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Abstract. We determine the large size limit of a network of interacting Hawkes Processes on an adaptive
network. The flipping of the node variables is taken to have an intensity given by the mean-field of the afferent
edges and nodes. The flipping of the edge variables is a function of the afferent node variables. The edge variables
can be either symmetric or asymmetric. This model is motivated by applications in sociology, neuroscience and
epidemiology. In general, the limiting probability law can be expressed as a fixed point of a self-consistent Poisson
Process with intensity function that is (i) delayed and (ii) depends on its own probability law. In the particular case
that the edge flipping is only determined by the state of the pre-synaptic neuron (as in neuroscience) it is proved
that one obtains an autonomous neural-field type equation for the dual evolution of the synaptic potentiation and
neural potentiation.

THE HYDRODYNAMIC LIMIT OF HAWKES PROCESSES ON ADAPTIVE

STOCHASTIC NETWORKS

JAMES MACLAURIN ∗

We study stochastic processes on Adaptive Networks, consisting of node variables and edge
variables that evolve stochastically in time [12]. Both the node and edge variables take values in a
finite state space, with Poissonian jumps between states. The intensity of the edge variable flipping
is a function of the states of the nodes at either end, and the flipping of the node variables is a
‘mean-field’ of the states of all edges and accompanying nodes. There are many applications of
this sort of network [11]: including neuroscience (the edge dynamics corresponds to slow synaptic
dynamics and learning), epidemiology (for example, if individuals are more likely to self-isolate if
they get infected).

Despite the many many applications, there does not seem to exist a general ‘Mckean-Vlasov’
type equation that yields the large n limiting dynamics. Previous work, including by this author,
only obtained limiting equations by resorting to implicit delay-stochastic differential equations [15].
There are several studies of related systems, including [10], Many scholars have also considered the
hydrodynamic limit of large networks of interacting neurons on inhomogeneous graphs, including
[7, 14, 1, 5, 6, 3].

A very important application of these results is that it yields a general formalism for gen-
erating random graphs, complementing for instance [13]. If, for example, the empirical measure
concentrates at a single value in the large n limit, then it will automatically yield an accurate
understanding of the local structure of the graph. One must also note that there exists a variety
of adaptive network models which are not of the mean-field type, such as the adaptive voter model
formulated by Durrett [4].

0.1. Notation. The index set of the nodes is In := {1, 2, . . . , n}. Let Γ and ΓE be discrete
sets, specifying the possible states of the node variables and edge variables. Let D([0, T ],Γ) and
D([0, T ],ΓE) specify the set of all cadlag trajectories taking values in (respectively) Γ and ΓE .
This means that any x ∈ D([0, T ],Γ) must be (i) piecewise constant, (ii) with only a finite number
of discontinuities, (iii) possessing left limits and continuous from the right.

Let XT ⊂ D([0, T ],R) consist of all cadlag functions that are (i) non-decreasing, and (ii) equal
to 0 at time 0. For any x, y ∈ D([0, T ],Γ), define

dt(x, y) =

∫ t

0

χ{xs 6= ys}ds.(0.1)

We note that dt generates the Skorohod Toplogy on D([0, T ],Γ), however dt is not a complete
metric. For a positive integer a, let ZT,a consist of all x ∈ D([0, T ],Γ) such that the number of
points of discontinuity is less than or equal to a. One can check that ZT,a is a compact subset of
D([0, T ],Γ), and that dt is complete over ZT,a.

Let dW,T : P
(

E × D([0, T ],R)
)

× P
(

E × D([0, T ],R)
)

7→ R be the Wasserstein Distance, i.e

(0.2) dW (µ, ν) = inf
ζ

{

E
ζ
[

dE(θ, θ̃) + dT (x, y)
]}

,
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where the infimum is over all couplings ζ ∈ P
(

E × D([0, T ],R)× E ×D([0, T ],R)
)

.
Next define Y ⊆ [0, 1]ΓE×Γ to consist of all (ga,α)a∈ΓE ,α∈Γ such that

∑

a∈ΓE

∑

α∈Γ

ga,α = 1.(0.3)

Let Bǫ(θ) ⊂ E be the open ball about θ ∈ E of radius ǫ.

