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FUNDAMENTAL GROUPOID SCHEMES AND SEMI-FINITE

BUNDLES

PAVAN ADROJA AND SANJAY AMRUTIYA

Abstract. In this article, we study the various fundamental groupoid schemes and
semi-finite bundles on complex tori and Riemann surfaces. We have computed funda-
mental groupoid of anisotropic conic, Klein bottle and abelian varieties. We also study
the relation among various fundamental groupoid schemes by considering their represen-
tations.

1. Introduction

Let X be a proper, connected and reduced scheme over a perfect field k. In the case

when X has a k-rational point x, Madhav Nori [14] defined a fundamental group scheme

of (X, x) corresponding to the neutral Tannakian category of essentially finite bundles. If

X does not have a rational point, then we can’t get a natural fibre functor, but one can get

a functor that takes value in the category of quasi-coherent sheaves over some k-scheme

S. By Tannaka duality, it corresponds to an affine k-groupoid scheme acting transitively

on S. In this article, we have studied groupoid versions of certain Tannakian categories.

In particular, we have computed fundamental groupoid of anisotropic conic, Klein bottle

and abelian varieties. We also describe the relation among various fundamental groupoid

scheme by considering their representations.

LetX be a complex manifold with the structure sheaf OX . Recall that Riemann-Hilbert

correspondence assigns Cπ1(X)-module to locally constant sheaf of C-modules. By taking

tensor product with OX , we get a locally free sheaf of OX-module. In this way, we have

a functor

Cπ1(X)–mod → OX–mod.

Given a surjective group homomorphism α : π1(X) → Σ, we can restrict this functor to

the category CΣ–mod by taking composition with the natural functor α̃∗ : CΣ–mod →

Cπ1(X)–mod, the resulting functor

S : CΣ–mod → OX–mod

is known as the Schottky functor.
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In [8], it is proven that the Schottky functor induces an equivalence between the category

of unipotent modules and the category of unipotent bundles on both complex tori and

compact Riemann surfaces. For complex tori, we generalize this result to the category

of semi-finite bundles, which strictly contains the category of unipotent bundles. We

also establish an analogous result of [8, Theorem 1.2] for products of compact Riemann

surfaces. Let G be a connected affine algebraic group. Recall that a principal G-bundle

j : P → X is called finite if every vector bundle associated to a G-representation on X is

finite. We give an analogous Schottky result for principal bundles (see Proposition 6.12).

2. Preliminaries

A groupoid is a category in which every morphism is an isomorphism. For example, a

topological fundamental groupoid; where objects are the points of topological space and

morphisms are homotopy classes of paths between two points. One can define a groupoid

scheme by considering the functor of points taking values in groupoid. Let us give a

precise definition of a groupoid scheme. Let k be a field and S be any k-scheme.

Definition 2.1. An affine k-groupoid scheme G acting transitively on a k-scheme S is a

k-scheme G with

• a faithfully flat affine morphism (t, s) : G −→ S ×k S of S ×k S-schemes,

• product morphism m : G×sSt G −→ G of S ×k S-schemes,

• unit element morphism e : S −→ G over S ×k S, where S is over S ×k S by a

diagonal morphism ∆ : S −→ S ×k S, and

• inverse element morphism i : G −→ G of S ×k S-scheme such that s ◦ i = t and

t ◦ i = s

which satisfying following axioms:

(1) Associativity: m ◦ (m× id) = m ◦ (id×m).

(2) Identity: m ◦ (e× id) = m ◦ (id× e).

(3) Inverse: m ◦ (i× id) = e ◦ s.

Let us understand the above definition by taking the functor of points view. Let

(y, x) : T → S × S be any morphisms. Consider the category G(T ) whose objects are

S(T ) and morphisms are Gy,x(T ) for any two object x, y ∈ S(T ); where Gy,x defined by

the following diagram:

Gy,x
//

��

G

(t,s)

��

T
(y,x)

// S ×k S

The category G(T ) is a groupoid. We will use the above notations throughout this section.

Example 2.2. Consider G = S ×k S with the map (pr1, pr2) : S ×k S → S ×k S. Then,

this forms a groupoid scheme acting on a k-scheme S; where pr1 and pr2 denote the first

and second projection map, respectively.
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Example 2.3. If G is an affine group scheme over a field k with the structure map

f : G → Spec k. Then, (t, s) = (f, f) gives a natural structure of k-groupoid scheme

acting transitively on Spec k. In this sense, groupoid scheme is a generalization of a

group scheme.

Observe that, if t = s in Definition 2.1, then the morphism (t, s) : G → S ×k S factor

through diagonal morphism ∆ : S → S ×k S. In this case, G becomes group scheme over

S. Given a groupoid scheme G over S, we can define the corresponding diagonal group

scheme G∆ over S and, for any morphism of k-scheme f : T → S we have a groupoid

scheme GT over T by the following square diagrams.

G∆ //

��

G

(t,s)

��

GT
//

��

G

(t,s)

��

S
∆

// S ×k S T ×k T
(f,f)

// S ×k S

2.1. Representations of groupoid. A representation of G is a pair of quasi-coherent

sheaf V of OS-module together with an action ρ of G on V , which is compatible with

multiplication and base change. That means, for any two objects (y, x) : T → S×k S, we

have a map ρy,x : Gy,x(T ) → IsoT (x
∗V → y∗V ) which is compatible with multiplication

and base change, and if x = y then ρx,x(Idx) = Idx∗V . The category of quasi-coherent

representations of G on S is denoted by Rep(S : G).

