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AstroSage-Llama-3.1-8B is a domain-specialized natural-language AI assistant tailored for re-
search in astronomy, astrophysics, and cosmology. Trained on the complete collection of astronomy-
related arXiv papers from 2007-2024 along with millions of synthetically-generated question-answer
pairs and other astronomical literature, AstroSage-Llama-3.1-8B demonstrates remarkable profi-
ciency on a wide range of questions. AstroSage-Llama-3.1-8B scores 80.9% on the AstroMLab-1
benchmark, greatly outperforming all models—proprietary and open-weight—in the 8-billion pa-
rameter class, and performing on par with GPT-4o. This achievement demonstrates the potential
of domain specialization in AI, suggesting that focused training can yield capabilities exceeding
those of much larger, general-purpose models. AstroSage-Llama-3.1-8B is freely available, enabling
widespread access to advanced AI capabilities for astronomical education and research.
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I. INTRODUCTION

Large-language model (LLM) assistants are rapidly
gaining traction across all sectors of knowledge work
worldwide. In astronomy, these models are used for pro-
viding factual information, as programming assistants,
for brainstorming ideas, and for providing explanations
tailored to the level of understanding or preferred style
of the user. LLMs exhibit a remarkable robustness, often
delivering useful outputs even when the input is mal-
formed, lacks context, or contains inaccuracies.

Despite their potential, the development of specialized
LLMs has been limited due to their recent emergence and
the substantial resources required for training. Previous
studies [1–4] have shown that models narrowly tailored
to a specific domain can perform on par with, or even ex-
ceed, much larger general-purpose models. This suggests
that a large, highly domain-specific model could achieve
state-of-the-art performance.

In astronomy, however, high-performing specialized
language models have not yet been achieved. While
models like AstroLLaMA [5, 6] have gained attention,
they lack comprehensive benchmarking of their astro-
nomical knowledge recall capabilities. Recent studies [7]
have shown that many of these models, due to limited
specialized training data and fine-tuning for instruction-
following, suffer from either catastrophic forgetting or
an inability to follow precise question-answering instruc-

tions, often performing worse than their baseline models
(in this case, the Llama models).

Building on the previous efforts of cosmosage [8] and
AstroLLaMA, we have developed AstroSage-Llama-3.1-
8B, a natural language assistant specialized in astronomy,
astrophysics, cosmology, and astronomical instrumenta-
tion. For the remainder of this paper, we will refer to
these subdomains collectively as “astronomy”. Through
the use of a substantially more extensive and well-curated
training dataset, we demonstrate for the first time that
our specialized language model significantly outperforms
baseline models in downstream tasks, particularly in as-
tronomical knowledge recall.

In the long term, we envision an agentic research as-
sistant capable of autonomously conducting literature re-
views, identifying relevant hypotheses, carrying out data
analysis, and even formulating new research questions.
The development of such scientific agents (LLMs capa-
ble of solving scientific problems end-to-end) is already a
rapidly growing field in astronomy. Recent studies have
shown promising results in automating research tasks,
such as analyzing James Webb Space Telescope data
through multi-agent collaboration and self-play reinforce-
ment learning [9]. However, these studies have been
largely constrained by the substantial API costs asso-
ciated with proprietary models.

Realizing this level of agency will require extensive ex-
perimentation and careful optimization. Given the sub-
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stantial compute costs and data requirements inherent in
large-scale model training, keeping the model size man-
ageable while maintaining high performance is crucial.
Our approach, demonstrated through astronomy knowl-
edge recall, shows that specialized models can achieve
state-of-the-art performance in specific domains. This
not only makes the development of advanced research
assistants more feasible but also ensures their accessi-
bility to a wider range of institutions and researchers,
potentially transforming the landscape of astronomical
research and education.

II. CONTINUED PRETRAINING

For AstroSage-Llama-3.1-8B, we selected Meta’s
Llama-3.1 8-billion parameter model [10] as our foun-
dation model. This base model was chosen for both
its strong general-purpose capabilities and its availabil-
ity under the permissive Llama 3.1 Community License.
Furthermore, among models in the 8-billion parameter
class, it demonstrated superior performance in astronom-
ical knowledge recall compared to both general-purpose
models [11] and specialized astronomical LLMs [7], mak-
ing it an ideal baseline.

To begin the development process, we first focused on
curating, obtaining, and cleaning a continued pretraining
(CPT) dataset.

