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Abstract

Solving multiscale diffusion problems is often computationally expen-
sive due to the spatial and temporal discretization challenges arising from
high-contrast coefficients. To address this issue, a partially explicit tem-
poral splitting scheme is proposed in [8]. By appropriately constructing
multiscale spaces, the spatial multiscale property is effectively managed,
and it has been demonstrated that the temporal step size is independent
of the contrast. To enhance simulation speed, we propose a parallel algo-
rithm for the multiscale flow problem that leverages the partially explicit
temporal splitting scheme. The idea is first to evolve the partially ex-
plicit system using a coarse time step size, then correct the solution on
each coarse time interval with a fine propagator, for which we consider
both the sequential solver and all-at-once solver. This procedure is then
performed iteratively till convergence. We analyze the stability and con-
vergence of the proposed algorithm. The numerical experiments demon-
strate that the proposed algorithm achieves high numerical accuracy for
high-contrast problems and converges in a relatively small number of it-
erations. The number of iterations stays stable as the number of coarse
intervals increases, thus significantly improving computational efficiency
through parallel processing.

1 Introduction

Numerous scientific problems and models exhibit multiscale properties, such as
flow in heterogeneous porous media, the diffusion of pollutants in the atmo-
sphere, turbulent transport in high Reynolds number flows, and so on. These
models often involve significant variations in media properties, commonly re-
ferred to as high contrast. The presence of high contrast introduces stiffness
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to the system, which makes spatial and temporal discretization challenging for
traditional numerical methods due to their high computational demands.

There have been many existing approaches in the literature to handle spatial
multiscale problems, such as numerical homogenization (NH) [12, 1], multiscale
finite element methods (MsFEM) [15, 28, 4], generalized multiscale finite ele-
ment methods (GMsFEM) [5, 10, 11], constraint energy minimizing GMsFEM
(CEM-GMsFEM) [21, 6, 26], localized orthogonal decomposition (LOD) [33, 25]
and nonlocal multi-continua method (NLMC) [9, 19, 29]. Among which, CEM-
GMsFEM is a multiscale finite element method used to effectively address mul-
tiscale problems with high-contrast parameters. It constructs multiscale basis
functions by minimizing energy constraints, which can achieve contrast inde-
pendent convergence rates. Based on CEM-GMsFEM, NLMC is proposed to
construct local basis functions that automatically identify physical properties
in each local region and provides non-local transmissibilities in the global for-
mulation.

For non-stationary multiscale problems, the high-contrast will lead to very
small time steps when treating explicitly. The partially explicit temporal split-
ting scheme [8] originates from the solution decomposition [14] and splitting
algorithms [13]. The main idea of the method is to divide the solution space
into two parts, the dominant part and the complementary part, such that the
time step size is independent of the high-contrast. The method is successfully
employed in solving wave equation, nonlinear diffusion, and time-fractional dif-
fusion equations[7, 16, 22, 29] and extended to an adaptive algorithm[29]. In
this paper, we follow the concept developed in [8] for linear equations.

All the existing literatures are based on the sequential method for solving
the partially explicit temporal splitting scheme, which is easy to implement but
might be inefficient when the temporal mesh partition is small enough and a long
time simulation is needed. For this reason, we introduce a parareal algorithm
to enhance computational efficiency. The parareal algorithm was proposed by
Lions, Maday et al in [24]. Its core idea is to divide the entire time interval into
subintervals and compute simultaneously and independently on each subinter-
val. There has been many research work on the analysis and applications of
the parareal method, see [20, 2, 31, 27, 32]. However, the existing literature is
based on Euler or Runge-Kutta method as fine solver in each subinterval, which
could be time consuming if one takes small time steps. To address this issue, we
further introduce the waveform relaxation (WR) method via the diagonalization
technique based on all-at-once algorithm[23, 18, 3, 30] as the fine solver in the
parareal framework. All-at-once algorithm is a global method that solves the
problem over the entire time interval simultaneously instead of solving it step
by step. It naturally fits for parallel computation and can significantly improve
computational efficiency.

The main contributions of this paper are as follows.

• The parareal algorithm for solving the partially explicit temporal splitting
scheme is presented. The convergence of the proposed algorithm is proved.

• The WR method via the diagonalization technique based on the all-at-
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once method is introduced into the parareal algorithm to speed up the
computation for the fine propagator.

• The proposed algorithm can achieve high accuracy, and convergence can
be reached with a small number of iterations. As the number of coarse in-
terval (processors) increases, the number of iteration needed to achieve the
error tolerance is quite stable, thus significantly saving the computational
cost with parallel computation.

The rest of this paper is organized as follows. In section 2, we present prelim-
inaries. In section 3, we give in detail the construction of multiscale spaces. The
parareal all-at-once algorithm and the error estimate of full discretization are
given in section 4. Numerical experiments and conclusion are given in section 5
and section 6, respectively.

2 Preliminaries

In this paper, we consider the diffusion equation of the form

$

’

’

&

’

’

%

Bu

Bt
´ ∇ ¨ pκ∇uq “ f, in Ω ˆ p0, T s

u “ 0, on BΩ ˆ p0, T s

u “ u0, on BΩ ˆ t0u

(2.1)

where Ω is a bounded domain, κ P L8pΩq is a high contrast parameter and
f P L2p0, T ;L2pΩqq is the source term.

We first present the fully-discretized problem for (2.1), with finite element
method in spatial discretization and backward Euler method for temporal dis-
cretization. Next, we derive the partially explicit temporal splitting scheme.
Then we briefly introduce the framework of the parareal algorithm.

We now introduce some notations. Denote by pu, vq :“
ş

Ω
uvdΩ the inner

product of L2pΩq whose norm is defined by ∥ ¨ ∥Ω. We use H1
0 pΩq to denote the

Sobolev spaces with zero boundary values. To simplify the notation, Ω may be
dropped in the notations. We denote C a generic positive constant independent
of any function and of any discretization parameters.

