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ITERATED GENERALIZED COUNTING PROCESS AND ITS

EXTENSIONS

MANISHA DHILLON AND KULDEEP KUMAR KATARIA

Abstract. In this paper, we study the composition of two independent GCPs which we
call the iterated generalized counting process (IGCP). Its distributional properties such
as the transition probabilities, probability generating function, state probabilities and its
corresponding Lévy measure are obtained. We study some integrals of the IGCP. Also, we
study some of its extensions, for example, the compound IGCP, the multivariate IGCP and
the q-iterated GCP. It is shown that the IGCP and the compound IGCP are identically
distributed to a compound GCP which leads to their martingale characterizations. Later,
a time-changed version of the IGCP is considered where the time is changed by an inverse
stable subordinator. Using its covariance structure, we establish that the time-changed
IGCP exhibits long-range dependence property. Moreover, we show that its increment pro-
cess exhibits short-range dependence property. Also, it is shown that its one-dimensional
distributions are not infinitely divisible. Initially, some of its potential real life applications
are discussed.

1. Introduction

In the past two decades, the time-changed processes have attracted the interest of several
researchers because of their potential applications across various fields such as finance,
biology, hydrology, internet data traffic modeling, etc. The Poisson process time-changed
by an independent stable subordinator (see Orsingher and Polito (2012a)) and by its first
hitting time (see Beghin and Orsingher (2009), Laskin (2003)) are two extensively studied
time-changed processes. These are known as the space fractional Poisson process and the
time fractional Poisson process, respectively.
Di Crescenzo et al. (2016) introduced a generalization of the time fractional Poisson

process which performs independently k kinds of jumps of amplitude 1, 2, . . . , k with pos-
itive rates λ1, λ2, . . . , λk, respectively. It is known as the generalized fractional counting
process (GFCP) and we denote it by {Mα(t)}t≥0, 0 < α ≤ 1. Its state probabilities
pα(n, t) = Pr{Mα(t) = n} satisfy the following system of differential equations:

dα

dtα
pα(n, t) = −

k
∑

j=1

λjp
α(n, t) +

min{n,k}
∑

j=1

λjp
α(n− j, t), n ≥ 0 (1.1)

with pα(n, 0) = δn(0), where δn’s are Dirac measures.
The fractional derivative involved in (1.1) is the Caputo fractional derivative defined in

(2.4). Its involvement induces a global memory effect in the system.
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The state probabilities of GFCP are given by (see Di Crescenzo et al. (2016))

pα(n, t) =

n
∑

r=0

∑

x1+x2+···+xk=r
x1+2x2+···+kxk=n

r!
(

k
∏

j=1

(λjt
α)xj

xj !

)

Er+1
α,rα+1(−λtα), n ≥ 0, (1.2)

where xj ’s are non-negative integers and Er+1
α,rα+1(·) is the three-parameter Mittag-Leffler

function defined in (2.2). Also, its mean is given by

E(Mα(t)) =
k

∑

j=1

jλj
tα

Γ(α+ 1)
(1.3)

and its variance is given by

Var(Mα(t)) =
(

k
∑

j=1

jλjt
α
)2

(

2

Γ(2α+ 1)
− 1

Γ2(α + 1)

)

+

k
∑

j=1

j2λj
tα

Γ(α + 1)
. (1.4)

For α = 1, the GFCP reduces to the generalized counting process (GCP), denoted by
{M(t)}t≥0. Its transition probabilities are given by

Pr{M(h) = j} =











1−
∑k

j=1 λjh+ o(h), j = 0,

λjh+ o(h), 1 ≤ j ≤ k,

o(h), j ≥ k + 1,

where o(h)/h → 0 as h → 0.
For k = 1, the GFCP and the GCP reduces to the time fractional Poisson process

(see Mainardi (2004), Beghin and Orsingher (2009), Meerschaert et al. (2011)) and the
homogeneous Poisson process, respectively. Recently, Dhillon and Kataria (2024) give
martingale characterizations for the GCP and its time-changed variants. For additional
properties of the GCP and its application in risk theory, we refer the reader to Kataria and
Khandakar (2022).
Bochner (1955) introduced the concept of composition of independent processes. Ors-

ingher and Polito (2012b) studied the compositions of two independent Poisson processes
and Di Crescenzo et al. (2015) studied a compound Poisson process time-changed by an
independent Poisson subordinator. They studied the first-crossing time problem through
various types of boundaries of the iterated Poisson process. Recently, Beghin and Orsingher
(2016) introduced and studied the iterated birth process where they considered the linear
birth processes, linear death processes and sublinear death processes time-changed by Pois-
son subordinator. For some recent works on the composition of independent processes, we
refer the reader to Buchak and Sakhno (2017), Meoli (2023), and references therein.

1.1. Potential applications. Here, we discuss some potential real life applications of the
iterated processes studied in this paper.
(i) In a stock market, a trader can buy multiple stocks simultaneously, and also can sell
multiple stocks simultaneously. Consider a trader who sells stocks according to the GCP
{M(t)}t≥0, where M(t) denotes the number of stocks sold by time t. Also, the trader
buys stocks according the GCP {M0(t)}t≥0 which is independent of {M(t)}t≥0. Here,
M0(t) denotes the number of stocks purchased by time t. Then, the iterated process
{M(M0(t))}t≥0 represents the selling of stocks based on the number of stocks purchased
by the trader.
(ii) In oncology, tumor cells often divide uncontrollably and multiple cells may undergo
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mitosis simultaneously. Suppose a patient diagnosed with cancer is under treatment, and
let the growth of cancer cells inside the body of patient is modeled by the GCP {M0(t)}t≥0.
During the treatment, the tumor cells get killed according to the GCP {M(t)}t≥0 which is
independent of {M0(t)}t≥0. Let Y1 denote the severity of regrowth of tumor cells. Then,

the compound process {∑M(M0(t))
i=1 Yi}t≥0 models the damage inflicted by the tumor on the

patient where Yi’s are iid random variables independent of {M(M0(t))}t≥0.
In this paper, we introduce and study the iterated generalized counting process (IGCP),

which is obtained by the composition of two independent GCPs. First, we give several
distributional results related to the IGCP. We derive explicit expressions for its probability
generating function (pgf) and obtain its state probabilities in terms of Bell polynomials.
Also, we derive the system of differential equations that governs the state probabilities of
IGCP. Moreover, we obtain its associated Lévy measure and calculate mean, variance, and
the distribution of first-passage time. It is shown that the IGCP is identically distributed to
a compound GCP which leads to its martingale characterization. Also, we study a fractional
integral of the IGCP. Further, a non-homogeneous version of the IGCP is considered where
the time-changing component is a non-homogeneous GCP.
Then, we study some extended versions of the IGCP that includes the compound version,

the multivariate version and the q-iterated GCP. Some of their distributional properties such
as pgf, pmf, mean, variance, etc. are obtained. We establish that the compound IGCP is
equal in distribution to a compound GCP which gives a martingale result for the compound
IGCP. It is shown that the multivariate IGCP is a Lévy process and its corresponding Lévy
measure is derived. Later, a time-changed variant of the IGCP is discussed where time-
changing component is an inverse stable subordinator. We establish that the time-changed
IGCP exhibits long-range dependence (LRD) property and its increment process exhibits
short-range dependence (SRD) property. It is shown that its one-dimensional distributions
are not infinitely divisible.

2. Preliminaries

In this section, we give some known results and definitions that will be used in this paper.
Here, R and N0 denote the set of real numbers and non-negative integers, respectively.

Definition 2.1. Let f and g be two positive functions. The function f(t) is said to be
asymptotically equal to g(t) if limt→∞ f(t)/g(t) = 1. It is denoted by f(t) ∼ g(t) as t → ∞.

2.1. Bell polynomial. The nth order Bell polynomial is defined as (see Comtet (1974))

Bn(x) = e−x

∞
∑

r=0

rnxr

r!
, n ≥ 0. (2.1)

2.2. Mittag-Leffler function. The three-parameter Mittag-Leffler function is defined as
(see Kilbas et al. (2006), p. 45)

Eδ
α,β(x) =

1

Γ(δ)

∞
∑

j=0

Γ(j + δ)xj

j!Γ(jα + β)
, x ∈ R, (2.2)

where α > 0, β > 0 and δ > 0.
It reduces to two-parameter Mittag-Leffler function for δ = 1. Further, it reduces to the

Mittag-Leffler function for δ = β = 1.
3



Let g(t) = tβ−1Eδ
α,β(xt

α). Then, for x ∈ R, the following result holds true (see Kilbas et
al. (2006), Eq. (1.9.13)):

g̃(s) =
sαδ−β

(sα − x)δ
, s > |x|1/α, (2.3)

where g̃(s) denotes the Laplace transform of the function g(t).

2.3. Caputo fractional derivative. The Caputo fractional derivative of the function f(t)
is defined as (see Kilbas et al. (2006))

dα

dtα
f(t) =











1

Γ(1− α)

∫ t

0

(t− s)−αf ′(s) ds, 0 < α < 1,

f ′(t), α = 1.

(2.4)

Its Laplace transform is given by (see Kilbas et al. (2006), Eq. (5.3.3))

h̃(s) = sαf̃(s)− sα−1f(0), s > 0,

where h(t) = dα

dtα
f(t).

2.4. Inverse α-stable subordinator. A α-stable subordinator {Dα(t)}t≥0, 0 < α < 1 is
a non-decreasing Lévy process. Its Laplace transform is given by E(e−sDα(t)) = e−tsα, s > 0.
Its first passage time {Y α(t)}t≥0 is known as the inverse α-stable subordinator and it is
defined as

Y α(t) := inf{x > 0 : Dα(x) > t}.
Its mean and variance are given by (see Leonenko et al. (2014))

E(Y α(t)) =
tα

Γ(1 + α)
and Var(Y α(t)) = t2α

( 2

Γ(2α+ 1)
− 1

Γ2(α + 1)

)

, (2.5)

respectively.
For fixed s and large t, the following asymptotic result holds (see Kataria and Khandakar

(2022), Eq. (11)):

Cov(Y α(s), Y α(t)) ∼ 1

Γ2(α+ 1)

(

αs2αB(α, α+ 1)− α2

(α+ 1)

sα+1

t1−α

)

, (2.6)

where B(α, α + 1) denotes the beta function.

2.5. Generalized counting process and its compound version. Here, we give some
known results for the GCP and its compound version (see Di Crescenzo et al. (2016) and
Kataria and Khandakar (2022)).
For each n ≥ 0, the state probability p(n, t) = Pr{M(t) = n} of GCP is given by

p(n, t) =
∑

Ω(k,n)

k
∏

j=1

(λjt)
xj

xj !
e−λjt, (2.7)

where Ω(k, n) = {(x1, x2, . . . , xk) :
∑k

j=1 jxj = n, xj ∈ N0}.
Its state probabilities p(n, t) satisfy the following system of differential equations:

d

dt
p(n, t) = −

k
∑

j=1

λjp(n, t) +

min{n,k}
∑

j=1

λjp(n− j, t), n ≥ 0,

with initial condition p(n, 0) = δn(0).
4



The Lévy measure of GCP is given by Π(dx) =
∑k

j=1 λjδj(dx), where δj’s are Dirac
measures. Its pgf and moment generating function are given by

G(u, t) = E
(

uM(t)
)

= exp

(

− t
k

∑

j=1

λj(1− uj)

)

, |u| ≤ 1. (2.8)

and

E
(

euM(t)
)

= exp

(

− t
k

∑

j=1

λj(1− euj)

)

, u ∈ R, (2.9)

respectively. Also, its mean and variance are

E(M(t)) =
k

∑

j=1

jλjt and Var(M(t)) =
k

∑

j=1

j2λjt, (2.10)

respectively.

3. Iterated generalized counting process

In this section, we introduce and study a counting process that is formed by the com-
position of two independent GCPs. We call it the iterated generalized counting process
(IGCP) and denote it by {M̂(t)}t≥0. It is defined as

M̂(t) := M(M0(t)), t ≥ 0, (3.1)

where {M0(t)}t≥0 and {M(t)}t≥0 are independent GCPs with positive rates µ1, µ2, . . . , µk0

and λ1, λ2, . . . , λk, respectively.
Let Ω(k,m) = {(x1, x2, . . . , xk) : x1+2x2+· · ·+kxk = m, xj ∈ N0}, λ = λ1+λ2+· · ·+λk,

µ = µ1 + µ2 + · · ·+ µk0 and zk = x1 + x2 + · · ·+ xk.
In an infinitesimal time interval of length h such that o(h)/h → 0 as h → 0, the transition

probabilities of IGCP are given by

Pr{M̂(t+ h) = n+m|M̂(t) = n} =



















1− hµ+ h
∑k0

j0=1 µj0e
−j0λ + o(h), m = 0,

h
∑k0

j0=1 µj0

∑

Ω(k,m)

k
∏

j=1

(j0λj)
xj

xj !
e−j0λj + o(h), m > 0.

