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A CHENG-YAU TYPE ESTIMATE FOR THE

SYMPLECTIC CALABI-YAU EQUATION

VALENTINO TOSATTI

Abstract. In the setting of Donaldson’s conjecture on the Calabi-Yau
equation on symplectic 4-manifolds, we prove an a priori estimate which
in the Kähler case resembles a classical estimate of Cheng-Yau.

1. Introduction

The Calabi Conjecture, solved by Yau in 1976 [21], says that given a
smooth positive volume form σ on a compact Kähler manifold (M,ω) with
total mass

∫

M
σ =

∫

M
ωn, we can find a unique Kähler metric ω̃ in the same

cohomology class as ω whose volume element is pointwise equal to σ, i.e
ω̃n = σ. The uniqueness statement was proved by Calabi in 1954 [3], and
the existence follows via a continuity method from a priori C∞ estimates
for a Kähler metric which only depend on its volume form, its cohomology
class, and the underlying complex manifold.

In 2006, Donaldson [6] proposed a conjectural generalization of this re-
sult to symplectic 4-manifolds. More precisely, suppose (M4, J) is a closed
almost-complex manifold and ω is a symplectic form taming J , which means
that

ω(X,JX) > 0, for all X 6= 0.

The (1, 1)-part of ω with respect to J is denoted by ω(1,1). Let ω̃ be another
symplectic form, cohomologous to ω and compatible with J , which means
that it tames J and furthermore

ω̃(X,Y ) = ω̃(JX, JY ).

There are associated Hermitian metrics g, g̃ which are defined by

g(X,Y ) =
1

2
(ω(X,JY ) + ω(Y, JX)) , g̃(X,Y ) = ω̃(X,JY )

with corresponding volume forms (ω(1,1))2 and ω̃2. Donaldson then conjec-
tured the following:

Conjecture 1.1. Let (M4, J) be a closed almost-complex 4-manifold, ω a

symplectic form taming J , ω̃ a cohomologous symplectic form compatible

with J , and σ a smooth positive volume form with
∫

M
σ =

∫

M
ω2. If ω̃

satisfies the Calabi-Yau equation

(1.1) ω̃2 = σ,
1

http://arxiv.org/abs/2411.06234v1


2 VALENTINO TOSATTI

then for any k > 0, we can bound ‖ω̃‖Ck(M,g) by a constant that depends

only on k and on bounds on σ, ω, (M,J).

When J is integrable and ω is compatible with J , we are on a Kähler
surface and Conjecture 1.1 follows from the aforementioned theorem of Yau
[21]. If solved, Donaldson’s conjecture would have striking applications in
symplectic geometry, see [6, 15]. Donaldson’s conjecture was first investi-
gated by Weinkove [20] in the case when ω is also compatible with J , where
he showed that it holds provided J is close to being integrable. In [18],
Tosatti-Weinkove-Yau showed that Conjecture 1.1 in general would follow if
one could prove a bound

(1.2) trgg̃ 6 C,

where C depends only on σ, ω, (M,J) (we will call such constants uniform),
and that (1.2) can indeed be established when g has nonnegative curvature
in a suitable sense. Further progress on Donaldson’s conjecture has since
proceeded in two main directions: proving it on explicit examples [14, 7, 1, 2,
17, 19], and for general manifolds reducing the bound (1.2) to bounding an
“almost-Kähler potential” function. For this, following [20, 18], one defines
a function ϕ ∈ C∞(M,R) by

(1.3) ∆g̃ϕ = 2− trg̃g, sup
M

ϕ = 0,

which is uniquely determined and in the Kähler case would satisfy ω̃ =
ω + i∂∂ϕ, i.e. ϕ would be a familiar Kähler potential. Estimate (1.2) was
then successively reduced to proving uniform bounds for

∫

M
e−αϕω2 (for

some α > 0) in [18] in 2007, for
∫

M
|ϕ|ω2 in [13, Rmk 3.1] in 2009 (with a

very recent new proof in [8]), for any integral bound for ϕ in [17] in 2016,
and lastly to a uniform positive lower bound for the Lebesgue measure of
{ϕ > −C} for any given uniform C in [17].

Nevertheless, none of these results use the crucial assumption that ω̃ and
ω are cohomologous: if this is not the case then one has to replace the
constant 2 in (1.3) with another suitable constant, namely

(1.4) ∆g̃ϕ =
2
∫

M
ω ∧ ω̃

∫

M
ω̃2

− trg̃g, sup
M

ϕ = 0,

but there is no essential difference in all the above results, which still show
that to obtain uniform C∞ bounds for ω̃ (and a uniform lower bound
ω̃ > C−1ω) it suffices to have for example any uniform integral bound for ϕ
(or just a uniform lower bound for the measure of a superlevel set), provided

the constant
2
∫
M

ω∧ω̃∫
M

ω̃2
is uniformly bounded above. Consider the Kähler case,

where J is integrable and ω is compatible with it, and degenerate [ω̃] to a
limiting class [α] on the boundary of the Kähler cone with

∫

M
α2 > 0 (there

are many such examples, see e.g. [11]). In this case the constant in (1.4) re-
mains uniformly bounded, but the corresponding solution metrics ω̃ cannot
converge smoothly since [α] does not contain any Kähler metric, hence in
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this case no uniform integral/measure bound for ϕ solving (1.4) can hold.
In other words, if one wants to use the almost-Kähler potential ϕ to prove
(1.2), then some new idea has to be used which makes crucial use of the
cohomological assumption.

