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Abstract

Solving multiscale diffusion problems is often computationally expen-
sive due to the spatial and temporal discretization challenges arising from
high-contrast coefficients. To address this issue, a partially explicit tem-
poral splitting scheme is proposed in [8]. By appropriately constructing
multiscale spaces, the spatial multiscale property is effectively managed,
and it has been demonstrated that the temporal step size is independent
of the contrast. To enhance simulation speed, we propose a parallel algo-
rithm for the multiscale flow problem that leverages the partially explicit
temporal splitting scheme. The idea is first to evolve the partially ex-
plicit system using a coarse time step size, then correct the solution on
each coarse time interval with a fine propagator, for which we consider
both the sequential solver and all-at-once solver. This procedure is then
performed iteratively till convergence. We analyze the stability and con-
vergence of the proposed algorithm. The numerical experiments demon-
strate that the proposed algorithm achieves high numerical accuracy for
high-contrast problems and converges in a relatively small number of it-
erations. The number of iterations stays stable as the number of coarse
intervals increases, thus significantly improving computational efficiency
through parallel processing.

1 Introduction

Numerous scientific problems and models exhibit multiscale properties, such as
flow in heterogeneous porous media, the diffusion of pollutants in the atmo-
sphere, turbulent transport in high Reynolds number flows, and so on. These
models often involve significant variations in media properties, commonly re-
ferred to as high contrast. The presence of high contrast introduces stiffness
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to the system, which makes spatial and temporal discretization challenging for
traditional numerical methods due to their high computational demands.

There have been many existing approaches in the literature to handle spatial
multiscale problems, such as numerical homogenization (NH) [12] [I], multiscale
finite element methods (MSsFEM) [15] 28] [4], generalized multiscale finite ele-
ment methods (GMsFEM) [5] 0] 1], constraint energy minimizing GMsFEM
(CEM-GMsFEM) [211 [6} 26], localized orthogonal decomposition (LOD) [33] 25]
and nonlocal multi-continua method (NLMC) [, 19 29]. Among which, CEM-
GMSsFEM is a multiscale finite element method used to effectively address mul-
tiscale problems with high-contrast parameters. It constructs multiscale basis
functions by minimizing energy constraints, which can achieve contrast inde-
pendent convergence rates. Based on CEM-GMsFEM, NLMC is proposed to
construct local basis functions that automatically identify physical properties
in each local region and provides non-local transmissibilities in the global for-
mulation.

For non-stationary multiscale problems, the high-contrast will lead to very
small time steps when treating explicitly. The partially explicit temporal split-
ting scheme [8] originates from the solution decomposition [I4] and splitting
algorithms [I3]. The main idea of the method is to divide the solution space
into two parts, the dominant part and the complementary part, such that the
time step size is independent of the high-contrast. The method is successfully
employed in solving wave equation, nonlinear diffusion, and time-fractional dif-
fusion equations[7], 6], 22| [29] and extended to an adaptive algorithm[29]. In
this paper, we follow the concept developed in [8] for linear equations.

All the existing literatures are based on the sequential method for solving
the partially explicit temporal splitting scheme, which is easy to implement but
might be inefficient when the temporal mesh partition is small enough and a long
time simulation is needed. For this reason, we introduce a parareal algorithm
to enhance computational efficiency. The parareal algorithm was proposed by
Lions, Maday et al in [24]. Its core idea is to divide the entire time interval into
subintervals and compute simultaneously and independently on each subinter-
val. There has been many research work on the analysis and applications of
the parareal method, see [20 2, BT 27, [32]. However, the existing literature is
based on Euler or Runge-Kutta method as fine solver in each subinterval, which
could be time consuming if one takes small time steps. To address this issue, we
further introduce the waveform relaxation (WR) method via the diagonalization
technique based on all-at-once algorithm[23] [I8] B, [30] as the fine solver in the
parareal framework. All-at-once algorithm is a global method that solves the
problem over the entire time interval simultaneously instead of solving it step
by step. It naturally fits for parallel computation and can significantly improve
computational efficiency.

The main contributions of this paper are as follows.

e The parareal algorithm for solving the partially explicit temporal splitting
scheme is presented. The convergence of the proposed algorithm is proved.

e The WR method via the diagonalization technique based on the all-at-



once method is introduced into the parareal algorithm to speed up the
computation for the fine propagator.

e The proposed algorithm can achieve high accuracy, and convergence can
be reached with a small number of iterations. As the number of coarse in-
terval (processors) increases, the number of iteration needed to achieve the
error tolerance is quite stable, thus significantly saving the computational
cost with parallel computation.

The rest of this paper is organized as follows. In section 2] we present prelim-
inaries. In section 3] we give in detail the construction of multiscale spaces. The
parareal all-at-once algorithm and the error estimate of full discretization are
given in section[d] Numerical experiments and conclusion are given in section
and section [6] respectively.

