n+1(c) such that for each x ∈ Mn, the point ft(x) is obtained

by traveling a signed distance t along the geodesic in M̃n+1(c) with initial

point f(x) and initial tangent vector ξ(x). For M̃n+1(c) = Rn+1, the formula
for ft is

ft(x) = f(x) + t ξ(x), (4)

and for M̃n+1(c) = Sn+1, the formula for ft is

ft(x) = cos t f(x) + sin t ξ(x). (5)

There is a similar formula in hyperbolic space Hn+1 (see, for example, [10]).
Locally, for sufficiently small values of t, the map ft is also an immersed

hypersurface. However, the map ft may develop singularities at focal points
of the original hypersurface f(Mn). Specifically, a point p = ft(x) is called a
focal point of (Mn, x) of multiplicity m > 0 if the differential (ft)∗ has nullity
m at x.

In the cases M̃n+1(c) = Rn+1, respectively Sn+1, the point p = ft(x) is a
focal point of (Mn, x) of multiplicity m > 0 if and only if 1/t, respectively
cot t, is a principal curvature of Mn of multiplicity m at x. Thus, in the
case M̃n+1(c) = Sn+1, each principal curvature λ gives rise to two antipodal
focal points along the normal geodesic, since λ = cot t = cot(t + π) (see,
for example, [13, p. 11]). There is a similar formula for focal points in the
ambient space Hn+1 (see, for example, [10] or [13, p. 11]).

Now let f : Mn → M̃n+1(c) be an oriented hypersurface with constant
principal curvatures. One can show from the formulas for the principal cur-
vatures of a parallel hypersurface that if f has constant principal curvatures,
then each immersed hypersurface ft also has constant principal curvatures
(see, for example, [13, pp. 17–18] or Subsection 3.1 of this paper).

Since the principal curvatures are constant on Mn, the focal points along
the normal geodesic to f(Mn) at f(x) occur for the same values of t, inde-
pendent of the choice of the point x ∈Mn. In the case of Rn+1, for example,
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this means that if µ is a nonzero constant principal curvature of multiplicity
m > 0 of Mn, then the map f1/µ has constant rank n −m on Mn, and the
set f1/µ(M

n) is an (n −m)-dimensional submanifold of Rn+1, called a focal
submanifold of f(Mn). Similar results hold for the other ambient space forms
(see, for example, [13, pp. 18–32]).

2.3 Isoparametric and Parallel Hypersurfaces

In Section 2 of his first paper, Cartan [3] showed that an isoparametric fam-
ily, defined as the collection of level sets of an isoparametric function F , is
equivalent to a family of parallel hypersurfaces, each of which has constant
principal curvatures, together with their focal submanifolds.

We now discuss the main steps in this argument. We will omit most of
the proofs, and we refer the reader to [13, pp. 86–90] for detailed proofs of
these steps, which are contained in Theorems 2.1 – 2.5 below.

Let F : M̃n+1 → R be a nonconstant smooth function defined on a real
space form M̃n+1. Suppose that grad F does not vanish on the level set
M = F−1(0). Then M is a smooth hypersurface in M̃n+1, and the shape
operator A of M satisfies the equation

〈AX, Y 〉 = −HF (X, Y )

|grad F | , (6)

where X and Y are tangent vectors to M , and HF is the Hessian of the
function F .

Then one can show by a calculation, that the mean curvature h of the
level hypersurface M is given by the following theorem.

Theorem 2.1. The mean curvature h of the level hypersurface M is given
by

h =
1

nρ2
(〈grad F, grad ρ〉 − ρ∆F ), (7)

where ρ = |grad F |.

The following theorem of Cartan is important in showing that the level
sets of an isoparametric function have constant principal curvatures.

Theorem 2.2. If F : M̃n+1 → R is an isoparametric function on a real
space form, then each level hypersurface of F has constant mean curvature.
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The vector field ξ = grad F/|grad F | is defined on the open subset of

M̃n+1 on which grad F is nonzero. A direct calculation then yields the
following theorem that the integral curves of ξ are geodesics in M̃n+1.

Theorem 2.3. Let F : M̃n+1 → R be a function for which |grad F | is a

function of F . Then on the subset of M̃n+1 where |grad F | is nonzero, the

integral curves of the vector field ξ = grad F/|grad F | are geodesics in M̃n+1.

Theorem 2.3 shows that a family of level hypersurfaces of an isoparametric
function is a family of parallel hypersurfaces in M̃n+1, modulo reparametriza-
tion to take into account the possibility that |grad F | is not identically equal
to one. The next step is to show that each of these level hypersurfaces has
constant principal curvatures. This follows from Theorem 2.2 and the next
theorem of Cartan.

Theorem 2.4. Let ft : M → M̃n+1, −ε < t < ε, be a family of parallel hy-
persurfaces in a real space form. Then f0M has constant principal curvatures
if and only if each ftM has constant mean curvature.

As a consequence of Theorems 2.2–2.4, we obtain the following theorem
of Cartan.

Theorem 2.5. If F : M̃n+1 → R is an isoparametric function on a real space
form, then each level hypersurface of F has constant principal curvatures.

Conversely, let ft : M → M̃n+1, −ε < t < ε, be a family of parallel
hypersurfaces such that f0 has constant principal curvatures. We see that
this is an isoparametric family of hypersurfaces as follows.

By the well known formulas for the principal curvatures of a parallel
hypersurface in a real space form (see, for example, [13, pp. 17–18] and
Subsection 3.1 of this paper), each ftM has constant principal curvatures,
and thus each ftM has constant mean curvature. Then the function F defined
by F (x) = t, if x ∈ ftM , is a smooth function defined on an open subset of

M̃n+1 with the property that grad F = ξ is a unit length vector field such
that ∇̃ξξ = 0.

Furthermore, since the function ρ = |grad F | = 1 is constant, we see from
Theorem 2.1 that the constancy of the mean curvature h on each level hy-
persurface ftM implies that the Laplacian of F is also constant on each level
set ftM , and therefore F is an isoparametric function, as defined by equation
(2). Thus, this family of parallel hypersurfaces is a family of isoparametric
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hypersurfaces in the original sense, that is, it is the family of level sets of an
isoparametric function.

In summary, the analytic definition of an isoparametric family of hyper-
surfaces in terms of level sets of an isoparametric function on a real space form
M̃n+1 is equivalent to the geometric definition of an isoparametric family as
a family of parallel hypersurfaces to a hypersurface with constant principal
curvatures.

Note that this is not true if M̃n+1 is only assumed to be a Riemannian
manifold, as can be seen by examples in complex projective space due to
Q.-M. Wang [73] (see also Thorbergsson [72] and [13, pp. 526–530]).

We will therefore say that a connected hypersurface Mn immersed in
a real space form M̃n+1 is an isoparametric hypersurface if it has constant
principal curvatures.

2.4 Cartan’s Formula

In Section 3 of his first paper on isoparametric hypersurfaces, Cartan [3]
derived what he called a “fundamental formula,” which is the basis for many
of his results on the subject.

The formula involves the distinct principal curvatures λ1, . . . , λg, and
their respective multiplicities m1, . . . , mg, of an isoparametric hypersurface

f : Mn → M̃n+1(c) in a space form of constant sectional curvature c. If the
number g of distinct principal curvatures is greater than one, Cartan showed
that for each i, 1 ≤ i ≤ g, the following equation holds,

∑

j 6=i

mj
c+ λiλj
λi − λj

= 0. (8)

Cartan’s original formulation of the formula was given in a more complicated
form, but he gave the formulation in equation (8) in his third paper [5, p.
1484]. Equation (8) is now known as “Cartan’s formula.” Another proof of
this formula is given in [13, pp. 91–96].

2.5 Isoparametric Hypersurfaces in Rn+1

Using his formula, Cartan was able to completely classify isoparametric hy-
persurfaces in Euclidean space Rn+1 (c = 0) and in hyperbolic space Hn+1
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(c = −1), and to make significant progress on the theory of isoparametric
hypersurfaces in the sphere Sn+1 (c = 1), as we will discuss below.

We first consider an isoparametric hypersurface in Euclidean space. The
classification is a local theorem, so we consider the hypersurface to be em-
bedded in Rn+1. Here Sk(r) denotes a k-dimensional sphere of radius r in a
totally geodesic Rk+1 ⊂ Rn+1.

Theorem 2.6. Let Mn ⊂ Rn+1 be a connected isoparametric hypersurface.
Then Mn is an open subset of a flat hyperplane, a metric hypersphere, or a
spherical cylinder Sk(r)×Rn−k.

Proof. If the number g of distinct principal curvatures of Mn is one, then
Mn is totally umbilic, and it is well known that Mn is an open subset of a
hyperplane or hypersphere in Rn+1 (see, for example, [57, Vol. 4, p. 110]).

If g ≥ 2, then by taking an appropriate choice of unit normal field ξ, one
can assume that at least one of the principal curvatures is positive. If λi
is the smallest positive principal curvature, then each term λiλj/(λi − λj)
in Cartan’s formula (8) with c = 0 is non-positive, and thus it equals zero.
Hence, there can be at most two distinct principal curvatures, and if there
are two, then one of them equals zero.