We write the problem (2.1) in the weak formulation: find up¨, tq P H1
0 pΩq

such that

p
Bu

Bt
, vq ` apu, vq “ pf, vq, @v P H1

0 pΩq,

where the bilinear form ap¨, ¨q is given by

apu, vq “

ż

Ω

κ∇u ¨ ∇v,

and define the energy norm ∥ u ∥a“ apu, uq
1
2 .

Consider a coarse spatial partition TH of Ω with mesh size H, we will con-
struct multiscale basis functions on TH and form a multiscale space VH which
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has good approximation power. For the approximation space VH P H1
0 pΩq, the

semi-discretization in space leads to seeking uHptq P VH such that

p
BuHptq

Bt
, vq ` apuHptq, vq “ pf, vq, @v P VH , 0 ă t ď T,

uHp0q “ uH,0.
(2.2)

where uH,0 is the projection of u0 in VH .
Let ∆t be the time step size and tn “ n∆t, n “ 0, 1, ¨ ¨ ¨ , N, T “ N∆t. Then

the full discretization with Backward Euler scheme reads

p
un`1
H ´ unH

∆t
, vq ` apun`1

H , vq “ pfn`1, vq, @v P VH , (2.3)

where un`1
H « up¨, tn`1q.

2.1 Partially explicit temporal splitting scheme

Now we introduce the partially explicit temporal splitting scheme [8]. Assume
that VH can be decomposed into two subspaces VH,1 and VH,2, that is

VH “ VH,1 ` VH,2.

Then a partially explicit temporal splitting scheme reads: finding tunuNn“1 P

VH,1 and twnuNn“1 P VH,2 such that

p
un`1 ´ un

∆t
, v1q ` p

wn ´ wn´1

∆t
, v1q ` apun`1 ` wn, v1q “ pfn`1, v1q, (2.4)

p
wn`1 ´ wn

∆t
, v2q ` p

un ´ un´1

∆t
, v2q ` apun`1 ` wn, v2q “ pfn`1, v2q, (2.5)

@v1 P VH,1,@v2 P VH,2. Initial conditions are projected onto corresponding
subspaces. Thus, the solution at time step n` 1 will be un`1

H “ un`1 ` wn`1.
It has been proved in [8] that with a suitable choice of VH,2 the partially

explicit temporal splitting scheme is stable.

2.2 Parareal algorithm

To enhance the computational efficiency of the partially explicit temporal split-
ting scheme (2.4)-(2.5), we will introduce a temporal parallel algorithm. We first
describe the basic flow of the parareal algorithm by considering the following
initial value problem

du

dt
“ F pt, uq, t P p0, T s,

up0q “ u0,
(2.6)

We first divide p0, T s into N elements as described in the (2.3). Let F be a fine
solver that can achieve desired accuracy but has a high computational cost. We
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also introduce a coarse solver G, which have lower accuracy but provide results
at a lower computational costs compared to the fine solver. For example, one
can use the same numerical scheme for both F and G but F using a small step
size δt, while G is utilizing a bigger step size ∆t (∆t " δt).

Denote by F∆tpu, tn, tn`1q the result obtained by integrating u from tn to
tn`1 using Fδt (fine solver with time step size δt) and G∆tpu, tn, tn`1q denoting
the similar integration forward in time using the coarse solver. At the zero
iteration of the parareal method, we get tu0nuNn“0 using the coarse solver G.
Denote by ukn the approximation for uptnq at the kth iteration. Then the solution
of the k ` 1th iteration is obtained from the following formula: for all 0 ď n ď

N ´ 1 and k “ 0, 1, 2, ¨ ¨ ¨ ,

uk`1
n`1 “ G∆tpu

k`1
n , tn, tn`1q ` F∆tpu

k
n, tn, tn`1q ´ G∆tpu

k
n, tn, tn`1q. (2.7)

One can terminate the parareal algorithm if the maximum number of iterations
is met (k “ nmax), or if

∥ ukn ´ uk´1
n ∥8ď ϵ, (2.8)

where ϵ is a given tolerance.
Notice that the evolution of the fine solver F only requires the initial value

ukn, which depends on the previous iteration. Therefore, for each k, the F can
be computed in parallel.

The solution of (2.7) converges under suitable assumptions, i.e., ukn Ñ u˚
n,

where u˚
n is the solution obtained from F with time step δt throughtout the

whole temporal domain.

3 Multiscale space construction

In this section, we first briefly describe the construction of multiscale spaces
based on CEM-GMsFEM [6, 8, 7]. We then present the construction of the
spaces VH,1 and VH,2 based on nonlocal multicontinuum (NLMC) method [9, 34].

3.1 CEM-GMsFEM

Denote by tKiu the set of coarse blcoks in TH , and denote V “ H1
0 pΩq. For

each Ki P TH , we have to build a collection of auxiliary based in V pKiq, where
V pKiq be the restriction of V on Ki. We solve the following eigenvalue problem

ż

Ki

κ∇ψpiq
j ¨ ∇v “ λ

piq
j sipψ

piq
j , vq, @v P V pKiq, (3.1)

where

sipu, vq “

ż

Ki

rκuv, rκ “ κ
ÿ

i

| ∇χi |2 or rκ “ κH´2,

5



tχiu is a partition of unity functions corresponding to an overlapping partition
of the domain. Then we collect the first Ji eigenfunctions corresponding to the
first Ji smallest eigenvaules to form the auxiliary spaces

V piq
aux :“ spantψ

piq
j : 1 ď j ď Jiu.