1. Model Outline. Consider a network of inhomogeneous Poisson Processes on a random
adaptive network. Node j ∈ In is assigned a position θjn in a compact Riemannian Manifold E .

Hypothesis 1.1. There exists a measure µE ∈ P(E) such that

lim
n→∞

n−1
∑

j∈In

δθj
n
= µE .(1.1)

It is also assumed that µE is absolutely continuous with respect to the metric measure on E, with
continuous density.

It is assumed that the edges {Jjk
t }j,k∈In#1≤q≤p take values in a discrete set ΓE , and that the

node variables {σj
t }j∈In take values in a discrete state space Γ. We assume that the edge-transitions

depend on the states of the end variables, i.e. for h≪ 1 and α ∈ ΓE , if J
jk
t = b then

P
(

Jjk
t+h = a

∣

∣ Ft

)

= hlb7→a

(

σj
t , σ

k
t

)

+O(h2).(1.2)

Define µ̂n,j
t ∈ Y := P(ΓE × Γ) to represent the local empirical measure containing information

about the neighborhood of node j. It is such that, writing, for ζ ∈ Γ and a ∈ ΓE ,

µ̂n,j
t (a, ζ) =n−1

∑

k∈In

χ
{

Jjk
t = a

}

χ
{

σk
t = ζ

}

(1.3)

It is assumed that the transitions of the nodes are Poissonian, and such that for all α 6= β, there
exists a Lipschitz function

fα7→β : Y 7→ R
+(1.4)

such that if σj
t = α then for h≪ 1,

P
(

σj
t+h = β

∣

∣ Ft

)

= hfα7→β

(

µ̂n,j
t

)

+O(h2).(1.5)

Hypothesis 1.2. We assume that either (A) with unit probability, for all t ≥ 0, Jjk
t = Jkj

t ,
or that (B) the transitions are independent, i.e. for j 6= k and any T > 0,

lim
h→0

h−1
P
(

For some t ≤ T, Jjk
t+h 6= Jjk

t and Jkj
t+h 6= Jkj

t

)

= 0.(1.6)

The initial conditions {σj
0}j∈In and {Jjk

0 }j,k∈In are constants (and they can also depend on n,
although its neglected from the notation), and it is assumed that the empirical distribution of the
initial conditions and spatial locations converges weakly, i.e. it is assumed that

Hypothesis 1.3. There exists a continuous function v : E × E 7→ P(Γ×Γ×ΓE) such that for
any continuous function B : E × E × Γ× Γ× ΓE 7→ R,

(1.7) sup
α1,α2∈Γ

sup
a∈ΓE

lim
n→∞

∣

∣

∣

∣

∫

E

∫

E

B(x, y, α1, α2, a)vxy(α1, α2, a)dµE(x)dµE (y)

− n−2
∑

j,k∈In

B(θjn, θ
k
n, α1, α2, a)χ{σ

j
0 = α1, σ

k
0 = α2, J

jk
0 = a}

∣

∣

∣

∣

= 0.
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1.1. Main Results. We first state our main result.

Theorem 1.4. There exists µ ∈ P
(

E ×D([0, T ],Γ)
)

(this is precisely specified in Theorem 2.2
below), such that for any ǫ > 0,

lim
n→∞

n−1 logP
(

dW (µ̂n, µ) ≥ ǫ
)

< 0.(1.8)

The limiting probability law µ is (in general) non-autonomous. This makes it difficult to analyze
and identify phase transitions and bifurcations (most of the dynamical systems machinery is geared
towards autonomous systems). However if we make the additional assumption that the transition

rate of the edge Jjk
t is independent of σj

t (which in general implies that Jjk
t 6= Jkj

t ), then we obtain
an autonomous expression. This greatly facilitates an analysis of pattern formation and phase
transitions.

