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CONVERGENCE RATES OF LANDWEBER-TYPE METHODS FOR

INVERSE PROBLEMS IN BANACH SPACES

QINIAN JIN

Abstract. Landweber-type methods are prominent for solving ill-posed inverse prob-
lems in Banach spaces and their convergence has been well-understood. However, how
to derive their convergence rates remains a challenging open question. In this paper, we
tackle the challenge of deriving convergence rates for Landweber-type methods applied
to ill-posed inverse problems, where forward operators map from a Banach space to a
Hilbert space. Under a benchmark source condition, we introduce a novel strategy to
derive convergence rates when the method is terminated by either an a priori stopping
rule or the discrepancy principle. Our results offer substantial flexibility regarding step
sizes, by allowing the use of variable step sizes. By extending the strategy to deal with
the stochastic mirror descent method for solving nonlinear ill-posed systems with exact
data, under a benchmark source condition we also obtain an almost sure convergence
rate in terms of the number of iterations.

1. Introduction

Due to their simplicity of implementation and low computational complexity per iter-
ation, Landweber-type methods are well-recognized for solving ill-posed inverse problems
in Banach spaces. Although their convergence has been well-understood, deriving their
convergence rates remains a challenging open question. In this paper, we will consider
Landweber-type methods for solving ill-posed inverse problems, where the forward opera-
tors map from a Banach space to a Hilbert space, and develop novel strategies to tackle
the challenge of deriving convergence rates under a benchmark source condition on sought
solutions.

We consider ill-posed inverse problems governed by the operator equation

F (x) = y, (1)

where F : dom(F ) ⊂ X → Y is a Fréchet differentiable operator mapping from a Banach
spaces X to a Hilbert space Y , with domain dom(F ). The Fréchet derivative of F at
x ∈ dom(F ) is denoted by F ′(x). For numerous examples of inverse problems that take
the form of equation (1), such as integral equations of the first kind, tomography problems,
and parameter estimation in partial differential equations, see [9, 11, 20, 28].

We assume (1) has a solution, i.e. y ∈ Ran(F ), the range of F . In practical applications,
prior feature information about the sought solution is often available, and it is important to
incorporate this information into the reconstruction process. Let R : X → (−∞,∞] be a
proper, lower semi-continuous, strong convex function that takes into account the available
feature information. To reconstruct a solution of (1) that aligns with the features described
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by R, we start with an initial guess x0 ∈ X with ∂R(x0) 6= ∅ and take ξ0 ∈ ∂R(x0), where
∂R(x0) denotes the subdifferential of R at x0. We want to determine a solution x† of (1)
such that

Dξ0
R (x†, x0) = min

{

Dξ0
R (x, x0) : F (x) = y

}

, (2)

where Dξ0
R (x, x0) denotes the Bregman distance induced by R at x0 in the direction ξ0;

for the definition of subdifferential, Bregman distance and other relevant concepts from
convex analysis, see [31]. A brief review of these concepts is provided in Section 2. We are
mainly interested in the situation where the problem (2) is ill-posed in the sense that its
solution does not depend continuously on the data.

In applications, data acquired through experiments inevitably contains noise. Assume,
instead of the exact data y, we only have a noisy data yδ satisfying

‖yδ − y‖ ≤ δ

with a small noise level δ > 0. Directly substituting y with yδ in the minimization problem
(2) may render the problem ill-defined, even if well-defined, the solution obtained from
yδ may not depend continuously on the data. To effectively utilize noisy data yδ to
approximate the solution of (2), regularization techniques must be employed to mitigate
this instability.

Although many regularization methods have been developed for solving (2) with noisy
data, in this paper we will focus on the following Landweber-type method

ξδk+1 = ξδk − γδ
kF

′(xδ
k)

∗(F (xδ
k)− yδ),

xδ
k+1 = argmin

x∈X

{

R(x) − 〈ξδk+1, x〉
}

,
(3)

where xδ
0 := x0 and ξδ0 := ξ0. This method builds on various efforts to extend the classical

Landweber iteration ([5, 16, 19, 22, 23, 24, 26, 29]) and can be interpreted as a mirror
descent method ([18, 21]). Each iteration involves two steps: the first performs a gradient
step in the dual space X∗ of X , followed by the second step, which uses the mirror map
defined by R to pull the element back to the original primal space X . Under the tangential
cone condition

‖F (x̄)− F (x)− F ′(x)(x̄ − x)‖ ≤ η‖F (x̄)− F (x)‖
around a sought solution with η ∈ [0, 1), the convergence has been proved when the
iteration is terminated by a priori or a posteriori stopping rules, see [13, 16, 19, 26] for
instance.

To assess how fast the iteration converges towards the desired solution, understanding
the convergence rates is crucial and has significant theoretical interest. For ill-posed inverse
problems, deriving such rates typically relies on assuming appropriate source conditions
are satisfied by the sought solution. In Hilbert spaces, the linear Landweber iteration is
well-studied, where it is known to be an order-optimal regularization method ([9]). For
the more general method (3) in Hilbert spaces with a nonlinear forward operator F and a
regularization functional R(x) = 1

2‖x‖2, convergence rate analyses have been undertaken
in [13, 22, 23]. Specifically, in the seminal work by [13], the nonlinear Landweber iteration

xδ
k+1 = xδ

k − γF ′(xδ
k)

∗(F (xδ
k)− yδ) (4)
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in Hilbert spaces with a constant step size has been considered. Under the range invariance
condition

F ′(x) = QxF
′(x†) and ‖I −Qx‖ ≤ κ0‖x− x†‖ (5)

in a neighborhood of the sought solution x†, it has been shown that, if the method is
terminated by the discrepancy principle

‖F (xδ
kδ
)− yδ‖ ≤ τδ < ‖F (xδ

k)− yδ‖, 0 ≤ k < kδ (6)

with suitably large τ > 1, then the convergence rate

‖xδ
kδ

− x†‖ = O(δ2µ/(1+2µ))

holds, provided the source condition

x† − x0 = (F ′(x†)∗F ′(x†))µω

is satisfied for some 0 < µ ≤ 1/2 with sufficiently small ‖ω‖.
Deriving convergence rates for the method (3) in its full generality is a very challenging

task. The main difficulties arise from several aspects: the possible nonlinearity of the
forward operator F , the non-quadratic nature of the regularization functional R, the non-
Hilbertian structure of the underlying space X , and the possible use of variable step-sizes
γδ
k. When F is a bounded linear operator and the step-size is constant, the convergence rate

analysis on the corresponding method has been rigorously studied in [17]. In that work,
through the interpretation of the method as a dual gradient method, the convergence
rates have been derived successfully under varational source conditions ([14]) when the
iteration is terminated by either an a priori stopping rule or the discrepancy principle.
The approach developed in [17] heavily relies on the linearity of the forward operator and
the constancy of the step-size. However, it is unclear how to extend the strategy presented
in [17] to address the equation (1) when the forward operator is nonlinear or when variable
step sizes are employed.

In this paper, we will develop entirely novel ideas to tackle the challenge of deriving
convergence rate of the method (3) under the benchmark source condition

ξ† := ξ0 + F ′(x†)∗λ† ∈ ∂R(x†) for some λ† ∈ Y (7)

on the sought solution x†, where ∂R denotes the subdifferential of R. Note that, under
the tangential cone condition, (2) can be equivalently stated as

min
{

Dξ0
R (x, x0) : F

′(x†)(x − x†) = 0
}

.

The Karush-Kuhn-Tucker (KKT) condition for this problem is exactly (7). In the context
of ill-posed problems in infinite-dimensional spaces, the mere existence of a solution does
not guarantee the satisfaction of the KKT condition. Therefore, (7) is commonly referred
to as a source condition. This source condition has been extensively utilized in deriving
convergence rates for regularization methods of ill-posed inverse problems ([6, 14, 17]).
Under the range invariance condition (5) on F and the source condition (7) on x†, we will
show that the convergence rate

‖xδ
kδ

− x†‖ = O(δ1/2)

holds if kδ is chosen by a suitable a priori stopping rule or the discrepancy principle (6).
Our results hold for any strongly convex regularization functional R with great flexibility
on step-sizes by allowing the use of variable ones. Thus constant and adaptive choices of
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step-sizes are covered by our results. The key point for deriving our convergence rate is
the observation that, under the condition (5), ξδk − ξ0 ∈ Ran(F ′(x†)∗) for every k. This
motivates us to reformulate the method (3) in an equivalent manner which defines an aux-
iliary sequence {λδ

k} such that ξδk = ξ0+F ′(x†)∗λδ
k for all k. Based on this sequence {λδ

k},
the source condition (7), and the sequence {xδ

k}, we can construct a sequence of quantities
which obey a nice recursive relation. Through the investigation of these quantities leads
us to obtain the desired convergence rate under an a priori stopping rule. Based on this a
priori result, after a careful comparison we obtain the convergence rate when the method
is terminated by the discrepancy principle. Furthermore, we extend the idea to deal with
the stochastic mirror descent method, which is a stochastic version of the method (3) for
solving nonlinear ill-posed systems; we consider the exact data case and obtain an almost
sure convergence rate result under a benchmark source condition.

This paper is organized as follows. In Section 2 we collect some basic facts of convex
analysis in Banach spaces. In Section 3 we devote to deriving convergence rates of the
Landweber-type method (3) when terminated by either a priori stopping rules or the
discrepancy principle. In Section 4 we extend the idea to derive convergence rate for
the stochastic mirror descent method for nonlinear ill-posed systems with exact data.
Finally, in Section 5 we provide some numerical results to validate the theoretical results
on convergence rates.

2. Preliminaries

In this section, we collect some basic facts on convex analysis in Banach spaces; for
more details one may refer to [31].