Define a projection operator Π : L2pΩq Ñ Vaux Ă L2pΩq

spΠu, vq “ spu, vq, @v P Vaux :“
Ne
ÿ

i“1

V piq
aux,

where spu, vq “
řNe

i“1 sipu|Ki , v|Kiq and Ne being the number of coarse elements.
Define K`

i be an oversampling domain obtained by enlarging Ki by a few coarse

grid layers. For each ψ
piq
j , we search for a local basis function ϕ

piq
j P V pK`

i q such

that for some µ
piq
j P V pK`

i q

apϕ
piq
j , vq ` spµ

piq
j , vq “ 0, @v P V pK`

i q,

spϕ
piq
j , νq “ spψ

piq
j , νq, @ν P VauxpK`

i q.
(3.2)

Then we define the space Vcem as

Vcem :“ spantϕ
piq
j : 1 ď i ď Ne, 1 ď j ď Jiu. (3.3)

Thus we can choose Vcem to be VH,1 and construct a complementary space
VH,2[5, 10].

3.2 Construction of two multiscale subspaces

For channelized/fractured media, the construction of multiscale subspaces can
be simplified. That is, denote by the computational domain Ω “ Ωm

Às
l“1 dlΩf,l,

where m and f denote the matrix and fractures. In the fracture regions Ωf,l,
the scalar dl and s denote the aperture and the number of the discrete frac-
ture networks, respectively. Since the value of the permeabilities in the matrix
and fracture regions can differ in magnitudes, thus we can construct constraint
energy minimizing basis functions via NLMC, such that the obtained basis
functions can automatically separate continua such as matrices and fracture.
Specifically, for a given coarse block Ki, we use constants for each individual
fracture network and then a constant for the matrix to form a auxiliary space.
That is to say, for any coarse block Ki, we write Ki “ Ki,f Y Ki,m, where

Ki,f :“ tf
piq
j , j “ 1, ¨ ¨ ¨ ,miu is the high-contrast channelized region, mi is the

number of non-connected fractures in Ki, Ki,m is its complement in Ki. Then
we define two auxiliary spaces

V
piq
aux,1 :“ spantϕ

piq
aux,k | ϕ

piq
aux,k “ 0 in Ki,m, ϕ

piq
aux,k “ δjk in f

piq
j , k “ 1, ¨ ¨ ¨ ,miu,

(3.4)

V
piq
aux,2 :“ spantϕ

piq
aux,0 | ϕ

piq
aux,0 “ 1 in Ki,m, ϕ

piq
aux,0 “ 0 in Ki,fu. (3.5)
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Then the NLMC basis functions are obtained by finding ψ
piq
m P V0pK`

i q and

µ
pjq

0 , µ
pjq
n P R from the following localized constraint energy minimizing problem

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

apψpiq
m , vq `

ÿ

KjĂK`
i

pµ
pjq

0

ż

Kj,m

v `
ÿ

1ďnďmj

µpjq
n

ż

f
pjq
n

vq “ 0, @v P V0pK`
i q,

ż

Kj,m

ψpiq
m “ δijδm0, @Kj Ă K`

i ,

ż

f
piq
n

ψpiq
m “ δijδmn, @f pjq

n P Fj , @Kj Ă K`
i .

(3.6)

Then the NLMC basis functions are tψ
piq
m , 0 ď m ď mi, 1 ď i ď Neu.

The above problems are posed in infinite-dimensional spaces, but for numerical
computations, we solve the discretized the system on the fine grid using standard
finite elements to obtain the solutions and use them as our basis.

Denote the average of all NLMC basis by

ψ :“
1

L

Ne
ÿ

i“1

mi
ÿ

m“0

ψpiq
m , L “

N
ÿ

i“1

mi. (3.7)

We then let rψ
piq
m “ ψ

piq
m ´

spψpiq
m ,ψq

spψ,ψq
ψ, 0 ď m ď mi, 1 ď i ď Ne. In order to

simplify the notations, we omit the double script in rψ
piq
m and denote the set of

bases by t rψk, k “ 1, ¨ ¨ ¨ , Lu. Thus, we define the space VH,1 as

VH,1 “ spant rψk, 1 ď k ď L´ 1u.

The basis functions corresponding to the matrix and the basis ψ will be included
in the second subspace VH,2, that is,

VH,2 “ spantψ,ψ
piq
0 , 1 ď i ď Ncu.

By this construction, VH,1 contains a basis representing the high-contrast
fractures only, and VH,2 includes a basis representing the background matrix
and the constant basis.

Next, we will introduce some notations. Let dimpVH,1q “ d1, dimpVH,2q “

d2, dimpVHq “ D, and let Ψ1 P RDˆd1 and Ψ2 P RDˆd2 be the matrices whose
columns are the bases of VH,1 and VH,2, respectively. Denote Mf and Af be
the fine scale mass matrix and stiffness matrix, define the following coarse scale
matrices

M11 “ ΨT1MfΨ1, A11 “ ΨT1 AfΨ1,

M22 “ ΨT2MfΨ2, A22 “ ΨT2 AfΨ2,

M12 “ ΨT1MfΨ2, A12 “ ΨT1 AfΨ2,

Fn1 “ ΨT1 f
n, Fn2 “ ΨT2 f

n.

(3.8)
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4 Parallel in time for partially explicit temporal
splitting scheme

In this section, we describe in detail parareal algorithm for the partially explicit
temporal splitting scheme. First, we introduce the WR method via the diag-
onalization technique based on the all-at-once system for the partially explicit
scheme in subsection 4.1 and give the convergence of the method. Then we
propose our main algorithm, the parareal all-at-once partially explicit temporal
splitting algorithm, in section 4.2, where we adopt the WR method via diago-
nalization technique as the fine solver. Finally, we carry out the error analysis
for the proposed algorithm.