A. Dataset Preparation

The scaling laws of Hoffmann et al. [2] show that model
capability increases predictably with increased training
data volume and computational resources. More recently,
it has been found [12–15] that the power-law index of
these scaling laws depends on data quality. Therefore,
our general approach to assembling a corpus was to focus
on maintaining a high quality threshold, maximizing data
volume at that quality level.

We employed a multi-faceted approach to create a com-
prehensive, high-quality, high-variety CPT corpus. The
primary components of our dataset include:

• Approximately 250,000 arXiv preprints from 2007-
2024 with primary or cross-listed categories in
astro-ph (astrophysics) or gr-qc (general relativ-
ity and quantum cosmology). We deliberately ex-
cluded the Annual Review of Astronomy and Astro-
physics papers used in Ting et al. [11, AstroMLab-
1] to generate the benchmark questions, ensuring
our evaluation would test the model’s ability to gen-
eralize knowledge rather than recall specific source
materials.

• Relevant articles from a depth-2 search through
Wikipedia’s astronomy and astrophysics categories.

• A selection of textbooks that are available as PDFs
or ebooks online.

We processed the data into markdown format. For
the vast majority of the dataset, the rendered PDF files
were converted to markdown using Nougat OCR [16].
For the remaining sources, the data was either already in
markdown format, or was left as plain text.

B. Pretraining run

The pretraining was conducted on the ORNL OLCF
Frontier 1.6 exaflop supercomputer, leveraging its sub-
stantial computational resources. We used 184 nodes si-
multaneously, each of which is equipped with four AMD
MI250X, which in turn have 2 Graphics Compute Dies
(GCDs) each for a total of 8 GCDs per node, or a total
of 1472 GCDs.
Further statistics and our choices of pretraining hyper-

parameters are summarized in Table I.

Hyperparameter Value

Sequence length 8,192 tokens

Micro batch size 3

Epochs 2

Learning rate 1.5e-4

Base model Llama 3.1 8B

Optimizer AdamW

Adam beta2 0.95

Adam epsilon 1e-5

Learning rate schedule Constant with

quadratic warmup

Max gradient norm 3.0

Weight decay 0.001

Warmup steps 40

Precision BF16

FSDP Full shard, auto wrap

Resource Value

Plaintext filesize 19.9 GB

Token count 3.3 billion

Nodes 184

GCDs (effective # of GPUs) 1,472

Training wall time 10 hours

Total time spent 11.5 hours

Effective GPU-hours spent 14,872 hours

VRAM Usage 96% of 64 GB/GCD

TABLE I. Summary of pretraining hyperparameters and re-
source usage.

The Llama-3.1 tokenizer, which uses a variant
of tiktoken with UTF-flexible encoding, was suffi-
cient for our purposes, so we did not introduce any
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astronomy-specific tokens to the vocabulary. We con-
sidered incorporating arXiv identifiers (in the format
arXiv:YYMM.numbervV) for papers in the training set
but ultimately decided against it due to the substantial
increase in vocabulary size this would entail. Future work
may explore expanding the vocabulary to include numer-
ical representations relevant to astronomy, such as com-
mon quantities and units.

During training, we tracked the loss function and step
sizes. Minimal hyperparameter tuning was performed,
relying on the hyperparameters from de Haan [8] for all
parameters other than the learning rate. The learning
rate was extrapolated from smaller runs, but remained
problematic, as Frontier requires high levels of paral-
lelization with short wall times. This caused our ini-
tial runs to suffer from either insufficient learning due to
a low learning rate, or catastrophic exploding gradients
due to an excessively high learning rate. The final run de-
scribed in this work used a tuned learning schedule with
a learning rate as high as possible but still allowing con-
vergence. In future efforts, we plan to further optimize
the efficiency of the training procedure along the lines
of the work presented in Dash et al. [17], incorporating
tensor, pipeline, and data paralellism through libraries
such as Megatron-Deepspeed. We also aim to request a
longer walltime with lower parallelization factor in or-
der to be able to reduce loss and improve downstream
performance.

C. Dataset Cleaning

We followed the cleaning procedures from de Haan
[8], including a perplexity-based cleaning approach. This
method first splits the corpus into individual paragraphs
and calculates their respective perplexity scores. Per-
plexity measures how well a language model can pre-
dict a given text sequence. Lower perplexity indicates
text that follows expected patterns of natural language,
while very high perplexity values often signal anomalous
or corrupted content. Outliers with such high perplex-
ity frequently stem from OCR errors, malformed text, or
non-prose content such as tables.