2 Preliminaries

In this paper, we consider the diffusion equation of the form

%—V-(KzVu)=f, in Q x (0,7

u =0, on 092 x (0,T] (2.1)

u = ug, on 0Q x {0}

where 2 is a bounded domain, k € L®(Q) is a high contrast parameter and
fe L?0,T; L3(€)) is the source term.

We first present the fully-discretized problem for , with finite element
method in spatial discretization and backward Euler method for temporal dis-
cretization. Next, we derive the partially explicit temporal splitting scheme.
Then we briefly introduce the framework of the parareal algorithm.

We now introduce some notations. Denote by (u,v) := {, uvdQ the inner
product of L?() whose norm is defined by || - |lo. We use HE () to denote the
Sobolev spaces with zero boundary values. To simplify the notation, {2 may be
dropped in the notations. We denote C' a generic positive constant independent
of any function and of any discretization parameters.

We write the problem in the weak formulation: find u(-,t) € H(Q)
such that

ou

(57

where the bilinear form a(-,-) is given by

v) + a(u,v) = (f,v), Yve Hy(Q),

a(u,v) = J kVu - Vo,
Q

and define the energy norm || u ||o= a(u,u)z.
Consider a coarse spatial partition 7y of Q with mesh size H, we will con-
struct multiscale basis functions on 7z and form a multiscale space Vg which



has good approximation power. For the approximation space Vg € Hg (), the
semi-discretization in space leads to seeking up (t) € Vi such that

(auH(t)
ot
Uy (O) = ’LLH70.

,0) +alug (t),v) = (f,v), Yve Vg, 0 <t < T, (2.2)

where up o is the projection of ug in V.
Let At be the time step size and t,, = nAt,n =0,1,--- | N,T = NAt. Then
the full discretization with Backward Euler scheme reads

utl —
(G ) o) = (), e Ve, (23

where w7t~ u(-, ).

2.1 Partially explicit temporal splitting scheme

Now we introduce the partially explicit temporal splitting scheme [§]. Assume
that Vi can be decomposed into two subspaces Vg 1 and Vi 2, that is

Vg = VH,1 + VH,Q.

Then a partially explicit temporal splitting scheme reads: finding {u,})_; €
Vi1 and {w, }N_, € Vi such that

(un+1 — Up ) (wn — Wn-1
At T At
Up — Up—1

At

,01) + a(Ung1 +wn,v1) = (), (2.4)

Wn 1 — Wn

(e ), (25)

7v2) + ( a’U2) + a(unJrl + wnaUQ) = (

Vui € Vigai,Vva € Vg, Initial conditions are projected onto corresponding
subspaces. Thus, the solution at time step n + 1 will be u}?’l = Up+1 + Wpt1-
It has been proved in [§] that with a suitable choice of Vg o the partially

explicit temporal splitting scheme is stable.

2.2 Parareal algorithm

To enhance the computational efficiency of the partially explicit temporal split-
ting scheme —, we will introduce a temporal parallel algorithm. We first
describe the basic flow of the parareal algorithm by considering the following
initial value problem

du
= = F(tu), te(0,7], (2.6)
U(O) = Up,

We first divide (0,7] into N elements as described in the (2.3). Let F be a fine
solver that can achieve desired accuracy but has a high computational cost. We



also introduce a coarse solver G, which have lower accuracy but provide results
at a lower computational costs compared to the fine solver. For example, one
can use the same numerical scheme for both F and G but F using a small step
size dt, while G is utilizing a bigger step size At (At » dt).

Denote by Fa¢(u,tn, tn+1) the result obtained by integrating w from ¢, to
tn11 using Fy; (fine solver with time step size §t) and Ga¢(u, ty,tn+1) denoting
the similar integration forward in time using the coarse solver. At the zero
iteration of the parareal method, we get {ul}N_, using the coarse solver G.
Denote by u¥ the approximation for u(t,) at the kth iteration. Then the solution
of the k + 1th iteration is obtained from the following formula: for all 0 < n <
N—-land k=0,1,2,---,

uF Ty = Gl b n) + Farc(ul to t1) — Gac(ul b, tagn). (2.7

One can terminate the parareal algorithm if the maximum number of iterations
is met (k = npax), or if

gy —up ™ o< €, (2.8)

where € is a given tolerance.

Notice that the evolution of the fine solver F only requires the initial value
uﬁ, which depends on the previous iteration. Therefore, for each k, the F can
be computed in parallel.

The solution of converges under suitable assumptions, i.e., uf
where u? is the solution obtained from F with time step 6t throughtout the
whole temporal domain.

N u;"“

3 Multiscale space construction

In this section, we first briefly describe the construction of multiscale spaces
based on CEM-GMSFEM [6], 8, [7]. We then present the construction of the
spaces Vg1 and Vi 2 based on nonlocal multicontinuum (NLMC) method [9],34].

