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Abstract—Brain signals accompany various information rele-
vant to human actions and mental imagery, making them crucial
to interpreting and understanding human intentions. Brain-
computer interface technology leverages this brain activity to
generate external commands for controlling the environment,
offering critical advantages to individuals with paralysis or
locked-in syndrome. Within the brain-computer interface do-
main, brain-to-speech research has gained attention, focusing
on the direct synthesis of audible speech from brain signals.
Most current studies decode speech from brain activity using
invasive techniques and emphasize spoken speech data. However,
humans express various speech states, and distinguishing these
states through non-invasive approaches remains a significant yet
challenging task. This research investigated the effectiveness of
deep learning models for non-invasive-based neural signal decod-
ing, with an emphasis on distinguishing between different speech
paradigms, including perceived, overt, whispered, and imagined
speech, across multiple frequency bands. The model utilizing
the spatial conventional neural network module demonstrated
superior performance compared to other models, especially in
the gamma band. Additionally, imagined speech in the theta
frequency band, where deep learning also showed strong effects,
exhibited statistically significant differences compared to the
other speech paradigms.

Index Terms—brain-computer interface, electroencephalogra-
phy, imagined speech, spoken speech, signal processing;

I. INTRODUCTION

Brain-computer interface (BCI) serves as brain-driven com-
munication pathways that convert neural signals into action-
able inputs for external systems [1]. In recent years, active BCI
has emerged as a next-generation control interface, offering
speech-based interaction by directly harnessing the user’s
cognitive states and intentions [2]. Various types of user input
have been studied, including visual imagery, imagined speech
[3]–[6], motor imagery [7], [8], and motor execution, each
presenting unique advantages and limitations. In this paper, We
present a novel, integrative BCI paradigm that encompasses
perception, imagined speech, whispered speech, and overt
speech. This approach holds promise for addressing various
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limitations in human-computer interaction and provides BCI
users with an alternative method of control. Humans engage in
speech production across a variety of real-world contexts. To
enable better control of speech in different real-life scenarios,
it is essential to collect, analyze, and research data across
various speech states. Machine learning techniques for neu-
ral decoding have demonstrated significant success, yet they
heavily depend on manually engineered features. In contrast,
deep learning approaches can directly learn from raw data and
execute tasks in an end-to-end manner [9], making them more
applicable to real-world scenarios [10]–[12]. With this in mind,
we evaluated the performance of our proposed brain-based
input system using a standard deep neural network (DNN)
and investigated straightforward yet effective modifications to
tailor the networks more closely to our specific paradigm.

DNNs in the BCI domain, such as EEGNet [13], Shallow-
ConvNet [14], and filter-bank convolutional network (FBCNet)
[15], typically employ distinct layers of temporal and spatial
convolutions. These networks utilize 1D convolutional kernels
of fixed sizes to extract temporal, spectral, and spatial fea-
tures. Temporal kernels are often chosen heuristically, while
spatial kernels are applied uniformly across all channels. This
architecture has been highly effective in conventional BCI
paradigms, such as visual imagery, motor imagery, and motor
execution, which predominantly involve sensory or motor-
related signals. Nevertheless, the complex nature of EEG
signals demands multi-scale kernels to interpret information
across various temporal scales [16], [17]. Additionally, due to
the effects of volume conduction, EEG signals exhibit redun-
dancy between electrodes, resulting in low spatial resolution.
Moreover, current feature extraction methods, which are based
in Euclidean space, cannot accurately capture the complex
relationships between multiple electrodes, necessitating addi-
tional spatial-based features like connectivity methods, phase
locking value (PLV), phase lag index (PLI), and coherence,
which contain topological spatial information of the brain [18].