Based on the distribution of perplexity scores (Fig-
ure 1), we established a threshold that excluded the top
2% of paragraphs with the highest perplexity scores. We
then reconstructed each document using only the para-
graphs below this threshold. This cleaning procedure re-
moved approximately 2% of the total data volume. Fig-
ure 1 illustrates this process by showing the distribution
of perplexity scores and our chosen threshold.

III. SUPERVISED FINE-TUNING

To improve the model’s ability to follow instructions
and answer questions effectively, we performed super-
vised fine-tuning (SFT). In this process, the model
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FIG. 1. Histogram of paragraph-level perplexity used
for dataset cleaning. The perplexity is calculated as
exp(−⟨lnP ⟩), where ⟨lnP ⟩ is the average log probability per
token in each paragraph. The red dashed line indicates the
manually chosen threshold used to filter out high-perplexity
paragraphs, which comprised approximately 2% of the total
data volume. Paragraphs with perplexity above this thresh-
old were removed from the dataset. Note that the highest
observed perplexity values (around 1012) extend beyond the
right edge of the plot.

was trained to predict appropriate responses to given
prompts, learning from a collection of high-quality ex-
ample conversations. Below, we describe our approach
to generating and curating the SFT dataset.

A. SFT Dataset

Pan et al. [7] identified a critical limitation in the As-
troLLaMA series of specialized astronomical LLMs: their
inability to outperform even their own starting base mod-
els, partly due to inadequate SFT. While these models
showed marginal improvements in basic next-token pre-
diction tasks, they performed worse than their baseline
models on instructional Q&A tasks, even for straight-
forward astronomical knowledge recall. This shortcom-
ing fundamentally undermines the purpose of specialized
training. Therefore, in our study, we paid particular at-
tention to the SFT process, generating training datasets
orders of magnitude larger than previously available in
astronomy.
The largest component of our SFT dataset consists

of question-and-answer (Q&A) pairs. Using the method
from de Haan [8], we generated over 11 million synthetic
Q&A pairs from papers in our CPT dataset. These Q&A
pairs were then evaluated using an LLM based on four
criteria:

1. Correctness: The factual accuracy of the answer in
relation to the question, ensuring that each Q&A
pair adheres to current scientific understanding and
accurately reflects the information presented in the
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source material.

2. Stand-alone: The ability of each Q&A pair to be
understood in isolation, without needing additional
context beyond the content provided. This ensures
that an expert in astronomy, astrophysics, or cos-
mology could answer the question based solely on
the information within the pair.

3. Pertinence: The relevance and importance of the
question to researchers or students in astronomy,
astrophysics, or cosmology. We want the questions
to be ones that a professional in the field might ask
or find valuable for deeper understanding.

4. Overall Quality

The LLM was presented with several hand-written ex-
amples of ratings in the form Question–Answer–Score–
Explanation, followed by the Question–Answer pair to
be judged. The model was then asked to complete the
score values. A small number of resulting scores were
verified and confirmed to be sufficiently accurate. Only
Q&A pairs with perfect scores in all four categories were
kept, resulting in 8.8 million high-quality Q&A pairs.

We also included a filtered version of Infinity-Instruct-
7M [18], keeping only entries with at least 70% al-
phanumeric characters, as well as filtering out entries
with certain keywords. The inclusion of this dataset
was to ensure that AstroSage-Llama-3.1-8B would gain
instruction-following abilities such as multi-turn conver-
sation.

Additionally, we generated synthetic summaries for all
of the papers in the CPT dataset. The SFT dataset for
these summaries consists of a user prompt asking to sum-
marize a certain paper, with the assistant completion be-
ing a small preamble followed by the summary. The user
prompt was created through a series of random choices
about the way the question is asked, a small preamble,
and the way in which the paper is referenced, yielding a
high variety of question styles.

Furthermore, we generated a metadata-based dataset,
where a again a series of custom rules and random se-
lections result in diverse questions about titles, dates of
publication, arXiv IDs, and first author names from the
papers in the CPT dataset. This was included in an effort
to memorize the paper metadata so that users can refer-
ence papers in their conversations with AstroSage-Llama-
3.1-8B. However, as we will discuss, our training proce-
dure was relatively shallow and insufficient memorization
of this information took place, as spot checks show that
the final model can not reliably answer metadata-based
questions correctly.