(3.2)

Remark 3.1. For k = k0 = 1, the IGCP reduces to the iterated Poisson process studied
by Orsingher and Polito (2012b).

For |u| ≤ 1, the pgf of IGCP can be obtained as follows:

Ĝ(u, t) = E(uM̂(t)) = E(E(uM(M0(t))|M0(t)))

= E

(

exp
(

−M0(t)
k

∑

j=1

λj(1− uj)
))

= exp
(

−
k0
∑

j0=1

µj0t
(

1− exp
(

− j0

k
∑

j=1

λj(1− uj)
)))

. (3.3)

Thus, the governing system of differential equations for Ĝ(u, t) is given by

∂

∂t
Ĝ(u, t) = −

k0
∑

j0=1

µj0

(

1− exp
(

− j0

k
∑

j=1

λj(1− uj)
))

Ĝ(u, t), Ĝ(u, 0) = 1. (3.4)
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Similarly, its moment generating function can be obtained in the following form:

E(euM̂(t)) = exp
(

−
k0
∑

j0=1

µj0t
(

1− exp
(

− j0

k
∑

j=1

λj(1− euj)
)))

, u ∈ R. (3.5)

Remark 3.2. By substituting k = k0 = 1 into (3.3), the pgf of IGCP reduces to that of
iterated Poisson process given in Eq. (22) of Orsingher and Polito (2012b).

Dhillon and Kataria (2024) showed that the GCP has a unique representation as the
weighted sum of independent Poisson processes, that is,

M(t) =

k
∑

j=1

jNj(t), t ≥ 0,

where {Nj(t)}t≥0, j = 1, 2, . . . , k are independent Poisson processes with positive rates λj ,
respectively. So, the following result holds true for IGCP:

M̂(t) =

k
∑

j=1

jNj(M0(t)),

where {M0(t)}t≥0 is independent of {Nj(t)}t≥0, j = 1, 2, . . . , k.
In the following result, we show that the IGCP is equal in distribution to a compound

GCP.

Proposition 3.1. Let X1, X2, . . . be independent and identically distributed (iid) random

variables, such that, X1
d
= M(1). Then,

M̂(t)
d
=

M0(t)
∑

n=1

Xn, t ≥ 0.

Proof. Let Y (t) = X1 +X2 + · · ·+XM0(t). Then, its pgf can be obtained as follows:

GY (u, t) = E(E(uY (t)|M0(t)))

= E

(

M0(t)
∏

n=1

GXn
(u, t)

)

, (as Xn’s are independent)

= E

((

exp
(

−
k

∑

j=1

λj(1− uj)
))M0(t))

, (using (2.8))

= exp
(

−
k0
∑

j0=1

µj0t
(

1− exp
(

− j0

k
∑

j=1

λj(1− uj)
)))

, |u| ≤ 1

which coincides with (3.3). This completes the proof. �

Remark 3.3. For k = k0 = 1, the result in Proposition 3.1 reduces to that of iterated
Poisson process (see Orsingher and Polito (2012b), Eq. (23)).

Proposition 3.2. The state probabilities p̂(n, t) = Pr{M̂(t) = n}, n ≥ 0 of IGCP satisfy
the following system of difference-differential equations:

d

dt
p̂(n, t) = −µp̂(n, t) +

k0
∑

j0=1

µj0e
−j0λ

n
∑

m=0

∑

Ω(k,m)

(

k
∏

j=1

(j0λj)
xj

xj !

)

p̂(n−m, t) (3.6)
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with initial condition p̂(n, 0) = δn(0).

Proof. Note that

p̂(n, t+ h) = p̂(n, t)p̂(0, h) +
n

∑

m=1

p̂(n−m, t)p̂(m, h) + o(h).

By using (3.2), we get

p̂(n, t+ h)− p̂(n, t)

h
= −µp̂(n, t) +

k0
∑

j0=1

µj0

n
∑

m=0

∑

Ω(k,m)

(

k
∏

j=1

(j0λj)
xj

xj !
e−j0λj

)

p̂(n−m, t) +
o(h)

h
.

On letting h → 0, we get the required result. For an alternate proof, we refer the reader
to Appendix A1. �

Remark 3.4. For k = k0 = 1, the result in Proposition 3.2 reduces to that of iterated
Poisson process (see Orsingher and Polito (2012b), Eq. (27)).

Next, we obtain the state probabilities of IGCP in terms of Bell polynomials.

Theorem 3.1. The state probabilities of IGCP are given by

p̂(n, t) =
∑

Ω(k,n)

(

k
∏

j=1

λ
nj

j

nj !

)

∑

∑k0
j0=1 rj0=zk

zk!
k0
∏

j0=1

j
rj0
0

rj0!
e−µj0

t(1−e−j0λ)Brj0
(e−j0λµj0t), n ≥ 0, (3.7)

where Bn(x) is the nth order Bell polynomial defined in (2.1).

Proof. From (3.1), we have

p̂(n, t) =

∞
∑

s=0

Pr{M(s) = n}Pr{M0(t) = s}

=
∑

Ω(k,n)

(

k
∏

j=1

λ
nj

j

nj !

)

e−µt
∞
∑

s=0

szke−λs
∑

Ω(k0,s)

k0
∏

j0=1

(µj0t)
xj0

xj0 !
(3.8)

=
∑

Ω(k,n)

(

k
∏

j=1

λ
nj

j

nj !

)

e−µt
∑

xj0
≥0

1≤j0≤k0

(

k0
∑

j0=1

j0xj0

)zk
k0
∏

j0=1

(e−j0λµj0t)
xj0

xj0 !

=
∑

Ω(k,n)

(

k
∏

j=1

λ
nj

j

nj !

)

e−µt
∑

∑k0
j0=1 rj0=zk

zk!
(

k0
∏

j0=1

j
rj0
0

rj0 !

)

∑

xj0
≥0

1≤j0≤k0

k0
∏

j0=1

x
rj0
j0

(e−j0λµj0t)
xj0

xj0 !
.

By using (2.1), we get the required result. �

Remark 3.5. On taking k = k0 = 1 in (3.7), we get the state probabilities of iterated
Poisson process (see Orsingher and Polito (2012b), Theorem 2.1).

Note that the IGCP is a Lévy process as it is the composition of two independent Lévy
processes. Its Lévy measure is obtained in the following result:

Proposition 3.3. The Lévy measure of IGCP is given by

ΠM̂(dx) =

k0
∑

j0=1

µj0

∞
∑

n=1

∑

Ω(k,n)

(

k
∏

j=1

(j0λj)
nj

nj!
e−j0λj

)

δn(dx),

7



where δn’s are Dirac measures.

Proof. Let p(n, s) and ΠM0(ds) be the pmf and Lévy measure of {M(t)}t≥0 and {M0(t)}t≥0,
respectively. By using Theorem 30.1 of Sato (1999), we have

ΠM̂(dx) =

∫ ∞

s=0

∞
∑

n=1

p(n, s) δn(dx) ΠM0(ds)

=

∫ ∞

s=0

∞
∑

n=1

∑

Ω(k,n)

(

k
∏

j=1

(λjs)
nj

nj !
e−λjs

)

δn(dx)

k0
∑

j0=1

µj0δj0(ds)

which reduces to the required result. �

Let S =
∑k

j=1 jλj

∑k0
j0=1 j0µj0 and T =

(

∑k
j=1 jλj

)2
∑k0

j0=1 j
2
0µj0+

∑k
j=1 j

2λj

∑k0
j0=1 j0µj0.

By using (2.10) and Theorem 2.1 of Leonenko et al. (2014), the mean, variance and covari-
ance of IGCP are given by

E(M̂(t)) = E(M(1))E(M0(t)) = St, (3.9)

Var(M̂(t)) = (E(M(1)))2 Var(M0(t)) + Var(M(1))E(M0(t)) = T t. (3.10)

Cov(M̂(s), M̂(t)) = Var(M̂(s)) = Ts, 0 < s ≤ t. (3.11)

As Var(M̂(t))− E(M̂(t)) > 0, the IGCP is overdispersed.

Theorem 3.2. Let Tn := inf{s > 0 : M̂(s) = n} be the first-passage time of IGCP for any
state n ≥ 1. Then, its distribution is given by

Pr{Tn ∈ ds} =

k0
∑

j0=1

µj0e
−sµds

n
∑

m=1

∞
∑

r=0

∑

Ω(k,n−m)

(

k
∏

j=1

(rλj)
xj

xj !

)

e−rλ

·
∑

Ω(k,m)

(

k
∏

j=1

(j0λj)
nj

nj!

)

e−j0λ
∑

Ω(k0,r)

k0
∏

j0=1

(sµj0)
nj0

nj0!
.

Proof. We have

Pr{Tn ∈ ds} =
n

∑

m=1

Pr{M(M0(s)) = n−m,M(M0(s+ ds)) = n}

=
n

∑

m=1

Pr{M(M0(s)) = n−m,M(M0(s) + dM0(s)) = n}

=

k0
∑

j0=1

µj0ds
n

∑

m=1

Pr{M(M0(s)) = n−m,M(M0(s) + j0) = n}. (3.12)

Observe that the process {M(t)}t≥0 performs jumps of size 0 ≤ n − m ≤ n − 1 in time
interval (M0(s),M0(s) + j0). Also,

Pr{M(M0(s)) = n−m,M(M0(s) + j0) = n}

=

∞
∑

r=0

Pr{M(r) = n−m,M(r + j0) = n}Pr{M0(s) = r}
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=

∞
∑

r=0

∑

Ω(k,n−m)

(

k
∏

j=1

(rλj)
xj

xj !

)

e−rλ

·
∑

Ω(k,m)

(

k
∏

j=1

(j0λj0)
nj

nj !

)

e−j0λ
∑

Ω(k0,r)

k0
∏

j0=1

(sµj0)
nj0

nj0!
e−sµj0 . (3.13)

By using (3.13) and (3.12), we get the required result. �

Corollary 3.1. For n = 1, we have

Pr{T1 ∈ ds} =

k0
∑

j0=1

µj0ds
∞
∑

r=0

j0λ1e
−j0λ1e−rλ

∑

Ω(k0,r)

k0
∏

j0=1

(sµj0)
nj0

nj0 !
e−sµj0 .

Thus,

Pr{T1 < ∞} =

k0
∑

j0=1

µj0

µ
j0λ1e

−j0λ1

∞
∑

r=0

e−rλ
∑

Ω(k0,r)

zk0 !

k0
∏

j0=1

(µj0

µ

)nj0 1

nj0!
.

Remark 3.6. For k = k0 = 1, the result in Theorem 3.2 reduces to that of iterated Poisson
process (see Orsingher and Polito (2012b), Theorem 2.2).

3.1. Martingale characterization for IGCP. Here, we give a martingale characteriza-
tion and related results for the IGCP. First, we observe that the converse part of result in
Proposition 2 of Kataria and Khandakar (2022) holds true.

Proposition 3.4. The process {M(t)}t≥0 is a GCP with positive rates λj, j = 1, 2, . . . , k

iff {M(t)−∑k
j=1 jλjt}t≥0 is a {Ft}t≥0-martingale, where Ft = σ(M(s), s ≤ t).

Proof. Let {N(t)}t≥0 be a Poisson process with rate λ = λ1 + λ2 + · · ·+ λk. For ν = 1 in
Eq. (2.6) of Di Crescenzo et al. (2016), we have

M(t)
d
=

N(t)
∑

i=1

Xi,

where Xi’s are iid random variables such that Pr{X1 = i} = λi/λ, i = 1, 2, . . . , k and are
independent of {N(t)}t≥0. That is, the GCP is equal in distribution to a compound Poisson
process. The result follows from Theorem 5.2 of Zhang and Li (2016). �

Next, we give a martingale characterization for the IGCP.

Proposition 3.5. Let {M̂(t)}t≥0 be a point process such that M̂(0) = 0. Then, {M̂(t)}t≥0

is IGCP iff the process

Y (t) = exp
(

uM̂(t)−
k0
∑

j0=1

µj0t
(

exp
(

− j0

k
∑

j=1

λj(1− euj)
)

− 1
))

, u ∈ R, t ≥ 0

is a {Ft}t≥0-martingale, where Ft = σ(M̂(s), s ≤ t).