4.1 WR method via diagonalization for all-at-once system

Let us look back at the splitting scheme (2.4)-(2.5), and solve it using the
iterative all-at-once method. We write

p
ujn`1 ´ ujn

∆t
, v1q ` apujn`1, v1q “ pfn`1, v1q ´ p

wj´1
n ´ wj´1

n´1

∆t
, v1q ´ apwj´1

n , v1q,

(4.1)

p
wjn`1 ´ wjn

∆t
, v2q ` p

ujn ´ ujn´1

∆t
, v2q ` apujn`1 ` wjn, v2q “ pfn`1, v2q (4.2)

where v1 P VH,1, v2 P VH,2 and j will be the iteration index. Let U j “

puj1, u
j
2, ¨ ¨ ¨ , ujN q and W j “ pwj1, w

j
2, ¨ ¨ ¨ , wjN q, therefore (4.1)-(4.2) is a direct

discretization of the following scheme

pBtU
jptq, v1q ` apU jptq, v1q “ ´pBtU

j´1ptq, v1q ´ apW j´1ptq, v1q, @v1 P VH,1,
(4.3)

pBtW
jptq, v2q ` apW jptq, v2q “ ´pBtU

jptq, v2q ´ apU jptq, v2q, @v2 P VH,2.
(4.4)

Notice that the (4.1) can be written as an all-at-once system

pB bM11 ` It bA11qU j “ F (4.5)

with initial condition

uj0 “ u0 ` αpujN ´ uj´1
N q,

where B is a periodic-like matrix with the parameter α P p0, 1q

B “
1

∆t

¨

˚

˚

˚

˝

1 ´α
´1 1

. . .
. . .

´1 1

˛

‹

‹

‹

‚

(4.6)
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and F “ p rf1, rf2, ¨ ¨ ¨ , rfN q, and

rf1 “ F 1
1 ´

1

∆t
M12w

j´1
0 ´A12w

j´1
0 `

1

∆t
M11pu0 ´ αuj´1

N q,

rfs “ F s1 ´
1

∆t
M12pwj´1

s ´ wj´1
s´1q ´A12w

j´1
s ,

for s “ 2, 3, ¨ ¨ ¨ , N . Now, if the matrix B is diagonalizable, such as

B “ SDS´1, D “ diagpd1, d2, ¨ ¨ ¨ , dN q,

we can factorize the coefficient matrix in (4.5) as follows

B bM11 ` It bA11 “ pS b IM qpD bM11 ` It bA11qpS´1 b IM q, (4.7)

where IM is a identity matrix. This implies that we can solve (4.5) at the j-th
iteration in three steps

paq pS b IM qP “ F j ,

pbq pD bM11 ` It bA11qQ “ P,

pcq pS´1 b IM qU j “ Q.

(4.8)

Note that the matrix S can be further decomposed into S “ ΛV , where Λ “

diagt1, α´ 1
N , ¨ ¨ ¨ , α´

N´1
N u, V is the discrete Fourier matrix. Thus, the Fast

Fourier Transform (FFT) can be employed to speed up the implementation of
(4.8). In addition, the second step of (4.8) is to solve N independent equations,
thus it can be done in parallel.

The problem (4.1)-(4.2) will be solved with the following steps:

1. Solve (4.5) by (4.8), obtain U j “ puj1, ¨ ¨ ¨ , ujN q, which is the part of the
solution in VH,1 at all time steps.

2. Plug the solution U in (4.2), solve for W j “ pwj1, ¨ ¨ ¨ , wjN q in a sequential
manner.

3. Iterate the above process until converge.

The following theorem gives the convergence result for the WR method at
each subinterval ptn, tn`1q. We remark that we will adopt the WR method as
the fine propagator at each subinterval ptn, tn`1q within the parareal framework.
It is trivial to extend the following results on the whole temporal domain p0, T s.

Theorem 4.1. Let uptq be the exact solution of (2.1) and satisfy uptq “

Uptq ` W ptq, U jptq and W jptq are the solution of (4.3)-(4.4) at j-th iteration
respectively. Then it holds for j “ 1, 2, ¨ ¨ ¨ and n “ 0, 1, 2, ¨ ¨ ¨ , N ´ 1 that

sup
tPptn,tn`1q

∥ U jptq ´ Uptq ∥ ` sup
tPptn,tn`1q

∥W jptq ´W ptq ∥

ď Cγ2pj´1q sup
tPptn,tn`1q

∥ A´1
22 BtpW

0ptq ´W ptqq ` pW 0ptq ´W ptqq ∥8,
(4.9)
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where γ is defined by

γ “
|pv1, v2q|

∥ v1 ∥∥ v2 ∥
, @v1 P VH,1, @v2 P VH,2. (4.10)

Proof: We consider

pBtUptq, v1q ` apUptq, v1q “ ´pBtUptq, v1q ´ apW ptq, v1q, @v1 P VH,1,

pBtW ptq, v2q ` apW ptq, v2q “ ´pBtUptq, v2q ´ apUptq, v2q, @v2 P VH,2

We now define P1 : VH,2 Ñ VH,1, Π1 : VH,2 Ñ VH,1 and P2 : VH,1 Ñ VH,2,
Π2 : VH,1 Ñ VH,2 such that

pP1v2, v1q “pv2, v1q, @v1 P VH,1, pP2v1, v2q “ pv1, v2q, @v2 P VH,2,

apΠ1v2, v1q “apv2, v1q, @v1 P VH,1, apΠ2v1, v2q “ apv1, v2q, @v2 P VH,2,

and define the errors

ejuptq “ U jptq ´ Uptq, ejwptq “ W jptq ´W ptq.

