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ABSTRACT

Music therapy has been shown in recent years to provide
multiple health benefits related to emotional wellness. In
turn, maintaining a healthy emotional state has proven to be
effective for patients undergoing treatment, such as Parkin-
son’s patients or patients suffering from stress and anxi-
ety. We propose fine-tuning MusicGen, a music-generating
transformer model, to create short musical clips that assist
patients in transitioning from negative to desired emotional
states. Using low-rank decomposition fine-tuning on the
MTG-Jamendo Dataset with emotion tags, we generate
30-second clips that adhere to the iso principle, guiding
patients through intermediate states in the valence-arousal
circumplex. The generated music is evaluated using a mu-
sic emotion recognition model to ensure alignment with in-
tended emotions. By concatenating these clips, we produce
a 15-minute "music medicine" resembling a music therapy
session. Our approach is the first model to leverage Lan-
guage Models to generate music medicine. Ultimately, the
output is intended to be used as a temporary relief between
music therapy sessions with a board-certified therapist.

1. INTRODUCTION

Music therapy has proved to be a highly effective alternative
treatment to traditional medication since the late nineteenth
century. For most of the twentieth century, music therapy’s
positive effects in treating patients were investigated em-
pirically, and the results were presented from a qualitative
perspective. Nevertheless, recent advances in sensor tech-
nology have allowed clinicians to perform experiments that
measure changes in heart rate, electromyogram, respiration,
and skin conductance. Moreover, neuroimaging methodolo-
gies, such as Positron Emission Tomography and functional
Magnetic Resonance Imaging [1] enable the visualization
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of the signals transmitted between neurons and the cere-
bral blood flow within the brain during sessions. Therefore,
the patient’s response to music has been studied from a
cognitive perspective.

With the advent of generative models such as Transform-
ers and Diffusion models, various works have investigated
the quality and diversity of Al-generated music for different
applications [2—4]. Some examples of tasks that can be ac-
complished involve style change [5], orchestration [6], and
novel music generation pieces from a given text prompt [7].

Following the popularity of generative Al, Williams e?
al. [8] evaluated the effectiveness of a Markov model to
generate therapeutic music for a patient by measuring their
Galvanic Skin Response at any given moment and con-
firmed its effects. Following those results, Hou et al. [9]
and Li et al. [10] presented two long-short term memory
(LSTM) based generative models adapted for music therapy
given a treatment scenario. More recently, music generation
in the symbolic domain has shown promising results for
music therapy [11].

In this work, we propose a generative music medicine
model ! by fine-tuning MusicGen [7] using low-rank de-
composition [12] with prompts that contain emotion labels.
We aim to generate a “therapy session” that follows the
iso principle [13], which aims to alter a person’s mood by
playing music matching their current mood and then gradu-
ally shifting to music that represents a desired positive state.
Iso is a commonly used practice in music therapy, with its
effectiveness demonstrated in recent studies [14, 15]. We
use the term music medicine for the output of our model, as
music therapy is always conducted in coordination with a
licensed music therapist [16].

2. METHODOLOGY
2.1 Fine-tuning MusicGen

We leverage the MusicGen model [7], a single Language
Model (LM) for continuous conditional music generation.
MusicGen was trained on 20K hours of licensed instrument-
only music and approximately 400K tracks, thus creating an
awareness of different genres and instruments. We fine-tune
MusicGen with the MTG-Jamendo Dataset [17], specifi-
cally using the subset where mood/theme tags are available,
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CLAP 1 AUPRC 1 Ham Score 1 Time (min.) | Parameters |
MusicGen-Large 36.8 (+49.85%) 0.144 (+19.37%) 0.957 (+1.92%) 100+ 5 3.3%10°
MusicGen-Medium | 38.7 (+2.97%) 0.06 (+6.00%)  0.929 (+0.96%) 88 + 10 1.5 % 107
MusicGen-Small 33.1 (+19.12%)  0.031(-3.44%)  0.942 (+0.95%) 48 £ 2 0.3 % 10°

Table 1: Evaluation scores for the three fine-tuned models and their percentage improvements over the non-finetuned version.
The time column shows the average inference time for a 15-minute music session.
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Figure 1: Emotion Circumplex Model [18]

creating an emotion-aware music generation model.