3.1 CEM-GMsFEM

Denote by {K;} the set of coarse blcoks in Tz, and denote V = H{ (). For
each K; € Ty, we have to build a collection of auxiliary based in V(K;), where
V(K;) be the restriction of V' on K;. We solve the following eigenvalue problem

f kYo = A s (01, 0), Yo e V() (3.1)

i

where

si(u,v) =f Ruv, K = K‘,Z | Vxi |* or & = kH 2,
KA .

v ?



{x:} is a partition of unity functions corresponding to an overlapping partition
of the domain. Then we collect the first J; eigenfunctions corresponding to the
first J; smallest eigenvaules to form the auxiliary spaces

aux

VA = span{yl” 11 < j < Ji).

Define a projection operator II : L?(Q) — Vuux © L?(Q)

s(Mu,v) = s(u,v), Yv € Vaux 1= Z 1A%

aux’

where s(u,v) = Y, s:(ulk,, v|x,) and N, being the number of coarse elements.
Define K" be an oversampling domain obtained by enlarging K; by a few coarse

grid layers. For each w](-i), we search for a local basis function q/);i) € V(K;") such

that for some uy) € V(K;r)
a(¢5”,0) + s(u),v) = 0, Vo e V(K}), (3.2)
$(8",1) = st ), Y € Vaun (K1),

Then we define the space V., as
Veem = span{e!” 11 <i < N.,1<j < Ji}. (3.3)

Thus we can choose Vien,, to be Vg and construct a complementary space
Vir 2[5, 10).

3.2 Construction of two multiscale subspaces

For channelized/fractured media, the construction of multiscale subspaces can
be simplified. That is, denote by the computational domain Q = Q,, B;_, iy,
where m and f denote the matrix and fractures. In the fracture regions €y,
the scalar d; and s denote the aperture and the number of the discrete frac-
ture networks, respectively. Since the value of the permeabilities in the matrix
and fracture regions can differ in magnitudes, thus we can construct constraint
energy minimizing basis functions via NLMC, such that the obtained basis
functions can automatically separate continua such as matrices and fracture.
Specifically, for a given coarse block K;, we use constants for each individual
fracture network and then a constant for the matrix to form a auxiliary space.
That is to say, for any coarse block K;, we write K; = K; ; U K, ,,, where

= {f;l),j =1,---,m;} is the high-contrast channelized region, m; is the
number of non-connected fractures in K;, Kj; ,, is its complement in K;. Then
we define two auxiliary spaces

Va(lii 1= Span{¢auxk | (Zsauxk =0in K; m’¢auxk = Ujk in fj(l)’k =1, 7m’i}7
(3.4)

V;;Zc 2 Span{¢aux 0 ‘ (baux (VI =1lin KZ ms ¢aux 0= 0 in K’i,f}' (35)



Then the NLMC basis functions are obtained by finding ¢,(q? € Vo(K;") and

uéj ), ;h(lj ) € R from the following localized constraint energy minimizing problem

o+ X W[ er 3w L o) =0, Yo e Vo(K),

K,cK* imo o 1<n<my
k2

f P = 6;0m0, VK € K,
K

J,m

@ wv(v? = 6ij5mn7 ny(Lj) € F;, VK; K;_
fnrrl
(3.6)

Then the NLMC basis functions are {w%), 0<m < my,1 <i < N}
The above problems are posed in infinite-dimensional spaces, but for numerical
computations, we solve the discretized the system on the fine grid using standard
finite elements to obtain the solutions and use them as our basis.

Denote the average of all NLMC basis by

Ne m; N
1
V=7 MWW, L= m. (3.7)
i=1m=0 i=1
We then let 7%,? = 7(7? - %E,O <m < my,1 < i < N.. In order to

simplify the notations, we omit the double script in IZ%) and denote the set of
bases by {tx,k =1,---,L}. Thus, we define the space Vi 1 as

Vi = span{ty, 1 <k < L —1}.

The basis functions corresponding to the matrix and the basis ¢ will be included
in the second subspace Vg 2, that is,

Vo = span{i, 7,1 < i < N}

By this construction, Vp 1 contains a basis representing the high-contrast
fractures only, and Vg2 includes a basis representing the background matrix
and the constant basis.

Next, we will introduce some notations. Let dim(Vy 1) = dy, dim(Vi2) =
dy, dim(Vyg) = D, and let ¥4 € RP*d1 and U, € RP*42 he the matrices whose
columns are the bases of V1 and Vg 2, respectively. Denote My and A; be
the fine scale mass matrix and stiffness matrix, define the following coarse scale
matrices

My = 9T MOy, Ay = 0T AT,

My = UMWy, Agy = UT AsU,,

Mg = Ui MWy, Ayp = U1 ApWs,
L VLN - CH



4 Parallel in time for partially explicit temporal
splitting scheme

In this section, we describe in detail parareal algorithm for the partially explicit
temporal splitting scheme. First, we introduce the WR method via the diag-
onalization technique based on the all-at-once system for the partially explicit
scheme in subsection and give the convergence of the method. Then we
propose our main algorithm, the parareal all-at-once partially explicit temporal
splitting algorithm, in section where we adopt the WR method via diago-
nalization technique as the fine solver. Finally, we carry out the error analysis
for the proposed algorithm.