Proof. Let {M̂(t)}t≥0 be IGCP. Then, we just need to show the martingale property for

Y (t) = exp
(

uM̂(t) −
∑k0

j0=1 µj0t
(

exp
(

− j0
∑k

j=1 λj(1 − euj)
)

− 1
))

. For 0 < s ≤ t, we

9



have

E(Y (t)|Fs) = E(eu(M̂(t)−M̂ (s))|Fs) exp
(

uM̂(s)−
k0
∑

j0=1

µj0t
(

exp
(

− j0

k
∑

j=1

λj(1− euj)
)

− 1
))

= E(eu(M̂(t−s))) exp
(

uM̂(s)−
k0
∑

j0=1

µj0t
(

exp
(

− j0

k
∑

j=1

λj(1− euj)
)

− 1
))

= exp
(

uM̂(s)−
k0
∑

j0=1

µj0s
(

exp
(

− j0

k
∑

j=1

λj(1− euj)
)

− 1
))

,

where we have used the independent and stationary increments of {M̂(t)}t≥0.
Conversely, let {Y (t)}t≥0 be a {Ft}t≥0-martingale. Then, we have E(Y (t)) = E(Y (0)) = 1

for all t ≥ 0. Thus,

E(euM̂ (t)) = exp
(

k0
∑

j0=1

µj0t
(

exp
(

− j0

k
∑

j=1

λj(1− euj)
)

− 1
))

.

From (3.5), it follows that {M̂(t)}t≥0 has same distribution to that of the IGCP.
For 0 < s ≤ t, by using the martingale property of {Y (t)}t≥0, we have

E

(

exp
(

uM̂(t)−
k0
∑

j0=1

µj0t
(

exp
(

− j0

k
∑

j=1

λj(1− euj)
)

− 1
))∣

∣

∣
Fs

)

= exp
(

uM̂(s)−
k0
∑

j0=1

µj0s
(

exp
(

− j0

k
∑

j=1

λj(1− euj)
)

− 1
))

.

So,

E(eu(M̂ (t)−M̂ (s))|Fs) = exp
(

k0
∑

j0=1

µj0(t− s)
(

exp
(

− j0

k
∑

j=1

λj(1− euj)
)

− 1
))

. (3.14)

Now, by taking expectation on both sides of (3.14), we get

E(eu(M̂(t)−M̂ (s))) = exp
(

k0
∑

j0=1

µj0(t− s)
(

exp
(

− j0

k
∑

j=1

λj(1− euj)
)

− 1
))

.

This establishes that {M̂(t)}t≥0 exhibits stationary increments, that is, M̂(t) − M̂(s)
d
=

M̂(t− s).
For 0 ≤ t0 < t1 < · · · < tn < ∞, we have

E(e
∑n

i=1 ui(M̂(ti)−M̂(ti−1))) = E(E(e
∑n

i=1 ui(M̂(ti)−M̂ (ti−1))|Ftn−1))

= E(e
∑n−1

i=1 ui(M̂(ti)−M̂(ti−1)))E(eun(M̂ (tn)−M̂(tn−1)))

...

=

n
∏

i=1

E(eui(M̂(ti)−M̂ (ti−1))).

10



Thus, {M̂(t)}t≥0 has independent increments. Hence, {M̂(t)}t≥0 is an IGCP. This com-
pletes the proof. �

Proposition 3.6. The process {M̂(t)}t≥0 is IGCP iff {M̂(t) −
∑k

j=1 jλj

∑k0
j0=1 j0µj0t}t≥0

is a martingale with respect to natural filtration Ft = σ(M̂(s), 0 < s ≤ t).

Proof. By using Proposition 3.1, the IGCP is equal in distribution to a compound GCP.
Further, by using Remark 4.2 of Khandakar and Kataria (2024), the IGCP is equal in
distribution to a compound Poisson process. Finally, the result follows on using Theorem
5.2 of Zhang and Li (2016). This completes the proof. �

Remark 3.7. On substituting k = k0 = 1 in Proposition 3.5 and Proposition 3.6, we
obtain the corresponding results for iterated Poisson process.

3.2. Fractional integral of the IGCP. Here, we study the Riemann-Liouville fractional
integral of IGCP defined as follows:

X̂ α(t) :=
1

Γ(α)

∫ t

0

(t− s)α−1M̂(s) ds, α > 0, t ≥ 0. (3.15)

For α = m ∈ N, the Riemann-Liouville fractional integral defined in (3.15) reduces to

X̂m(t) =
1

(m− 1)!

∫ t

0

(t− s)m−1M̂(s) ds =

∫ t

0

ds1

∫ s1

0

ds2 · · ·
∫ sm−1

0

M̂(sm)dsm.

Orsingher and Polito (2013) studied the fractional integral of time fractional Poisson
process. The motivation to study such integrals lies in the fact that the integrated count-
ing processes often arise in epidemic model, biological sciences, etc. (see Pollett (2003),
Vishwakarma and Kataria (2024a), (2024b), and references therein).
By using (3.9), the mean of fractional integral of IGCP can be obtained as follows:

E(X̂ α(t)) =
1

Γ(α)

∫ t

0

(t− s)α−1
E(M̂(s)) ds

=
S

Γ(α)

∫ t

0

(t− s)α−1s ds =
Stα+1

Γ(α+ 2)
. (3.16)

Also, by using (3.9) and (3.11), we have

E(X̂ α(t))2 =
1

Γ2(α)

∫ t

0

∫ t

0

(t− s)α−1(t− w)α−1
E(M̂(s)M̂(w)) dw ds

=
2

Γ2(α)

∫ t

0

∫ t

s

(t− s)α−1(t− w)α−1(Ts+ S2ws)dw ds

=
2T

Γ2(α)

∫ t

0

s(t− s)α−1 ds

∫ t

s

(t− w)α−1 dw

+
2S2

Γ2(α)

∫ t

0

s(t− s)α−1 ds

∫ t

s

w(t− w)α−1 dw

=
T t2α+1

(2α + 1)Γ2(α + 1)
+

(Stα+1)
2

Γ2(α + 2)
. (3.17)

Thus, by using (3.16) and (3.17), the variance of {M̂α(t)}t≥0 is given by

Var(X̂ α(t)) =
T t2α+1

(2α+ 1)Γ2(α + 1)
.
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Proposition 3.7. The conditional mean of the fractional integral of IGCP is given by

E(X̂ α(t)|M̂(t) = n) =
1

Γ(α)

n
∑

r=0

re−µt

Pr{M̂(t) = n}

∞
∑

x=0

Pr{M(x) = r}
∑

Ω(k0,x)

(

k0
∏

j0=1

µ
rj0
j0

rj0!

)

·
∞
∑

y=0

Pr{M(y) = n− r}
∑

Ω(k0,y)

(

k0
∏

j0=1

µ
lj0
j0

lj0 !

)

tα+l+rB(r + 1, α+ l),

where r = r1 + r2 + · · ·+ rk0 , l = l1 + l2 + · · ·+ lk0 and B(a, b) denotes the beta function.

Proof. From (3.15), we have

E(X̂ α(t)|M̂(t) = n)

=
1

Γ(α)

∫ t

0

(t− s)α−1
E(M̂(s)|M̂(t) = n) ds

=
1

Γ(α)

n
∑

r=0

r

∫ t

0

(t− s)α−1Pr{M̂(s) = r|M̂(t) = n} ds

=
1

Γ(α)

n
∑

r=0

r

Pr{M̂(t) = n}

∫ t

0

(t− s)α−1Pr{M̂(s) = r}Pr{M̂(t− s) = n− r} ds.

The result follows on using (3.8). �

For α = 1, the integral in (3.15) reduces to the following integral:

X̂ (t) =

∫ t

0

M̂(s) ds, t ≥ 0. (3.18)

Note that the bivariate process {M̂(t), X̂ (t)}t≥0 is a Markov process. Its joint distribution

q̂(n, x, t) = Pr{M̂(t) = n, X̂ (t) ≤ x|M̂(0) = 0}, n ≥ 0, x ≥ 0 solves the following
differential equation:

∂

∂t
q̂(n, x, t)+n

∂

∂x
q̂(n, x, t) = −µq̂(n, x, t)+

k0
∑

j0=1

µj0e
−j0λ

n
∑

m=0

∑

Ω(k,m)

(

k
∏

j=1

(j0λj)
xj

xj !

)

q̂(n−m, x, t)

with q̂(0, 0, 0) = 1.
Also, its joint pgf, that is,

Ĝ(u, v, t) :=

∫ ∞

0

∞
∑

n=0

unvx
∂

∂x
q̂(n, x, t) dx

= − ln v
∞
∑

n=0

un

∫ ∞

0

vxq̂(n, x, t) dx, 0 < u < 1, 0 < v < 1

is the solution of the following differential equation:

∂

∂t
Ĝ(u, v, t) =

(

−µ+

k0
∑

j0=1

µj0e
−j0λ

∞
∑

m=0

um
∑

Ω(k,m)

(

k
∏

j=1

(j0λj)
xj

xj !

))

Ĝ(u, v, t)+u ln v
∂

∂u
Ĝ(u, v, t)
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with Ĝ(u, v, 0) = 1. Thus, the cumulative generating function K̂(θ, φ, t) = ln Ĝ(eθ, eφ, t)
solves

∂

∂t
k̂(θ, φ, t) = −µ +

k0
∑

j0=1

µj0e
−j0λ

∞
∑

m=0

emθ
∑

Ω(k,m)

(

k
∏

j=1

(j0λj)
xj

xj !

)

+ φ
∂

∂θ
K̂(θ, φ, t) (3.19)

with K̂(θ, φ, 0) = 0.
Now, on substituting the following expression of the cumulative generating function (see

Kendall (1948), Eq. (35)):

K̂(θ, φ, t) = θE(M̂ (t))+φE(X̂ (t))+
θ2

2
Var(M̂(t))+

φ2

2
Var(X̂ (t))+θφCov(M̂(t), X̂ (t))+. . .

(3.20)
in (3.19), we get

∂

∂t

(

θE(M̂ (t)) + φE(X̂ (t)) +
θ2

2
Var(M̂(t)) +

φ2

2
Var(X̂ (t)) + θφCov(M̂(t), X̂ (t)) + . . .

)

=
(

− µ+

k0
∑

j0=1

µj0e
−j0λ

∞
∑

m=0

∞
∑

r=0

(mθ)r

r!

∑

Ω(k,m)

(

k
∏

j=1

(j0λj)
xj

xj !

))

+ φE(M̂(t) + θVar(M̂(t))

+ φCov(M̂(t), X̂ (t)) + . . . . (3.21)

On comparing the coefficient of θφ on both sides of (3.21), we get

d

dt
Cov(M̂(t), X̂ (t)) = Var(M̂(t)) = T t

with Cov(M̂(0), X̂ (0)) = 0. So,

Cov(M̂(t), X̂ (t)) = Var(M̂(t)) =
T t2

2
.

Here, T =
(

∑k
j=1 jλj

)2
∑k0

j0=1 j
2
0µj0 +

∑k
j=1 j

2λj

∑k0
j0=1 j0µj0.

3.3. Non-homogeneous IGCP. Here, we study a non-homogeneous version of the IGCP.
It is obtained by considering a non-homogeneous version of the time changing component
process {M0(t)}t≥0 in (3.1).
Let {M0(t)}t≥0 be a non-homogeneous GCP with time-dependent rate functions µj0(t) :

[0,∞) → [0,∞), j0 = 1, 2, . . . , k0. We consider the following time-changed process:

M̂(t) := M(M0(t)), t ≥ 0,

where {M0(t)}t≥0 is independent of the GCP {M(t)}t≥0.

By using the conditional argument, the pgf of {M̂(t)}t≥0 can be obtained in the following
form:

E(uM̂(t)) = exp
(

−
k0
∑

j0=1

ρj0(t)
(

1− exp
(

− j0

k
∑

j=1

λj(1− uj)
)))

, |u| ≤ 1,

where ρj0(t) =
∫ t

0
µj0(s) ds is the cumulative rate function. Also,

M̂(t)
d
=

M0(t)
∑

i=1

Xi, t ≥ 0, (3.22)
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where Xi’s are iid random variables which are equal in distribution to that of M(1). The
proof of (3.22) follows similar lines to that of Proposition 3.1. Further, its state probabilities

q̂(n, t) = Pr{M̂(t) = n}, n ≥ 0 can be obtained as follows:

q̂(n, t) =

∞
∑

m=0

Pr{M(m) = n}Pr{M0(t) = m} (3.23)

=
∑

Ω(k,n)

(

k
∏

j=1

λ
nj

j

nj !

)

∞
∑

m=0

mzke−λm
∑

Ω(k,m)

k0
∏

j0=1

(ρj0(t))
xj0

xj0 !
e−ρj0 (t)

=
∑

Ω(k,n)

(

k
∏

j=1

λ
nj

j

nj !

)

∑

xj0
≥0

1≤j0≤k0

∑

∑k0
j0=1 rj0=zk

zk!

k0
∏

j0=1

(j0xj0)
rj0

rj0!xj0 !
(e−j0λρj0(t))

xj0e−ρj0 (t)

=
∑

Ω(k,n)

(

k
∏

j=1

λ
nj

j

nj !