If g = 2, then by an appropriate choice of the unit normal field ξ, we can
arrange that the nonzero principal curvature is positive. Thus, suppose that
the principal curvatures are λ1 > 0 with multiplicity m1 = k, and λ2 = 0
with multiplicity m2 = n − k. Then for t = 1/λ1, the focal submanifold
V = ft(M

n) has dimension n − k, and it is totally geodesic in Rn+1, since
the formulas for the shape operator of a parallel map ft [13, pp. 17-18] show
that for every unit normal η to V at every point p of V , the shape operator
Aη has one distinct principal curvature given by

λ2
(1− tλ2)

= 0. (9)

Thus, V is contained in a totally geodesic submanifold Rn−k ⊂ Rn+1,
and Mn is an open subset of a tube of radius 1/λ1 over R

n−k. Such a tube is
a spherical cylinder Sk(r)×Rn−k, where Sk(r) is a k-dimensional sphere of
radius r = 1/λ1 in a totally geodesic Rk+1 ⊂ Rn+1 orthogonal to Rn−k.
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2.6 Isoparametric Hypersurfaces in Hn+1

Next we consider an isoparametric hypersurface Mn ⊂ Hn+1 in hyperbolic
space (c = −1). As we will see in the proof of Theorem 2.7 below, Cartan used
his formula again to show that the number g of distinct principal curvatures
must be less than or equal to 2. The rest of the proof then follows in a
way similar to the Euclidean case above. Again this is a local result, so we
consider the hypersurface to be embedded.

Theorem 2.7. Let Mn ⊂ Hn+1 be a connected isoparametric hypersurface.
Then Mn is an open subset of a totally geodesic hyperplane, an equidistant
hypersurface, a horosphere, a metric hypersphere, or a tube over a totally
geodesic submanifold of codimension greater than one in Hn+1.

Proof. Let g be the number of distinct principal curvatures of Mn. If g = 1,
then Mn is totally umbilic, and it is an open subset of a totally geodesic hy-
perplane, an equidistant hypersurface, a horosphere, or a metric hypersphere
in Hn+1 (see, for example, [57, Vol. 4, p. 114]).

If g ≥ 2, then by an appropriate choice of the unit normal field ξ, we can
arrange that at least one of the principal curvatures is positive. Then there
exists a positive principal curvature λi such that no principal curvature lies
between λi and 1/λi. (In fact, λi is either the largest principal curvature
between 0 and 1, or the smallest principal curvature greater than or equal to
one.)

For this λi, each term (−1+ λiλj)/(λi −λj) in Cartan’s formula (8) with
c = −1 is negative unless λj = 1/λi, in which case the term is zero. Therefore,
there can be at most two distinct principal curvatures, and if there are two,
they are reciprocals of each other.

In that case, suppose that the two principal curvatures are λ1 = coth θ
with multiplicity m1 = k, and λ2 = 1/λ1 = tanh θ with multiplicity m2 =
n−k. If we take t = θ, then V = ft(M

n) is a focal submanifold of dimension
n−k, and it is totally geodesic inHn+1 by the formulas for the shape operator
of a parallel map ft [13, pp. 17-18].

Thus, this focal submanifold V is contained in a totally geodesic subman-
ifold Hn−k ⊂ Hn+1, and f(Mn) is an open subset of a tube of radius t = θ
over Hn−k. Such a tube is standard Riemannian product Sk(c1)×Hn−k(c2)
in hyperbolic space Hn+1, where c1 = 1/ sinh2 θ and c2 = −1/ cosh2 θ are the
constant sectional curvatures of the sphere Sk(c1) and the hyperbolic space
Hn−k(c2), respectively (see Ryan [50]).
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2.7 Isoparametric Hypersurfaces in Sn+1

In the sphere Sn+1, however, Cartan’s formula does not lead to the conclu-
sion that g ≤ 2. In fact, Cartan produced examples with g = 1, 2, 3 or 4
distinct principal curvatures. Moreover, he classified isoparametric hyper-
surfaces Mn ⊂ Sn+1 with g ≤ 3 in [4] (see Section 2.9).

In the case g = 1, the hypersurface Mn is totally umbilic, and it is well
known that Mn is an open subset of a great or small hypersphere in Sn+1

(see [57, Vol. 4, p. 112]).
If g = 2, thenMn is an open subset of a standard product of two spheres,

Sp(r)× Sq(s) ⊂ Sn+1(1) ⊂ Rp+1 ×Rq+1 = Rn+2, r2 + s2 = 1, (10)

where n = p + q, and r > 0, s > 0. The proof of this result is similar
to the proofs of Theorems 2.6 and 2.7 above, i.e., one shows that a focal
submanifold is totally geodesic, and Mn is a tube of constant radius over it.
This is true for both focal submanifolds in this case (see, for example, [13,
pp. 110–111]).

The case of g = 3 distinct principal curvatures is much more difficult,
and Cartan’s thorough treatment of that case in [4] is a highlight of his work
on isoparametric hypersurfaces.

Specifically, Cartan [4] showed that in the case g = 3, all the principal
curvatures must have the same multiplicity m, which must be one of the
values m = 1, 2, 4 or 8. Furthermore, Mn must be an open subset of a tube
of constant radius over a standard embedding of a projective plane FP2 into
S3m+1, where F is the division algebra R, C, H (quaternions), O (Cayley
numbers), for m = 1, 2, 4, 8, respectively.

Thus, up to congruence, there is only one such family of isoparametric
hypersurfaces for each value of m. For each of these hypersurfaces, the focal
set of Mn consists of two antipodal standard embeddings of FP2, and Mn

is a tube of constant radius over each focal submanifold. We will describe
Cartan’s work in the case g = 3 in more detail in Section 2.9 below.

2.8 The case where all multiplicities are equal

Cartan [3, pp. 186–187] gave a method for determining the values of the
principal curvatures of an isoparametric hypersurface Mn, if one knows the
value of g and the multiplicities m1, . . . , mg, as in equation (17). This is
method is based on an analytic calculation involving Cartan’s formula (8).
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In the case where all of the principal curvatures have the same multiplicity
m = n/g, Cartan’s method [5, pp. 34–35] yields the formula for the principal
curvatures given in Theorem 2.8 below.

This formula implies that for any point x ∈M , there are 2g focal points
of (M,x) along the normal geodesic to M through x, and they are evenly
distributed at intervals of length π/g.

Theorem 2.8 (Cartan). Let M ⊂ Sn+1 be a connected isoparametric hyper-
surface with g principal curvatures λi = cot θi, 0 < θ1 < · · · < θg < π, all
having the same multiplicity m = n/g. Then

θi = θ1 + (i− 1)
π

g
, 1 ≤ i ≤ g. (11)

For any point x ∈ M , there are 2g focal points of (M,x) along the normal
geodesic to M through x, and they are evenly distributed at intervals of length
π/g.

Remark 2.1. Münzner [44] later showed that formula (11) is valid for all
isoparametric hypersurfaces in Sn+1, even those where the multiplicities are
not all the same. Münzner’s method is different than the method of Cartan.
Münzner’s proof is based on the fact that the set of focal points along a
normal geodesic circle toM ⊂ Sn+1 is invariant under the dihedral group Dg

of order 2g that acts on the normal circle and is generated by reflections in
the focal points. Münzner’s proof also yields the important result that the
multiplicities satisfy mi = mi+2 (subscripts mod g). We will give a detailed
proof of Münzner’s result in Theorem 3.3 in Subsection 3.2.2 below.

Using a lengthy calculation involving equation (11), Cartan [4, pp. 364-
367] proved the important result that any isoparametric family with g distinct
principal curvatures all having the same multiplicity is algebraic in sense of
Theorem 2.9 below.

Recall that a function F : Rn+2 → R is homogeneous of degree g if
F (tx) = tgF (x), for all t ∈ R and x ∈ Rn+2.

Theorem 2.9 (Cartan). LetM ⊂ Sn+1 ⊂ Rn+2 be a connected isoparametric
hypersurface with g principal curvatures λi = cot θi, 0 < θ1 < · · · < θg < π,
all having the same multiplicity m. Then M is an open subset of a level set
of the restriction to Sn+1 of a homogeneous polynomial F on Rn+2 of degree
g satisfying the differential equations,

∆1F = |grad F |2 = g2r2g−2 = g2(x21 + x22 + · · ·+ x2n+2)
g−1, (12)
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∆2F = ∆F = 0 (F is harmonic), (13)

where r = |x|.

Cartan’s Theorem 2.9 was a forerunner of Münzner’s general result (see
Theorem 3.5 below) that every isoparametric hypersurface with g distinct
principal curvatures is algebraic (regardless of the multiplicities of the prin-
cipal curvatures), and its defining homogeneous polynomial F of degree g
satisfies certain conditions on ∆1F and ∆2F , which generalize the condi-
tions that Cartan found in Theorem 2.9.

2.9 Hypersurfaces With Three Principal Curvatures

The classification of isoparametric hypersurfaces with g = 3 distinct principal
curvatures in [4] is certainly one of the highlights of Cartan’s work on isopara-
metric hypersurfaces. In this paper, Cartan gives a complete classification of
isoparametric hypersurfaces in Sn+1 with g = 3 principal curvatures, and he
describes each example in great detail.