These datasets were combined with five further
datasets which were assembled by hand from various
sources on the web. The combined dataset comprised
approximately 2 billion tokens.

B. SFT procedure

The SFT process was also conducted on the Frontier
supercomputer with a configuration summarized in Ta-
ble II.

Hyperparameter Value

Epochs 6

Learning rate 1e-4

Base model CPT model

Learning rate schedule Cosine with

quadratic warmup

Weight decay 0.0

Resource Value

Plaintext filesize 9.8 GB

Token count 2.0 billion

Training wall time 9.5 hours

Total time spent 11.5 hours

Effective GPU-hours spent 13,738 hours

TABLE II. Summary of supervised fine-tuning hyperparame-
ters and resource usage. Parameters that are not stated here
were kept the same as in Table I.

Throughout the fine-tuning process, we again moni-
tored loss and step sizes, which are shown in Figure 2
(CPT curves look similar). The learning was—like in
§II B—limited by the maximum wall-time allowed by the
Frontier HPC system, which for 184 nodes or more is a
maximum of 12 hours. With the learning rate as high as
it could comfortably be set to avoid exploding gradients,
this limitation on walltime strongly limited the number
of steps that could be taken and therefore the final loss
that could be obtained.

IV. MODEL MERGING

Model merging, also known as parameter averaging,
has emerged as a powerful technique for combining ca-
pabilities of multiple expert models into a single lan-
guage model [19, 20]. While our CPT+SFT procedure
significantly improved the model’s astronomical knowl-
edge recall in few-shot prompts, we observed that perfor-
mance in conversational Q&A scenarios such as multi-
turn conversations and instructions regarding the output
style still fell slightly short of optimal. This challenge
likely stems from the fact that the “instruct” version
of Llama-3.1-8b provided by Meta underwent substan-
tially more extensive supervised fine-tuning than what we
could achieve as an academic group. We found that merg-
ing our specialized model with Meta’s instruct model sig-
nificantly improved these conversational capabilities.
To create the final version of AstroSage-Llama-3.1-

8B, we employed mergekit [21], using the DARE-TIES
method to combine our SFT-trained model described in
§III with Meta-Llama-3.1-8B-Instruct [10]. The merge
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FIG. 2. Supervised fine-tuning loss curve. The learning rate schedule, shown in brick red, follows a quadratic warmup followed
by a cosine schedule that ends at 10% of the peak learning rate. The peak learning rate was chosen to prevent exploding
gradients. The loss curve in black shows no significant signs of overfitting, as evidenced by minimal discontinuities at epoch
boundaries. The green curve represents the L2 norm of the parameter update, shown in arbitrary units.

was performed at full density, bf16 precision, and with
the weight parameters set to 0.75 and 0.25 for AstroSage-
Llama-3.1-8B-SFT and Meta-Llama-3.1-8B-Instruct, re-
spectively.

The resulting merged model exhibits enhanced
instruction-following capabilities and improved perfor-
mance on the AstroMLab-1 multiple-choice question
benchmark in both few-shot and structured output
scenarios. To determine whether these improvements
stemmed from enhanced instruction-following rather
than additional astronomical knowledge, we conducted
a control experiment. We fine-tuned a separate version
of the CPT+SFT model on unrelated multiple-choice
questions using identical output formatting. This control
model achieved near-identical scores on the AstroMLab-
1 benchmark in the structured output scenario without
any merging, suggesting that the process of merging in a
small fraction of the Meta-Llama-3.1-8B-Instruct model
weights transferred general question-answering capabili-
ties rather than domain-specific knowledge.

To recap, we began with Meta-Llama-3.1-8B as our
base model, then performed CPT on a large corpus of
astronomy literature to instill domain knowledge. This
was followed by SFT using carefully curated instruction-
response pairs to improve task performance and in-
struction following. Finally, we merged the resulting
model with Meta-Llama-3.1-8B-Instruct to enhance gen-
eral instruction-following capabilities while preserving
the astronomical expertise, resulting in our final model
which we are releasing as AstroSage-Llama-3.1-8B.

