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SOME RIGIDITY RESULTS ON SHRINKING

GRADIENT RICCI SOLITON

JIANYU OU, YUANYUAN QU, AND GUOQIANG WU

Abstract. Suppose (Mn, g, f) is a complete shrinking gradient
Ricci soliton. We give several rigidity results under some natural
conditions, generalizing the results in [25, 14]. Using maximum
principle, we prove that shrinking gradient Ricci soliton with con-
stant scalar curvature R = 1 is isometric to a finite quotient of
R2 × S2, giving a new proof of the main results of Cheng-Zhou [9].

1. Introduction

For an n-dimensional complete Riemannian manifold (M, g) and a
smooth potential function f on (M, g), the triple (M, g, f) is called a
gradient shrinking Ricci soliton or shrinker if

Ric+Hess f =
1

2
g,(1.1)

where Ric is the Ricci curvature of (M, g) and Hess f is the Hessian of
f . Shrinkers are viewed as a natural extension of Einstein manifolds.
More importantly, shrinkers play an important role in the Ricci flow
as they correspond to some self-similar solutions and arise as limits
of dilations of Type I singularities in the Ricci flow. Shrinkers can
also be regarded as critical points of the Perelman’s entropy functional
and play a significant role in Perelman’s resolution of the Poincaré
conjecture [22, 23, 24].
The study of solitons has become increasingly important in both

the study of the Ricci flow and metric measure space. Solitons play a
direct role as singularity dilations in the Ricci flow proof of uniformiza-
tion. In [22], Perelman introduced the ancient κ-solutions, which play
an important role in the singularity analysis, and he also proved that
suitable blow down limit of ancient κ-solutions must be a shrinking
gradient Ricci soliton. In [23], Perelman proved that any two dimen-
sional non-flat ancient κ-soluition must be the standard S2, and he
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also classified three dimensional shrinking gradient Ricci soliton under
the assumption of nonnegative curvature and κ-noncollapseness. Due
to the work of Perelman [23], Ni-Wallach [21], Cao-Chen-Zhu [5], the
classification of three dimensional shrinking gradient Ricci soliton is
complete. For more work on the classification of gradient Ricci soliton
under various curvature condition, see [1], [3], [5], [4], [7], [8], [11], [20],
[25], [27], [30], [31].
In this paper, we study some rigidity problem about the shrinking

gradient Ricci soliton.
In section 2, we provide some preliminary knowledge which will be

used throughout the paper.
In section 3, we impose the additional assumption which is called

condition A as follows:

|R(u, v, u, v)| ≤ A ·Ric(u, u)

for any |u| = |v| = 1 and u⊥v, where A is a positive constant. There are
so many examples satisfying condition A but having mixed sectional
curvature. An explicit example is the Kähler shrinking gradient Ricci
soliton on CP 2#(−CP 2) constructed by Cao and Koiso independently.
Next we can state the following splitting result.

Theorem 1.1. Let (Mn, g, f) be a shrinking gradient Ricci soliton

satisfying condition A, then the universal cover of M is isometric to

Rk × Nn−k, where N is an n − 1 dimensional shrinking gradient Ricci

soliton with positive Ricci curvature.

Remark Petersen-Wylie [25] and Guan-Lu-Xu [14] proved the above
theorem independently if (Mn, g, f) has nonnegative sectional curva-
ture.
In section 4, at first we define a symmetric two tensor h by h(u, v) =

∑n

i,j=1R(u, ei, v, ej)Ric(ei, ej), where {ei}
n
i=1 are local orthonormal ba-

sis, then we state our main results as follows.

Theorem 1.2. Let (Mn, g, f) be a shrinking gradient Ricci soliton, if

Ric ≥ 0 and h ≤ 1
2
Ric, then the universal cover of M is isometric to

Rk × Nn−k, where N is a compact Einstein manifold.

Based on the above theorem, we give a new proof of Theorem 1.4 in
[26].