4.1 WR method via diagonalization for all-at-once system

Let us look back at the splitting scheme ([2.4))-(2.5)), and solve it using the
iterative all-at-once method. We write

s~ 4 w7} |
(HTvvl)_‘_a(qu—l’vl) = (fn+1,vl>_( At 1vU1)_a(w7jz_1’U1)7
(4.1)
wgl“rl —w), uj, — uifl J j n+1
(T7U2) + (Ta UQ) + a(un+l + w%va) = (f aUQ) (42)

where v; € Vg 1,v2 € Vho and j will be the iteration index. Let Ui =

(ul,ub, -, uly) and Wi = (w),w),--- ,wh), therefore [@1)-[@2) is a direct
discretization of the following scheme

(6tUj(t),v1) + a(Uj(t),vl) = —(6tUj_1(t),v1) — a(Wj_l(t),vl), Vvl € VH,17

(4.3)
(8th(t), UQ) + Q(Wj(t),vg) = 7(atUj(t)7UQ) - a(Uj(t),vz), V'UQ € VHVQ.
(4.4)
Notice that the (4.1]) can be written as an all-at-once system
(B®My+ 1@ AU’ = F (4.5)
with initial condition
up = uo + aluly —uy ),
where B is a periodic-like matrix with the parameter a € (0,1)
1 e
1 -1 1
B=— 4.6
S (16)
-1 1



and F = (f17f27~-~ ,fN), and

~ 1 . . 1 .
fl = Fll — EMHU)% b A12’LU(]) ! + EMH(UO - aufv 1),

~ ) 1 - i -
fr=1 = g Mz (w Lo wlZ]) — Apwl ™!,

for s =2,3,--- , N. Now, if the matrix B is diagonalizable, such as
B =SDS™', D = diag(dy,dy, - -- ,dn),
we can factorize the coefficient matrix in as follows
BOMi+1L; @A =(S®Iu)(D@Mi1 + ;@ An)(S™' @ 1In), (4.7

where Ijs is a identity matrix. This implies that we can solve (4.5) at the j-th
iteration in three steps

(a) (S®In)P = F/,
(0) (D® M1+ 1, @ An)Q = P, (4.8)
() (ST' @)U = Q.

Note that the matrix S can be further decomposed into S = AV, where A =
diag{l,of%, e ,of%}, V is the discrete Fourier matrix. Thus, the Fast
Fourier Transform (FFT) can be employed to speed up the implementation of
(4.8). In addition, the second step of is to solve N independent equations,

thus it can be done in parallel.
The problem (4.1)-(4.2) will be solved with the following steps:

1. Solve ([4.5) by (4.8)), obtain U7 = (u{, e 7ug‘\,), which is the part of the
solution in Vg1 at all time steps.

2. Plug the solution U in (4.2)), solve for W/ = (w{, e ,wf\,) in a sequential
manner.

3. Iterate the above process until converge.

The following theorem gives the convergence result for the WR method at
each subinterval (¢,,t,+1). We remark that we will adopt the WR method as
the fine propagator at each subinterval (¢,,,t,+1) within the parareal framework.
It is trivial to extend the following results on the whole temporal domain (0, T7].

Theorem 4.1. Let u(t) be the exact solution of (2.1) and satisfy u(t) =
U(t) + W(t), Ui (t) and WI(t) are the solution of (4.3)-(4.4) at j-th iteration
respectively. Then it holds for j =1,2,--- andn =0,1,2,--- /N — 1 that

sup | UI(t) = U@) ||+ sup | WI(t)-W() |
t€(tn,tnt1) te(tn,tnr1)

<CPUTD sup | AR e (WOt = W) + (WO(t) = W(8)) [|oos

te(tnvtn+1)

(4.9)



where v is defined by

Y= M V’Ul € VH,la VUQ € VH’Q. (410)

RN
Proof: We consider
(atU(t); Ul) + G(U(t),’Ul) = —(6tU(t),vl) — a(W(t), 1}1), V’Ul S VH,1,
(8tW(t),v2) + a(W(t),’Ug) = —(6tU(t),U2) — (L(U(t), U2)7 V’Ug € VH}Q

We now define P1 : VH’Q — VH,la Hl : VH’Q — VH,l and P2 : VH,l — VHﬁg,
Hg : VH}1 — VH’Q such that