Let Mn ⊂ Sn+1 ⊂ Rn+2 be a connected, oriented hypersurface with field
of unit normals ξ having g = 3 distinct principal curvatures at every point.
The first step in Cartan’s classification theorem is to prove the following
theorem [4, pp. 359–360].

Theorem 2.10. Let Mn ⊂ Sn+1 be a connected isoparametric hypersurface
with g = 3 principal curvatures at each point. Then all of the principal
curvatures have the same multiplicity m.

Cartan proves this using the method of moving frames and conditions on
the structural formulas that follow from the isoparametric condition and the
assumption that g = 3, and we refer the reader to Cartan’s paper [4, pp.
359–360] for the proof.

Next, since all of the multiplicities are equal, Cartan’s Theorem 2.9 [4,
pp. 364-367] above implies that Mn is an open subset of a level set of the
restriction to Sn+1 of a harmonic homogeneous polynomial F on Rn+2 of
degree g = 3 satisfying the differential equations stated in Theorem 2.9.

Cartan’s approach to classifying isoparametric hypersurfaces with g = 3
is to try to directly determine all homogeneous harmonic polynomials F of
degree g = 3 that satisfy the differential equation from Theorem 2.9,

∆1F = |grad F |2 = g2r2g−2 = g2(x21 + x22 + · · ·+ x2n+2)
g−1. (14)

12



After a long calculation, Cartan shows that the algebraic determination of
such a harmonic polynomial requires the possibility of solving the algebraic
problem:

Problem 1: Represent the product

(u21 + u22 + · · ·+ u2m)(v
2
1 + v22 + · · ·+ v2m)

of two sums of m squares by the sum of the squares of m bilinear combina-
tions of the ui and the vj.

By a theorem of Hurwitz [35] on normed linear algebras, this is only possible
if m = 1, 2, 4, or 8.

Cartan [4, pp. 340–341] relates the solution of Problem 1 above to the
theory of Riemannian spaces admitting an isogonal absolute parallelism, and
he uses results from a joint paper of himself and J. A. Schouten [7] on that
topic to determine the possibilities for F .

Ultimately, Cartan [4] shows that the required harmonic homogeneous
polynomial F of degree 3 on R3m+2 must be of the form F (x, y,X, Y, Z)
given by

x3−3xy2+
3

2
x(XX+Y Y −2ZZ)+

3
√
3

2
y(XX−Y Y )+ 3

√
3

2
(XY Z+ZY X).

(15)
In this formula, x and y are real parameters, while X, Y, Z are coordinates
in the division algebra F = R,C,H (quaternions), O (Cayley numbers), for
m = 1, 2, 4, 8, respectively.

Note that the sum XY Z + ZY X is twice the real part of the product
XY Z. In the case of the Cayley numbers, multiplication is not associative,
but the real part of XY Z is the same whether one interprets the product as
(XY )Z or X(Y Z).

The isoparametric hypersurfaces in the family are the level sets Mt in
S3m+1 determined by the equation F = cos 3t, 0 < t < π/3, where F is the
polynomial in equation (15). The focal submanifolds are obtained by taking
t = 0 and t = π/3. These focal submanifolds are a pair of antipodal standard
embeddings of the projective plane FP2, for the appropriate division algebra
F listed above (see, for example, [13, pp. 74–78]). In the case of F = R,
these focal submanifolds are standard Veronese surfaces in S4 ⊂ R5.
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For the cases F = R,C,H, Cartan gave a specific parametrization of the
focal submanifold M0 defined by the condition F = 1 as follows:

X =
√
3vw, Y =

√
3wu, Z =

√
3uv, (16)

x =

√
3

2
(|u|2 − |v|2), y = |w|2 − |u|2 + |v|2

2
,

where u, v, w are in F, and |u|2+ |v|2+ |w|2 = 1. This map is invariant under
the equivalence relation

(u, v, w) ∼ (uλ, vλ, wλ), λ ∈ F, |λ| = 1.

Thus, it is well-defined on FP2, and it is easily shown to be injective on FP2.
Therefore, it is an embedding of FP2 into S3m+1.

Cartan states that he does not know of an analogous representation of
the focal variety in the case m = 8. In that case, if u, v, w are taken to be
Cayley numbers, then the formulas (16) are not well defined on the Cayley
projective plane. For example, the product vw is not preserved, in general,
if we replace v by vλ, and w by wλ, where λ is a unit Cayley number.

Note that even though there is no parametrization corresponding to (16),
the Cayley projective plane can be described (see, for example, Kuiper [39],
Freudenthal [28]) as the submanifold

V = {A ∈M3×3(O) | AT
= A = A2, trace A = 1},

where M3×3(O) is the space of 3× 3 matrices of Cayley numbers. This sub-
manifold V lies in a sphere S25 in a 26-dimensional real subspace ofM3×3(O).

In his paper, Cartan [4, pp. 342–358] writes a separate section for each
of the cases m = 1, 2, 4, 8, that is, F = R,C,H,O. He gives extensive
details in each case, describing many remarkable properties, especially in the
case m = 8. In particular, he shows that in each case the isoparametric
hypersurfaces and the two focal submanifolds are homogeneous, that is, they
are orbits of points in Sn+1 under the action of a closed subgroup of SO(n+2).

Cartan’s results show that up to congruence, there is only one isopara-
metric family of hypersurfaces with g = 3 principal curvatures for each value
of m. This classification is closely related to various characterizations of the
standard embeddings of FP2. (See Ewert [23], Little [41], and Knarr-Kramer
[37].)

For alternative proofs of Cartan’s classification of isoparametric hypersur-
faces with g = 3 principal curvatures, see the papers of Knarr and Kramer
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[37], and Console and Olmos [21]. In a related paper, Sanchez [51] studied
Cartan’s isoparametric hypersurfaces from an algebraic point of view. (See
also the paper of Giunta and Sanchez [29].)

2.10 Hypersurfaces With Four Principal Curvatures

In his fourth paper on the subject, Cartan [6] continues his study of isopara-
metric hypersurfaces with the property that all the principal curvatures have
the same multiplicity m. In that paper, Cartan produces a family of isopara-
metric hypersurfaces with g = 4 principal curvatures of multiplicity m = 1
in S5, and a family with g = 4 principal curvatures of multiplicity m = 2 in
S9.

In both cases, Cartan describes the geometry and topology of the hyper-
surfaces and the two focal submanifolds in great detail, pointing out several
notable properties that they have. (See also the papers of Nomizu [46]–[47]
and the book [13, pp.155–159] for more detail on the example with m = 1.)
Cartan also proves that the hypersurfaces and the focal submanifolds are
homogeneous in both cases, m = 1 and m = 2.

It is worth noting that Cartan’s example with four principal curvatures
of multiplicity m = 1 is the lowest dimensional example of an isoparametric
hypersurface of FKM-type constructed by Ferus, Karcher and Münzner [27]
using representations of Clifford algebras. Furthermore, Cartan’s example
with four principal curvatures of multiplicity m = 2 is not of FKM-type. Its
principal curvatures do not have the correct multiplicities for a hypersurface
of FKM-type (see [27]).

Cartan says that he can show by a very long calculation (which he does not
give) that for an isoparametric hypersurface with g = 4 principal curvatures
having the same multiplicity m, the only possibilities are m = 1 and m = 2.
This was shown to be true later by Grove and Halperin [30]. Furthermore,
up to congruence, Cartan’s examples given in [6] are the only possibilities
for m = 1 and m = 2. This was shown to be true by Takagi [60] in the case
m = 1, and by Ozeki and Takeuchi [48]–[49] in the case m = 2.

2.11 Cartan’s Questions

Cartan’s third paper [5] is basically a survey of the results that he obtained
in the other three papers. As we have noted, all of the examples that Cartan
found are homogeneous, each being an orbit of a point under an appropriate
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closed subgroup of SO(n + 2). Based on his results and the properties of
his examples, Cartan asked the following three questions at the end of his
survey paper [5]. All of his questions were answered in the 1970’s, as we will
describe below.

1. For each positive integer g, does there exist an isoparametric family
with g distinct principal curvatures of the same multiplicity?

2. Does there exist an isoparametric family of hypersurfaces with more
than three distinct principal curvatures such that the principal curva-
tures do not all have the same multiplicity?

3. Does every isoparametric family of hypersurfaces admit a transitive
group of isometries?

In the early 1970’s, Nomizu [46]–[47] wrote two papers describing the
highlights of Cartan’s work. He also generalized Cartan’s example with four
principal curvatures of multiplicity one to produce examples with four prin-
cipal curvatures having multiplicities m1 = m3 = m, and m2 = m4 = 1, for
any positive integerm. This answered Cartan’s Question 2 in the affirmative.

In 1972, Takagi and Takahashi [61] gave a complete classification of all ho-
mogeneous isoparametric hypersurfaces in Sn+1 based on the work of Hsiang
and Lawson [33]. Takagi and Takahashi [61, p.480] showed that each homoge-
neous isoparametric hypersurface in Sn+1 is a principal orbit of the isotropy
representation of a Riemannian symmetric space of rank 2, and they gave
a complete list of examples. This list contains examples with g = 6 prin-
cipal curvatures as well as those with g = 1, 2, 3, 4 principal curvatures. In
some cases with g = 4, the principal curvatures do not all have the same
multiplicity, so this also provided an affirmative answer to Cartan’s Question
2.