Corollary 1.3. [26] If (Mn, g, f) is a shrinking gradient Ricci soliton

with nonnegative sectional curvature and R ≤ 1, then the universal

cover of M is isometric to either R
n or S

2 × R
n−2
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In section 5, we focus our attention on 4-dimensional gradient shrink-
ing Ricci solitons with constant scalar curvature. Recall that in Pe-
tersen and Wylie’s paper [25], a gradient Ricci soliton (M, g) is said to
be rigid if it is isometric to a quotient N × Rk, the product soliton of
an Einstein manifold N of positive scalar curvature with the Gaussian
soliton Rk. Therefore, a gradient Ricci soliton has constant scalar cur-
vature if it is rigid. Conversely, for the complete shrinking case, Prof.
Huai-Dong Cao raised the following

Conjecture: Let (Mn, g, f), n ≥ 4, be a complete n-dimensional gra-
dient shrinking Ricci soliton. If (M, g) has constant scalar curvature,
then it must be rigid, i.e., a finite quotient of Nk × Rn−k for some
Einstein manifold N of positive scalar curvature.

About this conjecture, Petersen-Wylie [26] proved the following in-
teresting result.

Theorem 1.4 ([26]). A Ricci shrinker is rigid iff it has constant scalar

curvature and is radially flat, that is, the sectional curvautre

K(∇f, ·) = 0.

Later, Fernández-López and Garćıa-Rı́o [12] characterize the rigidity
using the rank of Ricci curvature.

Theorem 1.5 ([12]). A Ricci shrinker is rigid iff it has constant scalar

curvature and the Ricci curvature has constant rank.

In the same paper, they also proved that the possible value of R is
{0, 1, ..., n−1

2
, n
2
}. In dimension 4, If R = 0, (M4, g) is isometric to R4;

if R = 3
2
, then (M4, g) is isometric to R× S3; if R = 2, then (M4, g) is

isometric to a compact Einstein manifold with Ric = 1
2
g.

Recently, Cheng-Zhou [9] proved a four dimensional Ricci shrinker
with R = 1 is rigid. They applied ∆f to the quantity

tr(Ric3)−
1

4
,

and they got the following nice inequality

∆f

(

f(tr(Ric3)−
1

4
)

)

≥ 9f(tr(Ric3)−
1

4
),

at last they used the integration by parts to derive that

tr(Ric3)−
1

4
= 0

over M , and this implies that λ1 + λ2 = 0, so the Ricci curvature has
rank 2, finally they obtain the rigidity by Theorem 3.2.
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We want to point remark that (3.11) in Cheng-Zhou [9] gives that

1

3
tr(Ric3)−

1

12
= λ2λ3λ4,

this implies that the quantity they used is σ3(Ric), since λ1 = 0 in this
situation.
We restate the main theorem in [9] as follows.

Theorem 1.6 ([9]). Let (M, g, f) be a 4-dimensional complete noncom-

pact shrinking gradient Ricci soliton. If M has constant scalar curva-

ture R = 1, then it must be isometric to a finite quotient of R2 × S2.

Our new proof is inspired by [25], where they assumed the sectional
curvature is nonnegative. Denote the eigenvalues of Ricci curvature by
λ1 ≤ λ2 ≤ · · · ≤ λn. then it is easy to observe that Rm ∗ Ric ≥ 0.
They applied ∆f directly to the sum of the smallest k eigenvalues and
obtained

∆f (λ1 + λ2 + · · ·+ λk) ≤ (λ1 + λ2 + · · ·+ λk)

holds in the barrier sense, at last they derived that the Ricci curvature
has constant rank by standard maximum principle.
In the setting of R = 1, it is not that easy, and the most important

thing is to derive the following inequality,

∆f (λ1 + λ2)

≤
2∇f · ∇(λ1 + λ2) + (λ1 + λ2)− 2(λ2

1 + λ2
2)

f
(1− 2λ1 − 2λ2)