In this note we take a different approach. Because of the cohomological
assumption, we can write

(1.5) ω̃ = ω + da,

for some real 1-form a. We are free to modify a by adding df for any smooth
function f , and if we choose f solving the elliptic equation d∗g̃df = −d∗g̃a, we
can then assume without loss that

(1.6) d∗g̃a = 0.

The 1-form a satisfying (1.5) and (1.6) is then uniquely determined modulo
the addition of a g̃-harmonic 1-form, and we can fix this ambiguity for
example by requiring that a be L2(g̃)-orthogonal to the space of such forms.
The Calabi-Yau equation (1.1) is then a nonlinear elliptic system for the
1-form a (when dimM = 4). Our main result is then the following:

Theorem 1.2. In the above setting, we have the estimate

(1.7) trgg̃ 6 C(1 + sup
M

|a|2g̃),

where C is a uniform constant.

We make a few remarks about this result.

1. It is important for our arguments that the gauge-fixing condition (1.6)
and the norm on the RHS of (1.7) are both with respect to g̃ as opposed to
g. Changing (1.6) to d∗ga = 0 does not seem completely out of the question,

but replacing |a|2g̃ with |a|2g in (1.7) does not seem feasible.

2. In the Kähler case, i.e. when J is integrable and ω is compatible with J ,
we actually have that a = dcϕ where ϕ is the usual Kähler potential so that
ω̃ = ω + i∂∂ϕ. Indeed ddcϕ = i∂∂ϕ, and

d∗g̃d
cϕ = − ∗g̃ d ∗g̃ dcϕ = ∗g̃d(dϕ ∧ ω̃) = 0,

and for any g̃-harmonic 1-form α,
∫

M

dcϕ ∧ ∗g̃α =

∫

M

dcϕ ∧ J(α) ∧ ω̃ =

∫

M

dϕ ∧ α ∧ ω̃ = 0.

Thus, in the Kähler case, estimate (1.7) becomes

(1.8) trgg̃ 6 C(1 + sup
M

|∇ϕ|2g̃),

which in the local setting of pseudoconvex domains in C
n was proved by

Cheng-Yau [4, Proposition 7.1]. Tracing through our arguments easily shows
that in the Kähler case (1.8) holds in all dimensions, and it does not use any
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knowledge about L∞ a priori bounds for ϕ (which were famously proved by
Yau [21] using Moser iteration).

3. An estimate of the different but related form

(1.9) trgg̃ 6 C(1 + sup
M

|∇ϕ|2g),

is known for different geometric PDEs on Kähler manifolds, including for
example the complex Hessian equation [9] and the Monge-Ampère equation
for (n − 1)-psh functions [16], see also [10]. In these settings, (1.9) is then
used together with a blowup argument and a Liouville theorem [5, 16, 10]
to show that supM |∇ϕ|2g 6 C and hence trgg̃ 6 C. However, the fact that
g̃ appears on the RHS of (1.7) instead of g makes it ill-suited to blowup
arguments.

The proof of Theorem 1.2 is done by a maximum principle argument, and
interestingly it uses crucially that the dimension of M is 4 (while the afore-
mentioned results in [18, 17] apply in all even dimensions 2n > 4), except
in the Kähler case where our argument works in all dimensions.

Acknowledgments. The author owes many thanks to Guido De Philippis
for many related discussions. The author was partially supported by NSF
grant DMS-2404599.

2. Proof of Theorem 1.2

We work in the setting described in the Introduction. Define a smooth
function F on M by

σ = eF (ω(1,1))2,

so that in any local chart the Calabi-Yau equation (1.1) can be written as

(2.10) det(g̃) = eF det(g).

Since g, g̃ are both Hermitian with respect to J , and dimM = 4, it follows
from (2.10) that we have

(2.11) trg̃g = e−F trgg̃,

which we will use repeatedly, often without mention.
As in [18], we will use covariant derivatives with respect the Chern con-

nection∇ of g (also known as “canonical connection”, see [18, §2]). We recall
two estimates proved in [18]. The first one is the differential inequality from
[18] (which can be extracted from the proof of Lemma 3.2 there)

(2.12) ∆g̃trgg̃ > |∇g̃|2g,g̃ − Ctrgg̃ trg̃g − C > |∇g̃|2g,g̃ − C(trgg̃)
2 − C,

using (2.11), where the norm |·|2g,g̃ uses both g and g̃, see (2.31) below for the
definition. The second one is the following Cauchy-Schwarz type inequality
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[18, (3.20)]

(2.13) |∇g̃|2g,g̃ >
|∇trgg̃|2g̃
trgg̃

.

Given these preliminaries, the main claim is then the following:

Proposition 2.1. There is a uniform C > 0 such that for any small ε > 0
we have the differential inequality

(2.14) ∆g̃|a|2g̃ >
1

2
|∇̃a|2g̃ +

1

2
|∇̃a|2g̃ +

1

C
(trgg̃)

2 − ε|∇g̃|2g,g̃ −
C

ε2
|a|4g̃ − C.

In fact, as follows from the proof, the constants 1
2 on the RHS of (2.14)

can be taken to be 1 − δ for any given δ > 0, at the expense of making C

larger.

Proof of Theorem 1.2 assuming Proposition 2.1. Let us first assume
that Proposition 2.1 holds, and use it to prove (1.7). For this, combining
(2.12) and (2.14), and throwing away two positive terms, we have

∆g̃(trgg̃+A|a|2g̃) > |∇g̃|2g,g̃−C0(trgg̃)
2−C+

A

C1
(trgg̃)

2−εA|∇g̃|2g,g̃−
CA

ε2
|a|4g̃−CA,

where C0, C1 are uniform constants, and now if we choose A = C1(C0 + 1)
and ε = 1

A
, we obtain

∆g̃(trgg̃ +A|a|2g̃) > (trgg̃)
2 − C|a|4g̃ − C,

and the maximum principle concludes the proof of (1.7).