Then for @v1 P VH,1 and @v2 P VH,2, we have

pBte
j
uptq, v1q ` apejuptq, v1q “ ´pBte

j´1
w ptq, P2v1q ´ apej´1

w ptq,Π2v1q, (4.11)

pBte
j
wptq, v2q ` apejwptq, v2q “ ´pBte

j
uptq, P1v2q ´ apejuptq,Π1v2q. (4.12)

with initial condition ejup0q “ ejwp0q “ 0. Then from (4.11)-(4.12) we obtain

pBte
j
wptq, v2q ` apejwptq, v2q ` apejuptq,Π1v2q

“apejuptq, P1v2q ` pBte
j´1
w ptq, P2P1v2q ` apej´1

w ptq,Π2P1v2q. (4.13)

From (4.12), a directly calculation yields the following recurrence relation

´ pBte
j´1
w ptq, v2q

“apej´1
w ptq, v2q ` pBte

j´1
u ptq, P1v2q ` apej´1

u ptq,Π1v2q

“apej´1
w ptq, v2q ´ apej´1

u ptq, P1v2q ´ pBte
j´2
w ptq, P2P1v2q

´ apej´2
w ptq,Π2P1v2q ` apej´1

u ptq,Π1v2q

“apej´1
w ptq, v2q ´ apej´2

w ptq,Π2P1v2q ` apej´1
u ptq,Π1v2 ´ P1v2q

´ pBte
j´2
w ptq, P2P1v2q

“apej´1
w ptq, v2q ` apej´1

u ptq,Π1v2 ´ P1v2q ` apej´1
u ptq, P2P1v2 ´ Π2P1v2q

` apej´2
u ptq,Π1P2P1v2 ´ P1P2P1v2q ´ apej´3

w ptq,Π2P1P2P1v2q

´ pBte
j´3
w ptq, P2P1P2P1v2q.

Denote by P21 “ P2P1 and P12 “ P1P2, then the following recurrence relation
can be written as

´ pBte
j´1
w ptq, v2q “ apej´1

w ptq, v2q ` apej´1
u ptq,Π1v2 ´ P1v2q

`
ÿ

i“0

`

apej´2´i
w ptq, P i`1

21 v2 ´ Π2P1P
i
21v2q ` apej´2´i

u ptq,Π1P
i`1
21 v2 ´ P1P

i`1
21 v2q

˘

´ape0wptq,Π2P1P
j´2
21 v2q ´ pBte

0
wptq, P j´1

21 v2q.

10



Substitute the above equation into (4.11) and (4.13) respectively, we have

pBte
j
uptq, v1q ` apejuptq, v1q

“
ÿ

i“0

`

apej´1´i
w ptq, pP2 ´ Π2qP i12v1q ` apej´1´i

u ptq, pΠ1 ´ P1qP2P
i
12v1q

˘

´ ape0wptq,Π2P
j´1
12 v1q ´ pBte

0
wptq, P2P

j´1
12 v1q

(4.14)

and

pBte
j
wptq, v2q ` apejwptq, v2q ` apejuptq,Π1v2q

“
ÿ

i“0

`

apej´1´i
w ptq, pΠ2 ´ P2qP1P

i
21v2q ` apej´1´i

u ptq, pP1 ´ Π1qP i`1
21 v2q

˘

` ape0wptq,Π2P1P
j´1
21 v2q ` pBte

0
wptq, P j21v2q.

(4.15)

We then write the above operator into the matrix form

Bte
j
uptq `A11e

j
uptq

“
ÿ

i“0

`

P i˚12 pP˚
2 ´ Π1qA22e

j´1´i
w ptq ` P i˚12P

˚
2 pΠ2 ´ P˚

1 qA11e
j´1´i
u ptq

˘

´ pP j´1
12 q˚Π1A22e

0
wptq ´ pP j´1

12 q˚P˚
2 Bte

0
wptq

(4.16)

and

Bte
j
wptq `A22e

j
wptq ` pΠ2 ´ P˚

1 qA11e
j
uptq

“
ÿ

i“0

`

P i˚21P
˚
1 pP˚

2 ´ Π1qA22e
j´1´i
w ptq ` pP i`1

21 q˚pΠ2 ´ P˚
1 qA11e

j´1´i
u ptq

˘

` pP j´1
21 q˚P˚

1 Π1A22e
0
wptq ` pP j21q˚Bte

0
wptq.

(4.17)

Denote by

f jwptq “
ÿ

i“0

P i˚12 pP˚
2 ´ Π1qA22e

j´1´i
w ptq,

f juptq “
ÿ

i“0

P i˚12P
˚
2 pΠ2 ´ P˚

1 qA11e
j´1´i
u ptq,

then with the above two notations, we can rewrite (4.16) and (4.17) as follows

Bte
j
uptq `A11e

j
uptq “ f jwptq ` f juptq ´ pP j´1

12 q˚Π1A22e
0
wptq ´ pP j´1

12 q˚P˚
2 Bte

0
wptq
(4.18)

and

Bte
j
wptq `A22e

j
wptq ` pΠ2 ´ P˚

1 qA11e
j
uptq

“P˚
1 f

j
wptq ` P˚

1 f
j
uptq ´ P˚

1 pP j´1
12 q˚Π1A22e

0
wptq ´ P˚

1 pP j´1
12 q˚P˚

2 Bte
0
wptq.

(4.19)
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We consider ∥ A´1
11 P

˚
2 A22 ∥ď C and ∥ A´1

22 P
˚
1 A11 ∥ď C, where C is independent

of contrast, and let λp and ϕp be the eigenvalues and eigenfunctions such that

P˚
12ϕp “ λpϕp, p “ 1, 2, ¨ ¨ ¨ .

Thus, for rϕp “ A´1
11 ϕp, we have A´1

11 P
˚
12A11

rϕp “ λirϕp. Let rΦ and D be the

matrix rΦ “ rrϕ1, rϕ2, ¨ ¨ ¨ s and D “ diagtλ1, λ2, ¨ ¨ ¨ u, then

f jwptq “
ÿ

i“0

P i˚12 pP˚
2 ´ Π1qA22e

j´1´i
w ptq

“
ÿ

i“0

P i˚12A11pA´1
11 P

˚
2 A22 ´ Π1qej´1´i

w ptq

“
ÿ

i“0

P i˚12A11
rΦrΦ´1pA´1

11 P
˚
2 A22 ´ Π1qej´1´i

w ptq

“
ÿ

i“0

A11
rΦDi

rΦ´1pA´1
11 P

˚
2 A22 ´ Π1qej´1´i

w ptq

Since λp ď γ2, p “ 1, 2, ¨ ¨ ¨ , where γ “
|pv1,v2q|

∥v1∥∥v2∥ , then we have

∥ A´1
11 f

j
wptq ∥“ ∥

ÿ

i“0

rΦDi
rΦ´1pA´1

11 P
˚
2 A22 ´ Π1qej´1´i

w ptq ∥

ďC
ÿ

i“0

max
p

tλpui ∥ ek´1´i
w ∥

ďC
1

1 ´ γ2
max

0ďiďj´1
∥ eiwptq ∥ . (4.20)

