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We reanalyze the spectral lag data for of GRB 160625B using frequentist inference to constrain
the energy scale (EQG) of Lorentz Invariance Violation (LIV). For this purpose, we use profile
likelihood to deal with the astrophysical nuisance parameters. This is in contrast to Bayesian
inference implemented in previous works, where marginalization was carried out over the nuisance
parameters. We show that with profile likelihood, we do not find a global minimum for χ2 as a
function of EQG below the Planck scale for both the linear and quadratic models of LIV, whereas
bounded credible intervals were obtained using Bayesian inference. Therefore, we can set lower
limits in a straightforward manner. We find that EQG ≥ 3.7× 1016 GeV and EQG ≥ 2.6× 107 GeV
at 68% c.l., for linear and quadratic LIV, respectively. Therefore, this is the first proof of principles
application of profile likelihood method to the analysis of GRB spectral lag data to constrain LIV.

I. INTRODUCTION

The spectral lags of Gamma-ray Bursts (GRBs) have
been widely used [1–3] as a probe of Lorentz invariance
Violation (LIV) ever since this was first proposed more
than two decades ago [4]. The spectral lag is defined
as the time difference between the arrival of high energy
and low energy photons, and is positive if the high en-
ergy photons precede the low energy ones. In case of
LIV caused by an energy-dependent speed of light, one
expects a turnover in the spectral lag data at high ener-
gies.

Among the plethora of searches for LIV using GRBs,
the first work which found a turnover in the spectral lag
data was by Wei et al. [5] (W17, hereafter). This analy-
sis found evidence for a transition from positive to nega-
tive time lag in the spectral lag data for GRB 160625B,
by using the data from Fermi-LAT and Fermi-GBM. By
modeling the time lag as sum of intrinsic astrophysical
time-lag and an energy-dependent speed of light, which
kicks in at high energies, they argued that this observa-
tion constitutes a robust evidence for a turnover in the
spectral lag data. Statistical significance of this turnover
was then calculated using frequentist, information theory
and Bayesian model selection techniques [6, 7]. Using
Bayesian inference, lower limits on the quantum gravity
energy scale was set at 0.5×1016 GeV and 1.4×107 GeV
for linear and quadratic LIV, respectively [5]. These lim-
its were obtained by marginalizing over the astrophysical
nuisance parameters. All other analyses searching for
LIV using GRB spectral lags have always used Bayesian
inference. These include some of our own past works [8–
10].

In this work we redo the analysis in [5] using frequen-
tist inference, where we deal with the nuisance astro-
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physical parameters using profile likelihood. While the
profile likelihood is a “bread and butter” tool in exper-
imental high energy Physics [11], until recently it has
seldom been used in Astrophysics, where Bayesian infer-
ence is commonly used. Recently, however there has been
a renaissance in the use of Profile likelihood in the field
of Cosmology (see [12–16] for an incomplete list). In
particular it was shown that one reach opposite conclu-
sions for the fraction of Early Dark energy using Profile
Likelihood as compared to Bayesian inference [12].
The outline of this manuscript is as follows. We re-

view the basic data analysis done in W17 to search for
LIV in Section II. We compare the contrast Bayesian and
frequentist parameter estimation highlighting how these
methods handle nuisance parameters in Sect. III. Our re-
sults and conclusions can be found in Sect. IV and Sect. V
respectively.

II. DATA AND MODEL FOR SPECTRAL TIME
LAGS

The observed spectral time lag from a given GRB can
be written down as :

∆tobs = ∆tint +∆tLIV , (1)

where ∆tint is the intrinsic time lag between the emission
of photon of a particular energy and the lowest energy
photon from the GRB and ∆tLIV is the LIV-induced
time-lag. W17 used the following model for the intrinsic
emission delay:

∆tint(E)(sec) = τ

[(
E

keV

)α

−
(

E0

keV

)α]
, (2)

where E0=11.34 keV; whereas τ and α are free param-
eters. This model has been subsequently used in other
searches for LIV [1]. The remaining LIV-induced time
lag in Eq. 1 (∆tLIV ) can be written for sub-luminal LIV
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as [17]:

∆tLIV = −1 + n

2H0

En − En
0

En
QG,n

∫ z

0

(1 + z′)ndz′√
ΩM (1 + z′)3 + 1− ΩM

,

(3)
where EQG,n is the Lorentz-violating or quantum grav-
ity scale, above which Lorentz violation kicks in; H0 is
the Hubble constant and ΩM is the cosmological matter
density. W17 considered two different models for LIV,
which have n = 1 and n = 2, corresponding to linear
and quadratic LIV, respectively. For the cosmological
parameters in Eq. 3, W17 used H0 = 67.3 km/sec/Mpc
and Ωm=0.315.