−2(λ1 + λ2) + 4(λ2
1 + λ2

2),

then

λ1 + λ2

f

satisfies

∆f

λ1 + λ2

f
≤ −0.9 ·

λ1 + λ2

f

outside a compact set, next we can use similar trick as [18] to obtain
a uniform positive lower bound of λ1 + λ2, this is impossible unless
λ1 + λ1 ≡ 0.
Acknowledgments. The authors would like to thank Professor Mi-

jia Lai, Professor Yu Li, Professor Xiaolong Li and Professor Fengjiang
Li for their helpful discussions. Wu is also grateful to Professor Xi-Nan
Ma for his constant encouragement.
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2. Preliminary

Suppose (Mn, g, f) is a shrinking gradient Ricci soliton ∇2f +Ric =
1
2
g. At first we recall some basic formulas which will be used during

the paper.

dR = 2Ric(∇f),(2.2)

R +∆f =
n

2
,(2.3)

R + |∇f |2 = f,(2.4)

∆fR = R − 2|Ric|2,(2.5)

∆fRij = Rij − 2RikjlRkl,(2.6)

where ∆fRic = ∆Ric−∇∇fRic in the last formula.
Next we state the estimate of potential function f in Cao-Zhou [6].

Theorem 2.1 ([6]). Suppose (Mn, g, f) is an noncompact shrinking

gradient Ricci soliton, then there exist C1 and C2 such that
(

1

2
d(x, p)− C1

)2

≤ f(x) ≤

(

1

2
d(x, p) + C2

)2

,

where p is the minimal point of f .

Remark . Chen [2] proved that any shrinking gradient Ricci soliton
has R ≥ 0, so due to R+|∇f |2 = f we derive that |∇f |(x) ≤ 1

2
d(x, p)+

C2.
The following splitting theorem for shrinking gradient Ricci soliton

will be important for us.

Theorem 2.2 (Naber, [20]). For any n-dimensional shrinking gradient

Ricci soliton (Mn, g, f) with bounded curvature and a sequence of points

xi ∈ M going to infinity along an integral curve of ∇f , by choosing a

subsequence if necessary, (M, g, xi) converges smoothly to a product

manifold R× Nn−1, where N is a shrinking gradient Ricci soliton.

3. Structure of shrinking gradient Ricci soliton

satisfying condition A

There is one explicit curvature condition called 2-nonnegative flag
curvature which is defined as follows.

Definition 3.1. (Mn, g) is said to have 2-nonnegative flag curvature

if

R(e1, e2, e1, e2) +R(e1, e3, e1, e3) ≥ 0

for any othonormal basis e1, e2, e3.
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Remark Qu-Wu [28] proved that 2-nonnegative flag curvature implies
condition A. 2-nonnegative flag curvature is also considered in Li-Ni
[16].

Proposition 3.2. Suppose (Mn, g, f) is a shrinking gradient Ricci soli-

ton satisfying condition A, then the rank of Ricci curvature tenor is

constant.

Proof: Denote the eigenvalues of Ricci curvature by λ1 ≤ λ2 ≤ · · · ≤
λn.
Claim. ∆fλ1 ≤ (1 + 2A(n− 1))λ1 in the barrier sense.
Actually, at x, assume e1 satisfies Ric(x)(e1, e1) = λ1(x), then extend

e1 to an orthonormal basis {e1, e2, · · · , en} such that {ei}
n
i=1 are the

eigenvectors of Ric(x) corresponding to eigenvalues {λ1, λ2, · · · , λn}.
Take parallel transport of e1 along all the geodesics from x, then in
a neighborhood B(x, δ) we get a smooth function Ric(y)(e1(y), e1(y))
satisfying Ric(y)(e1(y), e1(y)) ≥ λ(y) and Ric(x)(e1(x), e1(x)) = λ1(x).
So at x ∈ M ,

∆fRic(e1, e1)

= (∆fRic)(e1, e1)

= Ric(e1, e1)− 2
n

∑

i=1

R(e1, ei, e1, ei)Ric(ei, ei)

≤ Ric(e1, e1) + 2A(n− 1)Ric(e1, e1)|Ric|

= Ric(e1, e1) (1 + 2A(n− 1)|Ric|) .

