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Abstract—Inaccuracies in polygraph tests often lead to wrong-
ful convictions, false information, and bias, all of which have
significant consequences for both legal and political systems.
Recently, analyzing facial micro-expressions has emerged as a
method for detecting deception; however, current models have
not reached high accuracy and generalizability. The purpose of
this study is to aid in remedying these problems. The unique
multimodal transformer architecture used in this study improves
upon previous approaches by using auditory inputs, visual facial
micro-expressions, and manually transcribed gesture annotations,
moving closer to a reliable non-invasive lie detection model.
Visual and auditory features were extracted using the Vision
Transformer and OpenSmile models respectively, which were
then concatenated with the transcriptions of participants’ micro-
expressions and gestures. Various models were trained for the
classification of lies and truths using these processed and con-
catenated features. The CNN Conv1D multimodal model achieved
an average accuracy of 95.4%. However, further research is
still required to create higher-quality datasets and even more
generalized models for more diverse applications.

Index Terms—multimodal, polygraph, GCN, facial micro-
expressions, multimodal model, deception detection, conv1d,
CNN.

I. INTRODUCTION

Lie detection is a recurring focus of research and technolog-
ical innovation in law enforcement and criminal justice. Ac-
cording to a survey conducted by the University of Wisconsin-
La Crosse, about 75% of survey respondents reported telling
zero to two lies per day; lying comprised 7% of the total
communication, with 79% of the lies being told face-to-face
and 21% being mediated [3].

Current technologies, such as polygraphs, have focused on
biological responses such as blood pressure to detect lies.
However, these methods are unpredictable and flawed easily.
Recently, research has begun to focus on various indicators
of deception, including facial micro-expressions and audio
cues [4]. Facial micro-expressions (ME) are intentional or
involuntary localized and momentary movements of the face,
usually lasting less than 500 ms [2].

Despite advances in lie detection techniques, traditional
methods remain intrusive, subjective, and often inaccurate.
Detecting deception through ME and speech analysis presents
a significant challenge owing to the subtle and brief nature
of these cues. As shown in Table I traditional methods have
high variance and relatively low accuracy. This study aimed
to address these limitations by developing a non-intrusive,
objective, and highly accurate method for detecting deception
using both ME and audio signals. Accurate lie detection is
crucial in various fields, including security, legal systems, and
psychological evaluation. The primary objective of this study
was to establish an AI model that can differentiate between
truth and deception with high accuracy by analyzing audio,
visual cues in videos, and extracted gestures. Audio dialogue,
visuals, and gestures help distinguish between deception and
truthfulness, making them important features to consider [23].
Therefore, the Real-life Deception Detection Dataset from
the University of Michigan was used, which includes 121
videos of deception and truthfulness and a CSV file for
gestures. Visuals and audio were extracted from the videos,
and OpenSMILE and Vision Transformer (ViT) were used
to extract features from the audio and video, respectively.
Classical machine learning models, such as Random Forest
Classifiers and Logistic Regression can serve as accurate
baseline references for binary classification tasks, such as
truth and lie. Yet to build off of that, by leveraging advanced
neural network models, such as Conv1D, Graph Convolutional
Networks (GCN), and Convolutional Neural Network Long
Short-Term Memory (CNN LSTM), the accuracy can be
increased.

This study addresses the following research questions: How
effective is the proposed AI model for detecting lies compared
with traditional methods and some recent AI models? Which
features carry the highest weights in prediction? Deception
detection technology has the potential to revolutionize various
fields. Law enforcement can improve interrogation outcomes
and border security by identifying deceptive behaviors. In
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TABLE I
ESTIMATED ACCURACY OF DIFFERENT TEST TYPES IN DECEPTION AND

TRUTHFULNESS

Test type Detecting deception Detecting truthfulness
Laboratory studies
CQT – Polygraph 74%–82% 60%–83%
CIT – Polygraph 76%–88% 83%–97%
ERP 68% 82%
fMRI 84% 81%
Field studies
CQT – Polygraph 84%–89% 59%–75%
CIT – Polygraph 42%–76% 94%–98%

the legal system, it can be used to assess the credibility of
courtroom testimonies and negotiations. Additionally, applying
this technology to financial services could aid in detecting
fraudulent claims and in reducing the risk of financial fraud.