At about the same time as the papers of Nomizu and Takagi-Takahashi,
Münzner [44]–[45] published two preprints that greatly extended Cartan’s
work and have served as the basis for much of the research in the field since
that time. The preprints were eventually published as journal articles [44]–
[45] in 1980–1981, and they are the basis of Section 3 of this paper below.

One of Münzner’s primary results is that the number g of distinct prin-
cipal curvatures of an isoparametric hypersurface in a sphere must be equal
to 1, 2, 3, 4 or 6, and thus the answer to Cartan’s Question 1 is negative.
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Finally, the answer to Cartan’s Question 3 is also negative, as was first
shown by the construction of some families of inhomogeneous isoparametric
hypersurfaces with g = 4 principal curvatures by Ozeki and Takeuchi [48] in
1975. Their construction was then generalized in 1981 to yield even more
inhomogeneous examples by Ferus, Karcher and Münzner [27].

Remark 2.2 (Isoparametric submanifolds of codimension greater than one).
There is also an extensive theory of isoparametric submanifolds of codimen-
sion greater than one in the sphere, due primarily to Carter and West [8]–[9],
West [74], Terng [65]–[69], and Hsiang, Palais and Terng [34]. (See also Harle
[32] and Strübing [59].)

Terng [65] formulated the definition as follows: a connected, complete

submanifold V in a real space form M̃n+1 is said to be isoparametric if it has
flat normal bundle and if for any parallel section of the unit normal bundle
η : V → Bn, the principal curvatures of Aη are constant.

After considerable development of the theory, Thorbergsson [71] showed
that a compact, irreducible isoparametric submanifold M substantially em-
bedded in Sn+1 with codimension greater than one is homogeneous. Thus,
M is a principal orbit of an isotropy representation of a symmetric space
(also called s-representations), as in the codimension one case. Orbits of
isotropy representations of symmetric spaces are also known as generalized
flag manifolds or R-spaces. (See Bott-Samelson [2] and Takeuchi-Kobayashi
[62]).

3 Münzner’s Work

In this section, we cover the work of Münzner in his two papers [44]–[45].
We will give detailed proofs of several of the main results. Our treatment is
based primarily on Münzner’s first paper [44] and on the book of Cecil and
Ryan [13, pp. 102–137]. Some passages in this section are taken directly
from that book.

3.1 Principal Curvatures of Parallel Hypersurfaces

We now begin our treatment of Münzner’s theory, which is contained in Sub-
sections 3.1–3.4 of this paper. We start by deriving the well-known formulas
for the principal curvatures of a parallel hypersurface to a given hypersur-
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face. We include this for the sake of completeness, since these formulas are
important in the development of the theory.

For the following local calculations, we consider a connected, oriented
isoparametric hypersurface M ⊂ Sn+1 ⊂ Rn+2 with field of unit normals ξ.
Assume that M has g distinct principal constant curvatures at each point,
which we label by,

λi = cot θi, 0 < θi < π, 1 ≤ i ≤ g, (17)

where the θi form an increasing sequence, and λi has multiplicity mi on M .
We denote the corresponding principal distribution by,

Ti(x) = {X ∈ TxM | AX = λiX}, (18)

where A is the shape operator determined by the field of unit normals ξ.
Using the Codazzi equations in the case of multiplicity mi > 1, and by

the theory of ordinary equations in the case mi = 1, one can show that
each Ti is integrable, i.e., it is a foliation of M with leaves of dimension
mi. Furthermore, the leaves of the principal foliation Ti corresponding to λi
are open subsets of mi-dimensional metric spheres in Sn+1, and the space of
leaves M/Ti is an (n−mi)-dimensional manifold with the quotient topology
(see [13, pp. 18–32] for proofs).

We consider the parallel hypersurface ft :M → Sn+1 defined by

ft(x) = cos t x+ sin t ξ(x), (19)

that is, ft(x) is the point in Sn+1 at an oriented distance t along the normal
geodesic in Sn+1 to M through the point x. Note that f0 is the original
embedding f defined by f(x) = x, and we suppress the mention of f in
equation (19).

In the following calculations, we show that ft is an immersion at x if and
only if cot t is not a principal curvature of M at x. In that case, we then
find the principal curvatures of ft in terms of the principal curvatures of the
original embedding f .

Let X ∈ TxM . Then differentiating equation (19) in the direction X , we
get

(ft)∗X = cos t X + sin t DXξ = cos t X − sin t AX = (cos t I − sin t A)X,
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where on the right side we are identifying X with its Euclidean parallel
translate at ft(x). If X ∈ Ti(x), this yields,

(ft)∗X = (cos t− sin t cot θi) X =
sin(θi − t)

sin θi
X. (20)

Since TxM is the direct sum of the principal spaces Ti(x), we see that (ft)∗
is injective on TxM , unless t = θi (mod π) for some i, that is, unless ft(x) is
a focal point of (M,x).

Thus, we see that a parallel hypersurface ftM is an immersed hypersur-
face if t 6= θi (mod π) for any i. In that case, we want to find the principal
curvatures of ftM .

Theorem 3.1. Let M ⊂ Sn+1 be an oriented isoparametric hypersurface
and let λ = cot θ be a principal curvature of multiplicity m on M . Suppose
that ft is an immersion of M , and let x be a point in M . Then the parallel
hypersurface ftM has a principal curvature λ̃ = cot(θ − t) at ft(x) having
the same multiplicity m and (up to parallel translation in Rn+2) the same
principal space Tλ(x) as λ at x.

Proof. Let ξ be the field of unit normals on M , and denote the value ξ at a
point y ∈M by ξy. Then we can easily compute that the vector

ξ̃y = − sin t y + cos t ξy, (21)

when translated to ỹ = ft(y), is a unit normal to the hypersurface ftM at
the point ỹ. We want to find the shape operator At determined by this field
of unit normals ξ̃ on ftM . Let X ∈ Tλ(x). Since 〈X, ξ〉 = 0, we have

DXξ = ∇̃Xξ − 〈X, ξ〉 x = ∇̃Xξ = −AX = −λX = − cot θ X, (22)

where D is the Euclidean covariant derivative on Rn+2, and ∇̃ is the induced
Levi-Civita connection on Sn+1. By definition, the shape operator At is given
by

(ft)∗(AtX) = −∇̃(ft)∗X ξ̃ = −D(ft)∗X ξ̃, (23)

since 〈(ft)∗X, ξ̃〉 = 0. To compute this, let xu be a curve in M with initial
point x0 = x and initial tangent vector −→x0 = X . Then we have using equation
(22),
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D(ft)∗X ξ̃ =
d

du
(ξ̃xu

)|u=0 = − sin t X − cos t cot θ X (24)

=
− cos(θ − t)

sin θ
X,

where we again identify X on the right with its Euclidean parallel translate
at ft(x). If we compare this with equation (20) and use equation (23), we
see that

AtX = cot(θ − t)X, (25)

for X ∈ Tλ(x), and so λ̃ = cot(θ − t) is a principal curvature of At with the
same principal space Tλ(x) and same multiplicity m as λ at x.

As a consequence of Theorem 3.1, we get the following corollary regarding
the principal curvatures of a family of parallel isoparametric hypersurfaces.

Corollary 3.1. Let M ⊂ Sn+1 be a connected isoparametric hypersurface
having g distinct principal curvatures λi = cot θi, 1 ≤ i ≤ g, with respective
multiplicities mi. If t is any real number not congruent to any θi (mod π),
then the map ft immerses M as an isoparametric hypersurface with principal
curvatures λ̃i = cot(θi − t), 1 ≤ i ≤ g, with the same multiplicities mi.
Furthermore, for each i, the principal foliation corresponding to λ̃i is the
same as the principal foliation Ti corresponding to λi on M .

Remark 3.1. It follows from Münzner’s theory that ifM is an isoparametric
hypersurface embedded in Sn+1, then each parallel isoparametric hypersur-
face ftM is also embedded in Sn+1 and not just immersed. This is because
M and its parallel hypersurfaces are level sets of the restriction to Sn+1 of a
certain polynomial function on Rn+2, as will be discussed later in Theorem
3.5.

3.2 Focal Submanifolds

The geometry of the focal submanifolds is a crucial element in the theory of
isoparametric hypersurfaces. In this subsection, we obtain some important
basic results about isoparametric hypersurfaces and their focal submanifolds
due to Münzner [44].
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We use the notation introduced in Subsection 3.1. So we let Mn ⊂ Sn+1

be a connected, oriented isoparametric hypersurface with field of unit normals
ξ having g distinct constant principal curvatures,

λi = cot θi, 0 < θi < π, 1 ≤ i ≤ g, (26)

where the θi form an increasing sequence. Denote the multiplicity of λi by
mi.

As noted earlier, the leaves of the principal foliation Ti corresponding
to λi are open subsets of mi-dimensional metric spheres in Sn+1, and the
space of leaves M/Ti is an (n−mi)-dimensional manifold with the quotient
topology (see [13, pp. 18–32] for proofs).