(P2, v1) =(v2,v1), Y1 € Vi1, (Pavi,v2) = (v1,v2), Yvg € Vi o,
a(Ilyvg, v1) =a(ve,v1), Yv1 € Vi1, a(llov,ve) = a(vi, va), Yvg € Vi o,
and define the errors
el(t) = U7 (t) = U(t), e, (t) = W (t) - W(t).
Then for Vv, € Vg1 and Yy € Vi 2, we have
(0ed (1), v1) + a(el(t),v1) = —(0red H(t), Povy) — a(ed (1), avy),  (4.11)
(0ed (1), v2) + a(el, (t),v2) = —(0s€d (1), Prvg) — a(el (1), TT1vy). (4.12)
with initial condition €f,(0) = €7, (0) = 0. Then from ([{.11))-(4.12)) we obtain
(006l (), v2) + alel (8), v3) + (e, (8), TTyws)
=a(el (t), Pvg) + (0sel71 (), PoPrvg) + a(ed 1 (t), Ty Prus). (4.13)
From , a directly calculation yields the following recurrence relation
— (el (), v2)
=a(ed (1), vo) + (0l 71(t), Prvg) + a(el 71 (1), T vg)
=a(el; (1), v2) — alel (1), Prog) — (0l 2(t), PaPrus)
—a(ed72(t), Mo Prvg) + a(ed~1(t), Tivs)
=a(el (1), ve) — aled2(t), My Pivg) + a(e 1 (t), vy — Prus)
— (el 2(t), PaPyvs)
=a(ed71(t),ve) + a(el 71 (t), vy — Prug) + a(el =1 (t), PyPrvg — Ty Prvg)
+ a(el 2(t), 1 PyPyvs — PLPyPyvs) — a(el; 3 (t), o Py P Prvs)
— (0l 2(t), PaPy Py Pyvs).

Denote by Po; = P, Py and P = Py P,, then the following recurrence relation
can be written as

— (0l (1), v0) = aledH(t), ve) + a(ed71(t), vy — Prug)
+ Z (a(efﬂ_Q_i(t), nglvg — H2P1P2il1}2) + a(e{;_Q_i(t),Hngflvg — Pngflvg))
i=0

—a(el, (t), 1o Py Py; 2va) — (6rel, (t), PYy tva).

10



Substitute the above equation into (4.11)) and (4.13]) respectively, we have

(2re (1), v >+a(j<t> o)
= 2 {ael (0, (P = ) Phyon) + a(el (@), (I = POPaP) (410

—a(el, (), o Ply o) — (2, (1), P2 Py 'or)
and
(Ored, (1), va) +a(€j (t),v2) + a(el,(t), T vp)
—Z (el 7' (1), (2 — Po)P1Pyyva) + a(el ™ (1), (Pr — Th) Py ' v2))

+ a’(ew( t), I PLPY; o) + (1€ (t), Py va).
(4.15)

We then write the above operator into the matrix form

(%ei(t) + Allei(t)

(P53 (P53 —1Ih) Agzel, ' (t) + Pi5 Py (Il — Pf) Aprel, (1)) (4.16)
1=0
— (P{y ') ¥y Agzel, (t) — (Ply ' )* P ovel, (t)

and
orel (t) + Agoel (t) + (IIo — Pf) A€l (t)
= > (PSFPF(PF —TI) Agoel, 7H(8) + (Pa)* (TTy — PF) Anrel (1))
i=0
+ (P ) PiTL Agoey, (¢) + (P3))*0sel, (1)
(4.17)
Denote by

Z P Hl)AQQ@J 1= Z(t),
= Z Pi3 Py (Tly — Pf) Avel, 7 (t),
i=0
then with the above two notations, we can rewrite (4.16)) and (4.17) as follows

el (t) + Aunel, (1) = f(t) + Fi(8) — (Ply ') *TIy Agoel () — (Ply ) * Py orey, (t)
(4.18)

and
atefv(t) + AQQ@'ZU(t) + (Hg — Pfk)An@ﬂ(t)

® ] * ] ®(pJ—1ly* 0 *pJ—lyk px s 0 (4'19)
=P fi,(t) + Pf fa(t) — PF(Py ") i Aszey, (1) — Pr(Ply )" Py ore, (1)

11



We consider || AT' Py Ags ||< C and || A5 P Ay ||< C, where C is independent
of contrast, and let A, and ¢, be the eigenvalues and eigenfunctions such that

P1*2¢P:)‘p¢p7 p:172a .