Similarly we have

∥ A´1
11 f

j
uptq ∥ď C

1

1 ´ γ2
max

0ďiďj´1
∥ eiuptq ∥, (4.21)

∥ A´1
22 P

˚
1 f

j
wptq ∥ď C

1

1 ´ γ2
max

0ďiďj´1
∥ eiwptq ∥, (4.22)

∥ A´1
22 P

˚
1 f

j
uptq ∥ď C

1

1 ´ γ2
max

0ďiďj´1
∥ eiwptq ∥ . (4.23)

Then we turn to estimate the last two terms of (4.16) and (4.17),we obtain

∥ A´1
11

´

pP j´1
12 q˚Π1A22e

0
wptq ` pP j´1

12 q˚P˚
2 Bte

0
wptq

¯

∥

ďCγ2pk´1q ∥ A´1
11 pP˚

2 Bte
0
wptq ` Π1A22e

0
wptqq ∥, (4.24)

∥ A´1
22 P

˚
1

´

pP j´1
12 q˚Π1A22e

0
wptq ` pP j´1

12 q˚P˚
2 Bte

0
wptq

¯

∥

ďCγ2pk´1q ∥ A´1
22 P

˚
1 pP˚

2 Bte
0
wptq ` Π1A22e

0
wptqq ∥ . (4.25)

Now we consider the following matrices

rA “

ˆ

A11 O
pΠ2 ´ P˚

1 qA11 A22

˙

, A “

ˆ

A11 O
O A22

˙

12



then we have

rA´1 “

ˆ

A´1
11 O

´A´1
22 pΠ2 ´ P˚

1 q A´1
22

˙

, rA´1A “

ˆ

I O
´A´1

22 pΠ2 ´ P˚
1 qA11 I

˙

Thus, we can easily get ∥ rA´1A ∥ď C and

∥
ż t

0

e´pt´sq rAA ∥“∥ pI ´ e´t rAq rA´1A ∥ď∥ I ´ e´t rA ∥∥ rA´1A ∥ď Ct.

Therefore, given any ∆t ą 0, tn “ n∆t, and with the help of the (4.20)-(4.25),
we have the following estimates

sup
tPptn,tn`1q

∥ ejuptq ∥ď∥ ejuptnq ∥ `C∆tγ2pj´1q ∥ A´1
11 pP˚

2 Bte
0
wptq ` Π1A22e

0
wptqq ∥

`C∆t
1

1 ´ γ2

˜

max
0ďiďj´1

sup
tPptn,tn`1q

∥ eiwptq ∥ ` max
0ďiďj´1

sup
tPptn,tn`1q

∥ eiuptq ∥

¸

,

(4.26)

sup
tPptn,tn`1q

∥ ejwptq ∥ď∥ ejwptnq ∥ `C∆tγ2pj´1q ∥ A´1
22 P

˚
1 pP˚

2 Bte
0
wptq ` Π1A22e

0
wptqq ∥

`C∆t
1

1 ´ γ2

˜

max
0ďiďj´1

sup
tPptn,tn`1q

∥ eiwptq ∥ ` max
0ďiďj´1

sup
tPptn,tn`1q

∥ eiuptq ∥

¸

.

(4.27)

We set µ “ C∆t 1
1´γ2 ď 1, then add (4.26) and (4.27). With the condition

∥ A´1
11 P

˚
2 A22 ∥ď C and ∥ A´1

22 P
˚
1 A11 ∥ď C, we can get

sup
tPptn,tn`1q

∥ ejuptq ∥ ` sup
tPptn,tn`1q

∥ ejwptq ∥

ďµ max
0ďiďj´1

˜

sup
tPptn,tn`1q

∥ eiuptq ∥ ` sup
tPptn,tn`1q

∥ eiwptq ∥

¸

` C
1

ÿ

i“0

∆tµiγ2pj´1´iq sup
tPptn,tn`1q

∥ A´1
22 Bte

0
wptq ` e0wptq ∥

ďC
j´1
ÿ

i“0

∆tµiγ2pj´1´iq sup
tPptn,tn`1q

∥ A´1
22 Bte

0
wptq ` e0wptq ∥,

for n “ 1, 2, ¨ ¨ ¨ , N ´ 1. Finally we consider ∆t Ñ 0, thus µ Ñ 0, then we get
the desired result. l

4.2 Parareal all-at-once partially explicit temporal split-
ting algorithm

In this subsection, we describe in detail the use of parareal algorithm to solve
the partially explicit temporal splitting scheme and give its specific algorithm.
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We further divide each time slice rtn, tn`1s into M subintervals with δt “

∆t{M , pt “ mδt, m “ 0, 1, ¨ ¨ ¨ ,M . According to the framework of the parareal
algorithm, we should first compute a series of initial solutions based on the
coarse solver G. To do this, we write the (2.4)-(2.5) as follows

p
ukn`1 ´ ukn

∆t
, v1q ` p

wkn`1 ´ wkn
∆t

, v1q ` apukn`1 ` wkn, v1q “ pfn`1, v1q, (4.28)

p
wkn`1 ´ wkn

∆t
, v2q ` p

ukn`1 ´ ukn
∆t

, v2q ` apukn`1 ` wkn, v2q “ pfn`1, v2q, (4.29)

where the subscript k denote the kth iteration in the parareal algorithm. Now,
the splitting scheme need to be solved together at each new time step, i.e., for
all n “ 0, 1, ¨ ¨ ¨ , N ´ 1 and k “ 0, we have

ˆ

u0n`1

w0
n`1

˙

“ G∆tp

ˆ

u0n
w0
n

˙

, tn, tn`1q. (4.30)

In this way, we can compute the initial solution by (4.30). Then on each time
slice rtn, tn`1s,n “ 0, 1, ¨ ¨ ¨ , N ´ 1, we use all-at-once method to solve (4.1)-
(4.2), this leads to our main algorithm: the parareal all-at-once partially explicit
temporal splitting algorithm.