)

∑

∑k0
j0=1 rj0=zk

zk!

k0
∏

j0=1

j
rj0
0

rj0 !
e−ρj0 (t)(1−e−j0λ)Brj0

(ρj0(t)e
−j0λ),

where zk = n1 + n2 + · · ·+ nk and ρj0(t) =
∫ t

0
µj0(s) ds. In the second step, we have used

the pmf of non-homogeneous GCP {M0(t)}t≥0 (see Kataria et al. (2022), Section 3).
Next, we obtain the system of differential equations that governs the state probabilities

of non-homogeneous IGCP as follows:
On differentiating (3.23) and by using Eq. (3.6) of Kataria et al. (2022), we get

d

dt
q̂(n, t) =

k0
∑

j0=1

µj0(t)
(

∞
∑

m=0

p(n,m)Pr{M0(t) = m− j0} − q̂(n, t)
)

=

k0
∑

j0=1

µj0(t)
(

n
∑

r=0

p(r, j0)

∞
∑

m=j0

p(n− r,m− j0)Pr{M0(t) = m− j0} − q̂(n, t)
)

=

k0
∑

j0=1

µj0(t)
(

n
∑

r=0

p(r, j0)q̂(n− r, t)− q̂(n, t)
)

, n ≥ 0

with initial condition q̂(n, 0) = δn(0).
Its mean and variance are given by

E(M̂(t)) =
k

∑

j=1

jλj

k0
∑

j0=1

j0ρj0(t)

and

Var(M̂(t)) =
(

k
∑

j=1

jλj

)2
k0
∑

j0=1

j20ρj0(t) +

k
∑

j=1

j2λj

k0
∑

j0=1

j0ρj0(t),

respectively.
Let τn = inf{t ≥ 0 : M̂(t) = n}, n ≥ 0. Then, its distribution Fτn(t) = Pr{τn ≤ t} is

given by

Fτn(t) = Pr{M̂(t) ≥ n}
14



= 1−
n−1
∑

m=0

∑

Ω(k,m)

(

k
∏

j=1

λ
mj

j

mj!

)

∑

∑k0
j0=1 rj0=zk

zk!

k0
∏

j0=1

(j0xj0)
rj0

rj0 !
e−ρj0 (t)(1−e−j0λ)Brj0

(ρj0(t)e
−j0λ).

Observe that Fτn(t) is a distribution function if and only if ρj0(t)’s satisfy the conditions
stated in Remark 5 of Leonenko et al. (2017).
Moreover, on following along the similar lines to the proof of Proposition 3.6, it can be

shown that the process {M̂(t) −∑k
j=1 jλj

∑k0
j0=1 j0ρj0(t)}t≥0 is a martingale with respect

to natural filtration Ft = σ(M̂(s), 0 < s ≤ t).
For v ≥ 0, the increment process of non-homogeneous IGCP is defined as

Î(t, v) := M(M0(t + v))−M(M0(v))
d
= M(I0(t, v)), t ≥ 0,

where {I0(t, v)}t≥0 is the increment process of non-homogeneous GCP {M0(t)}t≥0 (see

Kataria et al. (2022)). Its marginal distribution q̂n(t, v) = Pr{Î(t, v) = n}, n ≥ 0 can be
obtained as follows:

q̂n(t, v) =

∞
∑

m=0

Pr{I0(t, v) = m}Pr{M(m) = n} (3.24)

=
∑

Ω(k,n)

(

k
∏

j=1

λ
nj

j

nj !

)

∞
∑

m=0

mzke−mλ
∑

Ω(k0,m)

(

k0
∏

j0=1

(ρj0(v, t+ v))xj0

xj0!
e−ρj0 (v,t+v)

)

=
∑

Ω(k,n)

(

k
∏

j=1

λ
nj

j

nj !

)

∑

∑k0
j0=1 rj0=zk

zk!

k0
∏

j0=1

j
rj0
0

rj0!
e−ρj0 (v,t+v)(1−e−j0λ)Brj0

(e−j0λρj0(v, t+ v)),

(3.25)

where ρj0(v, t+ v) =
∫ t+v

v
µj0(s) ds and zk = n1 + n2 + · · ·+ nk.

Remark 3.8. On substituting v = 0 in (3.25), we obtain the state probabilities of IGCP
given in (3.1).

On differentiating (3.24) and by using Remark 3.5 of Kataria et al. (2022), we get

d

dt
q̂n(t, v) =

∞
∑

m=0

p(n,m)

k0
∑

j0=1

µj0(t+ v)
(

Pr{I0(t, v) = m− j0} − Pr{I0(t, v) = m}
)

=

k0
∑

j0=1

µj0(t+ v)
(

∞
∑

m=j0

n
∑

r=0

p(r, j0)p(n− r,m− j0)Pr{I0(t, v) = m− j0} − q̂n(t, v)
)

=

k0
∑

j0=1

µj0(t+ v)
(

n
∑

r=0

p(r, j0)q̂n−r(t, v)− q̂n(t, v)
)

, n ≥ 0

with initial condition q̂n(0, v) = δn(0).

4. Some extensions of IGCP

Here, we study few extended versions of the IGCP, namely, the compound IGCP, the
multivariate IGCP and the q-iterated GCP. First, we consider a compound version of it.
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4.1. Compound iterated generalized counting process. Khandakar and Kataria (2024)
introduced and studied a compound version of the GCP, namely, the compound general-
ized counting process (CGCP). We denote it by {W (t)}t≥0,. It is defined as follows (see
Khandakar and Kataria (2024)):

W (t) :=

M(t)
∑

i=1

Xi, t ≥ 0,

where Xi are iid random variables independent of the GCP.
Here, we define the compound IGCP {Z(t)}t≥0 as a time-changed variant of the CGCP

by subordinating it with a GCP {M0(t)}t≥0. That is,

Z(t) := W (M0(t)) =

M(M0(t))
∑

i=1

Xi, t ≥ 0, (4.1)

where {W (t)}t≥0 is independent {M0(t)}t≥0.
The pgf of CGCP can be obtained as follows:

GW (u, t) = E(E(uW (t)|M(t)))

=
∞
∑

m=0

(E(uX1))mPr{M(t) = m}, (as Xi’s are iid random variables)

= exp
(

−
k

∑

j=1

λjt(1− (E(uX1))j)
)

, (4.2)

where in the last step we have used (2.8). Its distribution function is given by

HW (w, t) =

∞
∑

m=0

Pr{M(t) = m}H∗(m)
X1

(w)

= I{w≥0}e
−λt +

∞
∑

m=1

Pr{M(t) = m}H∗(m)
X1

(w), (4.3)

where H
∗(m)
X1

(·) is the m-fold convolution of the distribution function HX1(·) of X1.

Remark 4.1. For k = k0 = 1, the compound IGCP reduces to the compound iterated
Poisson process. If X1 has an atom at 1, that is, HX1(x) = I{x≥1} then the compound
IGCP reduces to the IGCP and the compound iterated Poisson process reduces to the
iterated Poisson process.

For the subsequent results, we recall λ, µ, zk and Ω(k,m) from Section 3.

Proposition 4.1. The distribution function Ĥ(w, t) = Pr{Z(t) ≤ w} is given by

Ĥ(w, t) = I{w≥0} exp
(

−
k0
∑

j0=1

µj0t(1− e−j0λ)
)

+

∞
∑

m=1

H
∗(m)
X (w)

∑

Ω(k,m)

(

k
∏

j=1

λ
mj

j

mj !

)

e−µt
∑

∑k0
j0=1 rj0=zk

zk!

k0
∏

j0=1

j
rj0
0

rj0 !
eµj0

te−j0λBrj0
(e−j0λµj0t),

where Bn(x) is the nth order Bell polynomial defined in (2.1).
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Proof. By using (4.1) and (4.3), we get

Ĥ(w, t) =
∞
∑

n=0

Pr{M0(t) = n}HW (w,n)

= I{w≥0}

∞
∑

n=0

Pr{M0(t) = n}e−λn +

∞
∑

n=0

Pr{M0(t) = n}
∞
∑

m=1

Pr{M(n) = m}H∗(m)
X (w)

= I{w≥0} exp
(

−
k0
∑

j0=1

µj0t(1− e−j0λ)
)

+
∞
∑

m=1

H
∗(m)
X (w)

∞
∑

n=0

Pr{M0(t) = n}Pr{M(n) = m},

where we have used (2.8) in the last step. Finally, the result follows by using (3.7). �

Remark 4.2. If Xi’s are absolutely continuous random variables with probability density
function (pdf) hX(·) then the absolute continuous component of the pdf of {Z(t)}t≥0 is
given by

ĥ(w, t) =
∞
∑

m=1

h
∗(m)
X (w)

∑

Ω(k,m)

(

k
∏

j=1

λ
mj

j

mj!

)

e−µt
∑

∑k0
j0=1 rj0=zk

zk!

k0
∏

j0=1

j
rj0
0

rj0 !
eµj0

te−j0λBrj0
(e−j0λµj0t)

and its discrete component is given by

Pr{Z(t) = 0} =

∞
∑

m=0

Pr{M0(t) = m}Pr{W (m) = 0} = exp
(

−
k0
∑

j0=1

µj0t(1− e−j0λ)
)

.

Remark 4.3. If Xi’s are discrete random variables then the pmf of {Z(t)}t≥0 is given by

Pr{Z(t) = n} = I{n=0} exp
(

−
k0
∑

j0=1

µj0t(1− e−j0λ)
)

+

∞
∑

m=1

Ψ
∗(m)
X (n)

∑

Ω(k,m)

(

k
∏

j=1

λ
mj

j

mj !

)

e−µt
∑

∑k0
j0=1

rj0=zk

zk!

k0
∏

j0=1

j
rj0
0

rj0 !
eµj0

te−j0λBrj0
(e−j0λµj0t),

(4.4)

where Ψ
∗(m)
X (n) = Pr{X1 +X2 + · · ·+Xm = n}, n ∈ Z.

Example 4.1. Let {M(t)}t≥0 be a GCP with positive rates β1, β2, . . . , βr such that

X1
d
= M(1). Then,

Ψ
∗(m)
X (n) = Pr{X1 +X2 + · · ·+Xm = n} =

∑

Θ(r,n)

r
∏

j=1

(mβj)
xj

xj !
e−mβj , n ≥ 0, (4.5)

where Θ(r, n) = {(x1, x2, . . . , xr) :
∑r

j=1 jxj = n, xj ∈ N0}. On substituting (4.5) in (4.4),
we get

Pr{Z(t) = n} = I{n=0} exp
(

−
k0
∑

j0=1

µj0t(1− e−j0λ)
)

+
∞
∑

m=1

∑

Θ(r,n)

r
∏

j=1

((mβj)
xj

xj !
e−mβj

)

·
∑

Ω(k,m)

(

k
∏

j=1

λ
mj

j

mj!

)

e−µt
∑

∑k0
j0=1 rj0=zk

zk!

k0
∏

j0=1

j
rj0
0

rj0!
eµj0

te−j0λBrj0
(e−j0λµj0t).
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For n = 0, we have

Pr{Z(t) = 0} = exp
(

−
k0
∑

j0=1

µj0t(1− e−j0λ)
)

+
∞
∑

m=1

e−mβ
∑

Ω(k,m)

(

k
∏

j=1

λ
mj

j

mj !

)

e−µt

·
∑

∑k0
j0=1 rj0=zk

zk!
k0
∏

j0=1

j
rj0
0

rj0 !
eµj0

te−j0λBrj0
(e−j0λµj0t),

where β = β1 + β2 + · · ·+ βr.

Example 4.2. Let X1 has geometric distribution with parameter p ∈ (0, 1]. Then,

Ψ
∗(m)
X1

=

(

n− 1

m− 1

)

pm(1− p)n−m, n ≥ m.

Thus,

Pr{Z(t) = n} = I{n=0} exp
(

−
k0
∑

j0=1

µj0t(1− e−j0λ)
)

+

∞
∑

m=1

(

n− 1

m− 1

)

pm(1− p)n−m

·
∑

Ω(k,m)

(

k
∏

j=1

λ
mj

j

mj!

)

e−µt
∑

∑k0
j0=1 rj0=zk

zk!
k0
∏

j0=1

j
rj0
0

rj0!
eµj0

te−j0λBrj0
(e−j0λµj0t).

Next, we obtain the finite dimensional distribution of compound IGCP.

Theorem 4.1. Let 0 = t0 ≤ t1 ≤ · · · ≤ tn = t be a partition of [0, t] and h
∗(m)
X (·) denotes

the m-fold convolution of the density function hX1(·) of X1. Then, the finite dimensional
distribution of compound IGCP has the following form:

ĤZ(t1),Z(t2),...,Z(tn)(x1, x2, . . . , xn) =
∑

ml≥0
l=1,2,...,n

(

n
∏

l=1

p̂(ml,∆tl)
)

·
∫ u1

−∞

∫ u2

−∞
· · ·

∫ un

−∞

(

n
∏

r=1

h
∗(mr)
X1

(yr)
)

dyndyn−1 . . . dy1, (4.6)

where ∆tl = tl − tl−1 and ur = xr − (y1 + y2 + · · ·+ yr−1).