�

Suppose there exists q ∈ M such that λ1(q) = 0, then by the strong
maximum principle, we get λ1 ≡ 0 on M .
Similar argument implies that λ1 + λ2 + · · ·+ λk satisfies

∆f(λ1 + λ2 + · · ·+ λk) ≤ (1 + 2A(n− 1)|Ric|)(λ1 + λ2 + · · ·+ λk)

in the barrier sense for any 2 ≤ k ≤ n. So we can again use the
maximum principle to derive that either λ1 + λ2 + · · · + λk > 0 or
λ1 + λ2 + · · ·+ λk ≡ 0 on M . �

Proposition 3.3. Under the same assumption with Proposition 3.2,

the kernel of Ricci curvature is a parallel subbundle.

Proof: Given any section V ∈ ker(Ric), choose local orthonormal
basis {e1, e2, · · · , en}. Due to the nonnegativity of Ricci curvature,
Ric(V, V ) = 0 is the same as Ric(V ) = 0. According to condition A,
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Ric(V, V ) = 0 also implies R(V, ei, V, ei) = 0.

∆fRic(V, V )

= ∆Ric(V, V )−∇∇fRic(V, V )

= ∇k∇k(RijV
iV j)− (∇∇fRic)(V, V )− 2Ric(∇∇fV, V )

= (∆Ric)(V, V ) + 4∇kRij∇kV
iV j + 2Ric(∆V, V ) + 2Rij∇kV

i∇kV
j

−(∇∇fRic)(V, V )− 2Ric(∇∇fV, V )

= (∆fRic)(V, V ) + 4∇kRij∇kV
iV j + 2Ric(∆fV, V ) + 2Rij∇kV

i∇kV
j

= Ric(V, V )− 2R(V, ei, V, ei)Ric(ei, ei) + 4∇kRij∇kV
iV j + 2Rij∇kV

i∇kV
j

= 4∇kRij∇kV
iV j + 2Rij∇kV

i∇kV
j .

Since

∇k(Rij∇kV
iV j) = ∇kRij∇kV

iV j +Rij∆V iV j +Rij∇kV
i∇kV

j

= ∇kRij∇kV
iV j +Rij∇kV

i∇kV
j ,

so

0 = ∆fRic(V, V ) = −2Rij∇kV
i∇kV

j ,

hence ∇kV ∈ ker(Ric). �

Combining Proposition 3.2, Proposition 3.3 with De Rham’s split-
ting Theorem, we can get the following structure result for shrinking
gradient Ricci soliton.

Theorem 3.4. Let (Mn, g, f) be a shrinking gradient Ricci soliton

satisfying condition A, then the universal cover of M is isometric to

Rk × Nn−k, where N has positive Ricci curvature.

Assume (Mn, g, f) has nonnegative sectional curvature, Petersen-
Wylie [25] and Guan-Lu-Xu [14] proved the above Theorem indepen-
dently. Moreover, Munteanu-Wang [18] obtained that (Mn, g, f) is
compact if it has nonnegative sectional curvature and positive Ricci
curvature. So N is compact in the above Theorem. Here our con-
dition A is weaker than theirs. In [28, 29], the authors derived the
soliton (M4, g, f) is also compact under condition A and other natural
conditions.

4. Rigidity via nonnegative sectional curvature

Define a symmetric two tensor h by h(u, v) =
∑n

i,j=1R(u, ei, v, ej)Ric(ei, ej),

where {ei}
n
i=1 are local orthonormal basis.

Theorem 4.1. Let (Mn, g, f) be a shrinking gradient Ricci soliton, if

Ric ≥ 0 and h ≤ 1
2
Ric, then the universal cover of M is isometric to

R
k × N

n−k, where N is a compact Einstein manifold.
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Proof: Because Ric ≥ 0 and h ≤ 1
2
Ric,

〈h−
1

2
Ric, Ric〉 = RikjlRijRkl −

1

2
|Ric|2 ≤ 0.