Hypothesis 1.5. Suppose that (A) of Hypothesis 1.2 holds, and that in addition, the intensity
of the connectivity changes only depends on the pre-synaptic activity

lb7→a

(

σj
t , σ

k
t

)

:= l̃b7→a

(

σk
t

)

.(1.9)

Theorem 1.6. Suppose that Hypothesis 1.5 holds in addition to the other hypotheses. For any
continuous function H : E × E × Γ× ΓE 7→ R and any T > 0, P-almost-surely,

(1.10) lim
n→∞

sup
α∈Γ

sup
a∈ΓE

sup
t≤T

∣

∣

∣

∣

∫

E

∫

E

H(x, y, α, a)pxy(α, a)dµE (x)dµE (y)

− n−2
∑

j,k∈In

H(θjn, θ
k
n, α, a)χ{σ

k
t = α, Jjk

t = a}

∣

∣

∣

∣

= 0.

Here pθη,t is the unique solution of the following system of PDEs. For θ, η ∈ E, and α ∈ Γ, a ∈ ΓE,

pθη,0(α, a) =
∑

β∈Γ

vθη(β, α, a)(1.11)

and for t > 0,

(1.12)
d

dt
pθη,t(α, a) =

∑

ζ∈Γ:ζ 6=β

(

fζ 7→α(Gη,t)pθη,t(ζ, a)− fα7→ζ(Gη,t)pθη,t(α, a)
)

+
∑

b∈ΓE :b6=a

(

l̃b7→a(α)pθη,t(α, b)− l̃a 7→b(α)pθη,t(α, a)
)

where Gθ,t ∈ P(Γ× ΓE) is such that for α ∈ Γ, a ∈ ΓE,

Gθ,t(α, a) =

∫

E

pθη,t(α, a)dµE (η)(1.13)

Remark 1.7. Theorem 1.6 is equivalent to

lim
n→∞

sup
t≤T

{

dW
(

µ̃n
t , νt)

}

= 0

where
µ̃n
t = n−2

∑

j,k∈In

δθj
n,θk

n,J
jk
t ,σk

t
∈ P

(

E × E × ΓE × Γ
)

,

and νt ∈ P
(

E × E × ΓE × Γ
)

is such that for measurable A,B ⊆ E , and any a ∈ ΓE and α ∈ Γ,

νt(A×B × a× α) =

∫

A

∫

B

pθη,t(α, a)dµE(θ)dµE (η).
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We outline the proof of Theorem 1.6.

Proof. A consequence of Hypothesis 1.5 is that the function ψθ,t : D([0, t],Γ)×P
(

D([0, t],Γ)
)

( defined in (2.7)) is independent of its first argument, and so we can write

ψ̃θ,t(µ) := ψθ,t(·, µ).

Lemma 2.3 implies that for any ǫ > 0,

lim
n→∞

n−1 logP
(

n−1
∑

j∈In

sup
t≤T

dW
(

µ̂n,j
t , ψ̃θj

n,t
(µ)

)

≥ ǫ
)

< 0,(1.14)

and therefore
lim
n→∞

n−1
∑

j∈In

sup
t≤T

dW
(

µ̂n,j
t , ψ̃θj

n,t
(µ)

)

= 0.

2. The Hydrodynamic Limit. We must first specify the limiting probability law for The-
orem 1.4. It satisfies a nonlinear implicit equation with delays. We start by specifying how the
average connectivity at time t is determined by (i) the initial value of the connectivity and (ii) the
trajectories of the afferent spin variables upto time t.