Previous studies have experimented with various machine-
learning models. For instance, a study by Soldner et al.
implemented the Random Forest model and achieved the best
accuracy of 69%, as shown in II [5]. Insights from this
study suggest expanding our dataset and exploring additional
modalities to enhance the model’s accuracy and reliability in
lie detection. Furthermore, Random Forest, which is a machine
learning technique, cannot handle complex relations or multi-
modal data, which is a limitation of the aforementioned study.
Moreover, most traditional AI models fall short of reliability
and accuracy, often leading to false positives or negatives [1].
A study conducted by the University of Michigan in 2015
analyzed trial videos using facial expressions and achieved a
rudimentary accuracy rate of 83.05% using neural networks
[6]. Aligning different data types and achieving 83.05% accu-
racy were the two main advantages of the study.

TABLE II
BEST RESULTS OF STUDY [2].

Features Acc.

Linguistic 66%
Dialog 57%
Non-verbal 61%
All Features 69%

This paper is organized as follows: analyzing previous work,
discussing the paper’s methods (data collection, data analysis,
feature extraction, and implementation guide for the tested
models), presenting the results of different tested models,
comparing the paper’s results with those of other studies
using the same dataset, and providing a discussion including
limitations and recommendations. The paper concludes with a
summary of the key findings and a look forward.

II. LITERATURE REVIEW

A. Prior solutions

The paper, titled Facial Micro-Expression Recognition
Based on Deep Local-Holistic Networks, introduces a Deep

Local-Holistic Network (DLHN) for micro-expression recog-
nition, comprising two sub-networks: the Hierarchical Con-
volutional Recurrent Neural Network (HCRNN) and the Ro-
bust Principal Component Analysis Recurrent Neural Network
(RPRNN). The HCRNN captures local spatiotemporal features
using CNNs and BRNNs, whereas the RPRNN extracts global
sparse features using RPCA and BLSTM networks. The
DLHN was evaluated on four combined datasets (CASME
I, CASME II, CAS(ME)2, and SAMM) and achieved an
accuracy of 60.31%, outperforming several state-of-the-art
methods [1].

In a study by Feng (2021), titled DeepLie: Detect Lies with
Facial Expression (Computer Vision), the author developed
a deep learning-based approach to lie detection using facial
micro-expressions in video streams. This method employs a
Siamese network architecture with triplet loss to effectively
distinguish between truthful and deceptive expressions. The
key components include the use of CNNs for feature ex-
traction and a GRU-based RNN for sequence learning. The
model achieved an 81.82% accuracy on the validation dataset.
However, the study highlighted limitations due to the small
size of the dataset, which may hinder the generalizability of
the model. The authors suggest that future work should focus
on incorporating multi-modal data (e.g., audio and text) and
expanding the dataset to include more diverse scenarios [18].

The Hybrid Machine Learning Model for Lie Detection
research dataset included thermal images. This study em-
ployed a hybrid machine-learning approach that combines
the strengths of CNNs and SVMs. CNNs were used to
automatically extract relevant features from the input data
automatically. The extracted features were then fed into an
SVM for classification. The hybrid model demonstrated an
accuracy of 58%. However, the complexity of the hybrid
model, which combines CNNs and SVMs, can lead to higher
computational costs and increased difficulty in scaling the
approach to larger datasets [24].

Audio-Visual Deception Detection Using the DOLOS
Dataset study used a DOLOS dataset that combined syn-
chronized audio and video signals. The study employed Ima-
geNet pre-trained ViT as the backbone network for the visual
modality and tokenized face images with a 2D-CNN module,
resulting in a feature with dimensions of 64 × 256. For audio
modality, the study adopted a pre-trained W2V2 model. The
raw audio was tokenized using the 1D-CNN module, resulting
in a feature size of 64 × 512 for each audio sample. The plug-
in audio visual fusion model and multi-task learning achieved
an accuracy of 66.84% [19].

Numerous studies have been conducted using the Real-Life
Trial Dataset. Camara et al(2024) summarized many studies
conducted using this dataset. Ding et al. (2019) used a CNN
model. ResNet served as the backbone of the facial expression
and computed the temporal feature maps. This was used to
achieve accuracy in conjunction with a Generative Adversarial
Network (GAN). This model was reported to achieve a 97%
accuracy, which is the highest among current deep learning
models [21]. Among the non-deep learning models, the use



of SVM in Carissimi et al. (2018) provided an accuracy of
99%. This model uses features from AlexNet. Wu et al (2018)
reported that a logistic regression model using Improved Dense
Trajectory (IDT) features had an accuracy of 92.21%. Other
studies have also been conducted on this dataset with high
accuracy; however, their methodology is vague and can not be
readily replicated [22]. A key problem to note is that current
studies have used varying features when working with different
models, making comparison between models difficult. This
study attempts to better display this comparison by using the
same features across models.