We present in Algorithm 1 the main ingredient of the parareal all-at-once
algorithm for (2.4)-(2.5), which include the parallel computation in Step 3 and
the sequential propagation in Step 4.

4.3 Convergence of the main algorithm

This subsection is concerned with the convergence analysis for the Algorithm 1
in subsection 4.2. To begin with, we introduce some lemmas that will be used
in theoretical proof.

Lemma 1. Let u the be solution of (2.1), uHptq be the solution of (2.2), if
ft P L1p0, T ;L2pΩqq and utt P L1p0, T ;L2pΩqq, then there holds[21]

∥ up¨, T q ´ uHpT q ∥ ď CH2Λ´1κ
´ 1

2
0 p max

0ďtďT
∥ κ´ 1

2 pf ´ utq ∥

` ∥ κ´ 1
2 pft ´ uttq ∥L1p0,T ;L2pΩqqq` ∥ u0 ´ uH,0 ∥,

(4.31)

where κ0 “ maxκ´ 1
2 and Λ “ min1ďjďNe

λ
piq
Ji`1.

This lemma gives an error estimate in the spatial semi-discrete scheme.

Lemma 2. The coarse solve G is Lipschitz, it holds[17]

∥ G∆tpu, tn, tn`1q ´ G∆tpv, tn, tn`1q ∥ď p1 ` C∆tq ∥ u´ v ∥ . (4.32)

Lemma 3. Define S∆tpu, tn, tn`1q “ F∆tpu, tn, tn`1q ´ G∆tpu, tn, tn`1q. Then
it has following property[17]

∥ S∆tpu, tn, tn`1q ∥ď Cp∆tqm`1 ∥ u ∥ . (4.33)
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Algorithm 1 Parareal all-at-once partially explicit temporal splitting algorithm

Input: initial date u0, source term f , tolerance ϵ, coarse matrices (3.8), Ψ1 and
Ψ2.

Result: un,kH for n “ 1, 2, ¨ ¨ ¨ , N .
1: Compute a series of initial solution tu0nuNn“1 and tw0

nuNn“1

ˆ

u0n`1

w0
n`1

˙

“ G∆tp

ˆ

u0n
w0
n

˙

, tn, tn`1q, n “ 0, 1, ¨ ¨ ¨ , N ´ 1.

2: for k “ 1, 2, ¨ ¨ ¨ , do
3: Parallel compute pukn`1 and pwkn`1 on each time slice rtn, tn`1s

ˆ

pukn`1

pwkn`1

˙

“ F∆tp

ˆ

uk´1
n

wk´1
n

˙

, tn, tn`1q

4: Sequentially compute the corrected solution tuk`1
n uNn“1 and twk`1

n uNn“1

ˆ

uk`1
n`1

wk`1
n`1

˙

“ G∆tp

ˆ

uk`1
n

wk`1
n

˙

, tn, tn`1q `

ˆ

pukn`1

pwkn`1

˙

´ G∆tp

ˆ

ukn
wkn

˙

, tn, tn`1q

5: Determine whether the given condition is met.
6: if ∥ ukn ´ uk´1

n ∥ă ϵ then

7: return un,kH “ ukn ` wkn, n “ 1, ¨ ¨ ¨ , N
8: break
9: end if

10: end for
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Remark 1 Notice that in parareal algorithm, fine solver F is usually con-
sidered exact, so m in Lemma 3 is the order of the coarse solver G. Due to the
fact that the coarse solver G is a first order scheme in our algorithm, thus we
can safety replace m by 1 in the later analysis.

With the aid of above lemmas, we have the following error results in full
discrete scheme.

Theorem 4.2. Let u be the solution of (2.1), uHptq be the solution of (2.2)

and uN,kH be the solution of (2.4)-(2.5) computed by Algorithm 1, then we have

∥ up¨, T q ´ uN,kH ∥ď CH2Λ´1κ
´ 1

2
0 p max

0ďtďT
∥ κ´ 1

2 pf ´ utq ∥

` ∥ κ´ 1
2 pft ´ uttq ∥L1p0,T ;L2pΩqqq` ∥ u0 ´ uH,0 ∥ `Cp∆tqk ∥ uH,0 ∥

Proof: Using triangle inequality

∥ up¨, T q ´ uN,kH ∥ “∥ up¨, T q ´ uHpT q ` uHpT q ´ uN,kH ∥

ď∥ up¨, T q ´ uHpT q ∥ ` ∥ uHpT q ´ uN,kH ∥ .
(4.34)

Notice that for the first term of the right hand side(RHS) of (4.34), it can be
estimated by Lemma 1, thus, we aim at estimating the second term. Following
the framework of the Parareal algorithm, assume that the fine solver F is exact,
i.e., @n “ 0, 1, ¨ ¨ ¨ , N ´ 1,

uHptn`1q “ F∆tpuHptnq, tn, tn`1q.

Therefore, we have following equation

uHpT q

“G∆tpuHptN´1q, tN´1, T q ` F∆tpuHptN´1q, tN´1, T q ´ G∆tpuHptN´1q, tN´1, T q

“G∆tpuHptN´1q, tN´1, T q ` S∆tpuHptN´1q, tN´1, T q.

On the other hand, by (2.7) we have

uN,kH “G∆tpu
N´1,k
H , tN´1, T q ` F∆tpu

N´1,k´1
H , tN´1, T q ´ G∆tpu

N´1,k´1
H , tN´1, T q

“G∆tpu
N´1,k
H , tN´1, T q ` S∆tpu

N´1,k´1
H , tN´1, T q.