Throughout the paper, the same notation 〈·, ·〉 will be used to denote either the inner
product in a Hilbert space or the duality pairing in a Banach space. Let X be a Banach
space with norm ‖ · ‖, we use X∗ to denote its dual space. For a convex function f : X →
(−∞,∞], the set

dom(f) := {x ∈ X : f(x) < ∞}
is called the effective domain of f . If dom(f) 6= ∅, f is called proper. The subdifferential
of f is the set-valued mapping ∂f : X ⇒ X∗ defined by

∂f(x) := {ξ ∈ X∗ : f(x̄)− f(x)− 〈ξ, x̄− x〉 ≥ 0 for all x̄ ∈ X}
for each x ∈ X . Note that ∂f(x) could be empty for some x. The domain and graph of
∂f are defined respectively as

dom(∂f) := {x ∈ dom(f) : ∂f(x) 6= ∅}
and

graph(∂f) := {(x, ξ) ∈ X ×X∗ : x ∈ dom(∂f) and ξ ∈ ∂f(x)} .
Given x ∈ dom(f), an element ξ ∈ ∂f(x) is called a subgradient of f at x. The Bregman
distance induced by f at x in the direction ξ ∈ ∂f(x) is defined by

Dξ
f (x̄, x) := f(x̄)− f(x)− 〈ξ, x̄− x〉, ∀x̄ ∈ X

which is always nonnegative and satisfies the identity

Dξ2
f (x, x2)−Dξ1

f (x, x1) = Dξ2
f (x1, x2) + 〈ξ2 − ξ1, x1 − x〉 (1)

for all x ∈ dom(f) and (x1, ξ1), (x2, ξ2) ∈ graph(∂f).
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For a proper function f : X → (−∞,∞], its convex conjugate is defined by

f∗(ξ) := sup
x∈X

{〈ξ, x〉 − f(x)}, ξ ∈ X∗

which is a convex function taking values in (−∞,∞]. If f : X → (−∞,∞] is proper, lower
semi-continuous and convex, f∗ is also proper and

ξ ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(ξ) ⇐⇒ f(x) + f∗(ξ) = 〈ξ, x〉. (2)

A proper function f : X → (−∞,∞] is called strongly convex if there exists a constant
σ > 0 such that

f(tx̄+ (1 − t)x) + σt(1 − t)‖x̄− x‖2 ≤ tf(x̄) + (1 − t)f(x) (3)

for all x̄, x ∈ dom(f) and t ∈ [0, 1]. It is easy to see that if f : X → (−∞,∞] is strongly
convex in the sense of (3), then

Dξ
f (x̄, x) ≥ σ‖x− x̄‖2 (4)

for all x̄ ∈ dom(f), x ∈ dom(∂f) and ξ ∈ ∂f(x). Furthermore, for a proper, lower semi-
continuous, strongly convex function f : X → (−∞,∞] satisfying (3), it is known from
[31, Corollary 3.5.11] that dom(f∗) = X∗, f∗ is Fréchet differentiable and its gradient ∇f∗

maps X∗ to X with

‖∇f∗(ξ)−∇f∗(η)‖ ≤ ‖ξ − η‖
2σ

(5)

for all ξ, η ∈ X∗. Consequently, it follows from (2) and (5) that

Dξ
f (x̄, x) = f∗(ξ)− f∗(ξ̄)− 〈ξ − ξ̄,∇f∗(ξ̄)〉 ≤ 1

4σ
‖ξ − ξ̄‖2 (6)

for any (x, ξ), (x̄, ξ̄) ∈ graph(∂f).

3. Convergence rates of Landweber-type methods

The convergence of general Landweber-type methods in Banach spaces, including (3) as
a specific case, has been studied in [16, 19], particularly when the iteration is terminated
using the discrepancy principle (6). For the method (3), the convergence analysis relies
on the following standard conditions on R and F .

Assumption 1. R : X → (−∞,∞] is a proper, lower semi-continuous, strongly convex
function in the sense that there is a constant σ > 0 such that

R(tx̄ + (1− t)x) + σt(1− t)‖x̄− x‖2 ≤ tR(x̄) + (1− t)R(x)

for all x̄, x ∈ dom(R) and 0 ≤ t ≤ 1.

Assumption 2. (i) X is a Banach space and Y is a Hilbert space.
(ii) There exists ρ > 0 such that B2ρ(x0) ⊂ dom(F ) and (2) has a solution x† such that

Dξ0
R (x†, x0) ≤ 1

2σρ
2.

(iii) There is a constant L such that ‖F ′(x)‖ ≤ L for all x ∈ B2ρ(x0) and there exists
0 ≤ η < 1 such that

‖F (x̃)− F (x)− F ′(x)(x̃ − x)‖ ≤ η‖F (x̃)− F (x)‖
for all x̃, x ∈ B2ρ(x0).
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Under Assumption 1 and Assumption 2. it has been shown in [19, Lemma 3.2] that x† is
the unique solution of (2), and by using (4) we can conclude that ‖x†− x0‖2 ≤ ρ2/2 < ρ2,
i.e. x† ∈ Bρ(x0). Furthermore, we have the following convergence result.

Theorem 3.1. Let Assumption 1 and Assumption 2 hold. Consider the Landweber-type
method (3). Let τ > (1 + η)/(1 − η) be a given number and let {γδ

k} be chosen by one of
the following rules:

(i) γδ
k = γ/L2 with 0 < γ < 4σ(1− η − (1 + η)/τ);

(ii) γδ
k = min

{

γ‖F (xδ
k)−yδ‖2

‖F ′(xδ
k
)∗(F (xδ

k
)−yδ)‖2 , γ̄

}

for some γ̄ > 0 and 0 < γ < 4σ(1−η−(1+η)/τ);

(iii) γδ
k = min

{

γ((1−η)‖F (xδ
k)−yδ‖−(1+η)δ)‖F (xδ

k)−yδ‖

‖F ′(xδ
k
)∗(F (xδ

k
)−yδ)‖2 , γ̄

}

for some γ̄ > 0 and 0 < γ < 4σ.

Then the discrepancy principle (6) outputs a finite integer kδ and there is a solution x∗ of
(1) in B2ρ(x0) ∩ dom(R) such that

lim
δ→0

‖xδ
kδ

− x∗‖ = 0 and lim
δ→0

D
ξδkδ
R (x∗, xδ

kδ
) = 0.

If in addition, Ran(F ′(x)∗) ⊂ Ran(F ′(x†)∗) for all x ∈ B2ρ(x0), then x∗ = x†.

Theorem 3.1 with γδ
k chosen by either (i) or (ii) has been proved in [16, 19], and the

similar arguments there can be applied straightforwardly to establish the convergence
result when γδ

k is chosen by (iii). In the method (3), the regularization functional R can
be chosen in various ways to detect the features of sought solutions.

Example 3.2. Here are some choices of the regularization functional R that are useful
in detecting features of sought solutions in applications.

(a) When X is a Hilbert space and the sought solution lies in a closed convex set C, we
may take

R(x) :=
1

2
‖x‖2 + ιC(x),

where ιC denote the indicator function of C, i.e. ιC(x) = 0 if x ∈ C and ιC(x) = ∞
otherwise. It is clear that this R satisfies Assumption 1 with σ = 1/2.

(b) When the sought solution lies in L2(Ω) with sparsity feature, where Ω ⊂ R
d is a

bounded domain, we may take

R(x) :=
1

2

∫

Ω

|x(ω)|2dω + β

∫

Ω

|x(ω)|dω, x ∈ L2(Ω),

where β > 0 is a large number. Clearly, this R satisfies Assumption 1 with σ = 1/2.
(c) When the sought solution is piece-wise constant on some bounded domain Ω ⊂ R

d,
we may use

R(x) :=
1

2

∫

Ω

|x(ω)|2dω + β

∫

Ω

|Dx|

for some large number β > 0, where
∫

Ω
|Dx| denotes the total variation of x over Ω

defined by ([1])
∫

Ω

|Dx| := sup

{
∫

Ω

xdivudx : u ∈ C1
0 (Ω,R

d) and ‖u‖L∞(Ω) ≤ 1

}

.

It is easy to show that this R satisfies Assumption 1 with σ = 1/2.
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(d) When the sought solution x† is a probability density function over a bounded domain
Ω ⊂ R

d, i.e. x† ≥ 0 a.e. on Ω and
∫

Ω
x = 1, we may take

R(x) := f(x) + ι∆(x),

where ι∆ denotes the indicator function of

∆ :=

{

x ∈ L1
+(Ω) :

∫

Ω

x† = 1

}

and

f(x) =

{ ∫

Ω
x log x, if x ∈ L1

+(Ω) and x log x ∈ L1(Ω),
+∞, otherwise

is the negative of the Boltzmann-Shannon entropy. Here L1
+(Ω) := {x ∈ L1(Ω) :

x ≥ 0 a.e. on Ω}. It is known that R satisfies Assumption 1 with σ = 1/2; see
[4, 7, 10, 17].

The performance of the method (3) has been demonstrated in [16, 19] through various
numerical experiments. These results indicate that the method (3) not only captures
the features of the sought solution with a suitable choice of R, but also enjoys a certain
convergence speed when the sought solutions exhibit desirable properties. This raises the
natural question of whether it is possible to establish convergence rates for the method
(3) when the sought solutions satisfy specific source conditions. In this section, we will
derive the convergence rate for the method (3) under the assumption that the sought
solution satisfies the benchmark source condition (7), provided that F meets the following
additional condition.

Assumption 3. There exists κ0 ≥ 0 such that for any x ∈ B2ρ(x0) there is a bounded
linear operator Qx : Y → Y such that

F ′(x) = QxF
′(x†) and ‖I −Qx‖ ≤ κ0‖x− x†‖.

Assumption 3 is actually stronger than condition (iii) in Assumption 2. Indeed, using
similar arguments as in [13, 22] we can conclude that, if 8κ0ρ < 1, then

‖F (x̃)− F (x)− F ′(x)(x̃ − x)‖ ≤ η‖F (x̃)− F (x)‖
for all x̃, x ∈ B2ρ(x0), where η := 5κ0ρ/(1 − 8κ0ρ). This implies that condition (iii) in
Assumption 2 holds with a small η, provided that κ0ρ is sufficiently small.

It should be noted that when F is a bounded linear operator, Assumption 3 holds
automatically with κ0 = 0. Moreover, [13, 27] provide examples of nonlinear ill-posed
inverse problems that satisfy Assumption 3, including those arising from nonlinear integral
equations of the first kind and parameter identification in partial differential equations.
Below we will provide one more example that satisfies Assumption 3.

Example 3.3. Let Ω ⊂ R
d be a bounded domain with Lipschitz boundary ∂Ω. We

consider the Neumann boundary value problem of the semi-linear elliptic equation

−△y + g(y) = x in Ω, ∂νy = 0 on ∂Ω, (1)

where ∂νy denotes the normal derivative of y in the direction of the unit outward normal
ν to ∂Ω and g(y) is a given function defined on R satisfying the following properties:

• g ∈ C1(R) and there is a constant µ0 > 0 such that g′(y) ≥ µ0 for all y ∈ R.
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• g′ is locally Lipschitz continuous, i.e. for any M > 0 there is LM ≥ 0 such that

|g′(y1)− g′(y2)| ≤ LM |y1 − y2|
for all y1, y2 ∈ R satisfying |y1|, |y2| ≤ M .

Let r > d/2 be a fixed number. We consider the inverse problem of determining the
source term x ∈ Lr(Ω) from an L2(Ω)-measurement of y. According to [30, Theorem
4.7 & Theorem 4.16], for each x ∈ Lr(Ω) problem (1) has a unique weak solution yx ∈
H1(Ω) ∩ C(Ω) and for any x̃, x ∈ Lr(Ω) there holds

‖yx̃ − yx‖H1(Ω) + ‖yx̃ − yx‖C(Ω) ≤ C‖x̃− x‖Lr(Ω), (2)

where C denotes a generic constant depending only on µ0 and Ω. Since H1(Ω) →֒ L2(Ω),
it makes sense to define the operator F : Lr(Ω) → L2(Ω) by F (x) := yx for any x ∈ Lr(Ω)
and thus our inverse problem reduces to the form (1).