Proof. As {M̂(t)}t≥0 has independent and stationary increments, we have M̂(tr) = M̂(∆t1)+

M̂(∆t2) + · · ·+ M̂(∆tr), r = 1, 2, . . . , n. Let

X(m1) = X1 +X2 + · · ·+Xm1 ,

X(m2) = Xm1+1 +Xm1+2 + · · ·+Xm1+m2 ,

...

X(mn) = Xm1+m2+···+mn−1+1 +Xm1+m2+···+mn−1+2 + · · ·+Xm1+m2+···+mn
.

Then,

ĤZ(t1),Z(t2),...,Z(tn)(x1, x2, . . . , xn)

= Pr{Z(t1) ≤ x1, Z(t2) ≤ x2, . . . , Z(tn) ≤ xn}
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=
∑

ml≥0
l=1,2,...,n

Pr
{

m1
∑

i=1

Xi ≤ x1,

m1+m2
∑

i=1

Xi ≤ x2, . . . ,

∑n
l=1 ml
∑

i=1

Xi ≤ xn

}

n
∏

l=1

p̂(ml,∆tl)

=
∑

ml≥0
l=1,2,...,n

Pr
{

X(m1) ≤ x1, X(m1) +X(m2) ≤ x2, . . . ,
n

∑

l=1

X(ml) ≤ xn

}

n
∏

l=1

p̂(ml,∆tl)

=
∑

ml≥0
l=1,2,...,n

(

n
∏

l=1

p̂(ml,∆tl)
)

∫ x1

−∞

∫ x2−y1

−∞

· · ·
∫ xn−

∑n−1
l=1 yl

−∞

(

n
∏

r=1

h
∗(mr)
X1

(yr)
)

dyndyn−1 . . .dy1.

Finally, the change of variables gives the required result. �

Remark 4.4. For n = 1, (4.6) reduces to the marginal distribution ĤZ(t)(x) = Pr{Z(t) ≤
x} of compound IGCP, that is,

ĤZ(t)(x) =
∑

m≥0

p̂(m, t)

∫ x

−∞

h
∗(m)
X1

(y)dy.

Example 4.3. If X1 has exponential distribution with parameter λ > 0 then the marginal
distribution of compound IGCP is given by

ĤZ(t)(x) =
∑

m≥0

p̂(m, t)

∫ x

−∞

h
∗(m)
X1

(y)dy =
∑

m≥0

γ(m, λx)

(m− 1)!
p̂(m, t),

where γ(s, t) =
∫ t

0
e−xxs−1dx, t ≥ 0 is the incomplete gamma function.

By using (4.1) and (4.2), the pgf ĜZ(t)(u) = E(uZ(t)) can be obtained as follows:

ĜZ(t)(u) = E(E(uW (M0(t))|M0(t)))

=

∞
∑

m=0

Pr{M0(t) = m}E(uW (m))

=

∞
∑

m=0

Pr{M0(t) = m} exp
(

−
k

∑

j=1

λjm
(

1− (E(uX1))j
))

= exp
(

−
k0
∑

j0=1

µj0t
(

1− exp
(

− j0

k
∑

j=1

λj(1− (E(uX1))j)
)))

, |u| ≤ 1.

Thus, it satisfies

∂

∂t
ĜZ(t)(u) = −

k0
∑

j0=1

µj0

(

1− exp
(

− j0

k
∑

j=1

λj(1− (E(uX1))j)
))

ĜZ(t)(u), ĜZ(0)(u) = 1.

By using Theorem 2.1 of Leonenko et al. (2014), the mean and variance of compound
IGCP are given by

E(Z(t)) = E(W (1))E(M0(t)) =
k

∑

j=1

jλj

k0
∑

j0=1

j0µj0tE(X1)
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and

Var(Z(t)) = (E(W (1)))2Var(M0(t)) + Var(W (1))E(M0(t))

=
(

k
∑

j=1

jλjE(X1)
)2

k0
∑

j0=1

j20µj0t+

k0
∑

j0=1

j0µj0t
(

Var(X1)

k
∑

j=1

jλj + (E(X1))
2

k
∑

j=1

j2λj

)

,

respectively. Here, we have used the mean and variance of CGCP (see Khandakar and
Kataria (2024), Section 4).

Remark 4.5. The following limiting result holds true:

lim
t→∞

Z(t)

t
=

k
∑

j=1

jλj

k0
∑

j0=1

j0µj0tE(X1) with probability 1

which follows by using the strong law of large numbers.

Proposition 4.2. Let Xi’s be iid random variables such that Pr{X1 = i} = αi, i = 0, 1,

2, . . . and D(t) =
∑M̂(t)

i=1 Xi. Then, the pgf ĜD(t)(u) = E(uD(t)) is given by

ĜD(t)(u) = exp
(

− t

k0
∑

j0=1

µj0

(

1− exp
(

− j0

k
∑

j=1

λj

∞
∑

i=1

α
∗(j)
i (1− ui)

)))

, |u| ≤ 1,

where α
∗(j)
i =

∑

∑j
m=1 rm=i
rm∈N0

αr1αr2 . . . αrj .

Proof. See Appendix A3. �

Remark 4.6. Let {Zi}i≥1 be a sequence of iid random variables such that Pr{Z1 = i} =
1
λ

∑k
j=1 λjα

∗(j)
i . Also, let {M0(t)}t≥0 be a GCP with positive rates µ1, µ2, . . . , µk0 and

{Yi}i≥1 be a sequence of iid random variables such that Y1
d
=

∑N(1)
i=1 Zi, where {N(t)}t≥0 is

a Poisson process with parameter λ and independent of Zi’s. Then, we have

D(t)
d
=

M0(t)
∑

i=1

Yi,

where Yi’s are independent of the GCP {M0(t)}t≥0.

Next, we give a martingale characterization of the compound IGCP {D(t)}t≥0 defined
in Proposition 4.2.

Theorem 4.2. Let {Xi}i≥1 be a sequence of iid random variables with non-negative integer

support. Then, the process D(t) =
∑M̂(t)

i=1 Xi, t ≥ 0, where Xi’s are independent of

{M̂(t)}t≥0 is a compound IGCP iff {D(t)−
∑k

j=1 jλj

∑k0
j0=1 j0µj0t E(X1)}t≥0 is a {Ft}t≥0-

martingale, where Ft = σ(D(s), s ≤ t).

Proof. From Remark 4.6, the compound IGCP {D(t)}t≥0 is equal in distribution to a
compound GCP. So, the proof follows on using Remark 4.2 of Khandakar and Kataria
(2024) and Theorem 5.2 of Zhang and Li (2016). �
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4.2. Multivariate IGCP. Let {M1(t)}t≥0, {M2(t)}t≥0, . . . , {Mq(t)}t≥0 be q independent
GCPs such that {Mi(t)}t≥0 performs ki kinds of jumps of size ji with positive rate λiji,
ji = 1, 2, . . . , ki. Kataria and Dhillon (2024) defined a multivariate version of the GCP as
follows:

M̄(t) := (M1(t),M2(t), . . . ,Mq(t)), t ≥ 0.

It is called the multivariate GCP.
Here, we study a multivariate version of the IGCP which is a time-changed variant of

the multivariate GCP. It is defined as follows:

M̄(t) := (M1(M0(t)),M2(M0(t)), . . . ,Mq(M0(t))), t ≥ 0,

where {M0(t)}t≥0 is a GCP with positive rates µj0, j0 = 1, 2, . . . , k0 and it is independent
of {Mi(t)}t≥0. We call it the multivariate IGCP.
The following notations will be used: Let 0̄ = (0, 0, . . . , 0), 1̄ = (1, 1, . . . , 1) and n̄ =

(n1, n2, . . . , nq) be q-tuple vectors. For all i = 1, 2, . . . , q, if ni ≥ mi then we denote it by
n̄ ≥ m̄. Also, n̄ ≻ m̄ ( n̄ ≺ m̄) stand for ni ≥ mi (ni ≤ mi) for all i = 1, 2, . . . , q and
n̄ 6= m̄.
Let Λ =

∑q
i=1

∑ki
ji=1 λiji and Ω(ki, mi) = {(xi1, xi2, . . . , xiki) :

∑ki
ji=1 jixiji = mi, xiji ∈

N0}.
In an infinitesimal time interval of length h such that o(h)/h → 0 as h → 0, the transition

probabilities of multivariate IGCP are given by

Pr{M̄(t+ h) = n̄+ m̄|M̄(t) = n̄} =























1− h
∑k0

j0=1 µj0(1− e−j0Λ) + o(h), m̄ = 0̄,

h
∑k0

j0=1 µj0e
−j0Λ

∑

Ω(ki,mi)
i=1,2,...,q

q
∏

i=1

ki
∏

ji=1

(j0λiji )
xiji

xiji !
+ o(h), m̄ ≻ 0̄.

Remark 4.7. For k0 = k1 = · · · = kq = 1, the multivariate IGCP reduces to the multi-
variate version of iterated Poisson process.

Let p0(·, t) be the pmf of {M0(t)}t≥0 and G(ū, t) be the pgf of multivarite GCP. Then,

for |ui| ≤ 1, the pgf ĜM̄(ū, t) = E(u
M1(M0(t))
1 u

M2(M0(t))
2 . . . u

Mq(M0(t))
q ) of multivariate IGCP

can be obtained as follows:

ĜM̄(ū, t) =

∞
∑

m=0

G(ū, m)p0(m, t)

=
∞
∑

m=0

exp
(

−m

q
∑

i=1

ki
∑

ji=1

λiji(1− uji
i )
)

p0(m, t)

= exp
(

−
k0
∑

j0=1

µj0t
(

1− exp(−j0

q
∑

i=1

ki
∑

ji=1

λiji(1− uji
i )
))

,

where the penultimate step follows by using Eq. (3.5) of Kataria and Dhillon (2024), and
the last step follows by using (2.9). Thus,

∂

∂t
ĜM̄(ū, t) = −

(

k0
∑

j0=1

µj0

(

1− exp(−j0

q
∑

i=1

ki
∑

ji=1

λiji(1− u
ji
i )

)

ĜM̄(ū, t), ĜM̄(ū, 0) = 1. (4.7)
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Proposition 4.3. The pmf p̂M̄(n̄, t), n̄ ≥ 0̄ of {M̄(t)}t≥0 solves the following system of
differential equations:

d

dt
p̂M̄(n̄, t) = −

k0
∑

j0=1

µj0(1−e−j0λ)p̂M̄(n̄, t)+
∑

m̄≻0̄

p̂M̄(n̄−m̄, t)

k0
∑

j0=1

µj0e
−j0Λ

∑

Ω(ki,mi)
i=1,2,...,q

q
∏

i=1

ki
∏

ji=1

(j0λiji)
xiji

xiji !

with initial condition p̂M̄(n̄, 0) = δn̄(0̄).

Proof. The proof follows similar lines to that of Proposition 3.2. Thus, it is omitted. For
an alternate proof, we refer the reader to Appendix A2.

�

Theorem 4.3. The pmf of multivariate IGCP is given by

p̂M̄(n̄, t) =
∑

Ω(ki,ni)
i=1,2,...,q

(

q
∏

i=1

ki
∏

ji=1

(λiji)
niji

niji !

)

∞
∑

m=0

m
∑q

i=1

∑ki
ji=1 niji

∑

Ω(k0,m)

k0
∏

j0=1

(µj0e
−j0Λt)xj0

xj0 !
e−µj0

t, n̄ ≥ 0̄,

where Ω(ki, ni) = {(ni1, ni2, . . . , niki) :
∑ki

ji=1 jiniji = ni, niji ∈ N0}.

Proof. Let p(n̄, t) be the pmf of multivariate GCP. By using Eq. (3.7) of Kataria and
Dhillon (2024), we get

p̂M̄(n̄, t) =
∞
∑

m=0

p(n̄,m)Pr{M0(t) = m}

=
∑

Ω(ki,ni)
i=1,2,...,q

(

q
∏

i=1

ki
∏

ji=1

(λiji)
niji

niji!

)

∞
∑

m=0

m
∑q

i=1

∑ki
ji=1 nijie−mΛPr{M0(t) = m}

=
∑

Ω(ki,ni)
i=1,2,...,q

∞
∑

m=0

(

q
∏

i=1

ki
∏

ji=1

(mλiji)
niji

niji!

)

∑

Ω(k0,m)

k0
∏

j0=1

(µj0e
−j0Λt)xj0

xj0!
e−µj0

t,

where the last step follows by using (2.7). This completes the proof. �

Corollary 4.1. The pmf of multivariate IGCP has following equivalent form:

p̂M̄(n̄, t) =
∑

Ω(ki,ni)
i=1,2,...,q

(

q
∏

i=1

ki
∏

ji=1

(λiji)
niji

niji !