Recall the formula (2.6), direct calculation gives

1

2
∆f |Ric|2 = |∇Ric|2 + |Ric|2 − 2RikjlRijRkl

Claim. |∇Ric| ≡ 0 on M .
Actually, integrating the above identity over B(p, r), the right hand

is always nonnegative, so the goal is to prove

lim
r→∞

∫

B(p,r)

∆f |Ric|2e−f = 0.

Thanks to the estimate
∫

M
(|Ric|2 + |∇Ric|2) e−f < C in [15], it is easy

to see that there exists a sequence ri → ∞ such that
∫

∂B(p,ri)
(|Ric|2 + |∇Ric|2) e−f →

0. Hence
∣

∣

∣

∣

∫

B(p,ri)

∆f |Ric|2e−f

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

∂B(p,ri)

〈∇|Ric|2e−f , ν〉

∣

∣

∣

∣

≤

∫

∂B(p,ri)

2|Ric||∇Ric| e−f

≤

∫

∂B(p,ri)

(

|Ric|2 + |∇Ric|2
)

e−f → 0. �

So |∇Ric| ≡ 0 on M , De Rham’s splitting Theorem implies that the
universal cover of M is isometric to Rk × Nn−k, where N is a compact
Einstein manifold. �

Corollary 4.2. If (Mn, g, f) is a shrinking gradient Ricci soliton with

nonnegative sectional curvature and R ≤ 1, then the universal cover of

M is isometric to either Rn or S2 × Rn−2

Proof: Choose local orthonormal basis {ei}
n
i=1, due to the assumption,

for any i,

2Ric(ei, ei) = Ric(ei, ei) +
∑

j 6=i

R(ei, ej, ei, ej) ≤ Ric(ei, ei) +
∑

j 6=i

Ric(ej , ej) = R ≤ 1,

hence Ric(ei, ei) ≤
1
2
, i.e. Ric ≤ 1

2
g. So

h(u, u) =

n
∑

i=1

R(u, ei, u, ei)Ric(ei, ei) ≤
1

2

n
∑

i=1

R(u, ei, u, ei) =
1

2
Ric(u, u).
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Then from the above Theorem we know that the universal cover of M
is isometric to Rk × Nn−k, where N is a compact Einstein manifold.
Since R ≤ 1, N has to be S

2. �

Remark . Corollary 4.2 appeared in Petersen-Wylie’s paper [26], but
our proof is different from theirs. Under the same assumption, they first
got the scalar curvature is identically one using Naber’s result [20], then
the conclusion follows from their main theorem that shrinking gradient
soliton satisfying 0 ≤ Ric ≤ 1

2
g and constant scalar curvature condition

must be rigid.
According to the above discussion, we can give ”the third proof”

using our structure Theorem 3.4,
Third proof of Corollary 4.2

Obviously the condition A holds, then the universal cover of Mn is
isometric to Rk×Nn−k by Theorem 3.4, where N is a shrinking gradient
Ricci soliton with positive Ricci curvature. Because Naber’s theorem
implies the scalar curvature is identically one, ∇f is identically zero
using formula (2.3), i.e. Ric = 1

2
g on N, so N is S2. �

Theorem 4.3. Let (Mn, g, f) be a shrinking gradient Ricci soliton with

bounded curvature, if Ric ≥ 0 and the scalar curvature R < 1 − δ for

some 0 < δ < 1, then Mn is flat.