According to [30, Theorem 4.17], this F is Fréchet differentiable, and for any x ∈ Lr(Ω),
its Fréchet derivative F ′(x) is an operator from Lr(Ω) to H1(Ω) ⊂ L2(Ω). For each
h ∈ Lr(Ω), v := F ′(x)h is the unique weak solution of

−△v + g′(yx)v = h in Ω, ∂νv = 0 on ∂Ω.

Next, we show that this operator F satisfies Assumption 3. To see this, we consider the
linear subspace

S := {u ∈ H1(Ω) : ∂νu = 0 on ∂Ω}
of H1(Ω). Let x0 ∈ Lr(Ω) be fixed and let ρ > 0 be a fixed number. For any x̃, x ∈
Bρ(x0) := {z ∈ Lr(Ω) : ‖z − x0‖Lr(Ω) < ρ}, we define the linear operator Qx̃,x : S ⊂
H1(Ω) → H1(Ω) ⊂ L2(Ω), where, for each v ∈ S, w := Qx̃,xv ∈ H1(Ω) is the unique weak
solution of the linear elliptic problem

−△w + g′(yx̃)w = −△v + g′(yx)v in Ω, ∂νw = 0 on ∂Ω. (3)

Since ∂νv = 0 on ∂Ω, we can write
{

−△(w − v) + g′(yx̃)(w − v) = (g′(yx)− g′(yx̃))v in Ω,
∂ν(w − v) = 0 on ∂Ω.

By the theory of linear elliptic equations, we conclude that

‖w − v‖H1(Ω) ≤ C‖(g′(yx)− g′(yx̃))v‖L2(Ω) ≤ ‖g′(yx)− g′(yx̃)‖L∞(Ω)‖v‖L2(Ω).

By virtue of (2) and the local Lipschitz continuity of g′, there exists a constant Cρ de-
pending on Ω, µ0, x0 and ρ such that

‖w − v‖L2(Ω) ≤ ‖w − v‖H1(Ω) ≤ Cρ‖x̃− x‖Lr(Ω)‖v‖L2(Ω), ∀v ∈ S.

Since C∞
0 (Ω) ⊂ S, S is dense in L2(Ω). Thus, the above inequality implies that Qx̃,x can

be extended to a bounded linear operator from L2(Ω) to itself and

‖I −Qx̃,x‖L2(Ω)→L2(Ω) ≤ Cρ‖x̃− x‖Lr(Ω). (4)

Note that, for any h ∈ Lr(Ω) we have v := F ′(x)h ∈ S, and for the function w defined by
(3) we have w = F ′(x̃)h. Consequently

F ′(x̃)h = w = Qx̃,xv = Qx̃,xF
′(x)h, ∀h ∈ Lr(Ω)

which shows that F ′(x̃) = Qx̃,xF
′(x). This, together with (4), shows that F satisfies

Assumption 3.
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3.1. Some key estimates. Based on Assumptions 1–3, our aim is to derive convergence
rates of the Landweber-type method (3) under the benchmark source condition (7) on the
sought solution x†, when the method is terminated by either an a priori stopping rule or
the discrepancy principle.

In this subsection we will establish some key estimates that will be used in the subse-
quent analysis. Note from the definition of xδ

k in (3) that ξδk ∈ ∂R(xδ
k). We first show that,

up to a preassigned stopping index, the iterates always stay in B2ρ(x0) and the Bregman

distances {Dξδk
R (x†, xδ

k)} obey a useful recursive inequality.

Lemma 3.4. Let Assumption 1 and Assumption 2 hold. Suppose γδ
k is chosen such that

γ ≤ γδ
k ≤ min

{

γ‖F (xδ
k)− yδ‖2

‖F ′(xδ
k)

∗(F (xδ
k)− yδ)‖2 , γ̄

}

(5)

for some positive constants γ, γ and γ̄ with

c0 :=
1

2

(

1− η − γ

4σ

)

> 0. (6)

Let k̂δ be an integer such that c1δ
2k̂δ < 1

2σρ
2, where c1 := (1 + η)2γ̄/(4c0). Then xδ

k ∈
B2ρ(x0) for 0 ≤ k ≤ k̂δ and

∆δ
k+1 −∆δ

k ≤ −c0γ
δ
k‖F (xδ

k)− yδ‖2 + c1δ
2 (7)

for all integers 0 ≤ k < k̂δ, where ∆δ
k := D

ξδk
R (x†, xδ

k).

Proof. We first show by induction that

xδ
k ∈ B2ρ(x0) and ∆δ

k ≤ Dξ0
R (x†, x0) + c1δ

2k (8)

for all integers 0 ≤ k ≤ k̂δ. It is trivial for k = 0 as ξδ0 = ξ0 and xδ
0 = x0. Next we assume

that (8) holds for all 0 ≤ k ≤ l for some l < k̂δ and show that (8) still holds for k = l+ 1.
By the second equation in (3), we have ξδl ∈ ∂R(xδ

l ). Thus we may use (1) and (6) to
obtain

∆δ
l+1 −∆δ

l = D
ξl+1

R (xl, xl+1) +
〈

ξδl+1 − ξδl , x
δ
l − x†

〉

≤ 1

4σ

∥

∥ξδl+1 − ξδl
∥

∥

2
+
〈

ξδl+1 − ξδl , x
δ
l − x†

〉

.

By virtue of the first equation in (3), we further obtain

∆δ
l+1 −∆δ

l ≤
1

4σ
(γδ

l )
2
∥

∥F ′(xδ
l )

∗(F (xδ
l )− yδ)

∥

∥

2 − γδ
l

〈

F (xδ
l )− yδ, F ′(xδ

l )(x
δ
l − x†)

〉

.

By using ‖yδ − y‖ ≤ δ and (iii) of Assumption 2, we then have

∆δ
l+1 −∆δ

l ≤ 1

4σ
(γδ

l )
2
∥

∥F ′(xδ
l )

∗(F (xδ
l )− yδ)

∥

∥

2 − γδ
l

∥

∥F (xδ
l )− yδ

∥

∥

2

− γδ
l

〈

F (xδ
l )− yδ, yδ − y + y − F (xδ

l )− F ′(xδ
l )(x

† − xδ
l )
〉

≤ 1

4σ
(γδ

l )
2
∥

∥F ′(xδ
l )

∗(F (xδ
l )− yδ)

∥

∥

2 − γδ
l

∥

∥F (xδ
l )− yδ

∥

∥

2

+ γδ
l

∥

∥F (xδ
l )− yδ

∥

∥

(

(1 + η)δ + η‖F (xδ
l )− yδ‖

)

. (9)



10 QINIAN JIN

In view of (5), we can obtain

∆δ
l+1 −∆δ

l ≤ −
(

1− η − γ

4σ

)

γδ
l

∥

∥F (xδ
l )− yδ

∥

∥

2
+ (1 + η)γδ

l δ
∥

∥F (xδ
l )− yδ

∥

∥

= −2c0γ
δ
l

∥

∥F (xδ
l )− yδ

∥

∥

2
+ (1 + η)γδ

l δ
∥

∥F (xδ
l )− yδ

∥

∥ .

Combining this with the inequality

(1 + η)δ
∥

∥F (xl)− yδ
∥

∥ ≤ c0
∥

∥F (xδ
l )− yδ

∥

∥

2
+

(1 + η)2

4c0
δ2

shows that

∆δ
l+1 −∆δ

l ≤ −c0γ
δ
l

∥

∥F (xδ
l )− yδ

∥

∥

2
+

(1 + η)2

4c0
γδ
l δ

2

≤ −c0γ
δ
l

∥

∥F (xδ
l )− yδ

∥

∥

2
+ c1δ

2, (10)

where for the last step we used γδ
l ≤ γ̄. By virtue of this inequality and the induction

hypothesis, we have

∆δ
l+1 ≤ ∆δ

l + c1δ
2 ≤ Dξ0

R (x†, x0) + c1δ
2(l + 1) ≤ 1

2
σρ2 + c1δ

2k̂δ < σρ2

which together with Assumption 1 and (4) implies that σ‖xδ
l+1 − x†‖2 ≤ σρ2 and hence

‖xδ
l+1 − x†‖ ≤ ρ. Since Assumption 1 and (ii) in Assumption 2 imply ‖x† − x0‖ ≤ ρ, we

thus have ‖xδ
l+1 − x0‖ ≤ 2ρ, i.e. xδ

l+1 ∈ B2ρ(x0). We therefore complete the proof of (8).

As a direct consequence, we can see that (10) holds for all 0 ≤ l < k̂δ which shows the
desired result. �

In the following we will focus on deriving convergence rates under the benchmark source
condition (7). Let A := F ′(x†). The key idea is the observation that, under Assumption
3, ξδk−ξ0 ∈ Ran(A∗) for each integer k. This leads us to introducing an auxiliary sequence
which plays a crucial role in our argument. To be more precise, by using Assumption 3
we can write the first equation in (3) as

ξδk+1 = ξδk − γδ
kA

∗Q∗
xδ
k

(

F (xδ
k)− yδ

)

.

Thus, if we define (λδ
k, ξ

δ
k, x

δ
k) by setting λδ

0 = 0 and

ξδk = ξ0 +A∗λδ
k,

xδ
k = argmin

x∈X

{

R(x) − 〈ξδk, x〉
}

,

λδ
k+1 = λδ

k − γδ
kQ

∗
xδ
k

(

F (xδ
k)− yδ

)

,

(11)

then these (ξδk, x
δ
k) are the same as the ones produced by (3). Note that the definition of

λδ
k+1 relies on Qxδ

k
which requires the information of x†. The reformulation (11) of (3) is

not for computational purpose, instead it will be used only for theoretical analysis and a
proper use of the additional sequence {λδ

k} will enable us to derive the convergence rate
under the benchmark source condition (7).
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Since Y is a Hilbert space and {λδ
k} is a sequence in Y , we may use the polarization

identity and the definition of λδ
k+1 to obtain

∥

∥λδ
k+1 − λ†

∥

∥

2 −
∥

∥λδ
k − λ†

∥

∥

2

=
∥

∥λδ
k+1 − λδ

k

∥

∥

2
+ 2

〈

λδ
k+1 − λδ

k, λ
δ
k − λ†

〉

= (γδ
k)

2
∥

∥

∥
Q∗

xδ
k
(F (xδ

k)− yδ)
∥

∥

∥

2

− 2γδ
k

〈

Q∗
xδ
k
(F (xδ

k)− yδ), λδ
k − λ†

〉

= (γδ
k)

2
∥

∥

∥
Q∗

xδ
k
(F (xδ

k)− yδ)
∥

∥

∥

2

− 2γδ
k

〈

(Q∗
xδ
k
− I)(F (xδ

k)− yδ), λδ
k − λ†

〉

− 2γδ
k

〈

F (xδ
k)− y −A(xδ

k − x†) + y − yδ, λδ
k − λ†

〉

− 2γδ
k

〈

A(xδ
k − x†), λδ

k − λ†
〉

.