)

∑

∑k0
j0=1 rj0=zk

zk!
(

k0
∏

j0=1

j
rj0
0

rj0!

)

k0
∏

j0=1

Brj0
(µj0te

−j0Λ)eµj0
te−j0Λ

,

where Bn(x) is the nth order Bell polynomial.

Proposition 4.4. The Lévy measure of multivariate IGCP is given by

Π̂M̄(A1 ×A2 × · · · × Aq) =

k0
∑

j0=1

µj0

∑

n̄≻0̄

∑

Ω(ki,ni)
i=1,2,...,q

q
∏

i=1

(

ki
∏

ji=1

(j0λiji)
niji

niji!
e−j0λiji

)

I{ni∈Ai},

where Ω(ki, ni) = {(ni1, ni2, . . . , niki) :
∑ki

ji=1 jiniji = ni, niji ∈ N0}.
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Proof. Let ΠM0(·) be the Lévy measure of {M0(t)}t≥0 and p(n̄, t) be the pmf of MGCP. By
using Eq. (30.8) of Sato (1999), the Lévy measure of multivariate IGCP can be obtained
as follows:

Π̂M̄(A1 ×A2 × · · · ×Aq) =

∫ ∞

0

∑

n̄≻0̄

p(n̄, s)
(

q
∏

i=1

I{ni∈Ai}

)

ΠM0(ds)

=

∫ ∞

0

∑

n̄≻0̄

∑

Ω(ki,ni)
i=1,2,...,q

(

q
∏

i=1

I{ni∈Ai}

ki
∏

ji=1

(λijis)
niji

niji!
e−λiji

s
)

k0
∑

j0=1

µj0δj0(ds).

Finally, the result follows on integrating with respect to δj0(·), that is,
∫

f(x)δj0(dx) =
f(j0). �

Proposition 4.5. For 1 ≤ i ≤ q and 1 ≤ l ≤ q, the covariance of {Mi(M0(t))}t≥0 and
{Ml(M0(t))}t≥0 is given by

Cov(Mi(M0(t)),Ml(M0(t))) = I{i=l}

k0
∑

j0=1

j0µj0t

ki
∑

ji=1

j2i λiji +

ki
∑

ji=1

jiλiji

kl
∑

jl=1

jlλljl

k0
∑

j0=1

j20µj0t.

Proof. For i = l, we have

Cov(Mi(M0(t)),Ml(M0(t))) = Var(Mi(M0(t)))

=

ki
∑

ji=1

j2i λiji

k0
∑

j0=1

j0µj0t +
(

ki
∑

ji=1

jiλiji

)2
k0
∑

j0=1

j20µj0t (4.8)

which follows by using (3.10). For i 6= l, we have

E(Mi(M0(t))Ml(M0(t))) = E(E(Mi(M0(t))Ml(M0(t))|M0(t)))

= E

(

ki
∑

ji=1

jiλiji

kl
∑

jl=1

jlλljl(M0(t))
2
)

=

ki
∑

ji=1

jiλiji

kl
∑

jl=1

jlλljl

(

k0
∑

j0=1

j20µj0t+
(

k0
∑

j0=1

j0µj0t
)2)

which follows from (2.10). So, by using (3.9), we have

Cov(Mi(M0(t)),Ml(M0(t))) =

ki
∑

ji=1

jiλiji

kl
∑

jl=1

jlλljl

k0
∑

j0=1

j20µj0t. (4.9)

Finally, the proof follows by using (4.8) and (4.9). �

Proposition 4.6. For any 1 ≤ i ≤ q and 1 ≤ l ≤ q, the codifference of {Mi(M0(t))}t≥0

and {Ml(M0(t))}t≥0 is given by

τ(Mi(M0(t)),Ml(M0(t))) =

k0
∑

j0=1

µj0t
(

2− exp
(

ki
∑

ji=1

j0λiji(e
ωji − 1)

)

+ exp
(

kl
∑

jl=1

j0λljl(e
−ωjl − 1)

))

−
k0
∑

j0=1

µj0t
(

1− exp
(

ki
∑

ji=1

j0λiji(e
ωji − 1) +

kl
∑

jl=1

j0λljl(e
−ωjl − 1)

))

I{i 6=l}.
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Proof. For i 6= l, we have

E(eω(Mi(M0(t))−Ml(M0(t)))) = E

(

E

(

eω(Mi(M0(t))−Ml(M0(t)))|M0(t)
))

= E

(

exp

(( ki
∑

ji=1

λiji (e
ωji − 1) +

kl
∑

jl=1

λljl (e
−ωjl − 1)

)

M0(t)

))

= exp
(

−
k0
∑

j0=1

µj0 t
(

1− exp
(

ki
∑

ji=1

j0λiji (e
ωji − 1) +

kl
∑

jl=1

j0λljl(e
−ωjl − 1)

)))

,

which follows by using the (2.8). For i = l, we get E(eω(Mi(M0(t))−Ml(M0(t)))) = 1. Finally,
the result follows by using Eq. (1.7) of Kokoszka and Taqqu (1996). �

4.3. q-iterated GCP. Let us consider q independent GCPs {M1(t)}t≥0, {M2(t)}t≥0, . . . ,
{Mq(t)}t≥0 such that {Mi(t)}t≥0 performs jumps of size ji with positive rate λji, ji =

1, 2, . . . , ki. The q-iterated GCP {M̂ q(t)}t≥0 is defined as follows:

M̂ q(t) := M(M1(M2(. . . (Mq(t)) . . . ))), t ≥ 0, (4.10)

where {M(t)}t≥0 is a GCP with positive rates λj , j = 1, 2, . . . , k and it is independent of
{Mi(t)}t≥0, i = 1, 2, . . . , q.

Remark 4.8. For q = 1, the q-iterated GCP reduces to the IGCP. For k = k1 = k2 =
· · · = kq = 1, the process defined in (4.10) reduces to the q-iterated Poisson process.

Let p̂q(n, t) = Pr{M̂ q(t) = n}, n ≥ 0 denote the state probabilities of q-iterated GCP.
For q = 1, we have

p̂q(n, t) = Pr{M(M1(t)) = n}

=
∞
∑

s1=0

Pr{M1(t) = s1}Pr{M(s1) = n}

=
∑

Ω(k,n)

(

k
∏

j=1

λ
nj

j

nj !

)

e−µt
∑

∑k1
j1=1 rj1=zk

zk!

k1
∏

j1=1

j
rj1
1

rj1!
eµj1

te−j1λBrj1
(e−j1λµj1t)

which follows from (3.7).
Now, for q = 2, we have

p̂q(n, t) =

∞
∑

s2=0

Pr{M2(t) = s2}Pr{M(M1(s2)) = n}

=

∞
∑

s2=0

Pr{M2(t) = s2}

·
∑

Ω(k,n)

(

k
∏

j=1

λ
nj

j

nj !

)

e−µs2
∑

∑k1
j1=1 rj1=zk

zk!

k1
∏

j1=1

j
rj1
1

rj1!
eµj1

te−j1λBrj1
(e−j1λµj1s2).

Also, for q = 3, we have

p̂q(n, t) =

∞
∑

s3=0

Pr{M3(t) = s3}
∞
∑

s2=0

Pr{M2(s3) = s2}Pr{M(M1(s2)) = n}
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=
∞
∑

s2=0

∞
∑

s3=0

Pr{M3(t) = s3}Pr{M2(s3) = s2}Pr{M(M1(s2)) = n}

=
∞
∑

s2=0

∑

Ω(k2,n2)

(

k2
∏

j2=1

λ
nj2
j2

nj2!

)

e−λ3t ·
∑

∑k3
j3=1 rj3=zk2

zk2 !

k3
∏

j3=1

j
rj3
3

rj3!
eλj3

te−j3λ2Brj3
(e−j3λ2λj3t)

·
∑

Ω(k,n)

(

k
∏

j=1

λ
nj

j

nj !

)

e−µs2 ·
∑

∑k1
j1=1 rj1=zk

zk!
k1
∏

j1=1

j
rj1
1

rj1!
eµj1

te−j1λBrj1
(e−j1λµj1s2).

Proceeding inductively, we can obtain the following result:

Proposition 4.7. The state of q-iterated GCP are given as follows: For q even, we have

p̂q(n, t) =

∞
∑

sq=0

Pr{Mq(t) = sq}
(

q

2
−1
∏

i=1

∑

Ω(k2i,s2i)

(

k2i
∏

j2i=1

λ
nj2i

j2i

nj2i!

)

exp(−λ2i+1s2(i+1))
∑

∑k2i+1

j2i+1=1
rj2i+1

=zk2i

zk2i
!

·
k2i+1
∏

j2i+1=1

j
rj2i+1

2i+1

rj2i+1
!
exp(λj2i+1

s2(i+1) exp(−j2i+1)λ2i)Brj2i+1
(e−j2i+1λ2iλj2i+1

s2(i+1))
)

·
∑

Ω(k,n)

(

k
∏

j=1

λ
nj

j

nj !

)

e−s2λ1

∑

∑k1
j1=1

rj1=zk

zk!
(

k1
∏

j1=1

j
rj1
1

rj1 !

)

exp(e−j1λλj1s2)Brj1
(e−j1λλj1s2)

and for q odd, we have

p̂q(n, t) =

∞
∑

sq−1=0

∑

Ω(kq−1,sq−1)

(

kq−1
∏

jq−1=1

λ
njq−1

jq−1

njq−1
!

)

e−tλq

∑

∑kq

jq=1
rjq=zkq−1

zkq−1
!
(

kq
∏

jq=1

j
rjq
q

rjq !
exp(λjq te

−jqλq−1 )

· Brjq
(λjq te

−jqλq−1 )
)

( ⌊ q

2
⌋−1
∏

i=1

∞
∑

s2i=0

∑

Ω(k2i,s2i)

(

k2i
∏

j2i=1

λ
nj2i

j2i

nj2i!

)

exp(−λ2i+1s2(i+1))
∑

∑k2i+1

j2i+1=1
rj2i+1

=zk2i

zk2i
!

·
k2i+1
∏

j2i+1=1

j
rj2i+1

2i+1

rj2i+1
!
exp(λj2i+1

s2(i+1) exp(−j2i+1)λ2i)Brj2i+1
(e−j2i+1λ2iλj2i+1

s2(i+1))

)

·
∑

Ω(k,n)

(

k
∏

j=1

λ
nj

j

nj !

)

e−s2λ1

∑

∑k1
j1=1

rj1=zk

zk!
(

k1
∏

j1=1

j
rj1
1

rj1 !

)

exp(e−j1λλj1s2)Brj1
(e−j1λλj1s2).

Proposition 4.8. For |u| ≤ 1, the pgf Ĝq(u, t) of q-iterated GCP is given by

Ĝq(u, t) = exp
(

−
kq
∑

jq=1

λjqt
(

1−exp
(

−jq

kq−1
∑

jq−1=1

λjq−1

(

. . .
(

1−exp
(

−j1

k
∑

j=1

λj(1−uj)
))

. . .
))))

.

Proof. For q = 1, by using (3.3), we have

E(uM(M1(t))) = exp
(

−
k1
∑

j1=1

λj1t
(

1− exp
(

− j1

k
∑

j=1

λj(1− uj)
)))

.

Similarly, for q = 2 and q = 3, we get

E(uM(M1(M2(t)))) = E

(

exp
(

−M2(t)

k1
∑

j1=1

λj1

(

1− exp
(

− j1

k
∑

j=1

λj(1− uj)
))))
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= exp
(

−
k2
∑

j2=1

λj2t
(

1− exp
(

− j2

k1
∑

j1=1

λj1

(

1− exp
(

− j1

k
∑

j=1

λj(1− uj)
)))))

and

E(uM(M1(M2(M3(t)))))

= exp
(

−M3(t)

k2
∑

j2=1

λj2

(

1− exp
(

− j2

k1
∑

j1=1

λj1

(

1− exp
(

− j1

k
∑

j=1

λj(1 − uj)
)))))

= exp
(

−
k3
∑

j3=1

λj3 t
(

1− exp
(

− j3

k2
∑

j2=1

λj2

(

1− exp
(

− j2

k1
∑

j1=1

λj1

(

1− exp
(

− j1

k
∑

j=1

λj(1− uj)
)))))))

,

respectively. Proceeding inductively, we obtain the required result. �

By using (2.10) and Theorem 2.1 of Leonenko et al. (2014), the mean and variance of
q-iterated GCP can be obtained as follows:

E(M̂ q(t)) = E(M(1))E(M1(M2(. . . (Mq(t)) . . . )))

= E(M(1))E(M1(1))E(M2(M3(. . . (Mq(t)) . . . )))

...