Beginning of proof of Proposition 2.1. We now proceed to prove Propo-
sition 2.1. As in [18] we also use the Chern connection ∇̃ of g̃, and the
formalism of moving frames. Thus, we work in a local g̃-unitary frame
θ̃i, i = 1, 2, which are (1, 0)-forms, and we have the first structure equations

dθ̃i = −θ̃ij ∧ θ̃j + Θ̃i,

where θ̃ij are the connection 1-forms and Θ̃i are the torsion forms, which are

of type (0, 2) and equal to

Θ̃i = Ñ i
jk
θ̃j ∧ θ̃k,

where Ñ i
jk

are the components of the Nijenhuis tensor of J (and are skew-

symmetric in j, k). The second structure equations read

dθ̃ij = −θ̃ik ∧ θ̃kj + Ω̃i
j,

where Ω̃i
j are the curvature 2-forms. They can be written as

Ω̃i
j = R̃i

jkℓ
θ̃k ∧ θ̃ℓ + K̃i

jkℓθ̃
k ∧ θ̃ℓ + K̃i

jkℓ
θ̃k ∧ θ̃ℓ,
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and the Ricci curvature form is defined to be

Ric(g̃) =

√
−1

2π
Ω̃i
i,

where here and in the following we will mostly omit summation signs. It
is well-known that Ric(g̃) is a closed real 2-form which represents the first
Chern class c1(M,J) of the complex vector bundle (TRM,J). Its (1, 1)-part
is given by √

−1

2π
R̃kℓθ̃

k ∧ θ̃ℓ, R̃kℓ = R̃i
ikℓ

.

Its relation with the Calabi-Yau equation is this [18, (3.16)]: if g, ĝ are two
J-Hermitian metrics then we have

(2.15)
1

2π
ddc log

det(g)

det(ĝ)
= Ric(ĝ)− Ric(g),

where for a real-valued function f we define (1, 0) and (0, 1) forms ∂f, ∂f by

df = ∂f + ∂f , and define dcf =
√
−1
2 (∂f − ∂f). A different sign convention

was used in [18], so the term ddcf here is equal to the term −1
2d(Jdf) in [18].

The trace of the (1, 1)-part of ddcf with respect to g̃ equals its Laplacian
∆g̃f , see [18, Lemma 2.5], which is equal to the usual Laplace-Beltrami
operator of g̃ (up to a factor of 1

2). It can be written as

∆g̃f = 2
ω̃ ∧ ddcf

ω̃2
.

If we have a tensor T then we can consider its covariant derivatives ∇̃T and
∇̃T . For example, if in our frame T has components T̃ i

jk
(as an example)

then its covariant derivatives ∇̃T and ∇̃T have components T̃ i
jk,p

and T̃ i
jk,p

respectively, which can be obtained as follows:

T̃ i
jk,p

θ̃p + T̃ i
jk,p

θ̃p = dT̃ i
jk

+ T̃
q

jk
θ̃iq − T̃ i

qk
θ̃
q
j − T̃ i

jqθ̃
q
k,

and similarly for tensors of other types. We can easily compute [18, (2.28)]
that if f is a real-valued function then we have

(2.16) ddcf = f̃iΘ̃
i + f̃ij θ̃

i ∧ θ̃j + f̃iΘ̃
i.

To simplify computations, denote by α = a(1,0), so that

a = α+ α,

and we have

|a|2g̃ = 2|α|2g̃ ,
where we are using g̃ here as a Riemannian metric on TRM on the LHS and
as a Hermitian metric on T 1,0M on the RHS, and the equality follows from
the fact that the Riemannian metric is J-invariant. In our frame we can
write α = α̃iθ̃

i, so that

|α|2g̃ = |α̃i|2.
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We then compute

d|α|2g̃ = α̃i,jα̃iθ̃
j + α̃i,jα̃iθ̃j + α̃iα̃i,j θ̃

j + α̃iα̃i,j θ̃j,

hence
∂|α|2g̃ = α̃i,jα̃iθ̃

j + α̃iα̃i,j θ̃
j,

(d∂|α|2g̃)(1,1) = (α̃i,jkα̃i + α̃i,jα̃i,k + α̃i,kα̃i,j + α̃iα̃i,jk)θ̃
k ∧ θ̃j

and since ddc|α|2g̃ = −
√
−1d∂|α|2g̃ , this implies that

(2.17) ∆g̃|α|2g̃ = |α̃i,j |2 + |α̃i,j|2 + α̃i,kkα̃i + α̃iα̃i,kk.

Next, we need a commutation relation for covariant derivatives of α. We
start with the definition

dα̃i = α̃j θ̃
j
i + α̃i,j θ̃

j + α̃i,j θ̃
j,

and applying d again
(2.18)

0 = ddα̃i = α̃jΩ̃
j
i+α̃i,jpθ̃

p∧θ̃j+α̃i,jpθ̃p∧θ̃j+α̃i,jΘ̃
j+α̃i,jpθ̃

p∧θ̃j+α̃i,jpθ̃
p∧θ̃j+α̃i,jΘ̃

j ,

and the (1, 1)-part of (2.18) says

α̃jR̃
j

ikℓ
θ̃k ∧ θ̃ℓ − α̃i,kℓθ̃

k ∧ θ̃ℓ + α̃i,ℓkθ̃
k ∧ θ̃ℓ = 0,

and so we obtain the commutation relation

(2.19) α̃i,kℓ = α̃i,ℓk + α̃jR̃
j

ikℓ
,

exactly like in the Kähler case. Taking the (0, 2)-part of (2.18) gives

α̃jK̃
j

ikℓ
θ̃k ∧ θ̃ℓ + α̃i,jÑ

j

kℓ
θ̃k ∧ θ̃ℓ + α̃i,ℓkθ̃

k ∧ θ̃ℓ = 0,

which, after skew-symmetrizing α̃i,ℓk in k, ℓ, gives the commutation relation

(2.20) α̃i,ℓk = α̃i,kℓ − 2α̃jK̃
j

ikℓ
− 2α̃i,jÑ

j

kℓ
.