Let f : T ′ → T be a morphism of k-schemes. We get two object (y◦f, x◦f) : T ′ → S×kS

by taking composition with (y, x) : T → S ×k S. There is natural map f# : Gy,x(T ) →

Gy◦f,x◦f (T
′) given by g : T → Gy,x goes to (pr1 ◦ g ◦ f, idT ′) : T ′ → Gy◦f,x◦f ; where

pr1 : Gy,x → G is the first projection map. The following diagram gives compatibility

with base change f : T ′ → T .

Gy,x(T )
ρy,x

//

f#

��

IsoT (x
∗V → y∗V )

f∗

��

Gy◦f,x◦f (T
′)

ρy◦f,x◦f
// IsoT ′(f ∗x∗V → f ∗y∗V )

From the above, we can conclude that any representation comes from the representation

ρt,s : Gt,s(G) → IsoG(s
∗V → t∗V ) by the base change. Any given g : T → Gy,x, take

f = pr1 ◦ g : T → G in the above diagram, then one can determined ρy,x(g) by the base

change map f . Here, the map f# : Gt,s(G) → Gt◦f,s◦f (T ) = Gy,x(T ) and f#(idG, idG) = g.

That means, ρt,s(G)(idG, idG) : s
∗V ≃ t∗V determines the representation of G on V .

Remark 2.4. The category Rep(S : G) satisfies the base-change property [5, Remark

1.8]. i.e. for any T → S, we have that Rep(S : G) is equivalent to Rep(T : GT ); where

GT denote the base change of G. In particular, if G = S ×k S with (t, s) = (pr1, pr2) are

first and second projection map, then for any affine open set U of S, we have Rep(S :

S ×k S) ≃ Rep(U : U ×k U) by the base change U →֒ S.
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3. Tannakian category

In this section, we recall some basic notion of Tannakian category from [5]. Let k be a

field and T be a k-linear abelian rigid tensor category with End(1) = k.

Definition 3.1. A fiber functor of T on a k-scheme S is an exact k-linear tensor functor

ω : T −→ QCoh(S) provided with a functorial isomorphisms ω(X)⊗ω(Y ) −→ ω(X⊗Y )

for all X, Y ∈ Ob(T ), which is compactible with associativity, commutativity and unity.

Note that a fiber functor commutes with dual. The axioms on T force that ω takes

value in locally free sheaves of finite rank (see [5, 1.9]).

Definition 3.2. A category T is called Tannakian over k if T admits a fiber functor

ω : T −→ QCoh(S) for a non-empty k-scheme S. If S = Spec k, then we call T to be a

neutral Tannakian category.

Example 3.3. Let G be an affine group scheme over a field k. Then, the category of

linear representations of G denote by Repk(G) with the forgetful functor on the category

Veck of finite dimensional k-vector spaces forms a neutral Tannakian category over k.

More generally, for any affine k-groupoid scheme G acting transitively on S, the category

Rep(S : G) with the forgetful functor on QCoh(S) is a Tannakian category.

Let ω : T → QCoh(S) be a fiber functor. Let pr1, pr2 : S ×k S → S denote the

first and second projection morphisms respectively. Then, they induce a functor pr∗1, pr
∗
2 :

QCoh(S) → QCoh(S ×k S) by the pull-back. Define

Aut⊗k (ω) := Isom⊗
S×kS

(pr∗2ω, pr
∗
1ω).

This is a representable functor over S ×k S, which yields a groupoid scheme acting on S

(see the following theorem by Deligne).

Theorem 3.4. [5, Theorem 1.12] Let T be a k-linear abelian rigid tensor category on a

field k and let ω : T → QCoh(S) be a fiber functor of T on a k-scheme S. Then,

(1) the groupoid Aut⊗k (ω) is affine and faithfully flat on S ×k S.

(2) ω induces an equivalence of T with a category Rep(S : Aut⊗k (ω)).

(3) let G be an affine k-groupoid acting transitively on S and faithfully flat on S×k S.

Let ω̃ : Rep(S : G) → QCoh(S) defined by forgetting an action of G. Then, we

have G ≃ Aut⊗k (ω̃).

The above theorem provides an equivalence between an affine groupoid acting transi-

tively on S with faithfully flat on S ×k S and Tannakian categories whose fiber functor

takes value in QCoh(S). Now, let us recall a theorem from [5] which tells about an

existence of fiber functor, when k has a zero characteristic.

Definition 3.5. Let X be an object in T . The dimension of X is defined by dim(X) :=

ev ◦ δ, where δ : 1 −→ X∨ ⊗X and ev : X∨ ⊗X −→ 1.
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Theorem 3.6. [5, Theorem 7.1] Let T be a k-linear abelian rigid tensor category on a

field k of characteristic zero. Then, the following conditions are equivalent:

(1) T is Tannakian.

(2) For all X ∈ Ob(T ), we have dim(X) ∈ Z≥0.

(3) For all X ∈ Ob(T ), there exist n ≥ 0 such that ∧nX = 0.

As an application of the above theorem, we can say that any k-linear abelian rigid

tensor full subcategory of the category of vector bundles forms Tannakian category. For

a fiber functor, as mentioned in the proof of above theorem, there exist a ring element A

in the induced category of T such that V ⊗ A ≃ Adim(V ) for all V ∈ Ob(T ). So, one can

define a functor V 7→ Γ(V ⊗A) which takes value in the category of Γ(A)-modules, which

is equivalent to QCoh(Spec Γ(A)).

Remark 3.7. If k has a positive characteristic, then the above result hold if the category

T satisfies an extra condition of finiteness (see [7]).

4. Fundamental Groupoid Schemes

In this section, we will define fundamental groupoid versions of fundamental group

schemes by using the Tannakian duality. Let us recall some definitions and fix some

notations. Throughout this section, let X be a smooth scheme of finite type defined over

a field k of characteristic zero with H0(X,OX) = k.