V. EVALUATION

To evaluate AstroSage-Llama-3.1-8B’s performance,
we employed the multiple-choice question benchmark
from the first paper in this series [11, AstroMLab 1].
This benchmark consists of diverse astronomy-related
questions generated from selected Annual Review of As-
tronomy and Astrophysics (ARAA) papers and remains,
to our knowledge, the only comprehensive astronomy-
specific benchmarking effort available. We refer inter-
ested readers to the original paper for detailed bench-
mark specifications.

Importantly, we deliberately excluded the ARAA pa-
pers from AstroSage-Llama-3.1-8B’s training dataset.
This strategic exclusion enables us to evaluate the
model’s broader understanding of astronomical concepts
rather than its ability to recall specific information from
the source materials. This approach helps ensure that
the benchmark scores reflect AstroSage-Llama-3.1-8B’s
genuine comprehension of astronomy rather than mere
memorization of the content used to create the questions.

Our choice to primarily evaluate AstroSage-Llama-3.1-
8B with a knowledge-based benchmark was motivated
by two key factors. First, this benchmark represents
the only extensively tested and human-vetted dataset
available for astronomical knowledge assessment. Sec-
ond, while astronomical knowledge recall represents just
one aspect of LLM capabilities, it serves as a critical foun-
dation for more advanced applications such as scientific
agents. The primary goal is to demonstrate that proper
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FIG. 3. Performance comparison on the AstroMLab 1 benchmark, which contains 4,425 high-quality, human-verified multiple-
choice questions across astronomy, astrophysics, cosmology, and instrumentation. The gray shaded region indicates the per-
formance range of human domain experts. We present updated results as of November 2024, incorporating both cutting-edge
proprietary and open-weight models. AstroSage-Llama-3.1-8B outperforms all other models in the 8-billion parameter class
and achieves performance comparable to OpenAI’s latest models, including GPT-4o, while Claude-3.5-Sonnet maintains the
highest performance overall. The diagonal dashed lines represent cost-efficiency trade-offs as determined in AstroMLab 1 (see
text for details). The Wilson Score interval shows the typical uncertainty in the score due to the finite number of questions. Star
symbols indicate all published specialized LLMs for astronomy to our knowledge. Previously, these specialized models often
failed to outperform their baseline models in astronomical recall due to various training limitations. AstroSage-Llama-3.1-8B
represents a significant advancement in specialized astronomical LLMs, demonstrating that extensive data curation, massive
continued pre-training and supervised fine-tuning, and model merging techniques can substantially improve performance on
specific astronomical tasks. This result highlights the effectiveness of domain specialization even in relatively smaller models.

fine-tuning of a relatively small model can significantly
improve performance on a specific task—an achievement
not previously demonstrated in astronomy.

The performance score is calculated as the fraction
of correctly answered multiple-choice questions in the
benchmarking dataset. The resulting scores are shown
in Figure 3, where round symbols represent scores for
cutting-edge proprietary and open-weight models. The
open-weight models are also marked with an outer cir-
cle. The x-axis displays the cost per 105 tokens, a metric
chosen based on practical applications: in the first (and
to our knowledge, only) implementation of astronomical
agents [9], analyzing a celestial source’s spectral energy
distribution from James Webb Space Telescope data re-
quires approximately 105 tokens. The top x-axis shows
costs scaled to 3B (3×109) tokens, roughly equivalent to
the entire astro-ph section of the arXiv. For proprietary

models, we use current token costs (averaging input and
output costs where they differ), while open-weight model
costs are estimated based on typical pricing of commer-
cial API platforms.

Specialized astronomical LLMs are denoted by star
symbols, except for the first AstroLLaMA model [5],
whose score falls below the plot’s lower limit. The bot-
tom right panel shows the typical uncertainty (calculated
using the Wilson score interval), demonstrating that our
dataset of 4,425 multiple-choice questions provides suf-
ficiently small sampling noise to establish robust per-
formance differences. We have updated all scores using
the latest model versions following the methodology from
Ting et al. [11, AstroMLab 1].