II. MATERIALS AND METHODS
A. Dataset Description

The study involved ten healthy participants, six males and
four females, with a mean age of 23.7 years (SD = 3.23).
None of the participants had a history of claustrophobia or
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Fig. 1. (a) Placement of 128 electrodes in the 10-5 international standard system. (b) Experimental paradigm for recording EEG signals during four speech
states in words. Following the cue, a 1.5-second interval is allocated for perceived speech, during which the participant listens to an auditory stimulus before
transitioning to subsequent tasks.

hearing impairment, ensuring that the experimental conditions
did not induce discomfort or auditory bias. Brain signals were
acquired using a 128-channel EEG cap with active Ag/AgCl
electrodes that followed the international 10-5 system for elec-
trode placement. The FCz and FPz channels were designated
as the reference and ground electrodes. EEG signals were cap-
tured using Brain Vision/Recorder software (Brain Products
GmbH, Germany) and processed using MATLAB 2023a. A
sampling rate of 1,000 Hz was employed to capture EEG
recordings, facilitating the detailed examination of dynamic
processes inherent in different speech paradigms.

B. Experimental Setup

The experimental paradigm investigated neural correlates
across different speech conditions, including perceived, overt,
whispered, and imagined speech. The dataset was organized
into 20 distinct word classes, divided into five categories,
each containing four words. The words were selected to cover
a range of emotional, natural, and abstract concepts. The
speech conditions included perception, overt speech, whis-
pered speech, and imagined speech.

The word categories comprised emotions, natural objects,
animals, artificial objects, and abstract nouns. Examples of
words in the emotion category are ‘Sad,’ ‘Amused,’ ‘Positive,’
and ‘Disappointed.’ For natural objects, the words included
‘Peach,’ ‘Mango,’ ‘Strawberry,’ and ‘Watermelon.’ The animal
categories included ‘Horse,’ ‘Tiger,’ ‘Buffalo,’ and ‘Alligator.’
Artificial objects were represented by ‘House,’ ‘Notebook,’
‘Apartment,’ and ‘Television.’ Lastly, the abstract nouns in-
cluded ‘Death,’ ‘Weather,’ ‘January,’ and ‘Conversation.’

The data collection was conducted over three days. On the
first day, 20 trials per word class were recorded, totaling 400
trials. On the second day, another 20 trials per word class
were recorded, resulting in an additional 400 trials. On the
third day, 60 trials per word class were recorded, totaling
1,200 trials. Altogether, 2,000 trials were recorded, providing
a robust dataset for analyzing the neural dynamics associated
with different speech conditions and word categories.

C. Signal Preprocessing

EEG signals were analyzed using MNE-Python and MAT-
LAB with BBCI toolbox. The EEG data were subjected to a
series of pre-processing steps to ensure high-quality signals

for analysis. First, a band-pass filter was applied to retain
frequencies between 0.5 and 125 Hz. A notch filter was also
implemented at 60 Hz and 120 Hz to remove power line noise
and its harmonics. Channels with poor signal quality, such as
those affected by electrooculography artifacts, were identified
and rejected. The data were then segmented into 1.5-second
epochs without overlap, resulting in a total of 1,200 trials.
These trials were evenly distributed across 20 classes, with 60
trials per class.

Following the short-time Fourier transform (STFT) process,
we extracted band power features by summing the power
within specific frequency bands: the delta (δ, 1–4 Hz), theta
(θ, 4–8 Hz), alpha (α, 8–12 Hz), beta (β, 12–30 Hz), and
gamma (γ, 30–45 Hz) bands. This procedure generated a
feature matrix of dimensions (number of time windows × 5
bands) for each EEG channel. Additionally, the data from each
channel were converted into power spectral density using the
STFT with a sliding window of one second. These five band
power features, alongside the connectivity metrics discussed
later, were utilized as input for subsequent analyses to decode
neural patterns associated with different cognitive states and
speech paradigms.

D. Connectivity Decoding Model

To quantify the functional connectivity across various fre-
quency bands during perceived, overt, whispered, and imag-
ined speech paradigms, we employed two metrics: PLV [19]
and PLI [20]. By constructing networks using these two met-
rics, we investigated the different connection patterns among
the four speech patterns.