Lemma 2.1. For any c ∈ ΓE any θ ∈ E, any z, y ∈ D([0, T ],Γ), there exists a unique
{jθ,η}θ,η∈E ∈ D([0, T ],P(ΓE)), written jθη := (jθη,t)t≤T such that for all t ≤ T , and all a ∈ ΓE,

jθη,t(a) = vθη(z0, y0, a) +
∑

b∈ΓE :b6=a

∫ t

0

{

jθη,s(b)lb7→a(zs, ys)− jθη,s(a)la 7→b(zs, ys)

}

ds(2.1)

We write

Ψθη,t : D([0, t],Γ)2 7→ D([0, t],Y)(2.2)

Ψθη,t(z, y) := jθη.(2.3)

Furthermore for each T > 0, there exists a constant CT such that for all t ≤ T ,

sup
θ,η∈E

‖Ψθη,t(z, x)−Ψθη,t(z̃, x̃)‖ ≤ CT

(

‖z − z̃‖t + ‖x− x̃‖t
)

.(2.4)

Proof. By definition of D([0, T ],Γ), both y, z must be piecewise constant, with only a finite
number of discontinuities. One then finds a unique solution to the ODE for jθ,η,t along any interval
over which both y and z are constant, and iteratively one finds a unique solution upto time T .

To see why (2.4) is true, write j̃θη,t(a) = Ψθη,t(z̃, x̃). Then one immediately finds that there is
a universal constant c such that

sup
a∈Γ

∣

∣jθη,t(a)− j̃θη,t(a)
∣

∣ ≤ c

∫ t

0

sup
a∈Γ

∣

∣jθη,s(a)− j̃θη,s(a)
∣

∣ds+ c ‖z − z̃‖t + c ‖x− x̃‖t(2.5)

Gronwall’s Inequality now implies

sup
a∈Γ

∣

∣jθη,t(a)− j̃θη,t(a)
∣

∣ ≤ c exp(ct)
(

‖z − z̃‖t + c ‖x− x̃‖t
)

.(2.6)

For θ ∈ E , we next define

ψθ,t : D([0, t],Γ)× P
(

E × D([0, t],Γ)
)

7→ Y(2.7)

to be such that for a ∈ ΓE and σ ∈ Γ,

ψθ,t(z, µ)(a, σ) = E
(η,y)∼µ

[

Ψθη,t(z, y)(a, σ)χ{yt = σ}
]

.(2.8)

In the following Theorem we outline an implicit definition of the limiting probability law µT ∈
P
(

E × D([0, T ],Γ)
)

.
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Theorem 2.2. Let {yθ,α7→β(t)}θ∈E#α,β∈Γ be independent unit intensity Poisson counting pro-
cesses. For any T > 0, there exists a unique set of Γ-valued stochastic processes {zθ(t)}θ∈E,t≤T

that satisfy the following properties. Let {zθ,0}θ∈E be independent Γ-valued variables, such that

P
(

zθ(0) = α
)

=
∑

β∈Γ

∑

a∈ΓE

∫

E

vθη(α, β, a)dµE (η).(2.9)

For t > 0, define zθ(t) = α ∈ Γ precisely when

(2.10) χ{zθ(0) = α}+
∑

β 6=α

{

yθ,β 7→α

(
∫ t

0

χ{zθ(s) = β}fβ 7→α

(

ψθ,s(zθ, µs)
)

ds

)

− yθ,α7→β

(
∫ t

0

χ{zθ(s) = α}fα7→β

(

ψθ,s(zθ, µs)
)

ds

)}

= 1,

and in the above µs ∈ P
(

E×D([0, s],Γ)
)

is such that for any measurable A ⊂ E and any measurable
B ⊂ D([0, s],Γ),

µs(A×B) =

∫

A

P
(

zθ([0, s]) ∈ B
)

dµE(θ).

Proof. Let At ⊂ P
(

E × D([0, t],Γ)
)

consist of all probability measures µ such that, writing µ
to be the law of (θ, z), (i) it holds that for any measurable set B ⊂ E ,

µ(θ ∈ B) = µE(B).