We consider the map ft defined as in equation (19) by

ft(x) = cos t x+ sin t ξ(x),

and we use the formulas developed in Subsection 3.1 for making computa-
tions.

If t = θi, then the map ft has constant rank n−mi on M , and it factors
through an immersion ψi : M/Ti → Sn+1, defined on the space of leaves
M/Ti, i.e., ft = ψi ◦ π, where π is the projection from M onto M/Ti. Thus,
ft is a focal map, and we denote image of ψi by Vi.

We now want to find the principal curvatures of this focal submanifold
Vi. This is similar to the calculation for parallel hypersurfaces in Subsection
3.1, although we must make some adjustments because Vi has codimension
greater than one.

Let x ∈ M . Then we have the orthogonal decomposition of the tangent
space TxM as

TxM = Ti(x)⊕ T⊥
i (x), (27)

where T⊥
i (x) is the direct sum of the spaces Tj(x), for j 6= i. By equation

(20) in Subsection 3.1, the map (ft)∗ = 0 on Ti(x), and (ft)∗ is injective on
T⊥
i (x), for t = θi. We consider a map h :M → Sn+1 given by

h(x) = − sin t x+ cos t ξ(x). (28)

This is basically the same function that we considered in equation (21) for
the field ξ̃ of unit normals to ftM , in the case where ft is an immersion.

In the case t = θi, we see that the inner product 〈ft(x), h(x)〉 = 0, and
so the vector h(x) is tangent to the sphere Sn+1 at the point p = ft(x).
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Furthermore, 〈h(x), X〉 = 0 for all X ∈ T⊥
i (x), and so by equation (20), the

vector h(x) is normal to the focal submanifold Vi at the point p.
We can use the map h to find the shape operator determined by a normal

vector to Vi as follows. Let p be an arbitrary point in Vi. Then the set
C = f−1

t (p) is an open subset of an mi-sphere in Sn+1. For each x ∈ C,
the vector h(x) is a unit normal to the focal submanifold Vi at p. Thus, the
restriction of h to C is a map from C into the mi-sphere S

⊥
p Vi of unit normal

vectors to Vi at p. At a point x ∈ C, the tangent space TxC equals Ti(x).
Since t = θi, we compute for x ∈ C and a nonzero vector X ∈ Ti(x) that

h∗(X) = − sin tX + cos t(−AX) = − sin θiX + cos θi(− cot θi)X (29)

=
−1

sin θi
X 6= 0.

Thus, h∗ has full rank mi on C, and so h is a local diffeomorphism of open
subsets ofmi-spheres. This enables us to prove the following important result
due to Münzner [44].

Theorem 3.2. Let M ⊂ Sn+1 be a connected isoparametric hypersurface,
and let Vi = ftM for t = θi be a focal submanifold of M . Let η be a unit
normal vector to Vi at a point p ∈ Vi, and suppose that η = h(x) for some
x ∈ f−1

t (p). Then the shape operator Aη of Vi is given in terms of its principal
vectors by

AηX = cot(θj − θi)X, for X ∈ Tj(x), j 6= i. (30)

(As before we are identifying Tj(x) with its Euclidean parallel translate at p.)

Proof. Let η = h(x) for some x ∈ C = f−1
t (p) for t = θi. The same calcula-

tion used in proving Theorem 3.1 is valid here, and it leads to equation (25),
which we write as in equation (30),

AηX = cot(θj − θi)X, for X ∈ Tj(x), j 6= i.

Corollary 3.2. Let M ⊂ Sn+1 be a connected isoparametric hypersurface,
and let Vi = ftM , for t = θi, be a focal submanifold ofM . Then for every unit
normal vector η at every point p ∈ Vi, the shape operator Aη has principal
curvatures cot(θj − θi) with multiplicities mj, for j 6= i, 1 ≤ j ≤ g.
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Proof. By Theorem 3.2, the corollary holds on the open subset h(C) of the
mi-sphere S

⊥
p Vi of unit normal vectors to Vi at p. Consider the characteristic

polynomial Pu(η) = det(Aη − uI) as a function of η on the normal space
T⊥
p Vi. Since Aη is linear in η, we have for each fixed u ∈ R that the function
Pu(η) is a polynomial of degree n−mi on the vector space T⊥

p Vi. Thus, the
restriction of Pu(η) to the sphere S⊥

p Vi is an analytic function of η. Then
since Pu(η) is constant on the open subset h(C) of S⊥

p Vi, it is constant on all
of S⊥

p Vi.

3.2.1 Minimality of the focal submanifolds

Münzner also obtained the following consequence of Corollary 3.2. This result
was obtained independently with a different proof by Nomizu [46].

Corollary 3.3. Let M ⊂ Sn+1 be a connected isoparametric hypersurface.
Then each focal submanifold Vi of M is a minimal submanifold in Sn+1.

Proof. Let η be a unit normal vector to a focal submanifold Vi of M . Then
−η is also a unit normal vector to Vi. By Corollary 3.2, the shape operators
Aη and A−η have the same eigenvalues with the same multiplicities. So

trace A−η = trace Aη.

On the other hand, trace A−η = − trace Aη, since A−η = −Aη. Thus, we
have trace Aη = − trace Aη, and so trace Aη = 0. Since this is true for
all unit normal vectors η, we conclude that Vi is a minimal submanifold in
Sn+1.

As a consequence of Theorem 3.2, we can give a proof of Cartan’s formula
(see equation (31) below) for isoparametric hypersurfaces in Sn+1. The proof
shows that Cartan’s formula is essentially equivalent to the minimality of the
focal submanifolds.

Corollary 3.4. (Cartan’s formula) Let M ⊂ Sn+1 be a connected isopara-
metric hypersurface with g principal curvatures

λi = cot θi, 0 < θ1 < · · · < θg < π,

with respective multiplicities mi. Then for each i, 1 ≤ i ≤ g, Cartan’s
formula holds, that is, ∑

j 6=i

mj
1 + λiλj
λi − λj

= 0. (31)
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Proof. We will show that for each i and for any unit normal η to the focal
submanifold Vi, the left side of equation (31) equals trace Aη, which equals
zero by Corollary 3.3. Represent the principal curvatures ofM as λi = cot θi,
0 < θ1 < · · · < θg < π, with respective multiplicities mi. Let Vi be the focal
submanifold corresponding to λi. By Corollary 3.2, we have

0 = trace Aη =
∑

j 6=i

mj cot(θj − θi) =
∑

j 6=i

mj
1 + cot θi cot θj
cot θi − cot θj

(32)

=
∑

j 6=i

mj
1 + λiλj
λi − λj

.

3.2.2 Formula for the principal curvatures

Münzner [44, p. 61] showed that the principal curvatures of an isoparametric
hypersurface in Sn+1 have a very specific form, given in equation (33) in
Theorem 3.3 below. Cartan [3, pp. 186–187] obtained this same formula in
the case where the principal curvatures all have the same multipliticity (see
Theorem 2.8), but he did not have the result in the general case.

Moreover, Münzner’s Theorem 3.3 also contains the result that in the
general case, the multiplicities of the principal curvatures must satisfy the
relation mi = mi+2 (subscripts mod g).

Theorem 3.3 is a key element in Münzner’s extension to the general case of
Cartan’s Theorem 2.9 concerning the algebraic nature of isoparametric hyper-
surfaces (see Theorem 3.5 below). Our treatment of the proof of Münzner’s
Theorem 3.3 is taken from [13, pp. 108–110].

Theorem 3.3 (Münzner). Let M ⊂ Sn+1 be a connected isoparametric hy-
persurface with g principal curvatures λi = cot θi, 0 < θ1 < · · · < θg < π,
with respective multiplicities mi. Then

θi = θ1 + (i− 1)
π

g
, 1 ≤ i ≤ g, (33)

and the multiplicities satisfy mi = mi+2 (subscripts mod g). For any point
x ∈ M , there are 2g focal points of (M,x) along the normal geodesic to M
through x, and they are evenly distributed at intervals of length π/g.
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Proof. If g = 1, then the theorem is trivially true, so we now consider g = 2.
Let V1 be the focal submanifold determined by the map ft for t = θ1. By
Corollary 3.2, the principal curvature cot(θ2 − θ1) of the shape operator Aη

is the same for every choice of unit normal η at every point p ∈ V1. Since
A−η = −Aη, this says that

cot(θ2 − θ1) = − cot(θ2 − θ1).

Thus, cot(θ2 − θ1) = 0, so θ2 − θ1 = π/2 as desired. In the case g = 2, there
is no restriction on the multiplicities.