Thus, for ¢?p = Ay, we have Aﬁle‘zAndN)p = /\i(gp. Let & and D be the

matrix ® = [¢y, g, -] and D = diag{\1, Ao, - -- }, then

Fi(t) =, Pl (P§ —TI) Aggel, (1)

i=0

=) Pi5 Ay (A7) P§ Agy — Th)el, ' (1)
i=0

B ZZ: Pi3 A @ (AL PF Agy — T )el, 170 (1)
i=0

- 2 A“&)D@_l(AﬁlP;Am —IIy)el, M0 (t)
i=0

Since A, <7%p=1,2,---, where y = ||‘7(£1”’|T52I|, then we have

| AT ) 1= 1| Y, B0 (A P Az — el (1) |
=0
<C AV || ekl
) el |

1 )
<(C—— %
\Ol _72 Oé?gjx_l H ew(t) || .

Similarly we have

- i
T o2, lleu®

_ ; 1 .
| Asy PEF2L (1) < Cm onax | | e (®) I,
. 1 .
—1 p*x pj 7
A PE D) < O b0

AL fi#) < ©

(4.20)

(4.21)
(4.22)

(4.23)

Then we turn to estimate the last two terms of (4.16)) and (4.17),we obtain

| AT (Pl ) Il Azl (1) + (Pl )* PRavel, () |
<SCYED | AT (P3 0sel, (1) + T Agael, (1) ||,

| A PE (Pl ) TAnel, (t) + (Pl ) PEael, (1)) |
<Oy | Ag) P (P3 érel (8) + T Anacly (1) ||

Now we consider the following matrices
i An ) A A O
(Ily — Pjf)A1; Age )7 O Ay

12

(4.24)

(4.25)



then we have
- A7) o0\ ~ I 0
Al = RS _ JATIA = _
( —Ay (I — Pf) Az ) ( —Ayy (o — Pf) A 1 >
Thus, we can easily get | A~1A ||< C and
¢ N . S
| J A=) (- e AT A< T e | AT A < Ot
0

Therefore, given any At > 0, t, = nAt, and with the help of the (4.20])-(4.25)),
we have the following estimates

sup || e, (t) I el(tn) || +CANY2I™ || A (P5forel, (1) + Iy Azael (1)) ||

te(tn,tnt1)

+CAt

max sup e, (t) [+ max sup [ el(t)]
1—72 <0<Z<J—1t€(tn,tn+1) N OIS Vte(tnstngr) |

(4.26)

sup || el (8) [I<Il el (ta) || +CALIY || Ay P (P5foel (8) + i Azael (1)) ||

te(tn, tnt1)

+CAt

max — sup e, (t) |+ max  sup [le(t) ] ).
1—~2 <0<Z<J—1 te(tn,tni1) b 0SIST=1 te(tp tni) ’

(4.27)

We set p = CAtﬁ < 1, then add (4.26) and (4.27). With the condition
| A7 PfAgy ||< C and || Ay, P Ay ||< C, we can get
sup el () |+ sup |l el (t) ]

te(tn,tnt1) te(tn,tnt1)

<p max ( sup [l e, (t) [+ sup || eg,(t) ||>

Osisi—1 te(tn»tn+1) te(tnvtn-H)

1
£ON AT p | At + (D) |
i=0 te(tn tnt1)
-1
<O A0 sup | A1) + 40 .
=0

tE(tn 7tn+1)

forn =1,2,--- N — 1. Finally we consider At — 0, thus ¢ — 0, then we get
the desired result. []

4.2 Parareal all-at-once partially explicit temporal split-
ting algorithm

In this subsection, we describe in detail the use of parareal algorithm to solve
the partially explicit temporal splitting scheme and give its specific algorithm.
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We further divide each time slice [t,,t,+1] into M subintervals with 6t =
At/M, t=mdt, m =0,1,--- , M. According to the framework of the parareal
algorithm, we should first compute a series of initial solutions based on the
coarse solver G. To do this, we write the — as follows

k k k k
ul o —ul wk | —wk .
(HT,’Ul) + (HTa'Ul) +a(ul o +wk o) = ("),  (4.28)
k k k k
Wn —Wn Un, — Uy n
(HT’W) + (HTVUQ) +a(ul g +wk v) = ("1 ),  (4.29)

where the subscript k denote the kth iteration in the parareal algorithm. Now,
the splitting scheme need to be solved together at each new time step, i.e., for
alln=0,1,--- ,N —1 and k = 0, we have

0 0
Upy1 Up,
= atnvtn . 430
<w2+1> Gaul <w2) +) ( )

In this way, we can compute the initial solution by . Then on each time
slice [tn,tnt1],m = 0,1,--- N — 1, we use all-at-once method to solve (4.1)-
, this leads to our main algorithm: the parareal all-at-once partially explicit
temporal splitting algorithm.

We present in Algorithm [I] the main ingredient of the parareal all-at-once
algorithm for —, which include the parallel computation in Step 3 and
the sequential propagation in Step 4.

4.3 Convergence of the main algorithm

This subsection is concerned with the convergence analysis for the Algorithm
in subsection [L.2] To begin with, we introduce some lemmas that will be used
in theoretical proof.