W17 considered the spectra lags for GRB 160625B, lo-
cated at redshift of z = 1.41. W17 collated 37 spectral
lags using data from Fermi-GBM and Fermi-LAT relative
to the lowest energy band of 10-12 keV, extending up to
20 MeV (cf. Table 1 of W17). W17 then used Bayesian
inference, where the sampling of the posterior was done
using Markov Chain Monte Carlo (MCMC). W17 ob-
tained lower limit on EQG given by EQG ≥ 0.5×1016 GeV
and EQG ≥ 1.4× 107 GeV for linear and quadratic LIV,
respectively, at 1σ. A similar Bayesian parameter esti-
mation for the same dataset using Variational Inference
was done in [7]. Using both these methods, one obtained
closed 1σ intervals for EQG, implying that prima-facie a
central interval should be quoted for EQG instead of a
one-sided lower limit.

III. COMPARISON OF BAYESIAN AND
FREQUENTIST INFERENCE

We provide a very brief primer on Bayesian and fre-
quentist parameter estimation and highlight some of the
differences between the two methods for our particular
use case. More details on Bayesian parameter estimation
can be found in recent reviews [18–20]. Frequentist pa-
rameter estimation is usually reviewed in PDG, with the
latest update in [11].

For both these methods, one needs to model the proba-
bility of the data (D) given a parametric function consist-
ing of parameter vector (θ). We denote this probability
by P (D|θ). For our example, this has been modeled by
a Gaussian likelihood (L(θ)) as follows:

P (D|θ) = L(θ) =
N∏
i=1

1

σi

√
2π

exp

{
− [∆ti − f(∆Ei, θ)]

2

2σ2
i

}
,

(4)
where N is the total number of data points; ∆ti denotes
the data which correspond to the observed spectral lags,
and σi denotes the observed uncertainty in the spectral
lag. The function f(∆Ei, θ) is obtained from the sum of
Eq. 2 and Eq. 3.

In Bayesian inference, one evaluates the Bayesian Pos-
terior P (θ|D) which is given by P (θ|D) ∝ P (D|θ)P (θ),
where P (θ) is the prior on parameter vector θ. Bayesian

parameter inference then entails obtaining central esti-
mates from the posterior probability distribution. In
practice, almost all Bayesian computations are nowadays
done using MCMC (although see [7]), and the median
estimator along with the 68 percentile intervals are com-
puted to obtain 1σ intervals [19].
Usually the parameter vector θ consists of more than

one free parameter. Among these, we might be most in-
terested in only one of the parameters. In such cases,
the other free parameters can be considered as nuisance
parameters. For our use case, θ consists of three pa-
rameters: {EQG,τ ,α}. Since we are mainly interested in
constraining EQG, the astrophysical parameters τ and α
can be considered as nuisance parameters. For the sake of
illustration, let us assume that in a geric setting the pa-
rameter vector (θ) consists of two parameters: θ ={ϕ,α}.
Among these, let us consider ϕ to be the parameter of
interest and α to be the nuisance parameter. In Bayesian
inference, the central estimates for ϕ are obtained by in-
tegrating the posterior over the nuisance parameter α to
get the posterior distribution for P (ϕ).

P (ϕ) =

∫
P (ϕ, α|D)dα, (5)

where P (ϕ, α|D) is the posterior for θ. The central es-
timates and error intervals are obtained from P (ϕ). All
works on searches for LIV and setting constraints on EQG

have always followed the above prescription [1].
To deal with nuisance parameters in frequentist statis-

tics on the other hand, one calculates the profile likeli-
hood, obtained by maximizing the combined likelihood
L(ϕ, α) with respect to α:

L(ϕ) = max
α

L(ϕ, α) (6)

The central estimate for ϕ can then be obtained from
L(ϕ). In practice, one defines χ2(ϕ) = −2 lnL(ϕ) and
the frequentist confidence intervals are constructed from
∆χ2(ϕ) = χ2(ϕ) − χ2

min, where χ2
min is the global mini-

mum for χ2(ϕ). If χ2
min is far from the physical boundary,

the central interval for the parameter ϕ at a given confi-
dence level can be obtained using Newman prescription
from the ∆χ2 intercept [21]. Close to the physical bound-
ary one must use the Feldman-Cousins prescription [22].
This method of profile likelihood has many potential

differences compared to the Bayesian counterpart [23].
The profile likelihood does not require priors unlike
Bayesian inference, which could affect the final results.
The profile likelihood formalism also allows us to in-
clude the effect of physical boundary using the Feldman-
Cousins prescription [22]. The profile likelihood also does
not suffer from the volume effect, which could arise in
marginalization [24]. Other advantages of profile likeli-
hood over Bayesian analyses have been extensively dis-
cussed in recent works related to parameter estimation
in Cosmology [13, 16, 24]. Most recently, this concept
of profiling over nuisance parameters has also been ap-
plied to the Bayesian posterior to define a “profile pos-
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terior” [25, 26]. This is a hybrid method combining the
tenets of both frequentist and Bayesian analysis.

We now apply the profile likelihood method to the
spectral lag data for GRB 1606025B in order to constrain
EQG.