= E(M(1))
(

q−1
∏

i=1

E(Mi(1))
)

E(Mq(t))

=

k
∑

j=1

jλj

(

q
∏

i=1

ki
∑

ji=1

jiλji

)

t

and

Var(M̂ q(t)) = Var(M1(1))E(M1(M2(. . . (Mq(t)) . . . ))) + (E(M(1)))2 Var(M1(M2(. . . (Mq(t)) . . . )))

...

= Var(M1(1))E(M1(M2(. . . (Mq(t)) . . . ))) + (E(M(1)))2
(

q−1
∏

r=1

(E(Mr(1)))
2
)

Var(Mq(t))

+ (E(M(1)))2
q

∑

r=1

(

Var(Mr(1))
(

r−1
∏

l=1

(E(Ml(1)))
2
)

E(Mr+1(Mr+2(. . . (Mq(t)) . . . )))
)

=

k
∑

j=1

j2λjt
(

q
∏

i=1

ki
∑

ji=1

jiλji

)

+
(

k
∑

j=1

jλj

)2(
q−1
∏

r=1

(

kr
∑

jr=1

jrλjr

)2)
kq
∑

jq=1

j2qλjqt

+
(

k
∑

j=1

jλj

)2
q−1
∑

r=1

(

kr
∑

jr=1

j2rλjrt
(

r−1
∏

l=1

(

kl
∑

jl=1

jlλjl

)2)(
q
∏

i=r+1

jiλji

))

,

respectively.

Remark 4.9. As Var(M̂ q(t))− E(M̂ q(t)) > 0, the q-iterated GCP is overdispersed.

5. A time-changed variant of IGCP

In this section, we study a time-changed variant of the IGCP by subordinating it with
the first hitting time of a stable subordinator. We call it the time-changed IGCP. It is
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defined as follows:
M̂α(t) := M̂((Y α(t))), t ≥ 0, (5.1)

where {Y α(t)}t≥0, 0 < α < 1 is an inverse α-stable subordinator independent of the IGCP

{M̂(t)}t≥0.

Remark 5.1. Note that M̂α(t) = M(Mα
0 (t)), t ≥ 0, where {Mα

0 (t)}t≥0 is the GFCP. So,
the time-changed IGCP is the GCP subordinated by an independent GFCP {Mα

0 (t)}t≥0.

The pgf of time-changed IGCP can be obtained as follows:

E(uM̂α(t)) = E(E(uM̂α(t)|Mα
0 (t)))

= E

(

exp
(

−Mα
0 (t)

k
∑

j=1

λj(1− uj)
))

= Eα,1

(

k0
∑

j0=1

µj0t
α
(

exp
(

j0

k
∑

j=1

λj(u
j − 1)

)

− 1
))

, |u| ≤ 1,

where the last step follows by using Eq. (14) of Kataria and Khandakar (2022).

Theorem 5.1. The state probabilities q̂α(n, t) = Pr{M̂α(t) = n}, n ≥ 0 of time-changed
IGCP are given by

q̂α(n, t) =
∑

Ω(k,n)

(

k
∏

j=1

λ
nj

j

nj !

)

∑

∑k0
j0=1

rj0=zk

zk!
(

k0
∏

j0=1

j
rj0
0

rj0 !

)

∑

xj0
≥0

1≤j0≤k0

(

k0
∏

j0=1

x
rj0
j0

(µj0t
αe−j0λ)xj0

xj0 !

)

zk0
!E

zk0+1
α,αzk0+1(−µtα),

where Ω(k, n) = {(n1, n2, . . . , nk) :
∑k

j=1 jnj = n, nj ∈ N0}, zk = n1 + n2 + · · · + nk and
zk0 = x1 + x2 + · · ·+ xk0 .

Proof. By using (5.1), we have

q̂α(n, t) =

∞
∑

m=0

Pr{M(m) = n}Pr{Mα
0 (t) = m}

=
∑

Ω(k,n)

(

k
∏

j=1

λ
nj

j

nj !

)

∞
∑

m=0

mzke−mλ

m
∑

r=0

∑

x1+x2+···+xk0
=r

x1+2x2+···+k0xk0
=m

r!
(

k0
∏

j0=1

(µj0t
α)xj0

xj0!

)

Er+1
α,rα+1(−µtα)

=
∑

Ω(k,n)

(

k
∏

j=1

λ
nj

j

nj !

)

∑

xj0
≥0

1≤j0≤k0

(

k0
∑

j0=1

j0xj0

)zk
zk0 !

(

k0
∏

j0=1

(µj0t
αe−j0λ)xj0

xj0 !

)

E
zk0+1

α,zk0α+1(−µtα),

where second step follows by using (1.2) and (2.7). Finally, the proof follows by using
multinomial theorem. �

For an alternate proof of Theorem 5.1, we refer the reader to Appendix A4.

Proposition 5.1. The state probabilities q̂α(n, t), n ≥ 0 solve the following system of
differential equations:

dα

dtα
q̂α(n, t) = −

k0
∑

j0=1

µj0 q̂
α(n, t) +

k0
∑

j0=1

µj0e
−j0λ

n
∑

m=0

∑

Ω(k,m)

(

k
∏

j=1

(j0λj)
xj

xj !

)

q̂α(n−m, t)

with q̂α(n, 0) = δn(0). Here, Ω(k,m) = {(x1, x2, . . . , xk) :
∑k

j=1 jxj = m, xj ∈ N0}.
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Proof. From (5.1), we have

q̂α(n, t) =

∫ ∞

0

p̂(n, x)h(x, t) dx, (5.2)

where h(x, t) is the density of inverse α-stable subordinator and p̂(n, x) is the pmf of IGCP.
On taking the Laplace transform of (5.2), we get

˜̂qα(n, s) = sα−1

∫ ∞

0

p̂(n, x)e−sαxdx = sα−1 ˜̂p(n, sα) (5.3)

which follows by using Eq. (3.13) of Meerschaert and Scheffler (2008). Also, on taking the
Laplace transform with respect to t on both sides of (3.6), we get

s ˜̂p(n, s)− p̂(n, 0) = −
k0
∑

j0=1

µj0
˜̂p(n, s) +

k0
∑

j0=1

µj0e
−j0λ

n
∑

m=0

∑

Ω(k,m)

(

k
∏

j=1

(j0λj)
xj

xj !

)

˜̂p(n−m, s)

which by using (5.3) becomes

sα ˜̂qα(n, s)−sα−1q̂α(n, 0) = −
k0
∑

j0=1

µj0
˜̂qα(n, s)+

k0
∑

j0=1

µj0e
−j0λ

n
∑

m=0

∑

Ω(k,m)

(

k
∏

j=1

(j0λj)
xj

xj!

)

˜̂qα(n−m, s).

On taking the inverse Laplace transform on both sides of the above equation, we get the
required result. �

For an alternate proof of the Proposition 5.1, we refer the reader to Appendix A5.
By using Theorem 2.1 of Leonenko et al. (2014), the mean and variance of time-changed

IGCP can be obtained as follows:

E(M̂α(t)) = E(M̂(1))E(Y α(t)) =
Stα

Γ(α + 1)

and

Var(M̂α(t)) = (E(M̂(1)))2Var(Y α(t)) + Var(M̂(1))E(Y α(t)) =
Rt2α + T tα

Γ(α+ 1)
,

where we have used (2.5), (3.9) and (3.10). Here, R = S2
(

2
Γ(2α+1)

− 1
Γ2(α+1)

)

.

Remark 5.2. Alternatively, by using (2.5), (1.3) and (1.4), the mean and variance of time-

changed IGCP can be obtained as follows: E(M̂α(t)) = E(M(1))E(Mα
0 (t)) and Var(M̂α(t)) =

(E(M(1)))2Var(Mα
0 (t)) + Var(M(1))E(Mα

0 (t)).

For 0 < s < t, let the correlation function for a non-stationary stochastic process satisfies

Corr(X(s), X(t)) ∼ c(s)t−θ, as t → ∞
for some c(s) > 0. Then, the process {X(t)}t≥0 is said to exhibit the LRD property if
θ ∈ (0, 1) and the SRD property if θ ∈ (1, 2).

For fixed s and large t, the covariance of {M̂α(t)}t≥0 can be obtained as follows:

Cov(M̂α(t), M̂α(s)) = Var(M̂(1))E(Y α(s)) + (E(M̂(1)))2Cov(Y α(s), Y α(t))

which follows by using Theorem 2.1 of Leonenko et al. (2014). Now, by using (2.5), (2.6),
(3.9) and (3.10), we get

Cov(M̂α(s), M̂α(t)) ∼ Tsα

Γ(α+ 1)
+

S2

Γ2(α + 1)

(

αs2αB(α, α+1)− α2

(α + 1)

sα+1

t1−α

)

, as t → ∞.
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Theorem 5.2. The time-changed IGCP exhibits the LRD property.

Proof. For fixed s and large t, we have

Corr(M̂α(s), M̂α(t)) ∼
Tsα + S2

(

αs2αB(α, α+ 1)− α2

(α+1)
sα+1

t1−α

)

√

Var(M̂α(s))
√
Rt2α + T tα

∼ c(s)t−α,

where

c(s) =
TsαΓ(α + 1)Γ(2α+ 1) + S2s2αΓ2(α + 1)

Γ3/2(α + 1)Γ(2α+ 1)

√

RVar(M̂α(s))
.

As α ∈ (0, 1), the time-changed IGCP exhibits the LRD property. �

For fixed h ≥ 0, the increment process of time-changed IGCP is defined as

Ẑα
h (t) := M̂α(t + h)− M̂α(t), t ≥ 0.

Proposition 5.2. The increment process {Ẑα
h (t)}t≥0 exhibits the SRD property.

Proof. The proof follows similar lines to that of Theorem 2 of Kataria and Khandakar
(2022). Hence, it is omitted. �

By using (3.9) and the strong law of large numbers, we get the next result.

Lemma 5.1. The following asymptotic result holds true for IGCP:

lim
t→∞

M̂(t)

t
=

k
∑

j=1

jλj

k0
∑

j0=1

j0µj0, in probability.

Proposition 5.3. The one-dimensional distributions of time-changed IGCP are not infin-
itely divisible.

Proof. By using the self-similarity property of inverse α-stable subordinator, we have

M̂α(t)
d
= M̂(tαY α(1)).

Thus,

lim
t→∞

M̂α(t)

t

d
= lim

t→∞

M̂(tαY α(1))

tα

= Y α(1) lim
t→∞

M̂(tαY α(1))

tαY α(1)

d
= Y α(1)

k
∑

j=1

jλj

k0
∑

j0=1

j0µj0,

where the last step follows by using Lemma 5.1. Let us assume that {M̂α(t)}t≥0 is infinitely

divisible. Then, M̂α(t)/tα is also infinitely divisible. Consequently, Y α(1) is infinitely

divisible since limt→∞ M̂α(t)/tα is infinitely divisible which follows from a result of Steutel
and van Harn (2004), p. 94. This leads to a contradiction as Y α(1) is not infinitely divisible
(see Vellaisamy and Kumar (2018)). �
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Proposition 5.4. Let r ≥ 1. The rth factorial moment Φα(r, t) = E(M̂α(t)(M̂α(t) −
1) . . . (M̂α(t)− r + 1)) of time-changed IGCP is given by

Φα(r, t) =

r
∑

n=1

r!

Γ(nα + 1)
tnα

∑

∑n
l=1 ml=r
ml∈N

n
∏

l=1

k0
∑

j0=1

µj0

∞
∑

s=0

js0
s!

∑

∑s
i=1 xi=ml

xi∈N0

s
∏

i=1

1

xi!

k
∑

j=1

λj(j)xi
,

where (j)xi
= j(j − 1) . . . (j − xi + 1) denotes the falling factorial.

Proof. We have Φα(r, t) = ∂r

∂urE(u
M̂α(t))|u=1. By using the rth derivative of the composition

of two functions (see Johnson (2002), Eq. (3.3)), we get

Φα(r, t) =
r

∑

n=0

1

n!
E

(n)
α,1

(

k0
∑

j0=1

µj0t
α
(

exp
(

j0

k
∑

j=1

λj(u
j − 1)

)

− 1
))

· Br,n

(

k0
∑

j0=1

µj0t
α
(

exp
(

j0

k
∑

j=1

λj(u
j − 1)

)

− 1
))

∣

∣

∣

u=1
, (5.4)

where

E
(n)
α,1

(

k0
∑

j0=1

µj0t
α
(

exp
(

j0

k
∑

j=1

λj(u
j − 1)

)

− 1
))

∣

∣

∣

u=1

= n!En+1
α,nα+1

(

k0
∑

j0=1

µj0t
α
(

exp
(

j0

k
∑

j=1

λj(u
j − 1)

)

− 1
))

∣

∣

∣

u=1

=
n!