By the condition on Qx, we have

‖I −Q∗
xδ
k
‖ ≤ κ0‖xδ

k − x†‖.

According to Lemma 3.4 and the strong convexity ofR, ‖xδ
k−x†‖ is bounded for 0 ≤ k ≤ k̂δ

and thus we can find a constant c2 > 0 independent of k and δ such that

‖Q∗
xδ
k
‖2 ≤ (1 + κ0‖xδ

k − x†‖)2 ≤ c2, ∀0 ≤ k ≤ k̂δ.

Therefore
∥

∥λδ
k+1 − λ†

∥

∥

2 −
∥

∥λδ
k − λ†

∥

∥

2

≤ c2(γ
δ
k)

2
∥

∥F (xδ
k)− yδ

∥

∥

2
+ 2κ0γ

δ
k

∥

∥xδ
k − x†

∥

∥

∥

∥F (xδ
k)− yδ

∥

∥

∥

∥λδ
k − λ†

∥

∥

+ 2γδ
kδ
∥

∥λδ
k − λ†

∥

∥+ 2γδ
k

∥

∥F (xδ
k)− y −A(xδ

k − x†)
∥

∥

∥

∥λδ
k − λ†

∥

∥

− 2γδ
k

〈

A∗λδ
k −A∗λ†, xδ

k − x†
〉

. (12)

By using the source condition (7), the relation between ξδk and λδ
k, and the strong convexity

of R, we have
〈

A∗λδ
k −A∗λ†, xδ

k − x†
〉

=
〈

ξδk − ξ†, xδ
k − x†

〉

= D
ξδk
R (x†, xδ

k) +Dξ†

R (xδ
k, x

†)

≥ ∆δ
k + σ‖xδ

k − x†‖2.

By virtue of Assumption 3 and (iii) in Assumption 2 we have

∥

∥F (xδ
k)− y −A(xδ

k − x†)
∥

∥ =

∥

∥

∥

∥

∫ 1

0

(

F ′(x† + t(xδ
k − x†))−A

)

(xδ
k − x†)dt

∥

∥

∥

∥

=

∥

∥

∥

∥

∫ 1

0

(

Qx†+t(xδ
k
−x†) − I

)

A(xδ
k − x†)dt

∥

∥

∥

∥

≤
∫ 1

0

∥

∥

∥
Qx†+t(xδ

k
−x†) − I

∥

∥

∥

∥

∥A(xδ
k − x†)

∥

∥ dt

≤ 1

2
κ0

∥

∥xδ
k − x†

∥

∥

∥

∥A(xδ
k − x†)

∥

∥
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≤ 1

2
(1 + η)κ0

∥

∥xδ
k − x†

∥

∥

∥

∥F (xδ
k)− y

∥

∥

≤ 1

2
(1 + η)κ0

∥

∥xδ
k − x†

∥

∥

(
∥

∥F (xδ
k)− yδ

∥

∥+ δ
)

.

Combining these estimates with (12) gives
∥

∥λδ
k+1 − λ†

∥

∥

2 −
∥

∥λδ
k − λ†

∥

∥

2

≤ c2(γ
δ
k)

2
∥

∥F (xδ
k)− yδ

∥

∥

2
+ (3 + η)κ0γ

δ
k

∥

∥xδ
k − x†

∥

∥

∥

∥F (xδ
k)− yδ

∥

∥

∥

∥λδ
k − λ†

∥

∥

+ (1 + η)κ0γ
δ
kδ
∥

∥xδ
k − x†

∥

∥

∥

∥λδ
k − λ†

∥

∥+ 2γδ
kδ
∥

∥λδ
k − λ†

∥

∥

− 2σγδ
k

∥

∥xδ
k − x†

∥

∥

2 − 2γδ
k∆

δ
k.

By the boundedness of ‖xδ
k − x†‖, we can find a constant c3 independent of k and δ such

that

‖λδ
k+1 − λ†‖2 − ‖λδ

k − λ†‖2

≤ c2(γ
δ
k)

2‖F (xδ
k)− yδ‖2 + (3 + η)κ0γ

δ
k‖xδ

k − x†‖‖F (xδ
k)− yδ‖‖λδ

k − λ†‖
+ c3γ

δ
kδ‖λδ

k − λ†‖ − 2σγδ
k‖xδ

k − x†‖2 − 2γδ
k∆

δ
k

for all 0 ≤ k ≤ k̂δ. By virtue of the Young’s inequality we have

(3 + η)κ0‖xδ
k − x†‖‖F (xδ

k)− yδ‖‖λδ
k − λ†‖

≤ 2σ‖xδ
k − x†‖2 + (3 + η)2κ2

0

8σ
‖F (xδ

k)− yδ‖2‖λδ
k − λ†‖2,

we consequently obtain

‖λδ
k+1 − λ†‖2 ≤

(

1 +
(3 + η)2κ2

0

8σ
γδ
k‖F (xδ

k)− yδ‖2
)

‖λδ
k − λ†‖2

+ c2(γ
δ
k)

2‖F (xδ
k)− yδ‖2 + c3γ

δ
kδ‖λδ

k − λ†‖ − 2γδ
k∆

δ
k.

With the help of the condition γδ
k ≤ γ̄, we thus obtain the following result.

Lemma 3.5. Let Assumption 1, Assumption 2 and Assumption 3 hold. Let the step-size

γk be chosen to satisfy (5) and (6), and let k̂δ be chosen as in Lemma 3.4. If x† satisfies
the source condition (7), then

‖λδ
k+1 − λ†‖2 ≤

(

1 +
(3 + η)2κ2

0

8σ
γδ
k‖F (xδ

k)− yδ‖2
)

‖λδ
k − λ†‖2

+ c2γ̄γ
δ
k‖F (xδ

k)− yδ‖2 + c3γ̄δ‖λδ
k − λ†‖ − 2γδ

k∆
δ
k (13)

for 0 ≤ k < k̂δ, where c2 and c3 are positive constants independent of k and δ.

Based on Lemma 3.5, we will show under the source condition (7) that λδ
k is bounded

for all 0 ≤ k ≤ k̂δ if k̂δ is chosen as k̂δ := [cδ−1] for some positive constant c > 0, where, for
any given number t, [t] denotes the largest integer ≤ t. To this end, we need the following
elementary result ([18]).

Lemma 3.6. Let {ak} and {bk} be two sequences of nonnegative numbers such that

a2k ≤ b2k + c

k−1
∑

j=0

aj, k = 0, 1, · · · ,
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where c ≥ 0 is a constant. If {bk} is non-decreasing, then

ak ≤ bk + ck, k = 0, 1, · · · .
Lemma 3.7. Let Assumption 1, Assumption 2 and Assumption 3 hold. Let the step-size

γk be chosen to satisfy (5) and (6). If x† satisfies the source condition (7) and if k̂δ is

chosen as k̂δ = [cδ−1] for some positive constant c, then there exist C > 0 and δ̄ > 0 such
that

‖λδ
k − λ†‖ ≤ C, ∀0 ≤ k ≤ k̂δ and 0 < δ ≤ δ̄.

Proof. Note that c1δ
2k̂δ ≤ c1cδ. Thus there is δ̄ > 0 such that c1δ

2k̂δ ≤ 1
2σρ

2 for all

0 < δ ≤ δ̄. Consequently, the result in Lemma 3.5 holds for 0 ≤ k ≤ k̂δ and 0 < δ ≤ δ̄.
We set

ak := ‖λδ
k − λ†‖,

bk := c2γ̄γ
δ
k‖F (xδ

k)− yδ‖2,

βk :=
(3 + η)2κ2

0

8σ
γδ
k‖F (xδ

k)− yδ‖2.

Then from (13) in Lemma 3.5 it follows that

a2k+1 ≤ (1 + βk)a
2
k + bk + c3γ̄δak, ∀0 ≤ k < k̂δ.

By recursively using this inequality we have

a2k ≤ a20

k−1
∏

l=0

(1 + βl) +
k−1
∑

i=0

(bi + c3γ̄δai)
k−1
∏

l=i+1

(1 + βl).

Note that
k−1
∏

l=i+1

(1 + βl) = exp

(

log

k−1
∏

l=i+1

(1 + βl)

)

= exp

(

k−1
∑

l=i+1

log(1 + βl)

)

≤ exp

(

k−1
∑

l=i+1

βl

)

,

where for the last step we used the inequality log(1 + t) ≤ t for t ≥ 0. Therefore

a2k ≤ a20 exp

(

k−1
∑

l=0

βl

)

+

k−1
∑

i=0

(bi + c3γ̄δai) exp

(

k−1
∑

l=i+1

βl

)

.

According to Lemma 3.4, we have

c0

k−1
∑

l=0

γδ
l ‖F (xδ

l )− yδ‖2 ≤ ∆δ
0 + c1δ

2k ≤ Dξ0
R (x†, x0) + c1δ

2k̂δ. (14)

Thus, there is a constant C̃ such that

exp

(

k−1
∑

l=0

βl

)

= exp

(

(3 + η)2κ2
0

8σ

k−1
∑

l=0

γδ
l ‖F (xl)− yδ‖2

)

≤ C̃



14 QINIAN JIN

for all 0 ≤ k ≤ k̂δ. Consequently

a2k ≤ C̃

(

a20 +

k−1
∑

i=0

bi

)

+ C̃c3γ̄δ

k−1
∑

i=0

ai, ∀0 ≤ k ≤ k̂δ.

By virtue of Lemma 3.6 then we can conclude that

‖λδ
k − λ†‖ = ak ≤

√

√

√

√C̃

(

a20 +

k−1
∑

i=0

bi

)

+ C̃c3γ̄δk

=

√

√

√

√C̃

(

a20 + c2γ̄
k−1
∑

i=0

γδ
i ‖F (xδ

i )− yδ‖2
)

+ C̃c3γ̄δk.

With the help of (14), we can find a positive constant C′ such that

‖λδ
k − λ†‖ ≤ C′(1 + kδ), ∀0 ≤ k ≤ k̂δ and 0 < δ ≤ δ̄.

Since k̂δ = [cδ−1], we therefore complete the proof. �

3.2. Convergence rate under a priori stopping rule. The following result gives the
convergence rate of the method (3) under an a prior stopping rule when the source condi-
tion (7) holds and the step-size γδ

k is chosen properly.

Theorem 3.8. Let Assumption 1, Assumption 2 and Assumption 3 hold. Let the step-size

γδ
k be chosen to satisfy (5) and (6). If x† satisfies the source condition (7) and if k̂δ is

chosen as k̂δ = [cδ−1] for some positive constant c, then there exist C > 0 and δ̄ > 0 such
that

D
ξδ
k̂δ

R (x†, xδ
k̂δ
) ≤ Cδ, ∀0 < δ ≤ δ̄.

Consequently ‖xδ
k̂δ

− x†‖ = O(δ1/2) by the strong convexity of R.