B. Models Overview

1) Logistic Regression: Two classical machine learning
models were considered for this study: Logistic Regression
and Random Forest Classifier. Logistic regression is a binary
classification technique based on a sigmoid function. This
function is used to weigh features in a way that returns a
value from zero to one [32]. The logistic regression function
can be defined using equation [33]

P (y = 1 | X) = σ(z) =
1

1 + e−z

Where:
• P (X) is the probability that the outcome y is 1 given the

input X .
• z is the linear combination of input features and their

corresponding weights, defined as:

z = wTX+ b = w1x1 + w2x2 + · · ·+ wnxn + b

where:
– X = [x1, x2, . . . , xn] are input features.
– w = [w1, w2, . . . , wn] are the weights (parameters)

associated with each feature.
– b is the bias (intercept term).

• σ(z) is the sigmoid function, which squashes the output
into the range (0, 1):

σ(z) =
1

1 + e−z

This function creates an S-shaped curve that determines the
binary classification. Figure 1 shows the sigmoid function. As
the value approaches zero or one, the probability of a certain
classification increases. This model was tested in this study
because of its application in sentiment analysis, and it has
high success in facial expressions recognition, as shown by
Goyani et al [32]. This may mean that the model will be useful
in detecting facial micro-expressions, which were previously
mentioned as being vital for detecting deception.

2) Random Forest Classifier: The second model is the
Random Forest Classifier (RF). In brief, Random Forest is
an ensemble model that chain multiple decision trees during
training to merge results, improve accuracy and reducing
overfitting [30]. The decision trees were generated by using
a bagging algorithm (voting majority). Many decision trees
that can enter RF predict an output by forming a “forest”

Fig. 1. Diagram of Sigmoid function [33]

of classifiers that vote for the classification of an input. The
RF classifier was considered for this study particularly for the
applications of decision trees in sentiment analysis, specifically
for speech emotion recognition [32]. Considering that speech
plays a considerable part in lie detection, the RF classifier has
potential to increase deception detection accuracy.

3) Graph convolutional Network (GCN): A graph consists
of nodes (vertices) and edges (connections between nodes).
In a GCN, each node represents an entity, and the edges
represent the relationships between these entities. The primary
goal of GCNs is to learn node embeddings, which are vector
representations of nodes that capture the graph’s structural and
feature information. Figure 2 shows a diagram for GCN.

Fig. 2. shows a diagram for the GCN [34]

The graph captures the structural relations among data,
harvesting more insights than analyzing data in isolation. How-
ever, it is often very challenging to solve learning problems
on graphs, because (1) many types of data are not originally
structured as graphs, and (2) for graph-structured data, the
underlying connectivity patterns are often complex and diverse
[31].

A typical GCN architecture contains the following: input
layer (initializes the node features) and hidden layers (per-
forms the graph convolution operations, progressively aggre-
gates and transforms node features); output layer (produces
the final node embeddings or predictions); and fully connected
layer (is used at the end of the network to perform tasks such



as classification) [34]. Figure 3 illustrates the architecture of
the GCN.

Fig. 3. shows the basic architecture for a GCN [34]

Spectral-based GCNs leverage graph Laplacian eigenvalues
and eigenvectors for convolution operations, providing a strong
theoretical foundation and capturing the global graph structure.
The graph Laplacian eigenvalues represent the frequencies
of graph signals, whereas the eigenvectors form a basis for
representing functions over the graph, allowing for smooth
and meaningful convolutions across the entire graph. This
spectral approach effectively captures the global structural
information of the graph but can be computationally intensive.
Spatial-based GCNs, however, perform convolutions directly
on the graph’s local neighborhoods, offering greater flexibility
and scalability, making them more suitable for handling large
graphs and integrating with other data types [31].

4) CNN conv1d:

”Generally, 1D-CNNs are designed to handle
one-dimensional data, such as time-series data, se-
quences (e.g., text), or any data where the primary
structure is along a single axis. The kernel (or filter)
in a 1D-CNN moves in one dimension. If the data are
represented as vectors [x1, x2, . . . , xn], the kernel
slides over this vector to detect the patterns within
the sequence. The shape of the kernel is a 1D array
with dimension (k, ), where k is the size of the
kernel.”