Definition 4.1. A vector bundle V on X is called finite bundle if there are two different

polynomials f 6= g ∈ N[t] such that f(V ) ≃ g(V ).

Definition 4.2. A vector bundle V on X is called unipotent if there is a filtration

V = V0 ⊃ V1 ⊃ V2 ⊃ ... ⊃ Vn−1 ⊃ Vn = 0

such that each successive quotient Vi/Vi−1 ≃ OX for all i.

Definition 4.3. A vector bundle V on X is called semi-finite if there is a filtration

V = V0 ⊃ V1 ⊃ V2 ⊃ ... ⊃ Vn−1 ⊃ Vn = 0

such that each successive quotient Vi/Vi−1 is indecomposable finite bundle for all i.

Definition 4.4. A vector bundle V on X is called numerically flat if V and V ∗ are nu-

merically effective bundles. That means, tautological line bundles OP(V )(1) and OP(V ∗)(1)

are numerically effective (nef).

A vector bundle V on X is called Nori-semistable if for any smooth projective curve

C and a non-constant morphism f : C → X, the pull-back f ∗V is semi-stable bundle of

degree zero.

Consider the categories CN(X), Cuni(X), CEN(X), and Cnf(X), which are full subcate-

gories of the category QCoh(X) of quasi-coherent sheaves on X with objects consisting of
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finite, unipotent, semi-finite, and numerically flat bundles, respectively. These categories

satisfy the following relations:

CN(X), Cuni(X) ⊂ CEN(X) ⊂ Cnf(X).

Each of these categories is a k-linear, abelian, rigid tensor category. If X has a k-

rational point x, then the category C⋆(X), with the fiber functor x∗, forms a neutral

Tannakian category, where ⋆ = N, uni,EN, nf. By Tannakian duality, these categories

correspond to an affine group scheme π⋆(X, x) for ⋆ = N, uni,EN, and πS(X, x) for ⋆ =

nf. The affine group schemes πN(X, x), πuni(X, x), πEN(X, x), and πS(X, x) are called

the Nori fundamental group scheme, unipotent fundamental group scheme, extended Nori

fundamental group scheme, and S-fundamental group scheme, respectively (see [14, 17,

11, 12] for more details).

Let S be a k-scheme, and let ω : C⋆ → QCoh(S) be a fiber functor. By Tannakian

duality, this corresponds to a k-groupoid scheme Π⋆(X,ω) acting on S. The groupoid

schemes ΠN(X,ω), Πuni(X,ω), ΠEN(X,ω), and ΠS(X,ω) are called the Nori fundamen-

tal groupoid scheme, unipotent fundamental groupoid scheme, extended Nori fundamental

groupoid scheme, and S-fundamental groupoid scheme, respectively.

4.1. Fundamental groupoid of an anisotropic conic. Let X be a Riemann surface

and σ : X → X be an anti-holomorphic involution. The pair (X, σ) determines the real

curve. If X = P1
C, then there are only two possibilities for σ upto equivalents (see [10,

Chapter-II, Exercise-4.7(e)]).

(1) Let σ1 : P
1
C → P1

C given by [z1 : z2] 7→ [z1 : z2] be an anti-holomorphic involution.

The pair (P1
C, σ1) gives a real projective line P1

R.

(2) Let σ2 : P
1
C → P1

C given by [z1 : z2] 7→ [−z2 : z1] be an anti-holomorphic involution.

The pair (P1
C, σ2) gives an anisotropic conic given by C : {x2

0 + x2
1 + x2

2 = 0}

contained in P2
R. Note that C does not have any R-point.

We want to find the various fundamental groupoid schemes for the above two real

curves. For this, we need a classification of vector bundles which is given in [3]. By

[3, Theorem 5.3], Cnf(C) contains only trivial bundles on C and so CEN(C), CN(C) and

Cuni(C). Consider a fiber functor

τ : Cnf(C) −→ QCoh(C)

defined by an inclusion. Let x : SpecC → C be a geometric point, then we have τ ′ :=

x∗ ◦ τ : Cnf(C) → VecC a fiber functor taking value in VecC. By Tannaka duality, we get

an S-fundamental R-groupoid scheme ΠS(C, τ ′) ≃ SpecC×RSpecC which act transitively

on SpecC for the corresponding Tannakian category (Cnf(C), τ ′). By Remark 2.4, we have

ΠS(C, τ) ≃ C ×R C

and so ΠEN(C, τ) ≃ ΠN(C, τ) ≃ Πuni(C, τ) ≃ C ×R C.

Remark 4.5. Applying a similar computation for P1
R, with a rational point x : SpecR →

P1
R and a fiber functor x∗, yields ΠS(P1

R, x
∗) ≃ SpecR×RSpecR ≃ SpecR. Thus, we obtain
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the trivial group scheme over R. More generally, if X is k-scheme with a k-rational point

x such that the category Cnf(X) contains only trivial bundles, then ΠS(X, x∗) ≃ Spec k.

Remark 4.6. Suppose X is a k-scheme such that the category Cnf(X) contains only

trivial bundles. If X does not have any k-point, then ΠS(X, x∗) ≃ Spec k×k Spec k, where

x : Cnf(X) → Spec k is a geometric point. For example, X is nondegenerate conic [4] or

Brauer-Severi varieties [15, 16].

4.2. Fundamental groupoid of a Klein bottle. A Klein bottle X is a geometrically

connected smooth projective curve of genus one defined over R and it does not have any

real point. In other words, it is a smooth elliptic curveXC over C with an anti-holomorphic

involution which does not have any fixed point.