We use parameter-efficient fine-tuning training with
Low-Rank Adaptation (LoRA) [12] to fine-tune the Mu-
sicGen model without adapting the original weights pro-
vided by [7]. As each piece in the subset is associated with
mood tags, we can map them to specific emotions from
the circumplex [18] (Fig. 1). A pile sorting experiment
was conducted to assign an individual mapping of moods
to emotions by three independent researchers and one by
Anthropic’s Claude AI. We obtained an inter-rater agree-
ment score (Fleiss Kappa) of 0.2471, confirming that our
individual ranking corresponds to a fair agreement. Finally,
the mapping is verified by a music therapist.

We validate the fine-tuning between a set number of it-
erations by extracting the audio output’s emotion using an
emotion and theme recognition model [19]. We then com-
pare whether the extracted emotion matches the intended
emotion of our prompt.

2.2 Continuous Prompt Engineering

Our model creates an audio output of around 15 minutes
by concatenating multiple 30-second audio clips generated
at each mood state. The audio clips are each generated
with a given prompt to the fine-tuned model containing
comma-separated tags concerning the mood tag, emotion,
instrumentation, and genre (e.g. "sad, piano, classical").
To follow the iso principle, we determine a path between
the initial and desired state, generating audio segments
along the intermediate emotional states. Our approach is
designed to begin with a text input for the first time step.
For the following time steps, the model’s input consists of
part of the audio output of the previous time step, along
with a text prompt consisting of the subsequent emotional

state, the preferred instrument, and the genre of music. We
introduce a temperature variable that increases the chance of
changing the instrumentation and genre between audio clips
according to the statistical distribution of these labels for a
given mood in the MTG-Jamendo Dataset subset used for
fine-tuning. To ensure high-quality generation, we trim any
silence at beginning and end of the 30-sec generated clips
before using them for conditioning the next generation.

After obtaining the generated clips, we normalize them
individually. Subsequently, we crossfade them with an over-
lap of a quarter length from the previous one, therefore com-
bining them into a single audio. We further post-process the
concatenated audio by applying a high-pass filter and dy-
namic denoising using spectral gating. Therefore, we aim to
have a final audio output that maximizes auditory pleasure
and comfort for the individual undergoing the therapy.

3. RESULTS

We fine-tuned and experimented with three different vari-
ations of MusicGen: 1) MusicGen-Small, 2) MusicGen-
Medium, and 3) MusicGen-Large [7]. After experimenting,
we opted to fine-tune the model for 2 epochs with a learning
rate of 7+ 106 and a linear decay scheduler. All training and
inference were performed on a single NVIDIA A40 GPU.

The generated output from each model successfully tra-
verses states in the circumplex, starting and ending at the
initial and desired state, respectively. To quantitatively eval-
uate the output (see Table 1), we use the following metrics:
1) Contrastive Language-Audio Pretraining (CLAP) [20],
which evaluates the relevance of the audio output to the
text prompt input, 2) Area under the precision-recall curve
(AUPRC) and 3) Hamming Score; the latter two are used
to evaluate the mood of the generated audio segment by
passing it to an emotion recognition model.

4. CONCLUSIONS

This work presented a novel approach to generative music
medicine. The generated audio follows the iso principle,
a well-established methodology in music therapy, dynami-
cally adapting instruments and genres to reflect the patient’s
evolving emotional state. All steps of our work have been
evaluated and approved by a licensed music therapist. Our
future direction involves conducting a user study to evaluate
the model’s effectiveness in mental wellness improvement.
Moreover, we wish to make a more controllable system
by passing continuous coordinates on the circumplex as
input to the prompt rather than discrete states to generate a
smoother transition between states and audio segments.
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