Proof. By virtue of Lemma 3.5 and Lemma 3.7, there is a positive constant C such that

‖λδ
k+1 − λ†‖2 ≤ ‖λδ

k − λ†‖2 + Cγδ
k‖F (xδ

k)− yδ‖2 + Cδ − 2γδ
k∆

δ
k. (15)

for all integers 0 ≤ k < k̂δ and 0 < δ ≤ δ̄. Multiplying this equation by c0/C, adding to
the equation (7) in Lemma 3.4, and using γδ

k ≥ γ, we have

∆δ
k+1 +

c0
C
‖λδ

k+1 − λ†‖2 ≤ ∆δ
k +

c0
C
‖λδ

k − λ†‖2 + c0δ + c1δ
2 − c4∆

δ
k

for all 0 ≤ k < k̂δ, where c4 := 2c0γ/C. Recursively using this inequality gives

∆δ
k̂δ

+
c0
C

∥

∥

∥
λδ
k̂δ

− λ†
∥

∥

∥

2

+ c4

k̂δ−1
∑

k=0

∆δ
k ≤ ∆0 +

c0
C
‖λ0 − λ†‖2 + (c0 + c1δ)δk̂δ, (16)

where ∆0 := ∆δ
0 = Dξ0

R (x†, x0). According to Lemma 3.4 we have

∆δ
k ≥ ∆δ

k̂δ
− c1(k̂δ − k)δ2, 0 ≤ k ≤ k̂δ

and thus

k̂δ−1
∑

k=0

∆δ
k ≥ k̂δ∆

δ
k̂δ

− c1δ
2
k̂δ−1
∑

k=0

(k̂δ − k) = k̂δ∆
δ
k̂δ

− 1

2
c1k̂δ(k̂δ + 1)δ2.
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Combining this with (16) gives

min{1, c4}(k̂δ + 1)∆δ
k̂δ

≤ ∆0 +
c0
C
‖λ†‖2 + (c0 + c1δ)δk̂δ +

1

2
c1c4k̂δ(k̂δ + 1)δ2.

Therefore, there is a constant C′ independent of δ such that

∆δ
k̂δ

≤ C′

(

1

k̂δ + 1
+ k̂δδ

2 + δ

)

, ∀0 < δ ≤ δ̄.

According to the choice of k̂δ, we thus obtain ∆δ
k̂δ

≤ Cδ. Finally, by the strong convexity

of R, we have ‖xδ
k̂δ

− x†‖2 ≤ ∆δ
k̂δ
/σ = O(δ). The proof is complete. �

Remark 3.9. Theorem 3.8 requires the step-size γδ
k to satisfy (5) and (6). Actually there

are various choices of γδ
k satisfying this requirement:

(i) If γδ
k is taken to be a constant step-size γδ

k = γ/L2 with 0 < γ < 4σ(1− η), where L
is the finite constant appeared in (iii) of Assumption 2, then (5) and (6) are satisfied
with γ = γ̄ = γ/L2.

(ii) If γδ
k is chosen as

γδ
k = min

{

γ‖F (xδ
k)− yδ‖2

‖F ′(xδ
k)

∗(F (xδ
k)− yδ)‖2 , γ̄

}

for some constants γ̄ > 0 and 0 < γ < 4σ(1− η), then (5) and (6) are satisfied with
γ = min{γ/L2, γ̄}. This choice of γδ

k is related to the minimal error method.

(iii) Let τ > (1 + η)/(1− η) be a given number and set rδk := F (xδ
k)− yδ. If γδ

k is chosen
as

γδ
k =







min
{

γ0((1−η)‖rδk‖−(1+η)δ)‖rδk‖

‖F ′(xδ
k
)∗rδ

k
‖2 , γ̄

}

if ‖rδk‖ > τδ,

min
{

γ0(1−η)
L2 , γ̄

}

, otherwise

for some constant 0 < γ0 < 4σ, then by noting that

γ0((1− η)‖rδk‖ − (1 + η)δ)‖rδk‖
‖F ′(xδ

k)
∗rδk‖2

≥ γ0

(

1− η − 1 + η

τ

) ‖rδk‖2
‖F ′(xδ

k)
∗rδk‖2

≥ γ0
L2

(

1− η − 1 + η

τ

)

when ‖rδk‖ > τδ, we can see that (5) and (6) are satisfied with

γ = γ0(1− η) and γ = min

{

γ0
L2

(

1− η − 1 + η

τ

)

, γ̄

}

.

Therefore, the result in Theorem 3.8 holds for all the above choices of step-sizes, i.e. if the

source condition (7) holds and k̂δ = [cδ−1], then ∆δ
k̂δ

= O(δ) and ‖xδ
kδ

− x†‖ = O(δ1/2).

Remark 3.10. When F is a bounded linear operator, R(x) = 1
2‖x‖2 and γδ

k is chosen as

γδ
k =

γ‖Fxδ
k − yδ‖2

‖F ∗(Fxδ
k − yδ)‖2 ,

the corresponding method of (3) becomes the minimal error method for solving linear ill-
posed problems. It has been shown in [8] that minimal error method is not a regularization
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method when terminated by an a priori stopping rule. Our result shows that if this step-
size is modified into the one as listed in (ii) of Remark 3.9, convergence rate can be
derived under an a priori stopping rule if the source condition (7) holds. Our result does
not contradict the one in [8] because we have imposed an upper bound on γδ

k. Placing
such an upper bound can enhance stability in numerical computation.

3.3. Convergence rate under the discrepancy principle. Next we turn to derive the
convergence rate of the Landweber-type method (3) under the source condition (7) when
the iteration is terminated by the discrepancy principle (6) for some number τ > 1. We
need the following result.

Lemma 3.11. Let Assumption 1 and Assumption 2 hold. Let the step-size γδ
k be chosen

to satisfy (5). If τ > 1 and γ > 0 are chosen such that

τ >
1 + η

1− η
and γ < 4σ

(

1− η − 1 + η

τ

)

, (17)

then the discrepancy principle (6) outputs a finite integer kδ, x
δ
k ∈ B2ρ(x0) for all 0 ≤ k ≤

kδ, and

∆δ
k+1 −∆δ

k ≤ −c5γ
δ
k‖F (xδ

k)− yδ‖2

for all 0 ≤ k < kδ, where ∆δ
k := D

ξδk
R (x†, xδ

k) and c5 := 1− η − 1+η
τ − γ

4σ > 0.

Proof. This can be done by essentially following the proof in [19, Lemma 3.4] or [16,
Lemma 3.1]. �

Theorem 3.12. Let Assumption 1, Assumption 2 and Assumption 3 hold. Let the step-
size γδ

k be chosen to satisfy (5). Assume that τ > 1 and γ > 0 are chosen such that (17)
holds and let kδ be the integer determined by the discrepancy principle (6). If the source
condition (7) holds, then there is a positive constant C such that

∆δ
kδ

≤ Cδ and ‖xδ
kδ

− x†‖ ≤ Cδ1/2 (18)

for all δ > 0, where ∆δ
kδ

:= D
ξδkδ
R (x†, xδ

kδ
).

Proof. By the strong convexity of R, the second estimate in (18) follows from the first
one. Thus we only need to show the first estimate in (18).

Since τ > 1 and γ > 0 satisfy (17), the step-size γδ
k satisfies (5) and (6). Thus, by

taking k̂δ := [δ−1], we may use Theorem 3.8 to conclude that there exists constants C′ > 0
and δ̄ > 0 such that

D
ξδ
k̂δ

R (x†, xδ
k̂δ
) ≤ C′δ, ∀0 < δ ≤ δ̄. (19)

We will use this result to show the first estimate in (18). According to Lemma 3.11,

∆δ
kδ

≤ Dξ0
R (x†, x0) < ∞. Thus, we can find a positive constant C such that ∆δ

kδ
≤ Cδ for

δ > δ̄. In the following we assume 0 < δ ≤ δ̄.

We consider kδ according to two cases. If kδ ≥ k̂δ, then we may use Lemma 3.11 and
(19) to obtain

∆δ
kδ

≤ D
ξδ
k̂δ

R (x†, xδ
k̂δ
) ≤ C′δ.
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It remains only to consider the case kδ < k̂δ. According to Lemma 3.7, there is a constant
C independent of δ such that ‖λδ

kδ
− λ†‖ ≤ C. Thus, by using ξδkδ

= ξ0 + A∗λδ
kδ

and the
source condition (7), we can obtain

∆δ
kδ

≤ D
ξδkδ
R (x†, xδ

kδ
) +Dξ†

R (xδ
kδ
, x†) = 〈ξδkδ

− ξ†, xδ
kδ

− x†〉
= 〈A∗λδ

kδ
−A∗λ†, xδ

kδ
− x†〉 = 〈λδ

kδ
− λ†, A(xδ

kδ
− x†)〉

≤ ‖λδ
kδ

− λ†‖‖A(xδ
kδ

− x†)‖
≤ C‖A(xδ

kδ
− x†)‖.

By Assumption 2 (iii), ‖yδ − y‖ ≤ δ, and ‖F (xδ
kδ
)− yδ‖ ≤ τδ, we can conclude that

∆δ
kδ

≤ C(1 + η)‖F (xδ
kδ
)− y‖

≤ C(1 + η)
(

δ + ‖F (xδ
kδ
)− yδ‖

)

≤ C(1 + η)(1 + τ)δ.

The proof is therefore complete. �

By applying the above result to the method (3) with the step-size γδ
k chosen by those

rules listed as (i) and (ii) in Remark 3.9, we immediately obtain the following result.

Corollary 3.13. Let Assumption 1, Assumption 2 and Assumption 3 hold. Consider the
method (3) with γδ

k chosen by one of the following rules:

(i) γδ
k = γ/L2 for some γ > 0;

(ii) γδ
k = min

{

γ‖F (xδ
k)−yδ‖2

‖F ′(xδ
k
)∗(F (xδ

k
)−yδ)‖2 , γ̄

}

for some γ > 0 and γ̄ > 0.

Assume τ > 1 and γ > 0 are chosen such that (17) holds and let kδ be the integer
determined by the discrepancy principle (6). If the source condition (7) holds, then there
is a constant C > 0 such that

D
ξδkδ
R (x†, xδ

kδ
) ≤ Cδ and ‖xδ

kδ
− x†‖ ≤ Cδ1/2

for all δ > 0.

In Theorem 3.12 and Corollary 3.13, τ > 1 and γ > 0 are required to satisfy (17). In
applications we may need to take τ close to (1 + η)/(1− η) in order to get more accurate
reconstruction results. As a direct consequence, the theoretical result only allows to use
very small γ. This may lead to increase the required number of iterations and thus consume
more computational time. For the step-size γδ

k given by (iii) in Remark 3.9, fortunately
we have the following result which allows γ0 to be a much larger number.