Then by triangle inequality again, the second term of RHS of the equation (4.34)
can be written as follows

∥ uHpT q ´ uN,kH ∥“ ∥ pG∆tpuHptN´1q, tN´1, T q ´ G∆tpu
N´1,k
H , tN´1, T qq

`pS∆tpuHptN´1q, tN´1, T q ´ S∆tpu
N´1,k´1
H , tN´1, T qq ∥

ďθptN´1q ` ρptN´1q,

(4.35)

where

θptN´1q “∥ G∆tpuHptN´1q, tN´1, T q ´ G∆tpu
N´1,k
H , tN´1, T q ∥,

ρptN´1q “∥ S∆tpuHptN´1q, tN´1, T q ´ S∆tpu
N´1,k´1
H , tN´1, T q ∥ .
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With the help of the Lemma 2 and Lemma 3, we get the following result

∥ uHpT q ´ uN,kH ∥ď Cp∆tqk ∥ uH,0 ∥ . (4.36)

Now we turn to prove (4.36) by mathematics induction. First, from the
classical result in [18], we know it holds for k “ 1, i.e.,

∥ uHptN q ´ uN,1H ∥ď Cp∆tq ∥ uH,0 ∥ .

Assume it holds for k, then we prove it holds for k`1. For all n “ 0, 1, ¨ ¨ ¨ , N´1,
similar to (4.35) we have

∥ uHptn`1q ´ un`1,k`1
H ∥ď θptnq ` ρptnq.

Utilizing Lemma 2 for θptnq and Lemma 3 for ρptnq, we obtain

∥ uHptn`1q ´ un`1,k`1
H ∥

ďp1 ` C∆tq ∥ uHptnq ´ un,k`1
H ∥ `Cp∆tqk`1 ∥ uH,0 ∥ .

(4.37)

Repeatedly utilizing the recursive (4.37) and sum all n “ 0, 1, ¨ ¨ ¨ , N ´ 1, we
get the result

∥ uHpT q ´ uN,k`1
H ∥ď Cp∆tqk`1 ∥ uH,0 ∥ .

Thus we have completed the estimation of the second term of the RHS of
(4.34). Finally, the desired result can be obtained directly from (4.31), (4.34)
and (4.36).l

5 Numerical experiments

In this section, we perform some numerical experiments to verify the feasibility
and effectiveness of the Algorithm 1. In all examples, we let Ω “ r0, 1s ˆ r0, 1s

and T “ 0.005. The coarse scale and fine scale spatial mesh size are H “ 1
10

and h “ 1
100 . We consider zero Dirichlet boundary conditions and zero initial

conditions. The coarse scale and fine scale time step size satisfy the relation
δt “ ∆t

N , i.e., N “ M . In all examples, we set the tolerance ϵ “ 10´14. The
relative error is defined as follows:

∥ uNh ´ uNH ∥L2pΩq

∥ uNh ∥L2pΩq

(5.1)

where uh denote the reference solution obtained by finite element method in
space and WR method in time.

Example 1 The medium parameter κ and the source term f are shown
in Figure 1. As we see that the permeability field is heterogeneous with high
contrast. The contrast is 104. The reference solution and the solution obtained
from Algorithm 1 at t “ T are presented in Figure 2.
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Figure 1: Example 1. Left: κ; Right: f
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Figure 2: Example 1. Left: reference solution; Right: Algorithm 1 solution.

We take N “ 50 and α “ 0.5 as an example. In the left of Figure 3, we give
the max differences computed by (2.8). It is clear that as the number of iter-
ations increase, the max differences becomes smaller and eventually stabilises.
The convergence rate of the Algorithm 1 is shown in the right of Figure 3. It is
evident that the error converges quickly. Table 1 gives the number of iterations
needed to reach the tolerance ϵ when we take different N . We observe that as
N becomes larger, the number of iterations needed to meet the tolerance are
similar. Clearly, the algorithm will be sufficiently efficient as the number of
processors increases.

Table 1: Example 1. Algorithm 1 iteration steps.

N N “ 20 N “ 30 N “ 40 N “ 50 N “ 60

iteration 17 16 14 13 13

Example 2 In this numerical test, we take more complicated permeability
field (more high conductivity streaks) and point source term as shown in Figure
4. We also depict the reference solution and the Algorithm 1 solution at the
final time with N “ 50 in Figure 5.
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Figure 3: Example 1. Left: Max differences between the Algorithm 1 solution.
Right: Convergence rate.
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Figure 4: Example 2. Left: κ; Right: f
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Figure 5: Example 2. Left: reference solution; Right: Algorithm 1 solution.

Similar as in Example 1, we take N “ 50 and α “ 0.6, and give the max
differences between the solution obtained by Algorithm 1 and convergence rate
in Figure 6, respectively. we can see that the differences reach the tolerance after
a few of iteration steps, and the error decays quickly, showing fast convergence.
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Table 2 shows the number of the iterations required to meet the tolerance ϵ
when we take different N . The results suggest that the larger N is, a slightly
fewer iterations are needed.
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Figure 6: Example 2. Left: Max differences between the Algorithm 1 solution.
Right: Convergence rate.

Table 2: Example 2. Algorithm 1 iteration steps.

N N “ 20 N “ 30 N “ 40 N “ 50 N “ 60

iteration 20 19 19 18 20

6 Conclusion

In this paper, we consider the diffusion equation with high contrast coefficient,
and propose a parareal algorithm for the partially explicit temporal splitting
scheme. In the parareal algorithm, we propose a one-step partially explicit tem-
poral splitting scheme as the coarse solver, and utilize the all-at-once method as
the fine solver to efficiently improve the computational efficiency. The conver-
gences of the all-at-once method and the proposed parareal algorithm are given.
An error estimate for the full discretization is given. Numerical experiments
show that the proposed algorithm is computationally fast and accurate. The
algorithm and the analysis in this paper are based on the case of a linear model.
We will consider generalizing the algorithm to the nonlinear case in future work.
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