Proof: Suppose on the contrary, then the strong maximum principle
gives R > 0 on M .
Because the curvature is bounded, formula (2.5) and quadratic growth

of f from Theorem 2.1, it is easy to see that outside a compact set,
f has no critical point. Formula (2.3) implies that the scalar curva-
ture is always increasing along the integral curve of f , hence the scalar
curvature has a positive lower bound. Next we can apply Theorem
2.2 to obtain that (M, g, f) converge along the integral curve of ∇f to
R×N

n−1, where N
n−1 is a nonflat shrinking gradient Ricci soliton sat-

isfying the same assumption, then we play the same game on N. When
N is of dimension 4, According to the main Theorem in Munteanu-
Wang [19] we get the asymptotic limit of N is either R× S3 or R2 × S2

or their quotients. In any case the scalar curvature of the asymptotic
limit can’t be smaller than 1− δ. Contradiction. �

Remark In dimension 4, Munteanu-Wang [17] proved that bounded
scalar curvature implies bounded curvature operator, so the bounded
curvature assumption can be removed.

5. constant scalar curvature

To prove the main theorem, it is necessary to derive the nonnegativ-
ity of Ricci curvature. Actually,
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Lemma 5.1 ([12],[9]). Suppose (M4, g, f) is a four dimensional Ricci

shrinker with R = 1, then Ric ≥ 0.

The following formula which is derived in plays an important role.

∇∇fRic = Ric ◦ (Ric−
1

2
g) +R(∇f, ·,∇f, ·).(5.7)

Next we state the main result proved in Cheng-Zhou [9] and give a
new proof.

Theorem 5.2 ([9]). Let (M, g, f) be a 4-dimensional complete noncom-

pact shrinking gradient Ricci soliton. If M has constant scalar curva-

ture R = 1, then it must be isometric to a finite quotient of R2 × S2.

Proof: Denote the eigenvalues of Ricci curvature by λ1 ≤ λ2 ≤ λ3 ≤
λ4.
Claim.

∆f (λ1 + λ2)

≤
2∇f · ∇(λ1 + λ2) + (λ1 + λ2)− 2(λ2

1 + λ2
2)

f
(1− 2λ1 − 2λ2)

−2(λ1 + λ2) + 4(λ2
1 + λ2

2)

in the barrier sense.
Actually, at x, because R = 1, Ric(∇f) = 0, so we choose e1 =

∇f

|∇f |
, then extend e1 to an orthonormal basis {e1, e2, e3, e4} such that

{ei}
4
i=1 are the eigenvectors of Ric(x) corresponding to eigenvalues

{λ1, λ2, λ3, λ4}. Take parallel transport of {ei}
4
i=1 along all the geodesics

from x, then in a neighborhood B(x, δ) we get a smooth function
u(y) = Ric(y)(e1(y), e1(y)) + Ric(y)(e2(y), e2(y)) satisfying u(y) ≥
λ1(y) + λ2(y) and u(x) = λ1(x) + λ2(x).
So, at x, by (5.7),

−2R(∇f, ei,∇f, ei) = 2∇kfiifk + 2λ2
i − λi

= −2(∇∇fRic)(ei, ei) + 2λ2
i − λi,

Hence

2R(e1, e2, e1, e2) =
2∇f · ∇u+ u− 2u2

f
.
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∆fu(x) = ∆f (Ric(y)(e1(y), e1(y)) +Ric(y)(e2(y), e2(y))) |y=x

= (∆fRic)(e1, e1)(x) + (∆fRic)(e2, e2)(x)

= λ1 + λ2 − 2
4

∑

i=1

R1i1iλi

= (λ1 + λ2)− 2R1212(λ1 + λ2)− 2λ3(λ3 − R3434)− 2λ4(λ4 − R3434)

= (λ1 + λ2)− 2R1212(λ1 + λ2)− 2(λ2
3 + λ2

4) + 2(λ3 + λ4)R3434

= (λ1 + λ2)− 2R1212(λ1 + λ2)− 2(λ2
3 + λ2

4) + (2R1212 + (λ3 + λ4)− (λ1 + λ2)) (λ3 + λ4)

= (λ1 + λ2)− (λ1 + λ2)(λ3 + λ4) + 2R1212(λ3 + λ4 − λ1 − λ2) + (λ3 + λ4)
2 − 2(λ2

3 + λ2
4)