– A. O. Ige and M. Sibiya, ”State-of-the-art in 1D
Convolutional Neural Networks: A Survey,” [35]

In a 1D Convolutional Neural Network, the kernel moves
along a single axis of the input vector, effectively processing
the data. The receptive field of a 1D-CNN kernel involves a
contiguous segment of 1-D input. As the kernel slides across
the input, it aggregates the information from k consecutive
elements. For a given input sequence x and kernel w, the
convolution operation in a 1D-CNN layer can be expressed
as [35]:

(x ∗ w)(t) =
k−1∑
i=0

x(t+ i) · w(i)

where:
• x is the 1-d input,
• w is the kernel (or filter),
• (x∗w)(t) denotes the convolution of x and w at position

t,
• k is the size of the kernel,

• x(t+ i) is the element of the input sequence at position
t+ i,

• w(i) is the element of the kernel at position i.
An illustration of three consecutive convolutional layers is

presented in Fig. 4. As seen in [36], where xk
i is used to denote

the input, bki is the bias of the neuron at kth position of layer
l, and the output of the ith neuron in the incoming layer l− 1

is given as s
(l−1)
i , and w

(l−1)
ik denotes the kernel assigned

from the neuron in the ith position of the first convolutional
layer l − 1 to the kth neuron in the second layer l. ylk is
the intermediate output, SS is the scalar factor used in down
sampling, and f is the activation function [35].

Fig. 4. Illustration of three consecutive layers in 1D-CNN [35]

Forward propagation in 1D-CNN involves passing the input
through one or more convolutional layers, pooling layers, and
fully connected layers, such that feature map Zc is given as
[35]:

Zc = fc(X ∗Wc + bc)

where X is the input, Wc denotes the filter weights, bc is
the bias term, and fc is the activation function of the con-
volution, and X ∗Wc is the convolutional operation between
filter weights and bias terms. The spatial dimension of Zc

is reduced by aggregating information from nearby values
through pooling, which is given as [35]:

Ap = P (Zc)

where P denotes the pooling operation. Subsequently, a fully
connected layer Zf combines the features learned from the
convolutional and pooling operations, and the final activation
function Y is used to obtain the output of the network. In ad-
dition, backward propagation in 1D-CNN involves computing
the gradients of the loss function with respect to the network’s
parameters, which are used to update the weights and biases.
The backward propagation in the fully connected layer is as
follows [35]:

∂L

∂Zf
=

∂L

∂Y
· f ′

f (Zf ) (1)

Here, L represents the loss function, and f ′
f denotes the

activation function in the fully connected layer. The gradient



of the loss with respect to the fully connected weights, ∂L
∂Wf

,
is given by [35]:

∂L

∂Wf
=

1

m

∂L

∂Zf
·AT

p (2)

Similarly, the gradient of the loss with respect to the fully
connected biases, ∂L

∂bf
, is calculated as:

∂L

∂bf
=

1

m

∑(
∂L

∂Zf

)
(3)

Backpropagation through the pooling layer is performed as
outlined in Equation (3) (which is not shown in the image).
For the convolutional layer, the backpropagation is given by
[35]:

∂L

∂Zc
=

∂L

∂Ap
· P ′(Zc) (4)

The gradient of the loss with respect to the convolutional
weights, ∂L

∂Wc
, is expressed as:

∂L

∂Wc
=

1

m
X ∗ ∂L

∂Zc
(5)

Finally, the gradient of the loss with respect to the convo-
lutional biases, ∂L

∂bc
, is computed as:

∂L

∂bc
=

1

m

∑(
∂L

∂Zc

)
(6)

In these equations, m denotes the batch size, and P ′(Zc)
represents the gradient of the pooling operation. The terms
∂L
∂Wc

and ∂L
∂bc

correspond to the gradients of the loss with
respect to the convolutional weights and biases, respectively.
These gradients are then used to update the convolutional
weights Wc and biases bc using gradient descent [35].

III. METHODS

A. Dataset Collection

The experiment was conducted under the following guiding
question: Can a multimodal model of facial microexpressions
and speech be used to classify human deception accurately?
To successfully research a multimodal model that encompasses
both a visual and speech encoder, a dataset containing both
video and audio must be found.

The Multimodal Real Life Trial dataset was used in our
experiments, which includes videos and handwritten elements,
which are ideal for in-depth analysis. Each clip was labeled
as deceptive or truthful and had visibility of the face of the
speaker as well as the statements spoken by them during the
duration of the clip as seen in the frames in Fig. 5 [25]. The
dataset was composed of 121 testimonies, both truthful and
deceptive, which were also manually transcribed and annotated
with facial reactions.