Let L be a torsion (or finite) line bundle on X . Therefore, there exist a smallest positive

integer n ∈ N such that L⊗n ≃ OX and for any 1 ≤ m ≤ n− 1, we have L⊗m ≇ OX . Let

CL be the smallest R-linear abelian rigid tensor full subcategory of Coh(X) containing a

line bundle L. By following the construction [14, Page no. 83], we have

Ob(CL) =

{

i=k
⊕

i=1

Vi : Vi ∈ {OX , L, L
⊗2, ..., L⊗n−1} and k ∈ N

}

.

Consider the following fiber functor corresponding to the identity e : SpecC → XC

element of XC:

ω : CL −→ Coh(XC) −→ VecC

The pair (CL, ω) forms Tannakian category over R. By Theorem 3.4, we have a groupoid

scheme (t, s) : Π → SpecC ×R SpecC acting transitively on SpecC ×R SpecC. Let Πt

denote the groupoid scheme Π with the base scheme SpecC by considering pr1 ◦ (t, s) :

Π → SpecC. We claim that Πt(SpecC) =
Z
nZ

×Gal(C|R). Consider the diagram

(4.1) SpecC

id
��

a
// Π

(t,s)

��

SpecC SpecC×R SpecC
pr1

oo

Note that Πt(SpecC) = {a : the diagram (4.1) commutes}. We have only two mor-

phisms, (id, id) : SpecC → SpecC ×R SpecC and (id, id) : SpecC → SpecC ×R SpecC

such that the diagram

(4.2) SpecC

id
((◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

// SpecC×R SpecC

pr1

��

SpecC

commutes; where id denote the morphism correspond to complex conjugate. Thus, we

can partition the set Πt(SpecC) as the following disjoint union:

Πt(SpecC) = {a : (t, s) ◦ a = (id, id)} ∪ {a : (t, s) ◦ a = (id, id)}.
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By definition, Π is functor

Π : (Sch|SpecC×RSpecC) → Sets

given by (h : T → SpecC×RSpecC) 7→ Isom⊗
T (h

∗pr∗2ω, h
∗pr∗1ω); where (Sch|SpecC×RSpecC)

denote the category of schemes over SpecC ×R SpecC and Sets denote the category of

sets.

Therefore, we have

{a : (t, s) ◦ a = (id, id)} = Π(id, id) =
Z

nZ

and

{a : (t, s) ◦ a = (id, id)} = Π(id, id) =
Z

nZ
.

Hence, Πt(SpecC) = Z

nZ
× Gal(C|R). Similarly, let Ctor be the smallest Tannakian

category containing all torsion line bundles on X having a fiber functor same as ω :

Ctor → VecC, then we have Πt(SpecC) =
Q

Z
×Gal(C|R) of the corresponding groupoid.

4.3. Fundamental groupoid of an abelian variety. Throughout this section, let A be

an abelian variety over a field k of characteristic zero. Recall that, Cuni(A), CN(A), CEN(A)

are k-linear abelian rigid tensor category. To apply Tannaka duality, consider the fiber

functor define by inclusion in QCoh(A).

iuni, iN, iEN : Cuni(A), CN(A), CEN(A) −→ QCoh(A)

The corresponding groupoid k-scheme denoted by Πuni(A),ΠN(A),ΠEN(A) which acts

transitively on A. By definition, we have

Πuni(A) = Aut⊗k (iuni) = Isom⊗
A×kA

(pr∗2iuni, pr
∗
1iuni)

ΠN(A) = Aut⊗k (iN) = Isom⊗
A×kA

(pr∗2iN, pr
∗
1iN)

ΠEN(A) = Aut⊗k (iEN) = Isom⊗
A×kA

(pr∗2iEN, pr
∗
1iEN)

where pr1, pr2 : A ×k A −→ A denote the first and second projection respectively. The

following theorem establishes a relation among them.

Theorem 4.7. Let A be an abelian variety defined over an algebraically closed field k of

characteristic zero. Then, we have

ΠEN(A) ≃ Πuni(A)×k Π
N(A).

Proof. Let ω denote the any one of iuni, iN, iEN and Groupoid denote the category of

groupoid. Then Aut⊗k (ω) is a functor

Aut⊗k (ω) : (Sch|A×kA) −→ Groupoid

defined by φ : Y → A ×k A maps to Isom⊗
Y (φ

∗pr∗2ω, φ
∗pr∗1ω). We want to prove that, a

groupoid Isom⊗
Y (φ

∗pr∗2iEN, φ
∗pr∗1iEN) is equivalent to a groupoid Isom⊗

Y (φ
∗pr∗2iuni, φ

∗pr∗1iuni)
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× Isom⊗
Y (φ

∗pr∗2iN, φ
∗pr∗1iN). Note that product of two groupoid is again a groupoid. Let

us define a functor

F : Isom⊗
Y (φ

∗pr∗2iEN, φ
∗pr∗1iEN) −→ Isom⊗

Y (φ
∗pr∗2iuni, φ

∗pr∗1iuni)×Isom⊗
Y (φ

∗pr∗2iN, φ
∗pr∗1iN)

defined by η : φ∗pr∗2iEN → φ∗pr∗1iEN map to (η|Cuni(A), η|CN(A)). On the other way, let us

define a functor

G : Isom⊗
Y (φ

∗pr∗2iuni, φ
∗pr∗1iuni)×Isom⊗

Y (φ
∗pr∗2iN, φ

∗pr∗1iN) −→ Isom⊗
Y (φ

∗pr∗2iEN, φ
∗pr∗1iEN)

define by (λ1 : φ
∗pr∗2iuni → φ∗pr∗1iuni, λ2 : φ

∗pr∗2iN → φ∗pr∗1iN) map to λ1⊗λ2 : φ
∗pr∗2(iuni⊗

iN) → φ∗pr∗1(iuni ⊗ iN).