Theorem 3.14. Let Assumption 1, Assumption 2 and Assumption 3 hold. Let τ >
(1 + η)/(1 − η) and let the step-size γδ

k be chosen as

γδ
k = min

{

γ0((1 − η)‖rδk‖ − (1 + η)δ)‖rδk‖
‖F ′(xδ

k)
∗rδk‖2

, γ̄

}

(20)

with γ̄ > 0 and 0 < γ0 < 4σ whenever ‖rδk‖ > τδ, where rδk := F (xδ
k) − yδ. Then the

discrepancy principle (6) outputs a finite integer kδ. If the source condition (7) holds, then
there is a constant C > 0 such that

D
ξδkδ
R (x†, xδ

kδ
) ≤ Cδ and ‖xδ

kδ
− x†‖ ≤ Cδ1/2

for all δ > 0.
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Proof. The key point is to show that the same result in Lemma 3.11 holds under the
relaxed requirement on γ0. To see this, we note that, when xδ

k ∈ B2ρ(x0) with ‖rδk‖ > τδ
and γδ

k is chosen by (20), we may follow the derivation of (9) to obtain

∆δ
k+1 −∆δ

k ≤ 1

4σ
(γδ

k)
2‖F ′(xδ

k)
∗rδk‖2 −

(

(1− η)‖rδk‖ − (1 + η)δ
)

γδ
k‖rδk‖

≤ −
(

1− γ0
4σ

)

(

(1− η)‖rδk‖ − (1 + η)δ
)

γδ
k‖rδk‖

≤ −
(

1− γ0
4σ

)

(

1− η − 1 + η

τ

)

γδ
k‖rδk‖2.

Recall that 0 < γ0 < 4σ and τ > (1 + η)/(1− η). Based on the above inequality, we may
use a similar induction argument in the proof of Lemma 3.4 to show that, if n ≥ 0 is an
integer such that ‖rδk‖ > τδ for all 0 ≤ k ≤ n, then xδ

k ∈ B2ρ(x0) for all 0 ≤ k ≤ n and

∆δ
k+1 ≤ ∆δ

k − c5‖rδk‖2, ∀0 ≤ k < n, (21)

where

c5 :=
(

1− γ0
4σ

)

(

1− η − 1 + η

τ

)

min

{

γ0
L2

(

1− η − 1 + η

τ

)

, γ̄

}

> 0.

If the discrepancy principle (6) does not output a finite integer, then ‖rδk‖ > τδ for all
integers k ≥ 0. Consequently, it follows from (21) that

c5τ
2δ2(n+ 1) ≤ c5

n
∑

k=0

‖rδk‖2 ≤ ∆δ
0 = Dξ0

R (x†, x0) < ∞

for any integer n ≥ 0. Letting n → ∞ gives a contradiction. Therefore, the discrepancy
principle (6) determines a finite integer kδ with

xδ
k ∈ B2ρ(x0) for 0 ≤ k ≤ kδ and ∆δ

k+1 ≤ ∆δ
k for 0 ≤ k < kδ. (22)

Finally let us derive the given convergence rate. To this end, we define γδ
k as in (iii) of

Remark 3.9 for k > kδ. For this choice of step-size, we know that the result in Theorem

3.8 holds, i.e. for k̂δ = [δ−1] there exist positive constants C > 0 and δ̄ > 0 such that

D
ξδ
k̂δ

R (x†, xδ
k̂δ
) ≤ Cδ, ∀0 < δ ≤ δ̄.

Based on this inequality and (22), we may use the same argument in the proof of Theorem
3.12 to derive that ∆δ

kδ
≤ Cδ for all δ > 0. The proof is complete. �

Remark 3.15. (i) When X is a Hilbert space, R(x) = 1
2‖x‖2 and γδ

k = constant, the
method (3) becomes the classical Landweber iteration (4) studied in [13] in which the
convergence rate result under the source condition (7) requires ‖λ†‖ to be sufficiently
small. It is interesting to see that our result does not require this smallness condition.

(ii) For the method (3) with a constant step-size and F being a bounded linear operator,
convergence rates have been established in [17] under general variational source conditions
by interpreting the method as a dual gradient method. Our work in this paper, restricted
to this special case, can even present new results by allowing the use of variable step-sizes.
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4. Convergence rate of stochastic mirror descent method

In this section we will extend the idea to deal with a stochastic version of the method
(3) for solving nonlinear ill-posed system

Fi(x) = yi, i = 1, · · · , N (1)

with exact data, where, for each i = 1, · · · , N , the operator Fi : X → Yi is a Fréchet
differentiable operator from a common Banach space X to a Hilbert space Yi. We assume
(1) has a solution and look for a solution whose feature is described by a proper, lower
semi-continuous, strongly convex function R : X → (−∞,∞]. Let (x0, ξ0) ∈ X ×X∗ be
an initial guess with x0 ∈ X and ξ0 ∈ ∂R(x0), we intend to find a solution x† of (1) such
that

Dξ0
R (x†, x0) = min

{

Dξ0
R (x, x0) : Fi(x) = yi, i = 1, · · · , N

}

. (2)

Let Y1 × · · · × YN be the product space of Y1, · · · , YN with the natural inner product
inherited from those of Yi. By introducing the operator F : X → Y1 × · · · × YN as

F (x) := (F1(x), · · · , FN (x))

and y := (y1, · · · , yN ), we can write (1) and (2) into the form (1) and (2) respectively. In
this way, we may use the method (3) to solve the problem. Correspondingly, the updating
formula from ξk to ξk+1 takes the form

ξk+1 = ξk − γk

N
∑

i=1

F ′
i (xk)

∗(Fi(xk)− yi)

which requires calculating the terms F ′
i (xk)

∗(Fi(xk) − yi) for all i = 1, · · · , N at each
iteration step and hence it can be time-consuming when N is large. In order to make the
method more efficient, we may take a random term from the sum in the above equation
to update ξk+1. This leads to the following stochastic mirror descent method.

Algorithm 1. Take (x0, ξ0) ∈ X ×X∗ with x0 ∈ dom(F ) and ξ0 ∈ ∂R(x0). Let {γk} be
a given sequence of positive numbers. For k ≥ 0 do the following:

(i) Pick ik ∈ {1, · · · , N} randomly via the uniform distribution;
(ii) Update ξk+1 = ξk − γkF

′
ik
(xk)

∗(Fik(xk)− yik);
(iii) Calculate xk+1 = argminx∈X {R(x) − 〈ξk+1, x〉}.
When every Fi is a bounded linear operator, Algorithm 1 has been proposed and ana-

lyzed in [18]; under Assumption 1 on R the convergence has been established and, when
the sought solution satisfies a benchmark source condition, a convergence rate has been
derived. In order to carry out the analysis of Algorithm 1 for nonlinear ill-posed system,
beside Assumption 1 on R, we also assume the following standard conditions on Fi for
i = 1, · · · , N .

Assumption 4. (i) X is a Banach space, Yi is a Hilbert space for each i.
(ii) There exists ρ > 0 such that B2ρ(x0) ⊂ dom(F ) and (2) has a solution x† such that

Dξ0
R (x†, x0) ≤ σρ2.

(iii) There exists 0 ≤ η < 1 such that

‖Fi(x̃)− Fi(x)− F ′
i (x)(x̃ − x)‖ ≤ η‖Fi(x̃)− Fi(x)‖

for all x̃, x ∈ B2ρ(x0) and i = 1, · · · , N .
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(iv) There is κ0 ≥ 0 such that for each i ∈ {1, · · · , N} and each x ∈ B2ρ(x0), there exists
a bounded linear operator Qi

x : Yi → Yi such that

F ′
i (x) = Qi

xF
′
i (x

†) and ‖I −Qi
x‖ ≤ κ0‖x− x†‖.

Note that when N = 1, Assumption 4 reduces to Assumption 2 and Assumption 3. Let

L := max
i=1,··· ,N

sup
x∈B2ρ(x0)

‖F ′
i (x)‖.

From (iv) of Assumption 4 it is easy to see L < ∞. From simplicity of exposition,
throughout this section we set Ai := F ′

i (x
†) and define A : X → Y1 × · · · × YN by

Ax := (A1x, · · · , ANx), x ∈ X.

It is easy to see that the adjoint A∗ of A is given by

A∗z =
N
∑

i=1

A∗
i zi, ∀z := (z1, · · · , zN) ∈ Y1 × · · · × YN .

Assumption 4 will enable us to derive a convergence rate of Algorithm 1 under the source

condition (7) of the sought solution x†. i.e. there exists λ† = (λ†
1, · · · , λ†

N ) ∈ Y1×· · ·×YN

such that

ξ† := ξ0 +A∗λ† = ξ0 +

N
∑

i=1

A∗
i λ

†
i ∈ ∂R(x†). (3)

In the following result we first show that Algorithm 1 is well-defined and the Bregman

distance Dξk
R (x†, xk) is monotonically decreasing.

Lemma 4.1. Let Assumption 1 and (i)-(iii) of Assumption 4 hold with L < ∞. Consider
Algorithm 1. Let γ̄ := supk γk and assume

c6 := 1− η − γ̄L2

4σ
> 0. (4)

Then xk ∈ B2ρ(x0) and

∆k+1 −∆k ≤ −c6γk‖Fik(xk)− yik‖2

for all integers k ≥ 0, where ∆k := Dξk
R (x†, xk).

Proof. When xk ∈ B2ρ(x0), we may use the similar argument in the proof of Lemma 3.4
to obtain

∆k+1 −∆k ≤ 1

4σ
‖ξk+1 − ξk‖2 + 〈ξk+1 − ξk, xk − x†〉

=
γ2
k

4σ
‖F ′

ik
(xk)

∗(Fik(xk)− yik)‖2 − γk
〈

Fik(xk)− yik , F
′
ik
(xk)(xk − x†)

〉

≤ γ2
k

4σ
‖F ′

ik
(xk)

∗(Fik(xk)− yik)‖2 − (1− η)γk‖Fik(xk)− yik‖2.

By using ‖F ′
ik
(xk)‖ ≤ L, we further obtain

∆k+1 −∆k ≤ −
(

1− η − γkL
2

4σ

)

γk‖Fik(xk)− yik‖2 ≤ −c6γk‖Fik(xk)− yik‖2.

Based on this, we may use an induction argument, as done in the proof of Lemma 3.4, to
conclude the proof. �
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Note that, once (x0, ξ0) ∈ X × X∗ and {γk} are fixed, the sequence {(xk, ξk)} in
Algorithm 1 is completely determined by the sample path {i0, i1, · · · }; changing the sample
path can result in a different iterative sequence and thus {(xk, ξk)} is a random sequence.
We need to analyze Algorithm 1 using tools from stochastic calculus. Let F0 = ∅ and,
for each integer k ≥ 0, let Fk denote the σ-algebra generated by the random variables il
for 0 ≤ l < k. Then {Fk : k ≥ 0} form a filtration which is natural to Algorithm 1. Let
E denote the expectation associated with this filtration, see [3]. There holds the tower
property E[E[Φ|Fk]] = E[Φ] for any random variable Φ.