The videos in this dataset had an average length of 28.0
seconds, with the deceptive videos averaging 27.7 seconds and
the truthful videos averaging 28.3 seconds. The 56 distinct
speakers in these clips were made up of 21 female and 35

Fig. 5. The dataset sample frames, pulled from [6]’s dataset, display hand
movements, microfacial expressions, and facial reactions.

male speakers, each between the ages of 16 to 60 [25]. This
dataset was found on the University of Michigan’s Deception
Detection and Misinformation datasets list. Fig. 6 shows the
distribution of the recorded annotations in the dataset.

Fig. 6. The dataset sample frames, pulled from [6]’s dataset, display hand
movements, microfacial expressions, and facial reactions.

B. Data Preprocessing (OpenSmile, ViT, manual annotations)

In this case, using audio, video, and textual analysis to
predict the result can provide us a more accurate picture than
rudimentary polygraphs and more freedom to innovate over
related works and previous model pipelines. Primarily, to be
able to fully grasp the importance of audio and video from the
datasets, visual and auditory patterns can be extracted using
two models: Vision Transformer (ViT) and OpenSmile.

ViT is an image recognition encoder. This was used to
extract features from the visual data. ViT split the individual
image frames of the video at a sampling rate of 50 Hz
into different patches. These patches were linearly embedded
with both patch and position embeddings. ViT’s benefits of
computational efficiency and accuracy come to light when
iterating over large datasets, and thus, we use a pretrained ViT
to fit this task so that it can outperform models such as ResNet
and other CNNs as mentioned in [26]. The vectors from this
linear projection were interpolated to match the dimensions
of the audio and text features, which were then saved for
concatenation [26].

Furthermore, to satisfy the multimodal label, OpenSmile is
our chosen processor, working in tandem with models such as
a CNN and the simpler models mentioned below. OpenSmile,
or open-source speech and music interpretation using large-
space extraction, was first developed at the Technical Univer-
sity of Munich to create SEMAINE, a fully socially conscious
software [27]. OpenSmile’s main function for that software



is for audio and emotional analysis and feature extraction,
which in this study’s use case works well for identifying
abnormalities in tone, hesitation, and emotional nuance be-
tween inputs of lie and truth [28]. Via the clips provided
in the dataset, the “ffmpeg” package is used to successfully
extract audio from the videos in a “.wav” format at a sampling
rate of 50 Hz, which will aid in concatenation with other
features. In the context of this research, OpenSmile takes in
wave-form input audio files and analyses features such as
pitch, loudness energy, and mel-frequency cepstral coefficients
(MFCC). Using the aforementioned features, aspects such as
tone, rhythm, and timbre are saved in vectors to help classify
our data into buckets of truths and lies [28].

Finally, the features saved in the vector format from OpenS-
mile, ViT, and handwritten annotations can be combined using
simple concatenation. These were then converted into a tensor
format for experimentation with various models.

C. Dataset Curation and Analysis

The dataset was further curated to meet the project re-
quirements. Because there was an imbalance in the number
of truthful and deceptive videos, one of the deceptive videos
was dropped from the dataset at random to create an even ½
split of 60 truthful to 60 deceptive videos. The dataset was then
processed by splitting the audio files from the trial videos using
FFmpeg, followed by OpenSmile to extract features from the
audio. ViT was used to extract individual frames and extract
features from videos.

The names of the different extracted feature files were
placed in different split files for training, testing, and val-
idation. The training set contained 70% of the dataset, the
validation set contained 10% of the dataset, and the test set
contained 20% of the dataset. These file names were used
to identify the extracted feature files that were pulled during
training, validating, and testing.

For CSV, the data were analyzed using pandas and seaborn.
A heatmap was created to determine features that did not
have a strong correlation with the target, as shown in Fig.
7. In addition, KDE using seaborn was performed while
making hue = ‘class’ to observe the data distribution as
illustrated in Fig 8. According to the analysis, any column that
correlated less than 0.05, as shown in the column samples
in Fig. 7, and the distribution of the classes (deception and
truthful (0,1)) was approximately the same, as shown in the
column samples in Fig. 8, was dropped. ( Note: The analysis
(heatmap and KDE) was performed on all columns, but here
some samples were mentioned instead of all because if all
columns were mentioned in the heatmap or KDE, it would
take a big place. The full heatmap and KDE are in the file
named ”data analysis” that was uploaded to GitHub; you can
access the link in the appendix section)

D. Models

1) Convolutional Neural Networks: First, a Convolutional
Neural Long Short-Term Memory Network (CNN LSTM),
was used in our experiments. CNN LSTM models focus on

Fig. 7. shows a correlation heatmap for some of the sample columns.