µ must also be such that (ii)

µ
(

θ ∈ B, z0 = α
)

=
∑

β∈Γ,a∈ΓE

∫

E

vθη(α, β, a)dµE (η).(2.11)

Finally it is required that (iii) we have the following uniform bound on the expected number of
transitions: for all θ ∈ E ,

E
µ
[∣

∣

{

s ≤ t : z(s−) 6= z(s)
}∣

∣

∣

∣ θ
]

≤ t sup
α,β∈Γ

sup
y∈Y

fα7→β(y)(2.12)

where we recall that fα7→β is defined in (1.4) and gives the transition intensities.
For some t > 0, let µ, µ̃ ∈ At be any two probability measures. We are going to define

inhomogeneous counting processes {zθ(t), z̃θ(t)}θ∈E . Write

gθ,s =ψθ,s(zθ, µ)(2.13)

g̃θ,s =ψθ,s(z̃θ, µ̃).(2.14)

Now define

uβ 7→α(t, θ) = fβ 7→α(gθ,t)χ{zθ(t) = β}(2.15)

ũβ 7→α(t, θ) = fβ 7→α(g̃θ,t)χ{z̃θ(t) = β}(2.16)

ūβ 7→α(t, θ) = inf
{

uβ 7→α(t, θ), ũβ 7→α(t, θ)
}

(2.17)

ûβ 7→α(t, θ) = uβ 7→α(t, θ)− ūβ 7→α(t, θ)(2.18)

ŭβ 7→α(t, θ) = uβ 7→α(t, θ)− ūβ 7→α(t, θ).(2.19)
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For independent unit-intensity Poisson counting processes
{

Ȳβ 7→α,θ(t), Ŷβ 7→α,θ(t), Y̆β 7→α,θ(t)
}

θ∈E
,

we define

Z̄β 7→α,θ(t) = Ȳβ 7→α,θ

(
∫ t

0

ūβ 7→α(s, θ)ds

)

(2.20)

Ẑβ 7→α,θ(t) = Ŷβ 7→α,θ

(
∫ t

0

ûβ 7→α(s, θ)ds

)

(2.21)

Z̆β 7→α,θ(t) = Y̆β 7→α,θ

(
∫ t

0

ŭβ 7→α(s, θ)ds

)

(2.22)

Zβ 7→α,θ(t) = Z̄β 7→α,θ(t) + Ẑβ 7→α,θ(t)(2.23)

Z̃β 7→α,θ(t) = Z̄β 7→α,θ(t) + Z̆β 7→α,θ(t).(2.24)

Finally it is stipulated that zθ(t) = β if and only if

χ{zθ(0) = β}+
∑

α6=β

(

Z̄α7→β,θ(t)− Z̄β 7→α,θ(t)
)

= 1.(2.25)

This is well-defined because the LHS of the above equals the number of transitions to β upto time
t, minus the number of transitions away, plus one if the initial value is equal to β. We similarly
stipulate that z̃θ(t) = β if and only if

χ{zθ(0) = β}+
∑

α6=β

(

Z̄α7→β,θ(t)− Z̄β 7→α,θ(t)
)

= 1.(2.26)

Write µ
(1)
t , µ̃

(1)
t ∈ P

(

E × D([0, t],Γ)
)

to be the respective probability laws. That is, for any
measurable A ⊆ E , and any measurable B ⊆ D([0, t],Γ),

µ
(1)
t (A×B) =

∫

A

P
(

zθ ∈ B
)

dµE(θ)

µ̃
(1)
t (A×B) =

∫

A

P
(

z̃θ ∈ B
)

dµE(θ).

We next claim that there exists a constant C > 0 such that
∫

E

E
[

dt(zθ, z̃θ)
]

≤ CtdW (µt, µ̃t).(2.27)

With an aim of proving (2.27), it follows from the definitions that there exists a constant c > 0
such that for all t ≤ T ,

∫

E

E
[

‖gθ,t − g̃θ,t‖
]

dθ ≤ c

∫

E

E
[

‖zθ − z̃θ‖t
]

dθ + cdW (µt, µ̃t).(2.28)

Substituting the definitions, and employing Gronwall’s Inequality, we then find that there is a
constant C > 0 such that for all t ≤ T ,

sup
α6=β

∫

E

E
[

Ẑβ 7→α,θ(t) + Z̆β 7→α,θ(t)
]

dθ ≤ C

∫ t

0

∫

E

E
[

χ{zθ(s) 6= z̃θ(s)}
]

dθds+ CdW (µt, µ̃t)