We have (λ1 ⊗ λ2)|Cuni(A) ≃ λ1 and (λ1 ⊗ λ2)|CN(A) ≃ λ2. Hence, F ◦ G = Id, and

G ◦ F = Id follows from the fact that any semi-finite bundle can be written as the tensor

product of unipotent and finite bundle in a unique way up to isomorphism [1, Remark

3.7]. �

5. Representations

The notion of closed immersion and faithfully flat morphism between affine group

schemes are completely characterize by their representations (see [6, Proposition 2.21]).

In this section, we will extend this to an affine groupoid case. Let k be a field and k

denote its algebraic closure. Let S = Spec k be an affine scheme over a field k. Let

(G1, s1, t1, m1, e1, i1) and (G2, s2, t2, m2, e2, i2) are two affine k-groupoid schemes acting

transitively on a k-scheme S. Therefore, we have following morphisms for i = 1, 2:

• a faithfully flat affine morphism (ti, si) : Gi → S ×k S

• a morphism of S×kS-schememi : Gi×sStGi → Gi, ei : S → Gi and invi : Gi → Gi.

Let G1 = SpecL1 and G2 = SpecL2; where L1 and L2 are faithfully flat k⊗k k-algebra

as (ti, si) are faithfully flat affine morphisms. A morphism between two groupoid schemes

is defined as an obvious way.

Definition 5.1. A morphism f : (G1, s1, t1, m1, e1, i1) → (G2, s2, t2, m2, e2, i2) between

two k-groupoid schemes acting on a k-scheme S is a morphism of k-scheme f : G1 → G2

satisfying s2 ◦ f = s1, t2 ◦ f = t1, f ◦m1 = m2 ◦ (f, f), e2 = f ◦ e1 and f ◦ inv1 = inv2 ◦ f .

Let f : G1 → G2 be a morphism between k-groupoid schemes acting on a k-scheme S.

Then, it induced a morphism on diagonal group schemes f∆ = f × idS : G∆
1 → G∆

2 by

the base change ∆ : S → S ×k S. Note that, f is an isomorphism if and only if f∆ is an

isomorphism (see [5, 3.5.2]).

Definition 5.2. A morphism f : G1 → G2 of groupoid is called faithfully flat (resp. closed

immersion) if it is faithfully flat (resp. closed immersion) as a k-scheme morphism.

Lemma 5.3. A morphism f : G1 → G2 is faithfully flat if and only if f∆ : G∆
1 → G∆

2 is

faithfully flat.
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Proof. Suppose f : G1 → G2 is faithfully flat map, then f# : L2 → L1 is a faithfully flat

algebra map. Hence, L1 is faithfully flat L2-module. Consider a base change under the

map L2 → L2⊗k⊗kk
k, then L1⊗L2

(L2⊗k⊗kk
k) ≃ L1⊗k⊗kk

k is faithfully flat L2⊗k⊗kk
k-

module. Hence, f∆ : G∆
1 → G∆

2 is a faithfully flat. Conversely, assume that, the map

f#⊗ id : L2⊗k⊗kk
k → L1⊗k⊗kk

k is a faithfully flat. We have the following commutative

diagram:

(5.1) L2

��

f#

// L1

��

L2 ⊗k⊗kk
k

f#⊗id
// L1 ⊗k⊗kk

k

Consider the map g : L1⊗k⊗kk
k → L1⊗k⊗kk

k⊗kk ≃ L1 by the inclusion, which is faithfully

flat. Note that this map makes the above diagram commutative. Hence, f# : L2 → L1 is

faithfully flat as it is compositions of faithfully flat maps. �

Lemma 5.4. A morphism f : G1 → G2 is closed immersion if and only if f∆ : G∆
1 → G∆

2

is closed immersion.

Proof. We have ∆ : S → S ×k S is closed immersion as S is an affine scheme. The

projection map G∆
i → Gi is the base change of ∆ : S → S ×k S by (ti, si) : Gi → S ×k S,

so G∆
i → Gi is closed immersion. If f is closed immersion, then f∆ is closed immersion

by the diagram (5.1). Let f∆ be a closed immersion. It is morphism of affine schemes so

f# ⊗ id : L2 ⊗k⊗kk
k → L1 ⊗k⊗kk

k is surjective. This implies that the map f# ⊗ id⊗ id :

L2 ⊗k⊗kk
k ⊗k k → L1 ⊗k⊗kk

k ⊗k k is surjective and compactible with f# by considering

standard isomophism Li ⊗k⊗kk
k ⊗k k → Li. Hence, f

# is a surjective. �

Let ωf : Rep(S : G2) → Rep(S : G1) denote the induced tensor functor on the

representation categories defined by (V, ρ) 7→ (V, f ◦ ρ).

Theorem 5.5. Let f : G1 → G2 be a morphism between two affine k-groupoid scheme G1

and G2 acting transitively on a k-scheme S = Spec k. Let ωf : Rep(S : G2) → Rep(S :

G1) be the induced functor. Then,

(1) f is faithfully flat if and only if ωf is fully faithful and every subobject of ωf(X),

for X ∈ Ob(Rep(S : G2)), is isomorphic to image of a subobject of X.

(2) f is closed immersion if and only if every object of Rep(S : G1) is isomorphic to

a subquotient of an object ωf(X), for X ∈ Ob(Rep(S : G2)).

Proof. (1) Let f : G1 → G2 be a faithfully flat morphism. Then, we have an equivalence

between Rep(S : G2) and the subcategory of Rep(S : G1) such that the representation

of G1 factor through the map f . Hence, ωf has the stated property. Conversely, suppose

that ωf has the stated properties. Note that any representation (V, ρ) of G2 is determined

by the pair (V, s∗2V ≃ t∗2V ); where V is quasi-coherent OS-module. The image of (V, ρ)
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under the functor ωf is determind by (V, f ∗s∗2V ≃ f ∗t∗2V ) as t2 ◦ f = t1 and s2 ◦ f = s1.