Based on Lemma 4.1, it is easy to derive the convergence of {xk} to a solution of (2)
in expectation and almost surely by the arguments in [18] with minor modifications. Our
focus here is on deriving convergence rate of Algorithm 1 under the source condition (7).
To this end, we need to interpret Algorithm 1 from an alternative perspective. Note that,
under (iv) of Assumption 4, the updating formula for ξk+1 can be written as

ξk+1 = ξk − γkA
∗
ik(Q

ik
xk
)∗(Fik(xk)− yik).

This motivates us to consider the following algorithm.

Algorithm 2. Take (x0, ξ0) ∈ X × X∗ with x0 ∈ dom(F ) and ξ0 ∈ ∂R(x0). Set λ0 =
(0, · · · , 0) ∈ Y1 × · · · × YN . For k ≥ 0 do the following:

(i) Pick ik ∈ {1, · · · , N} randomly via the uniform distribution;
(ii) Update λk+1 = (λk+1,1, · · · , λk+1,N ) ∈ Y1 × · · · × YN by λk+1,i = λk,i for i 6= ik and

λk+1,ik = λk,ik − γk(Q
ik
xk
)∗(Fik (xk)− yik);

(iii) Calculate ξk+1 = ξ0 +A∗λk+1 and xk+1 = argminx∈X {R(x) − 〈ξk+1, x〉}.
Note that Algorithm 2 is not an implementable one, it is only used to produce an extra

sequence {λk} in Y1 × · · · × YN which is crucial for the forthcoming analysis. Note that
for ξk+1 defined by algorithm 2 we have

ξk+1 = ξ0 +A∗λk+1 = ξ0 +
∑

i6=ik

A∗
iλk+1,i +A∗

ikλk+1,ik

= ξ0 +
∑

i6=ik

A∗
iλk,i +A∗

ik

(

λk,ik − γk(Q
ik
xk
)∗(Fik(xk)− yik)

)

= ξk − γkA
∗
ik(Q

ik
xk
)∗(Fik(xk)− yik)

= ξk − γkF
′
ik(xk)

∗(Fik (xk)− yik).

Therefore both Algorithm 1 and Algorithm 2 can produce the same sequence {xk, ξk} if
they start from the same initial guess, follow the same sample path and use the same
step-size.

Lemma 4.2. Let Assumption 1 and Assumption 4 hold. Let {γk} satisfy (4). Consider
Algorithm 2 and assume the source condition (3) holds. Then

E[‖λk+1 − λ†‖2|Fk] ≤
(

1 +
(3 + η)2κ2

0

8σN
γk‖F (xk)− y‖2

)

‖λk − λ†‖2

+
Cγ2

k

N
‖F (xk)− y‖2 − 2γk

N
∆k

for all integers k ≥ 0, where ∆k := Dξk
R (x†, xk) and C is a positive constant independent

of k.
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Proof. By the definition of λk+1 and the polarization identity we have

‖λk+1 − λ†‖2 =
∑

i6=ik

‖λk+1,i − λ†
i‖2 + ‖λk+1,ik − λ†

ik
‖2

=
∑

i6=ik

‖λk,i − λ†
i‖2 + ‖λk,ik − λ†

ik
− γk(Q

ik
xk
)∗(Fik (xk)− yik)‖2

= ‖λk − λ†‖2 + γ2
k

∥

∥(Qik
xk
)∗(Fik (xk)− yik)

∥

∥

2

− 2γk

〈

(Qik
xk
)∗(Fik (xk)− yik), λk,ik − λ†

ik

〉

.

By using Assumption 4 and following the similar argument in establishing Lemma 3.5 we
can obtain

‖λk+1 − λ†‖2 ≤ ‖λk − λ†‖2 + γ2
k(1 + κ0‖xk − x†‖)2 ‖Fik(xk)− yik‖2

+ 2κ0γk‖xk − x†‖‖Fik(xk)− yik‖‖λk,ik − λ†
ik
‖

− 2γk

〈

Fik(xk)− yik −Aik(xk − x†), λk,ik − λ†
ik

〉

− 2γk

〈

Aik(xk − x†), λk,ik − λ†
ik

〉

≤ ‖λk − λ†‖2 + γ2
k(1 + κ0‖xk − x†‖)2 ‖Fik(xk)− yik‖2

+ (3 + η)κ0γk‖xk − x†‖‖Fik(xk)− yik‖‖λk,ik − λ†
ik
‖

− 2γk

〈

A∗
ik
(λk,ik − λ†

ik
), xk − x†

〉

.

According to Lemma 4.1 and the strong convexity of R, {xk} is bounded. Thus, we can
find a positive constant C such that

‖λk+1 − λ†‖2 ≤ ‖λk − λ†‖2 + Cγ2
k ‖Fik (xk)− yik‖2

+ (3 + η)κ0γk‖xk − x†‖‖Fik(xk)− yik‖‖λk,ik − λ†
ik
‖

− 2γk

〈

A∗
ik
(λk,ik − λ†

ik
), xk − x†

〉

.

Taking the conditional expectation on Fk gives

E[‖λk+1 − λ†‖2|Fk] ≤ ‖λk − λ†‖2 + Cγ2
k

N

N
∑

i=1

‖Fi(xk)− yi‖2

+
(3 + η)κ0

N
γk‖xk − x†‖

N
∑

i=1

‖Fi(xk)− yi‖‖λk,i − λ†
i‖

− 2γk
N

〈

N
∑

i=1

A∗
i (λk,i − λ†

i ), xk − x†

〉

.

By the Cauchy-Schwarz inequality, we have

N
∑

i=1

‖Fi(xk)− yi‖‖λk,i − λ†
i‖ ≤

(

N
∑

i=1

‖Fi(xk)− yi‖2
)1/2( N

∑

i=1

‖λk,i − λ†
i‖2
)1/2

= ‖F (xk)− y‖‖λk − λ†‖.
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Combining this with the above inequality and using the definition of F and A, we thus
obtain

E[‖λk+1 − λ†‖2|Fk] ≤ ‖λk − λ†‖2 + Cγ2
k

N
‖F (xk)− y‖2

+
(3 + η)κ0

N
γk‖xk − x†‖‖F (xk)− y‖‖λk − λ†‖

− 2γk
N

〈

A∗(λk − λ†), xk − x†
〉

.

By using the definition of ξk, the source condition (3), and the strong convexity of R, we
have

〈

A∗(λk − λ†), xk − x†
〉

= 〈ξk − ξ†, xk − x†〉 ≥ ∆k + σ‖xk − x†‖2.
Therefore

E[‖λk+1 − λ†‖2|Fk] ≤ ‖λk − λ†‖2 + Cγ2
k

N
‖F (xk)− y‖2 − 2σγk

N
‖xk − x†‖2 − 2γk

N
∆k

+
(3 + η)κ0

N
γk‖xk − x†‖‖F (xk)− y‖‖λk − λ†‖

≤ ‖λk − λ†‖2 + Cγ2
k

N
‖F (xk)− y‖2 − 2γk

N
∆k

+
(3 + η)2κ2

0

8σN
γk‖F (xk)− y‖2‖λk − λ†‖2.

The proof is complete. �

We will use Lemma 4.1 and Lemma 4.2 to derive the almost sure convergence rate of
Algorithm 1. To this end, we need the following Robbins-Siegmund theorem ([2, 25]).

Theorem 4.3 (Robbins-Siegmund theorem). In a probability space consider a filtration
{Fk} and four non-negative sequences of {Fk}-adapted processes {Vk}, {Uk}, {Zk} and
{αk} such that

∑

k Zk < ∞ and
∑

k αk < ∞ almost surely. If for any integers k ≥ 0,
there holds

E[Vk+1 | Fk] + Uk ≤ (1 + αk)Vk + Zk,

then {Vk} converges and
∑∞

k=0 Uk is finite almost surely.

Now we are ready to show the main convergence rate result on Algorithm 1 under the
source condition (3).

Theorem 4.4. Let Assumption 1 and Assumption 4 hold. Let {γk} be a sequence of
positive numbers such that

γ̄ := sup
k≥0

γk <
4σ(1− η)

L2
and

∞
∑

k=0

γk = ∞. (5)

Consider Algorithm 1 and assume the source condition (3) holds. Then

∆k = O
(

s−1
k

)

and ‖xk − x†‖ = O
(

s
−1/2
k

)

almost surely,

where sk :=
∑k

l=0 γl.
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Proof. According to Lemma 4.1, taking the conditional expectation on Fk gives

E[∆k+1|Fk] ≤ ∆k −
c6γk
N

‖F (xk)− y‖2.

By taking the full expectation, we further obtain

c6γk
N

E[‖F (xk)− y‖2] ≤ E[∆k]− E[∆k+1].

Consequently

c6
N

E

[

∞
∑

k=0

γk‖F (xk)− y‖2
]

≤
∞
∑

k=0

(E[∆k]− E[∆k+1]) ≤ ∆0 < ∞.

This implies that
∑∞

k=0 γk‖F (xk) − y‖2 < ∞ almost surely. Therefore, we may apply
Robbins-Siegmund theorem to the inequality in Lemma 4.2 to conclude that

∑∞
k=0 γk∆k <

∞ almost surely. By using the monotonicity of {∆k} given in Lemma 4.1 we obtain

sk∆k =

(

k
∑

l=0

γl

)

∆k ≤
k
∑

l=0

γl∆l ≤
∞
∑

l=0

γl∆l < ∞ almost surely.

Therefore

∆k = O
(

s−1
k

)

almost surely.

By the strong convexity of R, we then obtain ‖xk − x†‖ = O(s
−1/2
k ) almost surely. The

proof is complete. �

Remark 4.5. When X is a Hilbert space and R(x) = 1
2‖x‖2, Algorithm 1 reduces to

the stochastic gradient method studied in [15]. Under the diminishing step-size γk =
γ0(k+1)−α with α ∈ (0, 1), [15, Theorem 4.8] shows that, under the source condition (3),
there holds the convergence rate

E[‖xk − x†‖2] = O
(

(k + 1)−min{1−α,α−ε}
)

for some small ε ∈ (0, α/2). Besides Assumption 4 and smallness of ‖λ†‖ and γ0, the proof
in [15] also relies on the technical condition

E
[

‖(I −Rzt)G(xk)‖2
]1/2 ≤ CE

[

‖xk − x†‖2
]θ/2

E
[

‖G(xk)‖2
]1/2

,

E
[

‖(I −R∗
zt)G(xk)‖2

]1/2 ≤ CE
[

‖xk − x†‖2
]θ/2

E
[

‖G(xk)‖2
]1/2

for some θ ∈ (0, 1]; one may refer to [15, Assumption 2.4] for the meaning of Rzt and
G(x). Unfortunately there is no any justification available for this technical condition. In
contrast, our result requires neither such a technical condition nor the smallness of ‖λ†‖.
Our convergence rate is valid for any step-size {γk} satisfying (5). For the step-size scheme
γk = γ0(k+1)−α with α ∈ (0, 1), our Theorem 4.4 gives the nicer almost sure convergence
rate

‖xk − x†‖2 = O
(

(k + 1)−(1−α)
)

.