Next we consider the case g ≥ 3. For a fixed value of i, 1 ≤ i ≤ g, let Vi
be the focal submanifold determined by the map ft for t = θi. By Corollary
3.2, the set

{cot(θj − θi) | j 6= i}
of principal curvatures of the shape operator Aη is the same for every choice
of unit normal η at every point p ∈ Vi. Since A−η = −Aη, this says that the
two sets

{cot(θj − θi) | j 6= i} and {− cot(θj − θi) | j 6= i}
are the same. In the case 2 ≤ i ≤ g−1, the largest principal curvature of Aη

is cot(θi+1−θi) with multiplicity mi+1, while the largest principal curvature of
A−η is cot(θi−θi−1) with multiplicity mi−1. Since these two largest principal
curvatures and their respective multiplicities are equal, we conclude that

θi+1 − θi = θi − θi−1, mi+1 = mi−1, 2 ≤ i ≤ g − 1. (34)

If i = 1, the largest principal curvature of Aη is cot(θ2−θ1) with multiplicity
m2, and the largest principal curvature of A−η is

cot(θ1 − θg) = cot(θ1 − (θg − π)),

with multiplicity mg, and we have

θ2 − θ1 = θ1 − (θg − π), m2 = mg. (35)

If we let θ2−θ1 = δ, then equation (34) implies that θg−θ1 = (g−1)δ, while
equation (35) implies that θg−θ1 = π−δ. Combining these two equations, we
get that gδ = π, and thus δ = π/g. From this we get the formula in equation
(33) for θi. The formula for the multiplicities in the theorem follows from
equations (34) and (35).
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If x is any point ofM , then each principal curvature cot θi ofM gives rise
to a pair of antipodal focal points along the normal geodesic to M through
x. Thus, there are 2g focal points of (M,x) along this normal geodesic, and
they are evenly distributed at intervals of length π/g by equation (33).

Remark 3.2 (Isoparametric submanifolds and their Coxeter groups). It fol-
lows from Theorem 3.3 that the set of focal points along a normal circle to
M ⊂ Sn+1 is invariant under the dihedral group Dg of order 2g that acts on
the normal circle and is generated by reflections in the focal points. This is
a fundamental idea that generalizes to isoparametric submanifolds of higher
codimension in the sphere (see Remark 2.2). Specifically, for an isoparamet-
ric submanifold Mn of codimension k > 1 in Sn+1, Carter and West [8] (in
the case k = 2) and Terng [65] for arbitrary k > 1 found a Coxeter group (fi-
nite group generated by reflections) that acts in a way similar to this dihedral
group in the codimension one case. This Coxeter group is important in the
overall development of the theory in the case of isoparametric submanifolds
of higher codimension (see Terng [65] and Thorbergsson [72]).

Since the multiplicities in Theorem 3.3 satisfy mi = mi+2 (subscripts mod
g), we have the following immediate corollary.

Corollary 3.5. Let M ⊂ Sn+1 be a connected isoparametric hypersurface
with g distinct principal curvatures. If g is odd, then all of the principal
curvatures have the same multiplicity. If g is even, then there are at most
two distinct multiplicities.

3.3 Cartan-Münzner Polynomials

Our goal in this subsection is to outline the proof of Münzner’s generalization
of Cartan’s Theorem 2.9 concerning the algebraic nature of isoparametric
hypersurfaces in Sn+1. Here we follow the treatment in the book [13, pp.
111–130] closely.

As noted at the beginning of Section 2, the original definition of an
isoparametric family of hypersurfaces in a real space form M̃n+1 was formu-
lated in terms of the level sets of an isoparametric function, where a smooth
function V : M̃n+1 → R is called isoparametric if both of the classical Bel-
trami differential parameters,

∆1V = |grad V |2, ∆2V = ∆V (Laplacian V ), (36)
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are functions of V itself, and are therefore constant on the level sets of V in
M̃n+1.

In the case of an isoparametric hypersurface M in the unit sphere Sn+1

in Rn+2 with g distinct principal curvatures, Münzner [44] showed that the
corresponding isoparametric function V : Sn+1 → R is the restriction to Sn+1

of a homogeneous polynomial F : Rn+2 → R of degree g satisfying certain
differential equations. Thus, it is useful to relate the Beltrami differential
parameters of a homogeneous function F on Rn+2 to those of its restriction
V to Sn+1.

Recall that a function F : Rn+2 → R is homogeneous of degree g if
F (tx) = tgF (x), for all t ∈ R and x ∈ Rn+2. By Euler’s Theorem, we know
that for any x ∈ Rn+2,

〈gradEF, x〉 = gF (x). (37)

Here the superscript E is used to denote the Euclidean gradient of F . The
gradient of the restriction V of F to Sn+1 will be denoted by gradSF . Simi-
larly, we will denote the respective Laplacians by ∆EF and ∆SF .

The following theorem relates the various differential operators for a ho-
mogeneous function F of degree g, and it is useful in proving Theorem 3.5.
(See [13, pp. 112–113] for a proof.)

Theorem 3.4. Let F : Rn+2 → R be a homogeneous function of degree g.
Then

(a) |gradSF |2 = |gradEF |2 − g2F 2,

(b) ∆SF = ∆EF − g(g − 1)F − g(n+ 1)F .

Münzner’s generalization of Cartan’s Theorem 2.9 is the following.

Theorem 3.5 (Münzner). Let M ⊂ Sn+1 ⊂ Rn+2 be a connected isopara-
metric hypersurface with g principal curvatures λi = cot θi, 0 < θ1 < · · · <
θg < π, with respective multiplicities mi. Then M is an open subset of a
level set of the restriction to Sn+1 of a homogeneous polynomial F on Rn+2

of degree g satisfying the differential equations,

|gradEF |2 = g2r2g−2, (38)

∆EF = crg−2, (39)

where r = |x|, and c = g2(m2 −m1)/2.
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Remark 3.3. Recall from Corollary 3.5 that there are at most two distinct
multiplicities m1, m2, and the multiplicities satisfy mi+2 = mi (subscripts
mod g).

Münzner [44, p. 65] called F the Cartan polynomial of M , and now F
is usually referred to as the Cartan-Münzner polynomial of M . Equations
(38)–(39) are called the Cartan-Münzner differential equations. By Theorem
3.4 the restriction V of F to Sn+1 satisfies the differential equations,

|gradSV |2 = g2(1− V 2), (40)

∆SV = c− g(n+ g)V, (41)

where c = g2(m2 −m1)/2. Thus V is an isoparametric function in the sense
of Cartan, since both |gradSV |2 and ∆SV are functions of V itself. (Here we
are using the superscript S in the notations gradSV and ∆SV to emphasize
that V is a function defined on Sn+1.)

We now describe Münzner’s [44, pp. 62–65] construction of this polyno-
mial F in detail. This is basically the same approach used by Cartan [4] in
proving Theorem 2.9 under the more restrictive assumption that all of the
principal curvatures have the same multiplicity.

Note that Cartan [4, pp. 364–365] proved that if the principal curvatures
all have the same multiplicity m, then the polynomial F must be harmonic.
This agrees with Münzner’s condition (39) in the case where all of the mul-
tiplicities are equal, since then the number c = g2(m2 − m1)/2 in equation
(39) equals zero, and so F is harmonic.

Let M ⊂ Sn+1 be a connected, oriented isoparametric hypersurface with
g distinct principal curvatures λi = cot θi, 0 < θ1 < · · · < θg < π, with
respective multiplicities mi. The normal bundle NM of M in Sn+1 is trivial
and is therefore diffeomorphic to M ×R. Thus we can consider the normal
exponential map E :M ×R → Sn+1 defined by

E(x, t) = ft(x) = cos t x+ sin t ξ(x), (42)

where ξ is the field of unit normals to M in Sn+1.
By the standard calculation for the location of focal points (see, for ex-

ample, [13, pp. 11–14]), we know that the differential of E has rank n + 1
at (x, t) ∈ M ×R, unless cot t is a principal curvature of M at x. Thus, for
any noncritical point (x, t) of E, there is an open neighborhood U of (x, t)
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in M × R on which E restricts to a diffeomorphism onto an open subset
Ũ = E(U) in Sn+1. We define a function τ : Ũ → R by

τ(p) = θ1 − π2(E
−1(p)), (43)

where π2 is projection onto the second coordinate. That is, if p = E(x, t),
then

τ(p) = θ1 − t. (44)

Then we define a function V : Ũ → R by,

V (p) = cos(gτ(p)). (45)

Clearly, τ and V are constant on each parallel hypersurface Mt = ft(M) in

Ũ .
The number τ(p) is the oriented distance from p to the first focal point

along the normal geodesic to the parallel hypersurface Mt through p. Thus,
if we begin the construction with a parallel hypersurface near M rather than
withM itself, we get the same functions τ and V . If we begin the construction
with the opposite field of unit normals −ξ instead of ξ, then we obtain the
function −V instead of V .

We next extend V to a homogeneous function of degree g on the cone in
Rn+2 over Ũ by the formula

F (rp) = rg cos(g(τ(p)), p ∈ Ũ , r > 0. (46)

The first step in the proof of Theorem 3.5 is to show that the function
F in equation (46) satisfies the Cartan-Münzner differential equations (38)–
(39). One then completes the proof of Theorem 3.5 by showing that F is the

restriction to the cone over Ũ of a homogeneous polynomial of degree g.
These two steps involve lengthy calculations based on the formula for the

principal curvatures of an isoparametric hypersurface given in Theorem 3.3.
We refer the reader to [44, pp. 62–67] or [13, pp. 115–125] for the details of
the proof, which we will omit here.