Fig. 8. shows the KDE for several columns

spatial relations in images, describing videos, actions with text,
and classification [29]. In this case, the CNN LSTM takes
concatenated data of audio, visual, and annotated features and
then classifies the data as truth or lie.

The second iteration of CNNs is a basic custom Convolu-
tional Neural Network. Using a large variety of layers within a
1-dimensional CNN framework, the model matches well with
the results of the data preprocessing. Furthermore, to regulate
and standardize the data to avoid overfitting due to lack of
samples, a dropout function and Max Pooling function, as
shown in Equation 7, are used when needed in the layers.

Further, for the classification aspect of the complex CNN,
a classical sigmoidal function is used from the neural network
python module because sigmoid is good in binary classifi-
cation; similarly, the loss function is Binary Cross Entropy.
Equation 8 shows the sigmoid function, and Equation 9 shows
the binary cross entropy loss function.

Fmax(x) = max {xi}Ni=0 (7)

Sigmoid(x) = σ(x) =
1

1 + exp(−x)
(8)

BCE = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] (9)

2) Classical Machine Learning Models: Furthermore,
based on the characteristics of the dataset, pre-processing
output tensors, and the number of samples, more simplistic



classification models can be used in this pipeline to gain
insight into their effectiveness with lie detection. A Random
Forest Classifier was used initially, in tandem with previous
papers such as [5] mentioned previously.

Logistic Regression is a statistical binary classification tool
that applies a logistical function to a linear arrangement of
input features. Doing so serves as a baseline for further models
and is easily interpretable.

3) Experimental FiLM and Graph Convolutional Networks:
The first experimental method integrates audio and visual data
using speech and vision encoders combined with Feature-
wise Linear Modulation (FiLM) [25]. In this approach, audio
signals are processed using a speech encoder that combines
CNNs and Transformers to extract a sequence of hidden
vectors for classification [8]. This fusion approach enhances
the system’s ability to capture nuanced interactions between
audio and visual cues by gaining the capability to use visual
reasoning and classification, which are critical for accurate lie
detection [7].

The second method employs Graph Convolutional Networks
(GCNs) focusing on scattered (spatially apart) features in the
image by creating graphs from the features supplied. The
processed audio features are integrated with the GCN and
Transformer outputs using a suitable fusion method. This
combination leverages the strengths of GCNs in handling
complex graph structures and Transformers to long-range
dependencies, making it highly effective for detailed facial
movement analysis [9]. In this instance, specific iterations
and spectral-based GCNs were used. First, Spectral-based
GCNs take advantage of graph Laplacian’s eigenvalues and
eigenvectors to define convolutions in the spectral domain,
capturing global graph structures and relationships. Second,
their usage for spectral graph theory provides a robust theoret-
ical foundation for processing graph data, helping to optimize
the model for detecting subtle patterns in multimodal data.
Third, because the multimodal model integrates features from
different sources (e.g., auditory and visual), spectral-based
GCNs can facilitate feature integration by providing a global
view of the graph structure. Although model training may be
computationally expensive, the model was trained on a server
to overcome this challenge, increasing the thorough nature
of this approach [31]. This specific adaptation of the Graph
Convolutional Networks is fully experimental.

IV. RESULTS

TABLE III
CLASSIFICATION REPORTS FOR DIFFERENT MODELS

Model Class Precision Recall F1-score

Random Forest Deception 0.77 0.91 0.83
Truthful 0.83 0.73 0.8

Logistic Regression Deception 0.77 0.91 0.83
Truthful 0.89 0.73 0.8

GCN Deception 1 0.07 0.14
Truthful 0.48 1 0.65

CNN conv1d Deception 0.91 1 0.95
Truthful 1 0.9 0.95

TABLE IV
TEST ACCURACY FOR EACH MODEL AFTER EACH FOLD

Model 1st fold 2nd fold 3rd fold 4th fold 5th fold Mean Std
Random forest 0.59 0.8636 0.6818 0.619 0.8095 0.712 0.107

Logistic regression 0.772 0.7727 0.7727 0.7142 0.7142 0.7402 0.0269
CNN conv1d 0.909 0.909 1 0.95 1 0.954 0.04

Fig. 9. Shows different trials for the best model (conv1d)

Fig. 10. shows the different accuracies of the previous papers

As discussed in the Methods section, this study examined
multiple models and K-folds. Table IV shows the models used
with the accuracy of each fold and the mean and standard
deviation of all folds of each model. Table III presents the
classification report of each model. Figure 9 shows different
trials for the best model (conv1d).