The diagonal dashed lines represent a universal cost-
efficiency trade-off observed across major model series
(e.g. Llama, GPT, GLM) that simultaneously released
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FIG. 4. Performance comparison across general language model benchmarks. The left panel shows a bar chart comparing
model performances on standard benchmarks. The center radar chart visualizes the effect of continued pretraining. The right
radar chart compares our model post-SFT against BAAI/Infinity-Instruct-7M-Gen-LLaMA3 1-8B, which was trained on the
same base model and SFT data but without our astronomy-specific data. Despite optimization for astronomy tasks, the merged
model we are releasing as AstroSage-Llama-3.1-8B maintains strong general capabilities in reasoning, mathematics, and coding,
demonstrating that domain specialization did not come at the cost of other abilities.

models at multiple sizes. We consistently observe a 3.5-
point improvement in performance for every 10-fold in-
crease in cost across model families. Each dashed line
represents this equivalent trade-off, offset by 3.5 per-
centage points (equivalent to a 10-fold gain in cost-
effectiveness). Despite similar performance on gen-
eral benchmarks, cutting-edge models can differ by up
to 1000-fold in cost-effectiveness on astronomical tasks,
highlighting the importance of specialized astronomical
benchmarks for evaluating performance on niche techni-
cal domains.

To establish a human performance baseline, two do-
main experts from our team independently completed a
random subset of benchmark questions under controlled
conditions. Each expert was allowed approximately 30
seconds per question and prohibited from consulting ex-
ternal references, including web searches or language
model assistance. Both experts achieved remarkably con-
sistent scores of approximately 68%, which we designate
as the “human domain expert baseline.” The fact that
most evaluated LLMs significantly surpassed this base-
line demonstrates both the benchmark’s comprehensive
scope and difficulty, while highlighting the remarkable
capabilities of current LLMs in capturing and applying
complex astronomical knowledge.

As previously noted in [7, AstroMLab 2], existing spe-
cialized astronomical LLMs (shown as open stars in Fig-
ure 3) fail to outperform baseline models of compara-

ble parameter size. In many cases, suboptimal special-
ization techniques actually led to performance degra-
dation. In contrast, AstroSage-Llama-3.1-8B, despite
its modest size of 8 billion parameters, achieved an
accuracy of 80.9% on this benchmark—comparable to
OpenAI’s latest flagship models (GPT-4o: 80.4%) and
the best 90B-parameter open-weight Meta-Llama mod-
els (80.6%). This performance is particularly notable
because AstroSage-Llama-3.1-8B achieves these results
at approximately one-thousandth the inference cost of
proprietary models and one-hundredth the cost of open-
weight models. Furthermore, it demonstrates an 8-point
improvement over its baseline model, Meta-Llama-3.1-
8B (72.9%). To our knowledge, this represents the first
demonstration of a specialized astronomical LLM achiev-
ing objectively verified improvements through model fine-
tuning.

To ensure our domain specialization didn’t compromise
general capabilities, we evaluated AstroSage-Llama-3.1-
8B across a comprehensive suite of standard language
model benchmarks. These include IF-EVAL (instruc-
tion following), BBH (binary hypothesis testing), MATH
(mathematical reasoning), GPQA (graduate-level science
questions), MUSR (real-world decision-making scenar-
ios), and MMLU-PRO (an expanded version of MMLU
with more challenging reasoning questions). As shown in
Figure 4, our CPT+SFT model (green, initialized from
the Llama-3.1 base model) initially performed below the
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Llama-3.1 instruct model (purple) on five out of the six
non-astronomy benchmarks. This was expected, given
that Meta’s proprietary SFT dataset for their instruct
model likely far exceeds what’s feasible for an academic
research group to reproduce. The merging procedure,
pulling in only 25% of its weight from Meta-Llama-3.1-
8B-Instruct, allowed us to recover much of this perfor-
mance deficit.

Crucially, this performance recovery through model
merging did not compromise AstroSage-Llama-3.1-8B’s
astronomical expertise—it maintained its 8-point im-
provement (representing more than 100-fold increase
in cost-effectiveness) on astronomical Q&A tasks while
largely preserving capabilities across most general bench-
marks. The only notable performance decrease occurred
in IF-EVAL, which tests instruction following. This
limited decline is unsurprising, as instruction follow-
ing remains one of the more brittle capabilities in lan-
guage models and likely heavily depends on the pro-
prietary training data used in Meta’s instruct model.
In fact, when compared AstroSage-Llama-3.1-8B to
BAAI/Infinity-Instruct-7M-Gen-LLaMA3 1-8B, the lat-
ter shows an even more severe performance deficit, high-
lighting how our refined training strategy and expanded
SFT dataset represent crucial improvements. Ultimately,
our model merging approach successfully preserved most
general capabilities without sacrificing the gained astro-
nomical expertise. This balance is essential, as it en-
ables AstroSage-Llama-3.1-8B to engage in natural con-
versations and assist with broader tasks while excelling
in astronomy-specific applications.