Using (2.19) in (2.17) gives

∆g̃|α|2g̃ = |α̃i,j|2 + |α̃i,j|2 + 2Re(α̃i,kkα̃i) + α̃jα̃iR̃
j

ikk
,

and recalling from [18, (2.21)] that

(2.21) R̃
j

ikk
= R̃ij − 4Ñ q

pj
Ñ

p

qi
− 4Ñp

qj
Ñ i

pq,

we obtain

∆g̃|α|2g̃ = |α̃i,j|2+|α̃i,j|2+2Re(α̃i,kkα̃i)+R̃ijα̃jα̃i−4α̃jα̃iÑ
q

pj
Ñ

p

qi
−4α̃jα̃iÑ

p

qj
Ñ i

pq.

To deal with the term R̃ijα̃jα̃i, observe that differentiating the PDE (2.10)

and using (2.15) we have that Ric(g̃) = Ric(g) − 1
2πdd

cF, which is a fixed

background tensor (independent of g̃), hence we can write R̃ij = T̃ij where

T =
√
−1T̃ij θ̃

i ∧ θ̃j is some fixed tensor. This implies that

R̃ijα̃jα̃i > −|T |g̃|α|2g̃ > −Ctrgg̃|α|2g̃.
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Likewise, if we let now T̃ij = Ñ
q

pj
Ñ

p

qi
, then T =

√
−1T̃ij θ̃

i ∧ θ̃j is some fixed

tensor (independent of g̃), and so by the same logic we can bound

−4α̃jα̃iÑ
q

pj
Ñ

p

qi
> −Ctrgg̃|α|2g̃.

Unfortunately this doesn’t work directly for the last term

(2.22) −4α̃jα̃iÑ
p

qj
Ñ i

pq,

since the corresponding tensor T =
√
−1Ñp

qj
Ñ i

pq θ̃
i∧ θ̃j depends also on g̃. To

understand more precisely how to bound this, denote by θi a local unitary
frame for the background metric g, so that we can write

θ̃i = aijθ
j, θi = bij θ̃

j,

where the local matrices (aij) and (bij) are inverses of each other, i.e. aijb
k
i =

δjk. We can express the components of the Nijenhuis tensor with respect to
the frame θi as

N i
jk

= Ñ
p
qra

q
ja

r
kb

i
p, hence Ñ i

jk
= N

p
qrb

q
jb

r
ka

i
p,

and the components N i
jk

are all uniformly bounded. Similarly the compo-

nents of (1, 0)-form α are given by αi = a
j
i α̃j , and so we can write

4α̃jα̃iÑ
p

qj
Ñ i

pq = 4αwαhb
w
j b

h
i N

k
ℓr
N t

uvb
ℓ
qb

r
ja

p
kb

u
pb

v
qa

i
t = 4αwαhb

w
j N

k
ℓr
Nh

kv
bℓqb

r
jb

v
q .

and working at an arbitrary point we may choose our unitary frames so that
at this point we have

aij =
√

λiδij ,

where λ1, λ2 > 0 are the eigenvalues of the Hermitian metric g̃ with respect
to g. This implies that

bij =
1

√

λj

δij ,

and so at our point our term (2.22) simplifies to

−4
2

∑

j,q=1

λ−1
j λ−1

q αjαhN
k
qj
Nh

kq
,

and since Nk
qj

is skew-symmetric in q, j, only the terms in the sum with

j 6= q survive, and so this equals

−4λ−1
1 λ−1

2 α1αhN
k
21
Nh

k2
− 4λ−1

2 λ−1
1 α2αhN

k
12
Nh

k1
,

but from the Calabi-Yau equation (1.1) we have that

(2.23) λ1λ2 = eF ,
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which is uniformly bounded, and so our term (2.22) can be bounded below
by

−C
∑

h

|αh|2 = −C|α|2g > −Ctrgg̃|α|2g̃,

and combining all of the above gives

∆g̃|α|2g̃ > |α̃i,j |2 + |α̃i,j |2 + 2Re(α̃i,kkα̃i)− Ctrgg̃|α|2g̃.
Observe that here we have used crucially that dimM = 4 so that there are
only two eigenvalues. This fact will be also used further below.

The main claim (2.24). If we denote by ∆H
g̃ a = −(dd∗g̃a + d∗g̃da) the

g̃-Hodge Laplacian of a = α+ α, then the main claim is that

(2.24) 2Re(α̃i,kkα̃i) >
1

2
g̃(∆H

g̃ a, a)− 1

2
|α̃i,j|2 − Ctrgg̃|α|2g̃ − C|∇g̃|g,g̃|α|2g̃.

End of proof of Proposition 2.1 assuming (2.24). Assuming that (2.24)
holds, let us complete the proof of Proposition 2.1. Plugging in, we get

∆g̃|α|2g̃ >
1

2
|α̃i,j|2 + |α̃i,j |2 +

1

2
g̃(∆H

g̃ a, a)− Ctrgg̃|α|2g̃ − C|∇g̃|g,g̃|α|2g̃.