Figures 10 and 9, along with tables III, IV and I, answer the
first research question of the paper that is ”How effective is the
proposed AI model in detecting lies compared to traditional
methods and some recent AI models?”

Figures 12, 13, and 11 answer the second research question
of the paper ”Which features carry the highest weights in
prediction?”



V. DISCUSSION

A. Interpretation of the collected results

The following are the commonly used evaluation metrics
in classification reports: Precision is the ratio of correctly
predicted positive observations to the total number of predicted
positives. The metric helps determine the true pinpointed
accuracy of positive results as well as gauging false positives.
Second, recall is the ratio of correctly predicted positive
observations to all observations in an actual class. In the
context of the task, it answers the question: ”Of all the
instances that were lies, how many were correctly predicted as
a lie?” Finally, the F1-score is the harmonic mean of Precision
and Recall. It provides a single metric that balances both
concerns, especially when there is an imbalanced dataset in
which one class is more prevalent.

The results of the conv1d model are presented in Tables
III and IV. This demonstrate the classification report and the
accuracy’s mean and standard deviation, and the illustrated
performance in each trial in Fig. 9, where each trial has
five folds, ensuring the model’s reliability and accuracy. For
example, the classification report of conv1d showed no bias
in the model, with a standard deviation of 0.04, which is
relatively low, with a mean of 95.4%, which is a respected
accuracy in the context of lie detection using AI. In contrast,
more typical models such as Logistic Regression or Random
Forest Classifiers have lower average precision. The F-1 scores
of both were close to equal, with the lie class at 83% and
the truth class at 80%. Furthermore, the spectral GCN model
was not proven to be successful, as seen by the difference
in precision, one class reached 100% whereas the other was
significantly lower, hinting at an extreme bias towards a lie or
a truth. However, when we tried CNN conv1d on the training
set without manual annotation (only audio and visuals were
used), average accuracy of the model was still 95+%.

B. The proposed model vs. previous studies

Fig. 10 shows a comparison of our model with those of
previous studies. The figure contains the accuracy of different
studies, considering that they may use the same data or
different data. These figures help to answer the first research
question of this paper: “How effective is the proposed AI
model in detecting lies compared to traditional methods and
some recent AI models?” For example, although the study [20]
used a fusion of two different AI models, CNN and support
vector machine, increasing the complexity and the need for
high computational resources, our solution’s best model used
only conv1d and achieved higher accuracy. Its simplicity, along
with its higher accuracy proves it to be a more effective model
overall, especially in real-world situations.

C. Interpretation of the proposed model

Explainable AI (XAI) is used to interpret the model. For
example, to explain the predictions of a machine learning
model, SHAP (SHapley Additive exPlanations), a popular
method for interpreting complex models, was used. It was
used to generate a summary plot of the SHAP values, which

visually represented the impact of each feature on the model’s
predictions. The plot helps to understand which features are
the most influential and how they contribute to the model’s
output. The output is shown in Fig. 11, illustrating that features
3925 and 4054 are the most important. These are the audio
features. (Note: Because this requires a lot of computation, we
used a subset (which contains both target classes) of the data
for visualization.)

Fig. 11. illustrate the most and least significant features regarding the paper’s
model

The Local Interpretable Model-agnostic Explanations
(LIME) framework, an XAI technique, explains the predictions
of a machine learning model. LIME provides insight into
why a model makes a specific prediction by approximating
the model locally with an interpretable model. It provides
a local interpretation of a specific prediction using a neural
network model. By focusing on one instance and showing how
different features contribute to the prediction, LIME helps to
make complex models more understandable, especially in a
classification context. We used two samples, one for deception
(see Fig. 12) and one for truthful (see Fig. 13).

By analyzing Fig. 12, feature 949 had the highest positive
contribution (1.57) towards the ”Negative” (truthful) class,
indicating that when this feature is at a higher value, the model
is more confident that the instance is not associated with lying.
On the other hand, features 692 and 6827 had significant neg-
ative contributions (-0.74 and -0.60, respectively), suggesting
that when these features have lower values, the model is more



likely to classify the instance as ”Negative” (truthful). The
model is highly confident in predicting the ”Negative” class
(with a probability of 1.0), which is visualized by the zero
probability for the ”Positive” class. This suggests that a clear
decision is made by the model based on a combination of
feature values.