VI. AVAILABILITY

To promote reproducibility and advance the field of
domain-specific AI assistants, we are making AstroSage-
Llama-3.1-8B freely available under the highly permis-
sive Llama 3.1 Community License. The full model
weights can be accessed and downloaded from our project
repository on Hugging Face: https://huggingface.co/
AstroMLab/AstroSage-8B in either PyTorch or safeten-
sors format.

The code used to prepare the datasets and perform the
training will be made available upon reasonable request.

By making AstroSage-Llama-3.1-8B widely available,
we aim to foster collaboration and innovation in the as-
tronomy community. We encourage researchers to build
upon our work and contribute to the ongoing develop-
ment of specialized AI assistants for scientific domains.

VII. DISCUSSION AND FUTURE WORK

This work demonstrates the potential of specialized
language models in astronomy through a systematic ap-
proach to model development and evaluation. While pre-
vious efforts like laid important groundwork in domain-
specific modeling, the field has faced persistent challenges

in achieving performance gains over baseline models, es-
pecially in instruction-following tasks. Our multi-stage
training process—combining continued pretraining, ex-
tensive supervised fine-tuning, and strategic model merg-
ing—addresses these challenges, achieving a notable im-
provement over the baseline model.

These results demonstrate that powerful AI assistants
can be developed with relatively small language mod-
els when sufficiently specialized. Despite its modest size
of 8 billion parameters, AstroSage-Llama-3.1-8B achieves
performance comparable to latest flagship models at a
fraction of the cost—approximately one-thousandth of
proprietary models and one-hundredth of open-weight
models. This remarkably favorable performance-to-
parameter ratio suggests even greater potential for im-
provement through scaling. Given access to the necessary
computational resources, we plan to apply our success-
ful CPT/SFT procedure to a 70B-class model to pursue
state-of-the-art astronomy-specific performance.

Beyond the performance achievements, our work estab-
lishes a more systematic approach to model evaluation in
astronomy. Through tailored astronomy-specific bench-
marking in, we provide a more rigorous and transparent
assessment than previously available. However, signifi-
cant challenges remain in comprehensive model evalua-
tion. The field currently lacks standardized, astronomy-
specific benchmarks capable of assessing understanding
across the full spectrum of astronomical tasks, partic-
ularly in exact problem-solving capabilities like those
tested in ScienceAgentBench [22]. This limitation re-
stricts our ability to validate comparisons in more direct
scientific agent contexts.

The constraints of an 8B-parameter model also become
apparent in certain scenarios. While AstroSage-Llama-
3.1-8B demonstrates impressive performance in subjec-
tive testing, the AstroMLab-1 benchmark, and general
benchmarks, it encounters natural limitations in memory
capacity and reasoning depth. Particularly challenging
are questions requiring complex multi-step reasoning or
sophisticated calculations, where larger general-purpose
models still maintain an advantage.

To address these limitations, our future work will pur-
sue several complementary directions. While scaling up
model size remains a primary goal, we will also focus
on developing more specialized benchmarking tools and
exploring retrieval-augmented generation for improved
knowledge access. Additional initiatives include creating
multilingual astronomy assistants, implementing mech-
anisms for real-time knowledge updates, and providing
public inference capabilities.

The broader implications of this work extend well be-
yond its immediate achievements. AstroSage-Llama-3.1-
8B serves as a compelling proof of concept for highly
specialized, smaller-scale language models in astronomy.
Our approach of extensive data curation, continued pre-
training, and careful supervised fine-tuning demonstrates
how domain-specific expertise can be enhanced while pre-
serving general capabilities. As the field progresses to-

https://huggingface.co/AstroMLab/AstroSage-8B
https://huggingface.co/AstroMLab/AstroSage-8B
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ward agentic research assistants capable of autonomous
literature review, data analysis, and hypothesis genera-
tion, the need for affordable, highly competent domain-
specific models will only grow. While challenges remain,
AstroSage-Llama-3.1-8B charts a promising course for
developing the next generation of specialized scientific
AI assistants, potentially transforming how we approach
astronomical research and education.
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