We now want to make a few remarks concerning some important conse-
quences of Theorem 3.5.

Remark 3.4 (Consequences of Theorem 3.5). From equation (40), we see
that the range of the restriction V of F to Sn+1 is contained in the closed
interval [−1, 1], since the left side of the equation is nonnegative. We can
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see that the range of V is all of the interval [−1, 1] as follows. Since V
is not constant on Sn+1, it has distinct maximum and minimum values on
Sn+1. By equation (40) these maximum and minimum values are 1 and −1,
respectively, since gradSV is nonzero at any point where V is not equal to
±1. For any s in the open interval (−1, 1), the level set V −1(s) is a compact
hypersurface, since gradSV is never zero on V −1(s). Münzner also proves
that each level set of V is connected, and therefore, the original connected
isoparametric hypersurface M is contained in a unique compact, connected
isoparametric hypersurface.

For s = ±1, gradSV is identically equal to zero on V −1(s), and the
sets M+ = M1 = V −1(1) and M− = M−1 = V −1(−1) are submanifolds of
codimension greater than one in Sn+1. Münzner showed that M+ and M−

are connected (see Theorem 3.6), and that they are the focal submanifolds
of any isoparametric hypersurface V −1(s), −1 < s < 1, in the family of
isoparametric hypersurfaces. Thus, there are only two focal submanifolds
regardless of the number g of distinct principal curvatures. By Theorem 3.3,
there are 2g focal points evenly distributed along each normal geodesic to
the family {V −1(s)} of isoparametric hypersurfaces. Münzner proves in part
(a) of Theorem 3.7 below that these focal points lie alternately on the two
focal submanifolds M+ and M−.

Suppose we consider the isoparametric hypersurface V −1(0). From equa-
tion (45), we see that the function τ equals π/2g on V −1(0). The function
τ is the distance from a point x in V −1(0) to the first focal point along the
normal geodesic through x. By Theorem 3.3, this means that the largest
principal curvature of V −1(0) is cot(π/2g), and the principal curvatures of
V −1(0) are given by cot θi, where

θi =
π

2g
+

(i− 1)

g
π, 1 ≤ i ≤ g, (47)

with multiplicities satisfyingmi+2 = mi (subscripts mod g). This simple form
form for θi is helpful in the calculations involved in the proof of Theorem 3.5.

3.4 Global Structure Theorems

In this section, we discuss several results concerning the global structure of
an isoparametric family of hypersurfaces in Sn+1 that stem from Münzner’s
construction of the Cartan-Münzner polynomials, as discussed in the previous
subsection (see [44, pp. 67–69]).
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These structure theorems ultimately lead to Münzner’s main structure
theorem which states that a compact, connected isoparametric hypersurface
M divides the sphere Sn+1 into two ball bundles over the two focal subman-
ifolds M+ and M−, which lie on different sides of M in Sn+1.

From this theorem, Münzner ultimately uses methods from algebraic
topology to derive his primary result that the number g of distinct prin-
cipal curvatures of an isoparametric hypersurface in Sn+1 must be 1, 2, 3, 4
or 6.

Let F : Rn+2 → R be the Cartan-Münzner polynomial of degree g con-
structed from a connected isoparametric hypersurface in Sn+1 ⊂ Rn+2 with
g distinct principal curvatures as in Theorem 3.5, and let V denote the re-
striction of F to Sn+1. As noted in Remark 3.4, the range of the function V
is the closed interval [−1, 1], and each level set Mt = V −1(t), −1 < t < 1, is
an isoparametric hypersurface in Sn+1.

For the sake of definiteness, we let M = M0 = V −1(0) be the isopara-
metric hypersurface discussed in Remark 3.4. We denote the two (possibly
equal) multiplicities of M by m+ = m1 and m− = m−1.

The first goal is to show that M and all of the parallel hypersurfaces
Mt, −1 < t < 1, as well as the two focal submanifolds, are connected. We
omit the proof here and refer the reader to Münzner’s paper [44] or to [13,
pp. 130–137].

Theorem 3.6 (Connectedness of the level sets of F ). Let F : Rn+2 → R

be a Cartan-Münzner polynomial of degree g and V its restriction to Sn+1.
Then each isoparametric hypersurface

Mt = V −1(t), −1 < t < 1,

is connected. Moreover, M+ = V −1(1) and M− = V −1(−1) are the focal
submanifolds, and they are also connected.

Remark 3.5. A consequence of Theorem 3.6 is that any connected isopara-
metric hypersurface M lies in a unique compact, connected isoparametric
hypersurface of the form V −1(t),−1 < t < 1, where V is the restriction to
Sn+1 of the Cartan-Münzner polynomial of M . For the rest of Section 3, we
will assume that each isoparametric hypersurface and each focal submanifold
is compact and connected.

The next step is Münzner’s important structure theorem which states that
a compact, connected isoparametric hypersurface M divides the sphere Sn+1
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into two ball bundles over the two focal submanifolds M+ and M−, which
lie on different sides of M in Sn+1. The precise wording of the theorem is as
follows. (See Münzner [44, pp. 67–69] or [13, pp. 132–133] for a proof.)

Theorem 3.7. Let k = ±1, and let Z be a normal vector to the focal sub-
manifold Mk in Sn+1. Let exp : NMk → Sn+1 denote the normal exponential
map for Mk. Then

(a) V (expZ) = k cos(g|Z|).

(b) Let Bk = {q ∈ Sn+1 | kV (q) ≥ 0}, and let (B⊥Mk, S
⊥Mk) be the

bounded unit ball bundle in NMk. Then

ψk : (B⊥Mk, S
⊥Mk) → (Bk,M),

where M = V −1(0) and ψk(Z) = exp( π
2g
Z), is a diffeomorphism of

manifolds with boundary.

As a consequence of the fact that the set of normal geodesics to each
focal submanifold Mk, k = ±1, is the same as the set of normal geodesics to
each of the parallel isoparametric hypersurfaces, we immediately obtain the
following corollary.

Corollary 3.6. Let Mk, k = ±1, be a focal submanifold of an isoparametric
hypersurface M . Then the focal set of Mk is the same as the focal set of M ,
i.e., it is Mk ∪M−k.

3.4.1 Münzner’s restriction on the number of principal curvatures

Münzner’s major result is that the number g of distinct principal curvatures
of an isoparametric hypersurfaceM in Sn+1 is 1, 2, 3, 4 or 6. This is a lengthy
and delicate computation involving the cohomology rings of the hypersurface
M and its two focal submanifolds M+ and M−. The structure of these
rings is determined by the basic topological fact that a compact, connected
isoparametric hypersurface M ⊂ Sn+1 divides Sn+1 into two ball bundles
over the two focal submanifolds, as in Theorem 3.7 (b).

Theorem 3.8 below does not assume that M is isoparametric, but only
that it divides the sphere into two ball bundles. This is important, since the
theorem can be applied to more general settings, in particular, to the case of
a compact, connected proper Dupin hypersurface embedded in Sn+1, as was
shown by Thorbergsson [70] (see also [13, pp. 140–143]).
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Remark 3.6 (Proper Dupin hypersurfaces). Recall that an oriented hyper-

surface hypersurface M in a real space form M̃n+1 is called a proper Dupin
hypersurface if the number g of distinct principal curvatures is constant on
M , and if each continuous principal curvature function on M is constant
along each leaf of its corresponding principal foliation.

Using methods of algebraic topology, Münzner [45] proved the theorem
below, and we refer the reader to Münzner’s paper for the proof.

Theorem 3.8. Let M be a compact, connected hypersurface in Sn+1 which
divides Sn+1 into two ball bundles over submanifolds M+ and M−. Then the
number α = (1/2) dim H∗(M,R) can only assume the values 1, 2, 3, 4 and 6.
(The ring R of coefficients is Z if both M+ and M− are orientable, and Z2

otherwise.)

Münzner then proved Theorem 3.9 below regarding the cohomology of
an isoparametric hypersurface and its focal submanifolds. Since all of the
parallel hypersurfaces Mt = V −1(t) are diffeomorphic, it is sufficient to con-
sider the case M = V −1(0). In that case, M has two focal submanifolds
M1 = V −1(1) of dimension n−m1 andM−1 = V −1(−1) of dimension n−m−1,
where m1 and m−1 are the two (possibly equal) multiplicities of the principal
curvatures of M . Then by Theorem 3.7, the sets,

B1 = {q ∈ Sn+1 | V (q) ≥ 0}, B−1 = {q ∈ Sn+1 | V (q) ≤ 0},

are (mk + 1)-ball bundles over the focal submanifolds Mk, for k = 1,−1,
respectively.

The dimension n of M is equal to g(m1 + m−1)/2, and so g = 2n/µ,
where µ = m1 +m−1. Thus, an isoparametric hypersurface M satisfies the
hypothesis of the following theorem of Münzner [45]. The proof is done using
algebraic topology, and we will omit it here. We refer the reader to Münzner’s
original proof [45] (see also [13, pp. 134–136]).

Theorem 3.9. Let M be a compact, connected hypersurface in Sn+1 such
that:

(a) Sn+1 is divided into two manifolds (B1,M) and (B−1,M) with boundary
along M .