We compute

dα = d(α̃iθ̃
i) = α̃i,j θ̃

j ∧ θ̃i + α̃i,j θ̃
j ∧ θ̃i + α̃iΘ̃

i,

and recall that

da = dα+ dα = ω̃ − ω,

and taking the (1, 1)-part

(da)(1,1) = ω̃ − ω(1,1),

hence

|(da)(1,1)|2g̃ = 2− 2trg̃g + |g|2g̃ > 2− 2trg̃g +
(trg̃g)

2

2
>

(trg̃g)
2

4
− 2,

but we also have

(da)(1,1) = (α̃i,j − α̃j,i)θ̃
j ∧ θ̃i,

|(da)(1,1)|2g̃ = |α̃i,j − α̃j,i|2 6 4|α̃i,j |2,
and so

|α̃i,j|2 >
(trg̃g)

2

16
− 1

2
>

(trgg̃)
2

C
− 1

2
.

This gives

∆g̃|α|2g̃ >
1

2
|α̃i,j |2+

1

2
|α̃i,j|2+

(trgg̃)
2

C
+
1

2
g̃(∆H

g̃ a, a)−Ctrgg̃|α|2g̃−C|∇g̃|g,g̃|α|2g̃−C,

and we also have

1

2
|α̃i,j|2 +

1

2
|α̃i,j |2 >

1

4
|∇̃a|2g̃ +

1

4
|∇̃a|2g̃,
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and recalling that |a|2g̃ = 2|α|2g̃ , we obtain

(2.25)

∆g̃|a|2g̃ >
1

2
|∇̃a|2g̃+

1

2
|∇̃a|2g̃+

(trgg̃)
2

C
+g̃(∆H

g̃ a, a)−Ctrgg̃|a|2g̃−C|∇g̃|g,g̃|a|2g̃−C.

We now deal with the term with the Hodge Laplacian. Using the gauge-
fixing condition (1.6) we have

∆H
g̃ a = −dd∗g̃a− d∗g̃da = −d∗g̃da = d∗g̃ω − d∗g̃ω̃ = d∗g̃ω,

since ∗g̃ω̃ = ω̃ and so d∗g̃ω̃ = 0. We also have the well-known formula

∗g̃ω =
2ω ∧ ω̃

ω̃2
ω̃ − ω + 2ω(2,0)+(0,2) = trg̃g ω̃ − ω + 2ω(2,0)+(0,2),

d ∗g̃ ω = dtrg̃g ∧ ω̃ + 2d(ω(2,0)+(0,2)),

∗g̃d ∗g̃ ω = dctrg̃g + 2 ∗g̃ d(ω(2,0)+(0,2)),

and so
∆H

g̃ a = d∗g̃ω = −dctrg̃g − 2 ∗g̃ d(ω(2,0)+(0,2)),

|g̃(∆H
g̃ a, a)| 6 |g̃(dctrg̃g, a)| + 2|g̃(∗g̃d(ω(2,0)+(0,2)), a)|

6 C|∇trg̃g|g̃|a|g̃ + 2| ∗g̃ d(ω(2,0)+(0,2))|g̃|a|g̃
= C|∇(trgg̃e

−F )|g̃|a|g̃ + 2|d(ω(2,0)+(0,2))|g̃|a|g̃
6 C|∇trgg̃|g̃|a|g̃ +Ctrgg̃|∇(e−F )|g̃|a|g̃ + C(trgg̃)

3

2 |a|g̃
6 C|∇trgg̃|g̃|a|g̃ +C(trgg̃)

3

2 |a|g̃

6 ε
|∇trg g̃|2g̃
trgg̃

+
C

ε
trgg̃|a|2g̃ + ε(trgg̃)

2 +
C

ε
|a|4g̃

6 ε
|∇trg g̃|2g̃
trgg̃

+ 2ε(trgg̃)
2 +

C

ε2
|a|4g̃

6 ε|∇g̃|2g,g̃ + 2ε(trgg̃)
2 +

C

ε2
|a|4g̃,

using (2.13), and so assuming without loss that ε is small, and substituting
in (2.25) gives

∆g̃|a|2g̃ >
1

2
|∇̃a|2g̃ +

1

2
|∇̃a|2g̃ +

(trgg̃)
2

C
− ε|∇g̃|2g,g̃ −

C

ε2
|a|4g̃ − C,

which is exactly (2.14).

Proof of the main claim (2.24) modulo (2.27) and (2.28). We now
need to prove the main claim (2.24). Since the Hodge Laplacian is a real
operator, we have

∆H
g̃ a = ∆H

g̃ α+∆H
g̃ α = ∆H

g̃ α+∆H
g̃ α,

and
(∆H

g̃ α)(0,1) = (∆H
g̃ α)(1,0),
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and so

g̃(∆H
g̃ a, a) = g̃(∆H

g̃ α+∆H
g̃ α,α+ α)

= g̃(∆H
g̃ α,α) + g̃(∆H

g̃ α,α) + g̃(∆H
g̃ α,α) + g̃(∆H

g̃ α,α)

= g̃((∆H
g̃ α)(1,0), α) + g̃((∆H

g̃ α)(0,1), α) + g̃((∆H
g̃ α)(0,1), α) + g̃((∆H

g̃ α)(1,0), α)

= g̃((∆H
g̃ α)(1,0), α) + g̃((∆H

g̃ α)(0,1), α) + g̃((∆H
g̃ α)(1,0), α) + g̃((∆H

g̃ α)(0,1), α)

= 2Reg̃((∆H
g̃ α)(1,0), α) + 2Reg̃((∆H

g̃ α)(0,1), α).