= 2R1212(1− 2λ1 − 2λ2) + (λ1 + λ2) + (λ1 + λ2)(1− λ3 − λ4) + (λ3 + λ4)
2 − 2(λ2

3 + λ2
4)

=
2∇f · ∇(λ1 + λ2) + (λ1 + λ2)− 2(λ2

1 + λ2
2)

f
(1− 2λ1 − 2λ2)

+(λ1 + λ2)
2 + (1− λ1 − λ2)

2 − 2(
1

2
− λ2

1 − λ2
2)

=
2∇f · ∇(λ1 + λ2) + (λ1 + λ2)− 2(λ2

1 + λ2
2)

f
(1− 2λ1 − 2λ2)

+(λ1 + λ2)
2 + 1− 2(λ1 + λ2) + (λ1 + λ2)

2 − 1 + 2(λ1 + λ2)
2

=
2∇f · ∇(λ1 + λ2) + (λ1 + λ2)− 2(λ2

1 + λ2
2)

f
(1− 2λ1 − 2λ2)− 2(λ1 + λ2) + 4(λ2

1 + λ2
2)

=
2∇f · ∇u+ u− 2u2

f
(1− 2u)− 2u+ 4u2,

this finish the proof of the Claim.
Next we consider the function λ1+λ2

f
,

∆f

λ1 + λ2

f
=

1

f
∆f (λ1 + λ2) + ∆f

1

f
(λ1 + λ2) + 2∇

1

f
· ∇(λ1 + λ2)

≤
1

f

{

2∇f · ∇(λ1 + λ2) + (λ1 + λ2)− 2(λ2
1 + λ2

2)

f
(1− 2λ1 − 2λ2)

−2(λ1 + λ2) + 4(λ1 + λ2)
2
}

+

(

1

f
+

1

f 2

)

(λ1 + λ2)−
2∇f · ∇(λ1 + λ2)

f 2

=
λ1 + λ2

f

{

−2 + 4(λ1 + λ2) +
1− 2(λ1 + λ2)

f
(1− 2λ1 − 2λ2)

−
4∇f · ∇(λ1 + λ2)

f
+ 1 +

1

f

}
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By Theorem 2.2, we know the asymptotic limit of (M4, g) along the
integral curve of f is R×N3, where N3 is a three dimensional shrinking
gradient Ricci soliton, hence is a finite quotient of R×S

2 due to R = 1.
So λ1 + λ2 tends to zero at infinity.
Because R = 1, Munteanu-Wang [17] obtained that Riemannian

curvature is bounded, hence its derivative is also bounded due to Shi’s
estimate. So |∇f · ∇(λ1 + λ2)| is bouned by C · |∇f | · |∇Ric|, hence
∇f ·∇(λ1+λ2)

f
is sufficiently small outside a compact set.

In all, we get

∆f

λ1 + λ2

f
≤ −0.9 ·

λ1 + λ2

f

outside a compact set D.
Suppose λ1 + λ2 is not identically zero on M \D, then we can apply

similar argument as [10] or [18] to derive that

λ1 + λ2

f
≥

a

f

for some small positive a outside a compact set. So λ1+λ2 ≥ a, which
contradict with the fact that λ1 + λ2 tends to zero at infinity.
So λ1 + λ2 ≡ 0 on M \D, hence the function

G = tr(Ric3)−
1

2
|Ric|2,

is 0 on M \D.

Because G is an analytic function, has to be zero, we obtain that
G ≡ 0 on M . Moreover, the equation 0 = ∆fR = R − 2|Ric|2 implies
that

G = tr(Ric3)− |Ric|2 + 1
4
R

=
∑4

i=1(λi −
1
2
)2λi = 0.

Finally we get λ1 = λ2 ≡ 0 and λ3 = λ4 ≡ 1
2
due to Ric ≥ 0. This

implies the Ricci curvature has constant rank 2. Therefore, any 4-
dimensional shrinking gradient Ricci soliton with R = 1 is isometric to
a finite quotient of R2 × S2 by [12]. �
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