We have the following commutative diagram:

(5.2) G∆
1

��

f∆

// G∆
2

��

G1
f

// G2

The above diagram gives the same condition on the functor ωf∆ which implies that f∆ is

faithfully flat [6, Proposition 2.21]. Hence, so f by Lemma 5.3.

(2)Let D be the full subcategory of Rep(S : G1) whose objects are subquotients of ωf(X)

for X ∈ Ob(Rep(S : G2)). Clearly, (D, ω1|D) is Tannakian category. The sequence

Rep(S : G2) → D → Rep(S : G1) induced a sequence on a groupoid schemes G1 →

GD → G2; where GD denote the corresponding groupoid scheme acting transitively on S.

By taking a diagonal group scheme, we have the same properties for the representation

categories of diagonal group schemes. Then, the assertion follows by [6, Proposition 2.21]

and Lemma 5.4. �

Let X be a k-scheme of finite type with H0(X,OX) = k. Let Xk denote the base change

and let x : Spec k → Xk be a rational point of Xk. Consider the fiber functor by taking

pull back via the composition map Spec k → Xk → X for all the categories

ω : Cnf(X), CEN(X), CN(X), Cuni(X) → QCoh(Xk) → Veck.

Corollary 5.6. We have the following diagram of groupoid schemes with all the maps

are faithfully flat:

ΠS(X,ω) // ΠEN(X,ω) //

��

ΠN(X,ω)

Πuni(X,ω)

6. Semi-finite bundles on complex tori and Riemann surfaces

In this section, we have extended some results of [8] on the category of semi-finite

bundles.

Schottky functor. Let X be a connected topological space which is locally simply con-

nected. Let CX denote the constant sheaf corresponding to ring C. Let F be the sheaf

of rings with the morphism i : CX → F of sheaves. Let π1(X) denote the topological

fundamental group of X with respect to some base point. Let Σ be a group with the sur-

jective group homomorphism α : π1(X) → Σ. This homomorphism induces a morphism

of group C-algebra α̃ : Cπ1(X) → CΣ which further gives a pull-back functor from the

category of CΣ-modules to the category of Cπ1(X)-modules:

α̃∗ : CΣ–mod −→ Cπ1(X)–mod.

The essential image of this functor is called Schottky modules.
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Definition 6.1. A Cπ1(X)-module M is called Schottky module if there is a CΣ-module N

such that the induced Cπ1(X)-module structure on N given by the map α̃ : Cπ1(X) → CΣ

agrees with M .

There is natural functor from the category of representations of fundamental group to

the category of vector bundles. Specifically, it comes from Riemann-Hilbert correspon-

dence (see Theorem 6.3).

Definition 6.2. A sheaf of ring F on X is called locally constant sheaf if there is a open

cover {Ui}i∈I of X such that the restriction of F to each open set Ui is constant sheaf on

Ui.

Theorem 6.3. [18, Theorem 2.5.15] There is an equivalence between the category LC(C)

of locally constant sheaves of C-modules and the category of Cπ1(X)-modules.

Consider the Riemann-Hilbert functor RH : Cπ1(X)–mod −→ LC(C) and the functor

−⊗CX
F : LC(C) −→ F −Mod. Let us take the following compositions of functors:

S := (−⊗CX
F) ◦RH ◦ α̃∗ : CΣ–mod −→ F–mod.

The above functor is known to be Schottky functor. Note that the functor S takes value

in locally free sheaves of F -modules. If X is a complex manifold and F = OX be the

sheaf of holomorphic functions on X , then given a CΣ-modules M , we have a holomorphic

vector bundle S(M) on X .

Proposition 6.4. [8, Proposition 2.1] Let X be a complex manifold. Then, the functor

S : CΣ–mod −→ OX–mod is faithful, exact, additive and commutes with direct sums and

tensor products.

Definition 6.5. A CΣ-module M is called finite if there exist a two different polynomials

f 6= g ∈ N[t] such that f(M) ≃ g(M); where product is defined as tensor product and sum

is given by direct sum.

Let K(CΣ–mod) denote the Grothendieck group associated to monoid CΣ–mod/ ∼iso.

We have an analogues result of finite bundles [14, Chapter-I, Lemma 3.1] for the finite

modules.

Lemma 6.6. Let M be a CΣ-module. Then, the following are equivalent:

(1) M is finite.

(2) M is integral over Z in K(CΣ–mod).

(3) M ⊗ 1 is integral over Q in K(CΣ–mod)⊗Z Q.

(4) {indecomposable component of M⊗n : n ∈ N} is finite set.

Proof. Similar to [14, Chapter-I, Lemma 3.1]. �

Note that unipotent and semi-finite modules define in obvious way. In the next two

section, we will study the behavior of this functor S when we restrict it on the category

of finite and semi-finite modules for the base space complex tori and Riemann surfaces.



FUNDAMENTAL GROUPOID SCHEMES AND SEMI-FINITE BUNDLES 13

6.1. Semi-finite Schottky bundles on complex tori. In this section, we will prove

the analogue result of [8, Theorem 1.1] for a bigger category of semi-finite bundles. Let

X = V/Λ be a complex torus with the dimension of V is g. There is a basis {e1, ..., eg} of

V and a basis {λ1, ..., λ2g} of Λ such that λi =
∑g

j=1 πij · ej and the period matrix Π of

X is Π = (πij)
t
2g×g = (Z, I); where Ig×g is identity and Zg×g is symmetric complex matrix

(see [9, Section 8]).