PLV was utilized to measure the average phase difference
between pairs of EEG time series. The instantaneous phases
of the signals were obtained using the Hilbert transform. For
signals xn and xt at time point k, the PLV is defined as:

PLVn,t =

∣∣∣∣∣ 1M
M−1∑
k=0

ei(ϕn(k)−ϕt(k))

∣∣∣∣∣ ,
where ϕn(k) and ϕt(k) represent the instantaneous phases of
signals xn and xt at time point k, respectively, and M is
the total number of samples. The PLV ranges from 0 to 1,
with values closer to 1 indicating strong phase synchroniza-
tion between the signals. This measure provides insight into



TABLE I
COMPARISON OF THE ACCURACY PERFORMANCE OF CONVENTIONAL MODELS BASED ON CONNECTIVITY METHODS ACROSS FREQUENCY BANDS.

Feature Model Frequency Bands (Hz)

Delta Theta Alpha Beta Gamma Total

PLV

EEGNet [13] 42.96 ± 2.11 46.87 ± 2.39 41.39 ± 1.26 48.42 ± 1.15 48.52 ± 1.69 53.20 ± 1.84

ShallowConvNet [14] 33.81 ± 1.29 38.05 ± 2.21 32.21 ± 2.55 34.74 ± 2.72 36.05 ± 1.83 43.51 ± 1.75

FBCNet [15] 43.31 ± 1.31 48.93 ± 1.05 44.81 ± 2.36 47.8 ± 1.81 49.05 ± 1.45 54.91 ± 1.37

PLI

EEGNet [13] 44.85 ± 1.25 49.12 ± 1.79 44.25 ± 1.74 48.42 ± 1.15 50.84 ± 1.97 56.94 ± 1.60

ShallowConvNet [14] 35.49 ± 1.82 38.60 ± 2.33 36.29 ± 1.11 37.6 ± 2.15 39.12 ± 1.71 45.10 ± 2.24

FBCNet [15] 45.36 ± 1.65 51.11 ± 1.29 46.85 ± 2.43 49.82 ± 2.04 51.43 ± 1.37 54.51 ± 1.86

the temporal coherence and functional connectivity between
different EEG channels.

PLI was employed to quantify the average phase lead or lag
between two EEG time series by analyzing the sign function
of phase differences. Specifically, the PLI between signals xn

and xt at time point k is defined as:

PLIn,t =
1

M

M−1∑
k=0

sgn (ϕn(k)− ϕt(k)) ,

where the sgn function assigns a value of -1, 0, or 1 based
on whether the phase difference is negative, zero, or positive,
respectively. The PLI ranges from 0 to 1, with values closer
to 1 indicating significant phase lead or lag synchronization
between the signals. Unlike PLV, PLI is insensitive to common
sources and volume conduction, making it a robust measure
for assessing true functional connectivity.

We meticulously trained and evaluated the EEGNet [13],
ShallowConvNet [14], and FBCNet [15] models for each
dataset to ensure consistency and reliability in our results. The
dataset was split into 70 % for training, 20 % for testing, and
10 % for validation using a fixed random seed of 123. This
stratified splitting method maintained a balanced distribution
of classes across all partitions, preventing class imbalance
issues.

For classification tasks, each model was trained for 100
epochs with a learning rate of 1 × 10−5. In contrast, for
regression tasks, training was conducted for 50 epochs with
a higher learning rate of 1 × 10−3. Across all experiments,
a dropout rate of 0.5 and weight decay of 5 × 10−4 was
employed to mitigate overfitting and enhance generalization
performance. The hidden dimensions for both the convolu-
tional layers and the multilayer perceptron layers in EEGNet,
ShallowConvNet, and FBCNet were consistently set to 64. For
loss functions, cross-entropy loss was utilized for classification
tasks to effectively handle categorical outcomes, while mean
absolute error was adopted for regression tasks to accurately
measure prediction errors.

III. RESULTS AND DISCUSSION

A. Connectivity Decoding Performance

From the results in Table I, it is evident that FBCNet
generally outperforms the other models across most frequency
bands, particularly in the γ band, where it achieves an accuracy
of 49.05 %± 1.45 %. EEGNet also demonstrates competitive
performance, especially in the β band, with an accuracy of
48.52 %± 1.69 %, which is comparable to FBCNet’s perfor-
mance. However, ShallowConvNet lags behind both EEGNet
and FBCNet in most frequency bands, achieving its best
performance in the θ band (38.05 %± 2.21 %), which is still
notably lower than the best results of EEGNet and FBCNet.