Lemma 1. Let u the be solution of (2.1), ug(t) be the solution of (2.2), if
fi € LY(0,T; L?(Q)) and uy € L*(0,T; L(S2)), then there holds[21]

e 27 -1, ~3% “3(f—
[ u(T) —un(T) | < CH"A™ kg (OIQZXT w727~ (4.31)

_1
+ || 572 (fe — ue) HLl(O,T;L2(Q)))+ | wo —umpo |,
_1 . (4)
where kg = maxkx~2 and A = minjgj<n, Ay i1
This lemma gives an error estimate in the spatial semi-discrete scheme.

Lemma 2. The coarse solve G is Lipschitz, it holds[17]
1 Gae(u, tn, tns1) — Gar(v, tn, tns1) IS (1+ CAL) Jlu—v || . (4.32)

Lemma 3. Define Sat(u, tn, tnt1) = Fae(t,tn, tni1) — Gar(u, tn,tnr1). Then
it has following property[17]

I Sat(,tn, tasr) < CAH™ [u]l. (4.33)
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Algorithm 1 Parareal all-at-once partially explicit temporal splitting algorithm

Input: initial date ug, source term f, tolerance €, coarse matrices , ¥y and
U,
Result: u’}_jk forn=1,2,---,N .
1: Compute a series of initial solution {u%}N_; and {w?}N_;

n=1
0 0
u u
( 7(3+1> = gAf(( 70L>at7lat7l+1)a n= 0717 e 7N - L
wn+1 W,
2: for k=1,2,---,do
3: Parallel compute 4F ,; and @%, ; on each time slice [t,, t,+1]
~k k—1
Uy U
<,\Z+ > = JT'.At(( 7]1_1)7tn7tn+1)
Wy 41 Wn
4:  Sequentially compute the corrected solution {ufT1}N_| and {wk+1}N_;
k+1 ~
un+1 UZ+1 U”TCL-&-I ufz
k+1 = gAt( k41 atnatn+l) + ~L _gAt( k 7tn7tn+l)
Wyy wy (O wk
5 Determine whether the given condition is met.
6:  if || uf —uF~!|< € then
7: returnu%k:uﬁ+w§,n:17~--,N
8: break
9: end if
10: end for
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Remark 1 Notice that in parareal algorithm, fine solver F is usually con-
sidered exact, so m in Lemma [3]is the order of the coarse solver G. Due to the
fact that the coarse solver G is a first order scheme in our algorithm, thus we
can safety replace m by 1 in the later analysis.

With the aid of above lemmas, we have the following error results in full
discrete scheme.

Theorem 4.2. Let u be the solution of (2.1), ug(t) be the solution of (2.2)
and u%’k be the solution of (2.4)-(2.5) computed by Algorithm then we have

N,k 1.3 1
| u(7) — iy < CH?A™ g * (max || 573 (f — i) |

1
+ 1672 (fe = uer) Nl o,msez)+ Il o — wro | +C(AD* || upmo ||
Proof: Using triangle inequality
k &
| u(,T) = ug™ || =l (- T) = up(T) + up(T) = up™ ||
N,k
<[[u(,T) —uu(T) | + | v (T) —uy™ || -

Notice that for the first term of the right hand side(RHS) of (4.34), it can be
estimated by Lemma [} thus, we aim at estimating the second term. Following
the framework of the Parareal algorithm, assume that the fine solver F is exact,
ie,Vn=0,1,--- /N —1,

(4.34)

up (tns1) = Far(ug (tn), tn, tns1)-
Therefore, we have following equation
up (T)
=0at(um(tn-1),tn—1,T) + Fac(uu(tn-1),tn-1,T) — Gar(up(tn-1),tn—1,T)
=0at(un(tn-1),tn—1,T) + Sac(un(tn-1),tn-1,T).
On the other hand, by we have

uZ’“ =9At(Uﬁ_1’k,tN_1,T) + ]‘—At(ug_l’k_l,tN—l,T) - gAt(UZ_l’k_lytN—lyT)

=Gac(upy Tty 1, T) + Sar(uly iy, T).

Then by triangle inequality again, the second term of RHS of the equation (4.34)
can be written as follows

| wpr (T) — uﬁk =1 Gat(ua(tn-1),tn-1,T) — gAt(UZ_l’kytN—l,T))
+(Sar(un(ty-1),tn-1,T) = Sac(upy "F ' tn_1,T)) |

<O(tn-1) + pltn-1),
(4.35)

where

O(tn-1) =| Garlug(tn-1),tn-1,T) — gAt(Uz_l’kﬂfN—hT) I,
p(tn_1) =| Sar(um(ty_1),tn—1,T) — Sar(uly " tn_1,T) | .
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With the help of the Lemma [2| and Lemma [3] we get the following result
s (T) = uy™ [|< CADF | umo | - (4.36)

Now we turn to prove (4.36) by mathematics induction. First, from the
classical result in [18], we know it holds for k = 1, i.e.,