Let Σ be a free abelian group with g generators B1, ..., Bg. Define α : π1(X) ≃ Λ → Σ

by λi 7→ Bi and λi+g 7→ 0 for all i = 1, ..., g. Then, we have the following Schottky

functor:

S : CΣ–mod −→ OX–mod

Let FCΣ,UCΣ and SFCΣ denote the full subcategory of CΣ–mod with the objects are

finite, unipotent and semi-finite CΣ-modules, respectively. In [8, Theorem 1.1], they

proved that the functor S gives an equivalence between UCΣ and Cuni(X). In Theorem

6.9, we proved an equivalence between SFCΣ and CEN(X).

Remark 6.7. By [1, Theorem 3.3], we conclude that any finite bundle on X is a direct

sum of torsion line bundles and any semi-finite bundle on X is direct sum
⊕

i Li ⊗ Ui;

where Li’s are torsion line bundles and Ui’s are unipotent bundles. This implies that,

every semi-finite bundle is homogeneous by [13, Theorem 4.17].

Lemma 6.8. There is an equivalence between the following categories:

S : FCΣ ≃ CN(X).

Proof. Let V be a finite bundle on X , then V is direct sum of torsion line bundle by

Remark 6.7. A torsion line bundle has degree zero, so it is Schottky by [8, Lemma 7.1].

Hence, the functor S is essentially surjective as S is compatible with direct sum. The func-

tor S is faithful by Proposition 6.4. Thus, it is enough to prove that φ : HomCΣ(C,M) →

HomOX
(S(C), S(M)) = HomOX

(OX , L) ≃ Γ(X,L) is a surjective map as Hom commutes

with direct sum and by adjoint property; where M is torsion module and L is torsion line

bundle. Suppose L 6= OX . If L has a global section which vanishes at some point, then

L⊗n also has a global section which vanishes at some point. This leads to a contradiction

because L⊗n ≃ OX for some n. Hence, Γ(X,L) = 0 for L 6= OX . If L = OX , then

HomCΣ(C,C) ≃ C ≃ HomOX
(OX ,OX). Hence, φ is a surjective map. �

Theorem 6.9. Let X be a complex torus of dimension g, and let Σ be a free abelian group

of rank g. Then, the Schottky functor induced an equivalence between the category SFCΣ

of semi-finite CΣ-modules and the category CEN(X) of semi-finite bundles on X:

S : SFCΣ ≃ CEN(X).

Proof. Let V be a semi-finite bundle onX . By Remark 6.7, an indecomposable component

of V is L ⊗ U ; where L is torsion line bundle and U is unipotent bundle. The category

CEN(X) is rigid, so Hom distributes over tensor product. Hence, the functor S is full and

essentially surjective by Lemma 6.8 and [8, Theorem 1.1]. Therefore, S is an equivalence

as it is faithful by Proposition 6.4. �
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6.2. Semi-finite Schottky bundles on Riemann surfaces. Let X be a compact Rie-

mann surface of genus g. Let π1(X) denote the fundamental group of it. There is a basis

{a1, ..., ag, b1, ..., bg} of π1(X) satisfying the relation
∏g

i=1 aibia
−1
i b−1

i = 1. Let Σ = Fg be

the free group of g generators B1, ..., Bg. Let α : π1(X) → Σ be a homomorphism defined

by ai 7→ 1 and bi 7→ Bi for all 1 ≤ i ≤ g. This map defines the Schottky functor for X .

S : CFg–mod −→ OX–mod

Let X̃ → X be the universal cover of X , then it is a principal π1(X)-bundle on X . Let

G be a connected affine algebraic group over C. For any ρ : π1(X) → G, we can define

an associated principal G-bundle by Pρ := (X̃ ×G)/ ∼; where (x̃, g) ∼ (x̃ ·h, ρ(h)−1g) for

x̃ ∈ X̃, g ∈ G and h ∈ π1(X).

Definition 6.10. A principal G-bundle P is called Schottky bundle if P ≃ Pρ for some

ρ ∈ Hom(π1(X), G) and ρ(Kerα) ⊂ Z(G).

In [2], Biswas defined finite principal G-bundle and proved some equivalent criteria of

it. Here, we adopted one of his equivalent criteria as a definition.

Definition 6.11. A principal G-bundle is called finite if all the vector bundle associated

to representations of G is finite.

Proposition 6.12. Let P be a finite principal G-bundle with Z(G) is trivial. Then, P is

G-Schottky bundle iff all bundles associated to a G-representation are Schottky.

Proof. Suppose P is G-Schottky, then there is a homomorphism ρ : π1(X) → G such that

P ≃ Pρ and ρ(γ) = 1 for all γ ∈ Ker(α). Let W be any finite dimensional complex G-

module. By the condition ρ(Ker(α)) = 1, we have a homomorphism Σ → G which gives

W the structure of CΣ-module. Hence, the corresponding vector bundle is Schottky.

Conversely, assume that all bundles associated to a G-representation are Schottky.

Since P admits a flat connection [2, Theorem 1.1], there is a homomorphism θ : π1(X) →

G such that P ≃ Pθ. Consider the adjoint representation Ad : G → GL(g). The vector

bundle corresponding to Ad is the bundle corresponding to the representation Ad ◦ θ :

π1(X) → GL(g), which is Schottky by assumption. Hence, Ad ◦ θ(Ker(α)) ∈ Z(G) = 1,

which implies θ(Ker(α)) = 1. �

Definition 6.13. Let x0 ∈ X be a point. A flat vector bundle V on X is called abelian if

there exist a flat bundle W on X ×X such that W |X×{x0} ≃ W |{x0}×X ≃ V .

Proposition 6.14. All flat abelian bundles come from representations of π1(X)ab. Con-

versely, every bundle corresponding to the representation of π1(X)ab is abelian.