Γ(nα+ 1)
(5.5)

and

Br,n

(

k0
∑

j0=1

µj0t
α
(

exp
(

j0

k
∑

j=1

λj(u
j − 1)

)

− 1
))

∣

∣

∣

u=1

=
n

∑

m=0

(

n

m

)

(

−
k0
∑

j0=1

µj0t
α
(

exp
(

j0

k
∑

j=1

λj(u
j − 1)

)

− 1
))n−m

· dr

dtr

(

k0
∑

j0=1

µj0t
α
(

exp
(

j0

k
∑

j=1

λj(u
j − 1)

)

− 1
))m∣

∣

∣

u=1

=
dr

dtr

(

k0
∑

j0=1

µj0t
α
(

exp
(

j0

k
∑

j=1

λj(u
j − 1)

)

− 1
))m∣

∣

∣

u=1
.

Now, by using Eq. (3.6) of Johnson (2002), we get

dr

dtr

(

k0
∑

j0=1

µj0t
α
(

exp
(

j0

k
∑

j=1

λj(u
j − 1)

)

− 1
))m∣

∣

∣

u=1

= r!tnα
∑

∑n
l=1 ml=r
ml∈N0

n
∏

l=1

1

ml!

dml

duml

(

k0
∑

j0=1

µj0 exp
(

j0

k
∑

j=1

λj(u
j − 1)

))
∣

∣

∣

u=1
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= r!tnα
∑

∑n
l=1 ml=r
ml∈N0

n
∏

l=1

1

ml!

k0
∑

j0=1

µj0

∞
∑

s=0

js0
s!

dml

duml

(

k
∑

j=1

λj(u
j − 1)

)s∣
∣

∣

u=1

= r!tnα
∑

∑n
l=1 ml=r
ml∈N0

n
∏

l=1

1

ml!

k0
∑

j0=1

µj0

∞
∑

s=0

js0
s!
ml!

∑

∑s
i=1 xi=ml

xi∈N0

s
∏

i=1

1

xi!

dxi

duxi

(

k
∑

j=1

λj(u
j − 1)

)
∣

∣

∣

u=1

= r!tnα
∑

∑n
l=1 ml=r
ml∈N0

n
∏

l=1

1

ml!

k0
∑

j0=1

µj0

∞
∑

s=0

js0
s!
ml!

∑

∑s
i=1 xi=ml

xi∈N0

s
∏

i=1

1

xi!

k
∑

j=1

λj(j)xi
.

Thus,

Br,n

(

k0
∑

j0=1

µj0t
α
(

exp
(

j0

k
∑

j=1

λj(u
j − 1)

)

− 1
))

∣

∣

∣

u=1

= r!tnα
∑

∑n
l=1 ml=r
ml∈N0

n
∏

l=1

1

ml!

k0
∑

j0=1

µj0

∞
∑

s=0

js0
s!
ml!

∑

∑s
i=1 xi=ml

xi∈N0

s
∏

i=1

1

xi!

k
∑

j=1

λj(j)xi
. (5.6)

Finally, the result follows on substituting (5.5) and (5.6) in (5.4). �

Appendix

A1. Proof of Proposition 3.2: From (3.4), we have

∂

∂t
Ĝ(u, t) =

(

− µ+

k0
∑

j0=1

µj0e
−j0λ

∞
∑

r=0

jr0
∑

∑k
j=1 xj=r

k
∏

j=1

(λju
j)xj

xj !

)

Ĝ(u, t)

= −µ
∑

n≥0

unp̂(n, t) +

k0
∑

j0=1

µj0e
−j0λ

∑

xj≥0
1≤j≤k

(

k
∏

j=1

(j0λju
j)xj

xj !

)

∑

n≥0

unp̂(n, t)

=
∑

n≥0

un
(

− µp̂(n, t) +

k0
∑

j0=1

µj0e
−j0λ

n
∑

m=0

∑

Ω(k,m)

(

k
∏

j=1

(j0λj)
xj

xj !

)

p̂(n−m, t)
)

. (5.7)

Also, we have

∂

∂t
Ĝ(u, t) =

∑

n≥0

un d

dt
p̂(n, t). (5.8)

Finally, on comparing the coefficient of un over the range n ≥ 0 on both sides of (5.7) and
(5.8), we get the required result.

A2. Proof of Proposition 4.3: From (4.7), we have

∂

∂t
GM̄(ū, t) =

(

− µ+

k0
∑

j0=1

µj0e
−j0λ

∞
∑

r=0

(r
∑q

i=1

∑ki
ji=1 λijiu

ji
i )

r

r!

)

GM̄(ū, t)
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=
(

− µ+

k0
∑

j0=1

µj0e
−j0λ

∞
∑

r=0

jr0
r!

∑

r1+r2+···+rq=r

r!

q
∏

i=1

(
∑ki

ji=1 λijiu
ji
i )

ri

ri!

)

GM̄(ū, t)

=
(

− µ+

k0
∑

j0=1

µj0e
−j0λ

∑

ri≥0
i=1,2,...,q

q
∏

i=1

jri0
∑

xi1+xi2+···+xiki
=ri

ki
∏

ji=1

(λijiu
ji
i )

xiji

xiji !

)

GM̄(ū, t)

=
(

− µ+

k0
∑

j0=1

µj0e
−j0λ

∑

mi≥0
i=1,2,...,q

∑

Ω(ki,mi)
i=1,2,...,q

q
∏

i=1

umi

i

ki
∏

ji=1

(j0λiji)
xiji

xiji!

)

GM̄(ū, t)

= −µ
∑

n̄≥0̄

(

q
∏

i=1

uni

i

)

pM̄(n̄, t) +

k0
∑

j0=1

µj0e
−j0λ

·
∑

mi≥0
i=1,2,...,q

∑

Ω(ki,mi)
i=1,2,...,q

(

q
∏

i=1

ki
∏

ji=1

(j0λiji)
xiji

xiji !

)

∑

n̄≥0̄

(

q
∏

i=1

umi+ni

i

)

pM̄(n̄, t)

= −µ
∑

n̄≥0̄

(

q
∏

i=1

uni

i

)

pM̄(n̄, t) +
∑

n̄≥0̄

(

q
∏

i=1

uni

i

)

k0
∑

j0=1

µj0e
−j0λ

·
∑

mi≥0
i=1,2,...,q

∑

Ω(ki,mi)
i=1,2,...,q

(

q
∏

i=1

ki
∏

ji=1

(j0λiji)
xiji

xiji!

)

pM̄(n̄− m̄, t).

(5.9)

Also, we have

∂

∂t
GM̄(ū, t) =

∑

n̄≥0̄

(

q
∏

i=1

uni

i

) d

dt
pM̄(n̄, t). (5.10)

Finally, the result follows on comparing the coefficient of un1
1 un2

2 . . . u
nq
q over the range n̄ ≥ 0̄

on both sides of (5.9) and (5.10).

A3. Proof of Proposition 4.2: By using (3.3), we get

E(uD(t)) = exp
(

− t

k0
∑

j0=1

µj0

(

1− exp
(

− j0

k
∑

j=1

λj(1− (E(uX))j)
)))

= exp
(

− t

k0
∑

j0=1

µj0

(

1− exp
(

− j0

k
∑

j=1

λj(1− E(uX1+X2+···+Xj ))
)))

= exp
(

− t

k0
∑

j0=1

µj0

(

1− exp
(

− j0

k
∑

j=1

λj

(

1−
∞
∑

i=0

uiPr{X1 + · · ·+Xj = i}
))))

= exp
(

− t

k0
∑

j0=1

µj0

(

1− exp
(

− j0

k
∑

j=1

λj

(

1−
∞
∑

i=0

ui
∑

∑j
m=1 rm=i
rm∈N0

αr1αr2 . . . αrj

))))
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= exp
(

− t

k0
∑

j0=1

µj0

(

1− exp
(

− j0

k
∑

j=1

λj

(

1−
∞
∑

i=0

uiα
∗(j)
i

))))

= exp
(

− t

k0
∑

j0=1

µj0

(

1− exp
(

− j0

k
∑

j=1

λj

∞
∑

i=0

α
∗(j)
i (1− ui)

)))

, (as

∞
∑

i=0

α
∗(j)
i = 1)

= exp
(

− t

k0
∑

j0=1

µj0

(

1− exp
(

− j0

k
∑

j=1

λj

∞
∑

i=1

α
∗(j)
i (1− ui)

)))

.

This completes the proof.

A4. Proof of Theorem 5.1: Let h(x, t) be the density of inverse α-stable subordinator and
p̂(n, x) be the pmf of IGCP. Then, from (5.1), we have

q̂
α(n, t) =

∫ ∞

0

p̂(n, s)h(s, t) ds

=
∑

Ω(k,n)

(

k
∏

j=1

λ
nj

j

nj !

)

∑

∑k0
j0=1

rj0
=zk

zk!
(

k0
∏

j0=1

j
rj0
0

rj0 !

)

∑

xj0
≥0

1≤j0≤k0

(

k0
∏

j0=1

x
rj0
j0

(µj0e
−j0λ)xj0

xj0 !

)

∫ ∞

0

s
zk0 e

−µs
h(s, t)ds

(5.11)

On taking Laplace transform on both sides of (5.11), we get

˜̂q(n,w) =
∑

Ω(k,n)

(

k
∏

j=1

λ
nj

j

nj !

)

∑

∑k0
j0=1

rj0
=zk

zk!
(

k0
∏

j0=1

j
rj0
0

rj0 !

)

∑

xj0
≥0

1≤j0≤k0

(

k0
∏

j0=1

x
rj0
j0

(µj0e
−j0λ)xj0

xj0 !

)

∫ ∞

0

s
zk0 e

−µs
w

α−1
e
−swα

ds

=
∑

Ω(k,n)

(

k
∏

j=1

λ
nj

j

nj !

)

∑

∑k0
j0=1

rj0
=zk

zk!
(

k0
∏

j0=1

j
rj0
0

rj0 !

)

∑

xj0
≥0

1≤j0≤k0

(

k0
∏

j0=1

x
rj0
j0

(µj0e
−j0λ)xj0

xj0 !

)

wα−1Γ(zk0
+ 1)

(µ+wα)zk0+1 .

Now, on taking the inverse Laplace transform on both sides of the above equation, we get

q̂
α(n, t) =

∑

Ω(k,n)

(

k
∏

j=1

λ
nj

j

nj !

)

∑

∑k0
j0=1

rj0
=zk

zk!
(

k0
∏

j0=1

j
rj0
0

rj0 !

)

∑

xj0
≥0

1≤j0≤k0

(

k0
∏

j0=1

x
rj0
j0

(µj0 t
αe−j0λ)xj0

xj0 !

)

zk0
!E

zk0
+1

α,αzk0
+1(−µt

α),

where in the last step, we have used (2.3). This completes the proof.

A5. Proof of Proposition 5.1: By using (5.1), we have

q̂α(n, t) =
∞
∑

m=0

Pr{M(m) = n}pα(m, t).

So, by using (1.1), we get

dα

dtα
q̂α(n, t) =

∞
∑

m=0

Pr{M(m) = n}
(

−
k0
∑

j0=1

µj0(p
α(m, t)− pα(m− j0, t))

)

= −
k0
∑

j0=1

µj0 q̂
α(n, t) +

k0
∑

j0=1

µj0Pr{M(m) = n}pα(m− j0, t)

= −
k0
∑

j0=1

µj0 q̂
α(n, t) +

k0
∑

j0=1

µj0

∞
∑

r=0

Pr{M(j0) = r}q̂α(n− r, t)
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which reduces to the required result on using (2.7).

References

[1] Beghin, L. and Orsingher, E. (2009). Fractional Poisson processes and related planar random motions.
Electron. J. Probab. 14(61), 1790-1827.

[2] Beghin, L. and Orsingher, E. (2016). Population processes sampled at random times. J. Stat. Phys.
163(1), 1-21.

[3] Bochner S. (1955). Harmonic Analysis and the Theory of Probability. University of California Press,
Berkeley.

[4] Buchak, K. and Sakhno, L. (2017). Compositions of Poisson and gamma processes.Mod. Stoch. Theory

Appl. 4(2), 161-188.
[5] Comtet, L. (1974). Advanced Combinatorics: The Art of Finite and Infinite Expansions, D. Reidel

Publishing Co., Dordrecht, The Netherlands.
[6] Dhillon, M. and Kataria, K. K. (2024). On martingale characterizations of generalized counting process

and its time-changed variants. J. Math. Anal. Appl. 540(2), 128749.
[7] Di Crescenzo, A., Martinucci, B. and Meoli, A. (2016). A fractional counting process and its connection

with the Poisson process. ALEA Lat. Am. J. Probab. Math. Stat. 13(1), 291-307.
[8] Di Crescenzo, A., Martinucci, B. and Zacks, S. (2015). Compound Poisson process with a Poisson

subordinator. J. Appl. Probab. 52(2), 360-374.
[9] Johnson, W. P. (2002). The curious history of Faà di Bruno’s formula. Amer. Math. Monthly 109(3),
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