[l (tn) =gy 1< C(AY) | uro | -
Assume it holds for k, then we prove it holds for k+1. Foralln =0,1,--- , N—1,
similar to (4.35) we have
un+1,k+1

| up (tns1) — vy < 0(tn) + p(tn)-
Utilizing Lemma [2] for 6(t,) and Lemma 3 for p(t,), we obtain

| wr (tnsn) —up W

N (4.37)
<(1+ CAL) || up(tn) — uBF | +CAD) || umo || -

Repeatedly utilizing the recursive (4.37) and sum all n = 0,1,--- N — 1, we
get the result

s (T) = ugy ™ [l< CAD* ! [ uro | -

Thus we have completed the estimation of the second term of the RHS of

(4.34). Finally, the desired result can be obtained directly from (4.31]), (4.34])
and (436).[]

5 Numerical experiments

In this section, we perform some numerical experiments to verify the feasibility
and effectiveness of the Algorithm [I} In all examples, we let Q = [0,1] x [0,1]
and T = 0.005. The coarse scale and fine scale spatial mesh size are H = %
and h = T%o- We consider zero Dirichlet boundary conditions and zero initial
conditions. The coarse scale and fine scale time step size satisfy the relation
6t = & ie, N = M. In all examples, we set the tolerance ¢ = 107!, The

relative error is defined as follows:

I UhN - Uﬁ z2(0)

(5.1)
| Ufzv HL2(Q)

where uj;, denote the reference solution obtained by finite element method in
space and WR method in time.

Example 1 The medium parameter x and the source term f are shown
in Figure As we see that the permeability field is heterogeneous with high
contrast. The contrast is 10%. The reference solution and the solution obtained
from Algorithm [T] at ¢ = T" are presented in Figure 2]
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Figure 1: Example 1. Left: x; Right: f
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0.04 004
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0.02 002
001 001

10 20 30 40 50 60 70 80 90 100 10 20 30 40 5 60 70 80 90 100
Figure 2: Example 1. Left: reference solution; Right: Algorithm [I] solution.

We take N = 50 and a = 0.5 as an example. In the left of Figure [3| we give
the max differences computed by (2.8). It is clear that as the number of iter-
ations increase, the max differences becomes smaller and eventually stabilises.
The convergence rate of the Algorithm [I]is shown in the right of Figure[3] It is
evident that the error converges quickly. Table [I| gives the number of iterations
needed to reach the tolerance ¢ when we take different V. We observe that as
N becomes larger, the number of iterations needed to meet the tolerance are
similar. Clearly, the algorithm will be sufficiently efficient as the number of
processors increases.

Table 1: Example 1. Algorithm [T iteration steps.
N N=20 N=30 N=40 N=50 N=60
iteration 17 16 14 13 13

Example 2 In this numerical test, we take more complicated permeability
field (more high conductivity streaks) and point source term as shown in Figure
4] We also depict the reference solution and the Algorithm [I] solution at the
final time with N = 50 in Figure 5]
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Figure 3: Example 1. Left: Max differences between the Algorithm [I] solution.
Right: Convergence rate.
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Figure 4: Example 2. Left: x; Right: f
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Figure 5: Example 2. Left: reference solution; Right: Algorithm [I] solution.

Similar as in Example 1, we take N = 50 and o = 0.6, and give the max
differences between the solution obtained by Algorithm [I] and convergence rate
in Figure[6] respectively. we can see that the differences reach the tolerance after
a few of iteration steps, and the error decays quickly, showing fast convergence.
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Table |2 shows the number of the iterations required to meet the tolerance e
when we take different N. The results suggest that the larger IV is, a slightly
fewer iterations are needed.

108

e

2 101

Relative error
3

S

x

Max differel

1012

1012

10
107

1018 1016
1 2 3 4 5 6 7 8 9 0 2 4 6 8 10 12 14 16 18 20

Number of iterations Number of iterations

Figure 6: Example 2. Left: Max differences between the Algorithm [1| solution.
Right: Convergence rate.

Table 2: Example 2. Algorithm [I] iteration steps.
N N=20 N=30 N=40 N=50 N=60
iteration 20 19 19 18 20

6 Conclusion

In this paper, we consider the diffusion equation with high contrast coefficient,
and propose a parareal algorithm for the partially explicit temporal splitting
scheme. In the parareal algorithm, we propose a one-step partially explicit tem-
poral splitting scheme as the coarse solver, and utilize the all-at-once method as
the fine solver to efficiently improve the computational efficiency. The conver-
gences of the all-at-once method and the proposed parareal algorithm are given.
An error estimate for the full discretization is given. Numerical experiments
show that the proposed algorithm is computationally fast and accurate. The
algorithm and the analysis in this paper are based on the case of a linear model.
We will consider generalizing the algorithm to the nonlinear case in future work.
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