From Fig. 13, 3672, 2656, and 4835 features had values
that strongly contributed to the ”Positive” prediction, indi-
cating that they were key indicators of deception according
to the model. Features 1866 and 5882 contributed towards a
”Negative” prediction (indicating truth) but were outweighed
by the features supporting a ”Positive” prediction.

Fig. 12. LIME’s output on a deceptive sample

Fig. 13. LIME’s output on a truthful sample

Features 3925, 4054, 949, 3672, 2656, 4835, 1866, and
5882 are related to audio. On the other hand, feature 6827 is

related to the visual extracted from the videos. CNN conv1d
specializes in audio-related tasks; thus, it relays more audio
features than visual features.

D. Limitations and Recommendations

The study had certain limitations that affected the results
of this experiment. Primarily, the lack of high-quality datasets
with both video and audio data was profound. The shortage
of data in the Real-life Trial dataset may have decreased the
overall accuracy of the model on the dataset. The dataset
contained only 121 videos, of which 120 videos were used.
Five K-folds were used to split the training and validation to
avoid overfitting, but the small dataset still proved difficult
when trying to train the data. Furthermore, as Mambreyan
et al. (2022) showed, the Real-life Deception Dataset has
significant gender bias that classifiers may exploit. Other large
datasets usually have features that are manually annotated or
have already been extracted for features. Expanding sampling
to other scenarios, and diversifying subjects based on gender,
ethnicity, and beliefs or ideologies could be vital to a more
universal model. Finding these higher-quality datasets with
more data samples would increase the amount of training
data available and reduce social bias, thereby increasing the
accuracy of the experiment.

However, bias appeared in the tests of the GCN model as
stated above. Based on the data in Table III, it is evident that
the GCN model shows a preference for class 1, as shown
by its recall but low precision for class 1 and notably low
recall for class 0, indicating extreme class bias. The spectral-
based GCN showed much promise in the previous experiments
but fell short, yet we encourage it to be experimented on
further. To enhance the accuracy of the model, especially
when utilizing the spectral GCN model, it will be beneficial to
present more data, employ resampling methods, and provide
higher computing power for those tasks.

VI. CONCLUSION

The results of this study highlight the critical role of multi-
modal feature extraction techniques in advancing lie detection
technologies. By leveraging audio features via OpenSmile,
visual data through a Vision Transformer, and transcriptions
of gestures and micro-expressions, the CNN Conv1D model
achieved a high accuracy of 95.4 %, surpassing many state-
of-the-art approaches. Even without manual transcriptions, the
model performed admirably at 95 %, demonstrating the robust-
ness of the architecture, particularly with a limited dataset.
Both audio and visual features were vital to the performance
of CNN Conv1D, and its success. Furthermore, the paper
addressed the recommendation, which focuses on incorporat-
ing multi-modal data, mentioned by a study’s [24] author.
Despite these promising results, the limitations of this study,
particularly the small and homogeneous dataset—underscore
the necessity for further research. It is crucial to expand dataset
diversity to include participants from various demographic
groups and scenarios. Explainable AI (XAI) revealed that
audio and visual features were the most significant contributors



to the model’s decisions, indicating the importance of focusing
on these modalities in future studies. However, integrating
additional modalities such as thermal imaging, heart rate mon-
itoring, and moisture tracking could further enhance model
performance, especially in complex real-world applications.
Addressing these challenges will not only improve model
generalizability but also help mitigate ethical concerns related
to biases in facial micro-expression recognition across dif-
ferent racial and gender groups. Future work should explore
ablation studies and alternative architectures to deepen our
understanding of how multimodal learning can be optimized.
By continuing to build on this research, we move closer to
creating an accurate, reliable, and ethical alternative to tradi-
tional polygraph tests, with potential applications in criminal
justice and law enforcement.
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APPENDIX

You can find the code for the Multi-modal Lie Detection
Project at the following GitHub repository:

https://github.com/AbdelrahmanAbdelwahab1/Multi-modal-
Lie-detection-project

https://github.com/AbdelrahmanAbdelwahab1/Multi-modal-Lie-detection-project
https://github.com/AbdelrahmanAbdelwahab1/Multi-modal-Lie-detection-project
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