(2.26)

Next, we claim that

(2.27) (∆H
g̃ α)(1,0) = 2α̃k,iiθ̃

k,

(2.28) (∆H
g̃ α)(0,1) =

(

−4α̃i,jÑ
j

ki
− 2α̃jK̃

j

iki
+ 2α̃iÑ

i
jk,j

)

θ̃k.

We will prove these by long direct computations, but first let us assume
we have these and complete the proof of the main claim (2.24). Combining
(2.26), (2.27) and (2.28) gives

1

2
g̃(∆H

g̃ a, a) = 2Re(α̃k,iiα̃k) + Re
(

−4α̃i,jα̃kÑ
j

ki
− 2α̃jα̃kK̃

j

iki
+ 2α̃iα̃kÑ

i
jk,j

)

,

(2.29)

and we can bound the last 3 terms in (2.29) using the same method as
before. For the first term, using the same notation as earlier, we can write

α̃i,jα̃kÑ
j

ki
=

2
∑

i,k=1

λ−1
i λ−1

k αi,jαkN
j

ki
=

∑

i 6=k

λ−1
i λ−1

k αi,jαkN
j

ki
= e−F

∑

i 6=k

αi,jαkN
j

ki
,

using that N j

ki
is skew-symmetric in i, k as well as the Calabi-Yau equation

(2.23). Using the Calabi-Yau equation again, we can bound

−Re(4α̃i,jα̃kÑ
j

ki
) 6 C

∑

j

∑

i 6=k

|αi,j ||αk| 6 C
∑

j

∑

i 6=k

λ
− 1

2

i λ
− 1

2

k |αi,j||αk|λ
− 1

2

j λ
1

2

j

= C
∑

j

∑

i 6=k

|α̃i,j ||α̃k|λ
1

2

j 6 C|α|g̃
√

trgg̃
∑

i,j

|α̃i,j|

6
1

2
|α̃i,j|2 + Ctrgg̃|α|2g̃.

The second terms in the parenthesis in (2.29) is bounded by Ctrg g̃|α|2g̃ ar-

guing exactly as we did to bound (2.22): using the skew-symmetry of Kj

iki
in k, i and the Calabi-Yau equation (2.23) we have

α̃jα̃kK̃
j

iki
=

2
∑

i,k=1

λ−1
i λ−1

k αjαkK
j

iki
=

∑

i 6=k

λ−1
i λ−1

k αjαkK
j

iki
= e−F

∑

i 6=k

αjαkK
j

iki
,
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and so

−Re(2α̃jα̃kK̃
j

iki
) 6 C|α|2g 6 Ctrgg̃|α|2g̃.

The last term in the parenthesis in (2.29)

(2.30) α̃iα̃kÑ
i
jk,j

,

requires more work. First, we explain in detail the term |∇g̃|2g,g̃ in (2.12).

As in [18, (3.9)] there are functions aikℓ defined by

daim − aijθ
j
m + akmθ̃ik = aikℓa

k
mθ̃ℓ,

which are the components of ∇g̃ in the frame {θ̃i}, so that [18, Lemma 4.2]

|∇g̃|2g̃ = |aikℓ|2.
The mixed norm |∇g̃|2g,g̃ that appears in (2.12) is given by

(2.31) |∇g̃|2g,g̃ = |aipℓapk|2.
We can now go back to the term in (2.30) and using [18, Lemma 4.4 (i)] we
can write it as

α̃iα̃kÑ
i
jk,j

= αℓαmbmk bskb
u
j b

r
jN

ℓ
rs,u + αℓαmbℓib

m
k bskb

r
jN

t
rsa

i
uja

u
t ,

and using the skew-symmetry of N i
jk,j

in j, k and the Calabi-Yau equation

we have

αℓαmbmk bskb
u
j b

r
jN

ℓ
rs,u =

2
∑

j,k=1

λ−1
j λ−1

k αiαkN
i
jk,j

=

2
∑

j 6=k

λ−1
j λ−1

k αiαkN
i
jk,j

= e−F
∑

j 6=k

αiαkN
i
jk,j

,

whose absolute value is bounded by C|α|2g 6 Ctrgg̃|α|2g̃. Similarly, using the

skew-symmetry of N t
jk

in j, k and the Calabi-Yau equation we have

αℓαmbℓib
m
k bskb

r
jN

t
rsa

i
uja

u
t =

2
∑

i,j,k=1

αiαkλ
− 1

2

i λ−1
k λ

− 1

2

j N t
jk
aiuja

u
t

=
∑

i

∑

j 6=k

αiαkλ
− 1

2

i λ−1
k λ

− 1

2

j N t
jk
aiuja

u
t

= e−
F
2

∑

i

∑

j 6=k

αiαkλ
− 1

2

i λ
− 1

2

k N t
jk
aiuja

u
t

= e−
F
2

∑

i

∑

j 6=k

α̃iα̃kN
t
jk
aiuja

u
t ,

whose absolute value is bounded by

C|α|2g̃|aiujaut | = C|α|2g̃|∇g̃|g,g̃,
and so

−Re(2α̃iα̃kÑ
i
jk,j

) 6 Ctrgg̃|α|2g̃ + C|α|2g̃|∇g̃|g,g̃.
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Putting all these together we obtain

1

2
g̃(∆H

g̃ a, a) 6 2Re(α̃k,iiα̃k) + Ctrgg̃|α|2g̃ + C|α|2g̃|∇g̃|g,g̃ +
1

2
|α̃i,j |2,

which is exactly the main claim (2.24).