Our result even allows to use constant step-size schemes to give much better almost sure
convergence rate

‖xk − x†‖2 = O (1/(k + 1)) .
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Remark 4.6. For the stochastic mirror descent method for nonlinear ill-posed system
with noisy data, it is not yet clear how to derive convergence rates. We hope to address
this issue in a future work.

5. Numerical results

In this section we present some computational results to validate our theoretical con-
vergence rate results on the method (3) when it is terminated by the discrepancy principle
(6) with τ > (1 + η)/(1 − η). The step-sizes γδ

k are chosen by various rules which are
described below:

• Rule 1: γδ
k = γ/L2 with γ = 1.98(1− η − (1 + η)/τ);

• Rule 2: γδ
k = max

{

γ‖rδk‖
2

‖F ′(xδ
k
)∗rδ

k
‖2 , γ̄

}

with γ = 1.98(1− η − (1 + η)/τ) and γ̄ = 600;

• Rule 3: γδ
k = max

{

γ0((1−η)‖rδk‖−(1+η)δ)‖rδk‖

‖F ′(xδ
k
)∗rδ

k
‖2 , γ̄

}

with γ0 = 1.98 and γ̄ = 600.

Here rk := F (xδ
k) − yδ. In the following computations, the regularization functionals R

that we use always satisfy Assumption 1 with σ = 1/2. Thus, the step-size selections for
γδ
k, as outlined above, are legitimate in accordance with Corollary 3.13 and Theorem 3.14.

Example 5.1. Consider the linear integral equation of the first kind

(Ax)(s) :=

∫ 1

0

φ(t, s)x(t)dt = y(s), s ∈ [0, 1],

where φ(t, s) := 1 + t + s, and assume the sought solution x† is a probability density

function on [0, 1], i.e. x† ≥ 0 a.e. on [0, 1] and
∫ 1

0 x† = 1. Clearly A is a compact linear

operator from L1[0, 1] to L2[0, 1] and

‖Ax‖2L2[0,1] ≤
∫ 1

0

max
0≤t≤1

|φ(t, s)|2dt‖x‖2L1[0,1] =
19

3
‖x‖2L1[0,1]

which implies ‖A‖ ≤ L :=
√

19/3. To determine such a solution we use the regularization
functional R given in (d) of Example 3.2 with Ω = [0, 1]. The corresponding method (3)
becomes ([17])

ξδk+1 = ξδk − γδ
kA

∗(Axδ
k − yδ), xδ

k+1 = eξ
δ
k+1

/
∫ 1

0

eξ
δ
k+1 , (6)

where yδ is a noisy data satisfying ‖yδ −Ax†‖L2[0,1] ≤ δ with a noise level δ > 0. Clearly,
Assumption 2 and Assumption 3 hold with η = 0 and κ0 = 0. It is easy to check that if
x† satisfies the condition

1 + log x† ∈ Ran(A∗), (7)

then it satisfies the source condition (7) with ξ0 = 0. Consequently, for the integer kδ
output by the discrepancy principle, if x† satisfies (7) then we can expect the convergence

rate ‖xδ
kδ

− x†‖ = O(
√
δ) according to our theoretical results.

To numerically check if the convergence rate is achieved, we assume the sought solution
x† is given by

x†(t) := e1.5a−1+at, t ∈ [0.1],

where a = 0.4949075935 · · · is such that e1.5a−1(ea − 1)/a = 1 which guarantees
∫ 1

0
x† = 1

so that x† is a probability density function on [0, 1]. It is easy to see that 1 + log x† =
A∗λ† with λ† ≡ a on [0, 1] and thus the source condition (7) holds. In our numerical
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Table 1. Numerical results for Example 5.1, where iter denotes the
integer kδ output by the discrepancy principle (6) with τ = 1.01, err
denotes the approximation error, i.e. err = ‖xδ

kδ
− x†‖L1, and ratio =

err/
√
δ.

Rule 1 Rule 2 Rule 3
δ iter err ratio iter err ratio iter err ratio

5e-2 743 5.0723e-2 0.2268 160 5.0659e-2 0.2266 66 5.0275e-2 0.2248
5e-3 2630 5.0405e-3 0.0713 1649 5.0215e-3 0.0710 189 4.9796e-3 0.0704
5e-4 4509 4.6703e-4 0.0209 3495 4.6610e-4 0.0208 280 4.6441e-4 0.0208
5e-5 6387 8.2451e-5 0.0117 5348 8.2431e-5 0.0117 368 8.2427e-5 0.0117

computation, we use noisy data yδ with various noise level δ > 0 to reconstruct x†. To
carry out the computation, all integrals over [0, 1] are approximated by the trapezoidal rule
by partitioning [0, 1] into 5000 subintervals of equal length; such a fine grid is used for the
purpose of reducing the effect of discretization so that we can observe the convergence rate
in terms of δ more accurately. In Table 1 we present the computational results obtained
using the method (9) with the initial guess ξ0 ≡ 0, leading to x0 ≡ 1. The method is
terminated according to the discrepancy principle (6) with τ = 1.01, and the step-size γδ

k

is selected using Rule 1, Rule 2 and Rule 3. The computational outcomes corroborate
our theoretical findings discussed in Corollary 3.13 and Theorem 3.14. Moreover, Table 1
indicates that Rule 3 generally requires fewer iterations than Rule 1 and Rule 2.

Example 5.2. Let Ω ⊂ R
2 be a bounded domain with a Lipschitz boundary ∂Ω. Consider

determining the coefficient c in the boundary value problem

−△u+ cu = f in Ω, u = g on ∂Ω (8)

from an L2(Ω)-measurement of u, where f ∈ H−1(Ω) and g ∈ H1/2(∂Ω). Assuming the
sought solution c† is in L2(Ω), this nonlinear inverse problem reduces to solving F (c) = u,
where F : L2(Ω) → L2(Ω) is defined by F (c) := u(c) with u(c) ∈ H1(Ω) ⊂ L2(Ω) being
the unique weak solution of (8). It is known that F is well-defined on the set

D(F ) := {c ∈ L2(Ω) : ‖c− ĉ‖L2 ≤ ε0 for some ĉ ≥ 0 a.e.}
for some positive constant ε0 > 0. Furthermore, F is Fréchet differentiable, the Fréchet
derivative of F and the adjoint are given by

F ′(c)h = −A(c)−1(hu(c)) and F ′(c)∗w = −u(c)A(c)−1w

for c ∈ D(F ) and h,w ∈ L2(Ω), where A(c) : H1
0 (Ω) → H−1(Ω) is defined by A(c)u =

−△u+ cu. Additionally, F satisfies Assumption 2 (iii) for a number η > 0 which can be
very small if ρ > 0 is sufficiently small (see [9]). If u(c†) ≥ κ for some constant κ > 0,
then Assumption 3 holds in a neighborhood of c†; see [13].

We are interested in the situation that the sought solution c† ∈ L2(Ω) is nonnegative.
Thus, to reconstruct c†, we use the functional R given in (a) of Example 3.2 with C :=
{c ∈ L2(Ω) : c ≥ 0 a.e.}. Correspondingly the method (3) becomes

ξδk+1 = ξδk − γδ
kF

′(cδk)
∗(F (cδk)− uδ), cδk+1 = max{ξδk+1, 0}, (9)
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where uδ ∈ L2(Ω) is a noisy data satisfying ‖uδ −u(c†)‖L2(Ω) ≤ δ with a noise level δ > 0.
The source condition (7) can be equivalently stated as

c† = PC(ξ0 + F ′(c†)∗λ†) = max{ξ0 + F ′(c0)
∗λ†, 0} (10)

for some λ† ∈ L2(Ω), where PC denotes the orthogonal projection from L2(Ω) onto C.

Table 2. Numerical results for Example 5.2, where iter denotes the
integer kδ output by the discrepancy principle (6) with τ = 1.1, err

denotes the approximation error, i.e. err = ‖cδkδ
− c†‖L2, and ratio =

err/
√
δ.

Rule 2 Rule 3
δ iter err ratio iter err ratio

1e-2 19 1.7471e-1 1.7471 2 1.7357e-1 1.7357
1e-3 97 4.0901e-2 1.2934 26 4.1922e-2 1.3257
1e-4 227 8.3865e-3 0.8386 84 8.3326e-3 0.8333
1e-5 548 2.5209e-3 0.7972 365 2.5909e-3 0.8193
1e-6 5423 9.3739e-4 0.9374 5741 9.4716e-3 0.9472

To test the convergence rate result, we take Ω = [0, 1]2 and assume the sought solution
c† is given by

c†(x, y) =
(

max{1− 9(x2 + y2), 0}
)2

and the right hand side f is given by f = −4+(1+x2+y2)c†(x, y). Then u(c†) = 1+x2+y2.
Take the initial guess ξ0 = 0. Then the source condition (10) holds with

λ† = A(c†)

(

− c†

u(c†)

)

= △
(

c†

u(c†)

)

− (c†)2

u(c†)
∈ L2(Ω).

Thus, according to our theory, if the step-size γδ
k is chosen according to those rules stated in

Corollary 3.13 and Theorem 3.14, and if kδ denotes the integer output by the discrepancy
principle, we can expect ‖cδkδ

− c†‖L2(Ω) = O(
√
δ) as δ → 0. To validate this result, we use

noisy data uδ with various noise level δ > 0 to reconstruct c† by the method (9). To perform
the computation, we set η = 0.04 and divide Ω into 128× 128 small squares of equal size.
All partial differential equations are solved approximately using a multigrid method ([12])
with finite difference discretization. In Table 2 we report the computational results by the
method (9), terminated by the discrepancy principle (6) with τ = 1.1, with the step-size
γδ
k chosen by Rule 2 and Rule 3; we do not report the computation result for γδ

k chosen by
Rule 1 because the upper bound L is hard to obtain. The computational results confirm
our theoretical result presented in Corollary 3.13 and Theorem 3.14. Furthermore, Table
2 indicates that Rule 3 usually requires less number of iterations than Rule 2 particularly
when the noise level is moderate or not too small.
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29. F. Schöpfer, A. K. Louis and T. Schuster, Nonlinear iterative methods for linear ill-posed problems in

Banach spaces, Inverse problems, 22 (2006), 311–329.
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31. C. Zălinscu, Convex Analysis in General Vector Spaces, World Scientific Publishing Co., Inc., River

Edge, New Jersey, 2002.

Mathematical Sciences Institute, Australian National University, Canberra, ACT 2601,

Australia

Email address: qinian.jin@anu.edu.au


	1. Introduction
	2. Preliminaries
	3. Convergence rates of Landweber-type methods
	3.1. Some key estimates
	3.2. Convergence rate under a priori stopping rule
	3.3. Convergence rate under the discrepancy principle

	4. Convergence rate of stochastic mirror descent method
	5. Numerical results
	Acknowledgement
	References