When comparing the models across frequency bands, sev-
eral trends emerge. In the θ band, EEGNet and FBCNet show
strong performance, with FBCNet marginally outperforming
EEGNet, while ShallowConvNet achieves its highest accuracy
in this band but still falls short compared to the other models.
Both EEGNet and FBCNet reach their highest accuracies in
the γ band, with FBCNet slightly outperforming EEGNet,
indicating that high-frequency information may be particularly
valuable for these architectures.

Overall, the spatial convolutional neural network (CNN)
module shows the most consistent and highest performance
across frequency bands, particularly excelling in the γ band.
EEGNet, while slightly trailing FBCNet in most cases, demon-
strates robust performance, particularly in the β and γ bands.
On the other hand, ShallowConvNet struggles to match the
performance of EEGNet and FBCNet, particularly in the δ,
α, and β bands. It may not be as well-suited for capturing
frequency-specific information as the other models.

B. Statistical Evaluation of Speech Paradigms

Statistical analyses conducted under different conditions
revealed significant differences (p < 0.05, FDR-corrected),
further supporting the results of the deep learning models.
During the imagined speech, compared to the other three
paradigms, connectivity values were low in the θ band but high
in the γ band (t(9) = 2.45, p = 0.037). The results for overt
speech and whispered speech were statistically less significant,
and perceived speech features, while relatively weak, were



also statistically less significant. This suggests that the brain
processes overt speech and whispered speech through similar
neural circuits. In contrast, the distinct results observed in
the imagined speech condition imply that imagined speech
may activate different brain regions or processes than overt or
whispered speech.

The θ band is known to encompass signals related to dream-
ing and resting states. Studies have indicated that speech-
related signals can also be present within θ, particularly during
imagined speech [21], which involves consciously imagining
the act of speaking. The θ band frequently manifests in the
EEG channels F5, FT7, FT8, T8, TP10, F7, AF7, Fp1, Fp2,
AF4, AF8, F4, and AF3, which are primarily located in the
frontal and temporal lobes, with half of them situated in
the anterior frontal lobe region, which is involved in higher-
order cognitive processing [22], during imagined speech. This
observation is consistent with the activation of regions such as
Broca’s area, which is heavily involved in speech production.
The significant features of the θ band in these areas during
imagined speech suggest that this frequency band plays a role
in the neural processes underlying speech imagination.

High frequency, on the other hand, may include noise
artifacts from physical activities such as eyebrow and head
movements. Therefore, we conducted preprocessing aimed
at minimizing noise before proceeding with the analysis.
The γ band is typically associated with high-level cognitive
tasks, suggesting that imagined speech might impose a lower
cognitive load compared to actual speech. This could explain
the lower γ PLV observed in imagined speech compared to
overt speech (t(9) = 1.69, p = 0.048).

IV. CONCLUSION

This study examined the performance of deep learning
models for EEG-based neural decoding, focusing on differenti-
ating between speech paradigms (perceived, mimed, imagined,
and overt speech) across various frequency bands. Spatial
CNN module-based model consistently outperformed other
models, particularly in the γ band, while EEGNet demon-
strated strong results in the β and γ bands. ShallowConvNet,
however, underperformed compared to EEGNet and FBCNet,
indicating its limitations in frequency-specific decoding tasks.
Statistical analyses revealed significant differences during the
imagined speech, particularly in θ and γ band connectivity,
suggesting that imagined speech may activate distinct neural
processes compared to overt or whispered speech, which was
processed through similar circuits. These findings emphasize
the importance of connectivity metrics, such as PLV and
PLI, in decoding neural dynamics across different speech
states. Overall, this study highlights the value of deep learning
models and connectivity metrics in advancing EEG-based
speech decoding, with potential applications in improving BCI
communication systems. Future work should focus on further
refining these models or developing graph-based models that
can better learn topological features for real-world BCI appli-
cations.
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