Proof of (2.27) and (2.28). To complete the proof of the main claim (2.24),
we are left with showing (2.27) and (2.28), which are Bochner-Kodaira-
Weitzenböck type formulas. For these, recall that by definition of the Hodge
star ∗g̃, for any two (p, q)-forms β, γ we have

β∧∗g̃γ = g̃(β, γ)ω̃2 = g̃(β, γ)
√
−1θ̃1∧θ̃1∧

√
−1θ̃2∧θ̃2 = −g̃(β, γ)θ̃1∧θ̃1∧θ̃2∧θ̃2,

and also ∗g̃α = ∗g̃α (i.e. ∗g̃ is a real operator), from which we can compute
the Hodge star on basic combinations of our frame elements, using the fol-
lowing notation: for i ∈ {1, 2} we let ı̂ ∈ {1, 2} be such that {i, ı̂} = {1, 2}
(unordered), i.e. 1̂ = 2, 2̂ = 1. Then from the definition we have

∗g̃(θ̃i ∧ θ̃i ∧ θ̃ı̂ ∧ θ̃ı̂) = −1,

∗g̃ θ̃i = θ̃i ∧ θ̃ı̂ ∧ θ̃ı̂, ∗g̃ θ̃i = −θ̃i ∧ θ̃ı̂ ∧ θ̃ı̂

∗g̃(θ̃i ∧ θ̃ı̂ ∧ θ̃ı̂) = −θ̃i, ∗g̃(θ̃i ∧ θ̃ı̂ ∧ θ̃i) = θ̃ı̂,

∗g̃(θ̃ı̂ ∧ θ̃ı̂ ∧ θ̃i) = θ̃i, ∗g̃(θ̃i ∧ θ̃ı̂ ∧ θ̃i) = −θ̃ı̂,

∗g̃(θ̃i ∧ θ̃j) = θ̃i ∧ θ̃j, ∗g̃(θ̃i ∧ θ̃j) = θ̃i ∧ θ̃j,

∗g̃(θ̃i ∧ θ̃j) =

{

θ̃ı̂ ∧ θ̃ı̂ if i = j,

−θ̃i ∧ θ̃j if i = ̂.

With these, we can now start the computation of ∆H
g̃ α = −dd∗g̃α − d∗g̃dα,

recalling that

d∗g̃α = − ∗g̃ d ∗g̃ α,
we compute

∗g̃α = α̃iθ̃
i ∧ θ̃ı̂ ∧ θ̃ı̂,

d ∗g̃ α = α̃i,j θ̃
j ∧ θ̃i ∧ θ̃ı̂ ∧ θ̃ı̂ = α̃i,iθ̃

i ∧ θ̃i ∧ θ̃ı̂ ∧ θ̃ı̂,

d∗g̃α = −α̃i,i,

(2.32) dd∗g̃α = −α̃i,ikθ̃
k − α̃i,ikθ̃

k.

dα = α̃i,j θ̃
j ∧ θ̃i + α̃i,j θ̃

j ∧ θ̃i + α̃iÑ
i
jk
θ̃j ∧ θ̃k

(2.33) ∗g̃dα = α̃i,j θ̃
j ∧ θ̃i − α̃i,iθ̃

ı̂ ∧ θ̃ı̂ + α̃i,̂ıθ̃
i ∧ θ̃ı̂ + α̃iÑ

i
jk
θ̃j ∧ θ̃k.
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We first prove (2.27). We are thus interested in the (1, 0)-part of d∗g̃dα, so
we first take the exterior derivative of (2.33) and take its (2, 1)-part (which
becomes (1, 0) after taking the Hodge star)
(2.34)

(d∗g̃dα)(2,1) = α̃i,jkθ̃
k∧θ̃j∧θ̃i−α̃i,ikθ̃

k∧θ̃ı̂∧θ̃ı̂+α̃i,̂ıkθ̃
k∧θ̃i∧θ̃ı̂+2α̃iÑ

i
jk
Ñ

j
pq θ̃

p∧θ̃q∧θ̃k,
and in the first term in (2.34) we must have j = ı̂ and we can write it as

α̃i,̂ıiθ̃
i ∧ θ̃ı̂ ∧ θ̃i + α̃i,̂ı̂ıθ̃

ı̂ ∧ θ̃ı̂ ∧ θ̃i,

and its Hodge star equals

−α̃i,̂ıiθ̃
ı̂ + α̃i,̂ı̂ıθ̃

i = (−α̃
k̂,kk̂

+ α̃
k,k̂k̂

)θ̃k = (−α̃i,ki + α̃k,ii)θ̃
k.

In the second term we must have k = i and in the third term k = ı̂ so we
can write them as

−α̃i,iiθ̃
i ∧ θ̃ı̂ ∧ θ̃ı̂ + α̃i,̂ı̂ıθ̃

ı̂ ∧ θ̃i ∧ θ̃ı̂,

and their Hodge star equals

(α̃i,ii + α̃i,̂ı̂ı)θ̃
i = α̃k,iiθ̃

k.