IV. APPLICATION OF PROFILE LIKELIHOOD
TO GRB 1606025B SPECTRAL LAG DATA

For both linear and quadratic LIV, our parameter vec-
tor consists of three parameters {EQG,τ ,α}, where we
are mostly interested in the estimates of EQG. There-
fore, τ and α can be considered as nuisance parame-
ters. We use the same likelihood as in Eq. 4. To sim-
plify the calculation of the profile likelihood using Eq. 6,
we minimize χ2 given by χ2 ≡ −2 ln θ. We then con-
struct a logarithmically spaced grid for EQG from 106

to 1019 GeV. The upper bound of 1019 GeV corresponds
to Planck scale and can be considered as the physical
boundary. For each value of EQG at this grid, we cal-
culate the minimum χ2(EQG) by minimizing over α and
τ . For this purpose we used scipy.optimize.fmin func-
tion, which uses the Nelder-Mead simplex algorithm [21].
As a cross-check we also compared with the Powell mini-
mization algorithm built in scipy, which gives the same
results. We then plot ∆χ2 as a function of EQG, where
∆χ2 = χ2(EQG)− χ2

min. The corresponding ∆χ2 curves
as a function of EQG can be found in Fig. 1 and Fig. 2
for linear and quadratic LIV, respectively. For both the
LIV models we find that ∆χ2 always decreasing with
increasing EQG. Here, χ2

min corresponds to χ2 at the
Planck scale, which can be considered as the physical
boundary. Therefore, there is no global minimum fol-
lowed by a rising trend. This is different from previus
results obtained using Bayesian inference, where closed
1σ intervals for EQG were obtained after marginalizing
over τ and α [5, 7].

Therefore, we can obtain a one-sided lower limit on
EQG in a seamless way. Based on the Newman prescrip-
tion the 68.27% (68%, to shorten the notation) lower
limit is given by value of EQG for which ∆χ2 = 1 [12, 21].
Therefore, the 68% lower limits EQG ≥ 3.7 × 1016 GeV
and EQG ≥ 2.6× 107 GeV for linear and quadratic LIV,
respectively. We note the EQG values for ∆χ2 = 1
are obtained far from the physical boundary, the New-
man prescription suffices and there is no need to switch
to the Feldman-Cousins prescription. Our lower limits
for EQG are comparable, although slightly higher than
the Bayesian lower limits obtained in W17, correspond-
ing 0.5 × 1016 GeV and 1.4 × 1016 GeV, for linear and
quadratic LIV, respectively.

V. CONCLUSIONS

In this work we have reanalyzed the data for spec-
tral lag transition in GRB 1606025B, using the frequen-
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FIG. 1: ∆χ2 (defined as χ2 − χ2
min) as a function of EQG for

linear LIV, corresponding to n = 1 in Eq. 3. The horizontal
magenta dashed line is at ∆χ2 = 1 and the corresponding

X-intercept of the curves (magenta dotted line) gives the 68% c.l.
lower limit at EQG = 3.7× 1016 GeV.
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FIG. 2: ∆χ2 (defined as χ2 − χ2
min) as a function of EQG for

quadratic LIV, corresponding to n = 2 in Eq. 3. The horizontal
magenta dashed line is at ∆χ2 = 1 and the corresponding

X-intercept of the curves (magenta dotted line) gives the 68% c.l.
lower limit at EQG = 2.6× 107 GeV.

tist method of profile likelihood in order to constrain
the energy scale for LIV. All previous searches for LIV
using GRB spectral lags have used Bayesian inference,
which involved marginalizing over the astrophysical nui-
sance parameters [5, 7]. Similar to previous works, we
model the spectral lags as a sum of astrophysical induced
time lag and LIV induced time lag. We consider the
same parametric models for both the lags as in previous
works [5–7]. The astrophysical induced lag (cf. Eq. 2)
consists of two nuisance parameters, whereas the phys-
ically interesting parameter we want to constrain is the
energy scale of LIV (denoted by EQG in Eq. 3).
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For both the LIV models, we calculated the ∆χ2 as
a function of EQG by computing the minimum value of
χ2 over the astrophysical parameters for each value of
EQG. These plots of ∆χ2 can be found in Fig 1 and
2 for linear and quadratic LIV, respectively. One dif-
ference compared to Bayesian inference inference is that
we do not get a convex shape for the probability distri-
bution for EQG below the Planck scale using the profile
likelihood method. Therefore, there is no global mini-
mum and one can unhesitatingly set one-sided lower lim-
its on EQG for a given confidence level. The correspond-
ing 68% lower limits on EQG which we obtain are given
by EQG ≥ 3.7× 1016 GeV and EQG ≥ 2.6× 107 GeV for
linear and quadratic LIV, respectively. These are slightly
upper than the Bayesian lower limits obtained in W17.

Therefore, this the first proof of principles application
of profile likelihood in the analysis of GRB spectral lag
data to search for LIV and provides a seamless way to set
a lower limit. In future works we shall apply this method
to other searches for LIV using GRB spectral lags.
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