Proof. Let V be a flat abelian bundle on X with the corresponding representation ρV ∈

C[π1(X)]–mod. There is a flat vector bundle V ′ on X ×X with the corresponding repre-

sentation ρV ′ ∈ C[π1(X) × π1(X)]–mod such that V ′|{x0}×X ≃ V and V ′|X×{x0} ≃ V for
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a point x0 ∈ X . Hence, ρV ′(e, a) = ρV ′(a, e) = ρV (a) for all a ∈ π1(X) and that implies

ρV ′(a, b) = ρV ′(a, e) · ρV ′(e, b) = ρV ′(e, a) · ρV ′(b, e) = ρV ′(b, a) for all a, b ∈ π1(X).

ρV (aba
−1b−1) = ρV ′(aba−1b−1, e)

= ρV ′(a, e) · ρV ′(b, e) · ρV ′(a−1, e) · ρV ′(b−1, e)

= ρV ′(a, e) · ρV ′(e, b) · ρV ′(a−1, e) · ρV ′(b−1, e)

= ρV ′(a, b) · ρV ′(a−1, e) · ρV ′(b−1, e)

= ρV ′(e, b) · ρV ′(a, e) · ρV ′(a−1, e) · ρV ′(b−1, e)

= ρV ′(b, e) · ρV ′(b−1, e)

= ρV ′(e, e)

Conversely, consider the multiplication map m : π1(X)ab × π1(X)ab → π1(X)ab and let

θ ∈ Cπ1(X)ab − Mod be a representation. We can treat θ̃ := θ as a representation of

π1(X) × π1(X) via the quotient map π1(X) × π1(X) → π1(X)ab × π1(X)ab composition

with the map m. Note that θ̃|{e} × π1(X) ≃ θ̃|π1(X)× {e} ≃ θ. This completes the

proof. �

Let X and Y be two compact Riemann surfaces of genus g and h, respectively. Then,

the fundamental group π1(X) is generated by {ai, bi : 1 ≤ i ≤ g} satisfying the relation
∏g

i=1 aibia
−1
i b−1

i = 1, and the fundamental group π1(Y ) is generated by elements {cj , dj :

1 ≤ j ≤ h} satisfying the relation
∏h

j=1 cjdjc
−1
j d−1

j = 1. We can identify π1(X × Y ) with

π1(X) × π1(Y ). We want to define a Schottky functor for the product X × Y . Let Fg

and Fh denote the free group generated by {A1, . . . , Ag} and {C1, . . . , Ch}, respectively.

Consider a surjective homomorphism

α : π1(X)× π1(Y ) → Fg × Fh

of groups defined by ai 7→ Ai , bi 7→ 1 , cj 7→ Ci and dj 7→ 1 for all 1 ≤ i ≤ g and 1 ≤ j ≤ h.

The homomorphism α gives ring homomorphism α̃ : C[π1(X)× π1(Y )] → C[Fg × Fh].

Further, it induces a pull-back functor α̃∗ for the corresponding modules category.

α̃∗ : C[Fg × Fh]–mod −→ C[π1(X)× π1(Y )]–mod

By Riemann-Hilbert correspondence, we have an equivalence

RH : C[π1(X)× π1(Y )]–mod −→ LC(C)

between the category of C[π1(X) × π1(Y )]-modules to the category LC(C) of locally

constant sheaves of C-modules on X × Y . Let CX×Y denote the constant sheaf of rings

on X × Y defined by C. Then, we have a sheaf morphism i : CX×Y → OX×Y . This

morphism i induces a functor

i∗ : LC(C) −→ OX×Y –mod

defined by F 7→ F ⊗CX×Y
OX×Y . Note that this functor takes value in locally free sheaves

of OX×Y -modules. The Schottky functor S is defined as compositions i∗ ◦RH ◦ α̃∗.

S := i∗ ◦RH ◦ α̃∗ : C[Fg × Fh]–mod −→ OX×Y –mod
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Let UCΘ ⊂ C[Fg × Fh]–mod denote the full subcategory of unipotent modules; where

Θ := Fg × Fh.

Remark 6.15. The product formula for the unipotent fundamental group scheme is true

[14, Chapter-IV, Lemma 8]. i.e. we have πuni(X × Y, x × y) ≃ πuni(X, x) × πuni(Y, y).

Let p : X × Y → X and q : X × Y → Y denote the first and second projection map

respectively. By product formula and tensor product of Tannakian categories [5, 5.18.1],

we conclude that any unipotent vector bundle on X × Y is isomorphic to p∗U1 ⊗ q∗U2;

where U1 and U2 are unipotent vector bundles on X and Y , respectively.

Proposition 6.16. We have the following equivalence of categories:

S : UCΘ → Cuni(X × Y )

Proof. First, we will prove essential surjection of this functor S. Let U be any unipotent

vector bundle on X × Y . By Remark 6.15, there is U1 ∈ Cuni(X) and U2 ∈ Cuni(Y )

such that U ≃ p∗U1 ⊗ q∗U2. By [8, Theorem 1.2], there exist an unipotent CFg-module

M1 and CFh-module M2 such that S1(M1) = p∗U1 and S2(M2) = q∗U2; where S1 and

S2 denote the Schottky functor for X and Y , respectively. Let M := M1 ⊗C M2 be a

C[Fg×Fh] ≃ CFg⊗CCFh-module. We only need to prove S(M) = U . Note thatM1⊗CM2

is isomorphic to M1 ⊗C C⊗CΘ C⊗C M2 and as the functor S is compactible with tensor

product, we have S(M) = S(M1) ⊗ S(M2) = U . Hence, S is essential surjective. The

fullness of the functor S follows by applying the similar argument mentioned in the proof

of [8, Theorem 1.1]. �
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