(b) For k = ±1, the manifold Bk has the structure of a differentiable ball
bundle over a compact, connected manifold Mk of dimension n−mk.
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Let the ring R of coefficients be Z if both M1 and M−1 are orientable, and
Z2 otherwise. Let µ = m1 + m−1. Then α = 2n/µ is an integer, and for
k = ±1,

Hq(Mk) =





R for q ≡ 0 (mod µ), 0 ≤ q < n,
R for q ≡ m−k (mod µ), 0 ≤ q < n,
0 otherwise.

Further,

Hq(M) =

{
R for q = 0, n,
Hq(M1)⊕Hq(M−1), for 1 ≤ q ≤ n− 1.

For a compact, connected isoparametric hypersurface M ⊂ Sn+1 with g
distinct principal curvatures, we have

dimM = n = g(m1 +m−1)/2 = gµ/2.

Thus, α = 2n/µ = g. By Theorem 3.9, we see that α is also equal to
dimRH

∗(M,R)/2. Hence by Münzner’s Theorem 3.8, the number g = α
can only assume the values 1, 2, 3, 4 or 6, and we have Münzner’s [45] major
theorem.

Theorem 3.10. Let M ⊂ Sn+1 be a connected isoparametric hypersurface
with g distinct principal curvatures. Then g is 1, 2, 3, 4 or 6.

Note that we do not have to assume that M is compact in the theo-
rem, because any connected isoparametric hypersurface is contained in a
unique compact, connected isoparametric hypersurface to which the argu-
ments above can be applied (see Remark 3.5). We also note that there exist
isoparametric hypersurfaces for each of the values of g in the theorem, as
mentioned in Subsection 2.11.

Remark 3.7 (Crystallographic groups). A consequence of Münzner’s Theo-
rem 3.10 is that the dihedral group Dg associated to M (see Remark 3.2) is
crystallographic (see L.C. Grove and C.T. Benson [31, pp. 21–22]). A direct
proof that Dg must be crystallographic could possibly give a simpler proof
of Theorem 3.10 (see also K. Grove and S. Halperin [30, pp. 437–438]).
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3.4.2 Multiplicities of the principal curvatures

As discussed in Subsection 2.9, Cartan [4] classified isoparametric hypersur-
faces with g ≤ 3 principal curvatures. In the cases g = 4 and g = 6, many
results concerning the possible multiplicities of the principal curvatures have
been obtained from the topological situation described in Theorem 3.9, i.e.,
that a compact, connected isoparametric hypersurface M in Sn+1 divides
Sn+1 into two ball bundles over its two focal submanifolds.

In the case of g = 4 principal curvatures, several mathematicians, includ-
ing Münzner [44]–[45], Abresch [1], Grove and Halperin [30], Tang [63]–[64]
and Fang [24]–[25], found restrictions on the multiplicities (m1, m2). This
series of results culminated with the paper of Stolz [58], who used techniques
from homotopy theory to prove Theorem 3.11 below. This theorem of Stolz
was ultimately an important part in the proof of the classification of isopara-
metric hypersurfaces with g = 4 principal curvatures, which will be discussed
in Section 4.

Theorem 3.11 (Stolz). The multiplicities (m1, m2) of the principal cur-
vatures of an isoparametric hypersurface M ⊂ Sn+1 with g = 4 principal
curvatures are the same as those in the examples due to Ferus, Karcher and
Münzner [27] or the two homogeneous examples with (m1, m2) = (2, 2) or
(m1, m2) = (4, 5) that are not of FKM-type.

Remark 3.8 (Application to proper Dupin hypersurfaces). Stolz proved
Theorem 3.11 under more general assumption that M is a compact, con-
nected proper Dupin hypersurface with four principal curvatures embedded
in Sn+1. Such a result is possible because Thorbergsson [70] had shown earlier
that a compact, connected proper Dupin hypersurface M ⊂ Sn+1 separates
Sn+1 into two ball bundles over the first focal submanifolds on either side of
M , as in the case of a compact, connected isoparametric hypersurface (see
also [13, p. 143]).

In the case of g = 6 principal curvatures, Münzner [45] showed that all
of the principal curvatures have the same multiplicity m, and Abresch [1]
showed that m equals 1 or 2. Thus we have:

Theorem 3.12. For an isoparametric hypersurface with g = 6 principal
curvatures, all the principal curvatures have the same multiplicity m, and m
equals 1 or 2.
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Later Grove and Halperin [30] showed that this restriction on the multi-
plicities also holds for compact, connected proper Dupin hypersurfaces with
g = 6 principal curvatures embedded in Sn+1.

4 Classification Results

Due to the work of many mathematicians, isoparametric hypersurfaces in
Sn+1 have been completely classified, and we will briefly state the classifi-
cation results now. As noted above, Münzner proved that the number g of
distinct principal curvatures must be 1, 2, 3, 4 or 6. We now summarize the
classification results for each value of g. Many of these have been discussed
already.

If g = 1, then the isoparametric hypersurface M is totally umbilic, and
it must be an open subset of a great or small sphere. If g = 2, Cartan [3]
showed thatM must be an open subset of a standard product of two spheres,

Sk(r)× Sn−k−1(s) ⊂ Sn, r2 + s2 = 1.

In the case g = 3, Cartan [4] showed that all the principal curvatures must
have the same multiplicity m = 1, 2, 4 or 8, and the isoparametric hypersur-
face must be an open subset of a tube of constant radius over a standard
embedding of a projective plane FP2 into S3m+1, where F is the division
algebra R, C, H (quaternions), O (Cayley numbers), for m = 1, 2, 4, 8, re-
spectively. Thus, up to congruence, there is only one such family for each
value of m. (See Subsection 2.9.)

In the case of an isoparametric hypersurface with g = 4 four principal
curvatures, Münzner (Theorem 3.3) proved that the principal curvatures can
have at most two distinct multiplicities m1, m2. Next Ferus, Karcher and
Münzner [27] used representations of Clifford algebras to construct for any
positive integer m1 an infinite series of isoparametric hypersurfaces with four
principal curvatures having respective multiplicities (m1, m2), where m2 is
nondecreasing and unbounded in each series. These examples are now known
as isoparametric hypersurfaces of FKM-type, and they are also described in
[13, pp. 162–180]. This construction of Ferus, Karcher and Münzner was a
generalization of an earlier construction due to Ozeki and Takeuchi [48].

Stolz [58] (see Theorem 3.11) next proved that the multiplicities (m1, m2)
of the principal curvatures of an isoparametric hypersurface with g = 4 prin-
cipal curvatures must be the same as those of the hypersurfaces of FKM-type,
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or else (2, 2) or (4, 5), which are the multiplicities for certain homogeneous
examples that are not of FKM-type (see the classification of homogeneous
isoparametric hypersurfaces of Takagi and Takahashi [61]).

Cecil, Chi and Jensen [12] then showed that if the multiplicities of an
isoparametric hypersurface with four principal curvatures satisfy the condi-
tion m2 ≥ 2m1 − 1, then the hypersurface is of FKM-type. (A different
proof of this result, using isoparametric triple systems, was given later by
Immervoll [36].)

Taken together with known results of Takagi [60] for m1 = 1, and Ozeki
and Takeuchi [48] for m1 = 2, this result of Cecil, Chi and Jensen han-
dled all possible pairs of multiplicities except for four cases, the FKM pairs
(3, 4), (6, 9) and (7, 8),and the homogeneous pair (4, 5).

In a series of recent papers, Chi [14]–[19] completed the classification
of isoparametric hypersurfaces with four principal curvatures. Specifically,
Chi showed that in the cases of multiplicities (3, 4), (6, 9) and (7, 8), the
isoparametric hypersurface must be of FKM-type, and in the case (4, 5), it
must be homogeneous.

The final conclusion is that an isoparametric hypersurface with g = 4
principal curvatures must either be of FKM-type, or else a homogeneous
isoparametric hypersurface with multiplicities (2, 2) or (4, 5).

In the case of an isoparametric hypersurface with g = 6 principal cur-
vatures, Münzner [44]–[45] showed that all of the principal curvatures must
have the same multiplicity m, and Abresch [1] showed that m must equal 1 or
2. By the classification of homogeneous isoparametric hypersurfaces due to
Takagi and Takahashi [61], there is up to congruence only one homogeneous
family in each case, m = 1 or m = 2.

These homogeneous examples have been shown to be the only isopara-
metric hypersurfaces in the case g = 6 by Dorfmeister and Neher [22] in the
case of multiplicity m = 1, and by Miyaoka [42]–[43] in the case m = 2 (see
also the papers of Siffert [54]–[55]).

For general surveys on isoparametric hypersurfaces in spheres, see the
papers of Thorbergsson [72], Cecil [11], and Chi [20].

References

[1] U. Abresch, Isoparametric hypersurfaces with four or six distinct prin-
cipal curvatures, Math. Ann. 264 (1983), 283–302.

37



[2] R. Bott and H. Samelson, Applications of the theory of Morse to sym-
metric spaces, Amer. J. Math. 80 (1958), 964–1029. Corrections in 83
(1961), 207–208.

[3] E. Cartan, Familles de surfaces isoparamétriques dans les espaces à cour-
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