In the last term in (2.34) we must have q = p̂ so it equals

2α̃iÑ
i
jp
Ñ

j

pp̂
θ̃p ∧ θ̃p̂ ∧ θ̃p + 2α̃iÑ

i
jp̂
Ñ

j

pp̂
θ̃p ∧ θ̃p̂ ∧ θ̃p̂,

and its Hodge star equals

2α̃iÑ
i
jp
Ñ

j

pp̂
θ̃p̂ − 2α̃iÑ

i
jp̂
Ñ

j

pp̂
θ̃p =

(

2α̃iÑ
i

jk̂
Ñ

j

k̂k
− 2α̃iÑ

i

jk̂
Ñ

j

kk̂

)

θ̃k

=
(

2α̃iÑ
i
jℓ
Ñ

j

ℓk
− 2α̃iÑ

i
jℓ
Ñ

j

kℓ

)

θ̃k

= −4α̃iÑ
i
jℓ
Ñ

j

kℓ
θ̃k,

using the skew-symmetry of Ñ j

kℓ
in k, ℓ. Putting these together gives

−(d∗g̃dα)
(1,0) = (∗g̃d ∗g̃ dα)(1,0) = ∗g̃

(

(d ∗g̃ dα)(2,1)
)

=
(

−α̃i,ki + α̃k,ii + α̃k,ii − 4α̃iÑ
i
jℓ
Ñ

j

kℓ

)

θ̃k,

and combining this with (2.32) gives

(∆H
g̃ α)(1,0) =

(

α̃i,ik − α̃i,ki + α̃k,ii + α̃k,ii − 4α̃iÑ
i
jℓ
Ñ

j

kℓ

)

θ̃k.

From the commutation relation (2.19) we obtain

α̃i,ik − α̃i,ki = −α̃jR̃
j

iki
,

α̃k,ii − α̃k,ii = α̃jR̃
j

kii
,

while [18, (2.16)] gives

R̃
j

kii
− R̃

j

iki
= 4Ñ j

pi
Ñ

p

ki
,
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and so

(∆H
g̃ α)(1,0) =

(

2α̃k,ii + 4α̃jÑ
j

pi
Ñ

p

ki
− 4α̃iÑ

i
jℓ
Ñ

j

kℓ

)

θ̃k = 2α̃k,iiθ̃
k,

which proves (2.27). The proof of (2.28) is similar. First, from (2.32) we
have

(2.35) (dd∗g̃α)
(0,1) = −α̃i,ikθ̃

k.

We are then interested in the (0, 1)-part of d∗g̃dα, so we take the exterior

derivative of (2.33) and then take the (1, 2)-part to obtain

(d ∗g̃ dα)(1,2) = α̃i,jÑ
j
pq θ̃

p ∧ θ̃q ∧ θ̃i − α̃i,jÑ
i
pq θ̃

j ∧ θ̃p ∧ θ̃q − α̃i,ikθ̃
k ∧ θ̃ı̂ ∧ θ̃ı̂

+ α̃i,̂ıkθ̃
k ∧ θ̃i ∧ θ̃ı̂ + α̃i,pÑ

i
jk
θ̃p ∧ θ̃j ∧ θ̃k + α̃iÑ

i
jk,p

θ̃p ∧ θ̃j ∧ θ̃k

= α̃i,jÑ
j
pq θ̃

p ∧ θ̃q ∧ θ̃i − α̃i,ikθ̃
k ∧ θ̃ı̂ ∧ θ̃ı̂ + α̃i,̂ıkθ̃

k ∧ θ̃i ∧ θ̃ı̂

+ α̃iÑ
i
jk,p

θ̃p ∧ θ̃j ∧ θ̃k,

(2.36)

and in the first term in (2.36) we must have q = p̂ so we can write it as

α̃p,jÑ
j

pp̂
θ̃p ∧ θ̃p̂ ∧ θ̃p + α̃p̂,jÑ

j

pp̂
θ̃p ∧ θ̃p̂ ∧ θ̃p̂,

and its Hodge star equals

α̃p,jÑ
j

pp̂
θ̃p̂ − α̃p̂,jÑ

j

pp̂
θ̃p = α̃p,jÑ

j

pi
θ̃i − α̃i,jÑ

j

pi
θ̃p = −2α̃i,jÑ

j

pi
θ̃p.

In the second and third terms in (2.36) we must have k = i so we can write
them as

−α̃i,iiθ̃
i ∧ θ̃ı̂ ∧ θ̃ı̂ + α̃i,̂ıiθ̃

i ∧ θ̃i ∧ θ̃ı̂,

and their Hodge star equals

−α̃i,iiθ̃
i − α̃i,̂ıiθ̃

ı̂ = −α̃i,kiθ̃
k.

In the last term in (2.36) we must have k = ̂ and so we can write it as

α̃iÑ
i
ĵ,j

θ̃j ∧ θ̃j ∧ θ̃̂ + α̃iÑ
i
ĵ,̂

θ̃̂ ∧ θ̃j ∧ θ̃̂,

and its Hodge star equals

α̃iÑ
i
ĵ,j

θ̃̂ − α̃iÑ
i
ĵ,̂

θ̃j = α̃iÑ
i
jk,j

θ̃k − α̃iÑ
i
kj,j

θ̃k = 2α̃iÑ
i
jk,j

θ̃k.

Putting these together gives

−(d∗g̃dα)
(0,1) = (∗g̃d ∗g̃ dα)(0,1) = ∗g̃

(

(d ∗g̃ dα)(1,2)
)

=
(

−2α̃i,jÑ
j

ki
− α̃i,ki + 2α̃iÑ

i
jk,j

)

θ̃k,

and combining this with (2.35) gives

(∆H
g̃ α)(0,1) =

(

α̃i,ik − 2α̃i,jÑ
j

ki
− α̃i,ki + 2α̃iÑ

i
jk,j

)

θ̃k.
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From the commutation relation (2.20) we obtain

α̃i,ik − α̃i,ki = −2α̃jK̃
j

iki
− 2α̃i,jÑ

j

ki
,

and so

(∆H
g̃ α)(0,1) =

(

−4α̃i,jÑ
j

ki
− 2α̃jK̃

j

iki
+ 2α̃iÑ

i
jk,j

)

θ̃k,

which proves (2.28) and concludes the proof of Proposition 2.1, and hence
of Theorem 1.2.
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