=C

∫

E

E
[

dt
(

zθ, z̃θ
)]

dθ + CdW (µt, µ̃t)(2.29)

Notice finally that
∫

E

E
[

dt
(

zθ, z̃θ
)]

dθ ≤ |Γ|2 sup
α6=β

∫

E

E
[

Ẑβ 7→α,θ(t) + Z̆β 7→α,θ(t)
]

dθ(2.30)
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We can thus conclude that (2.27) holds. (2.27) implies that

dW
(

µ
(1)
t , µ̃

(1)
t

)

≤ tCdW (µt, µ̃t).(2.31)

The fixed point theorem then implies that for small enough t, there is a unique µt such that

µ
(1)
t = µt.

We can then iterate this method for larger and larger t, obtaining a unique fixed point upto
time T .

2.1. n-dimensional Approximation. We now define an n-dimensional system that approx-
imates the original system, except that the intensity of the flipping of the node-variables σ̃j(t) is
independent of σ̃k if k 6= j, with the same intensity function as the limiting law µ defined in Theo-
rem 2.2. This intermediate approximation will serve as a bridge between the original n-dimensional
system and the final limiting law. To this end, let

{

σ̃j
t

}

j∈In
be independent jump-Markov Processes

such that (i) σ̃j
0 = σj

0 , (ii) J̃jk
0 = Jjk

0 , and (iii) for b 6= a, if σ̃j
t = a then

P
(

σ̃j
t+h = β

∣

∣ Ft

)

= hfα7→β(Ĝ
j
t ) +O(h2)(2.32)

where

(2.33) Ĝj
t = ψθj

n,t
(σ̃j , µt)

and µt ∈ P
(

E × D([0, t],Γ)
)

is defined in Theorem 2.2.

The transitions of the connectivities {J̃jk
t }j,k∈In are such that for h≪ 1 and α ∈ ΓE , if J̃

jk
t = b

then

P
(

J̃jk
t+h = a

∣

∣ Ft

)

= hlb7→a

(

σ̃j
t , σ̃

k
t

)

+O(h2).(2.34)

Define the associated empirical measure

µ̃n
t = n−1

∑

j∈In

δθj
n,σ̃

j

[0,t]
∈ P

(

E × D([0, t],Γ)
)

.(2.35)

Define also, t ≤ T , α ∈ Γ and a ∈ ΓE,

G̃j
t (α, a) =n

−1
∑

i∈In

χ
{

σ̃i
t = α, J̃ji

t = a
}

(2.36)

Lets first notice that the empirical measure generated by this system converges to the same
limiting law.

Lemma 2.3. For any ǫ > 0, define the event

Un
ǫ =

{

dW
(

µ̃n
T , µT

)

≤ ǫ

}

.(2.37)

Then for any ǫ > 0,

lim
n→∞

n−1 logP
(

(Un
ǫ )

c
)

< 0.(2.38)

Furthermore, for any ǫ > 0,

lim
n→∞

n−1 logP

(

sup
j∈In

sup
t≤T

sup
a∈ΓE ,α∈Γ

∣

∣G̃j
t (α, a)− Ĝj

t (α, a)
∣

∣ > ǫ

)

< 0.(2.39)
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Proof. The variables {σ̃j}j∈In are independent, and the probability law of σ̃j depends con-
tinuously on θjn. It is known that the law of µ̃n

t satisfies a Large Deviation Principle, with rate
function I : P

(

D × D([0, T ],Γ)
)

7→ R, defined as follows. Suppose first that ν is such that for
any measurable A ⊂ E and any measurable B ⊂ D([0, T ],Γ), there exists a measurable map
θ 7→ νθ ∈ P

(

D([0, T ],Γ)
)

such that

ν(A×B) =

∫

A

νθ(B)dµE (θ).

In this case, the rate function is such that

I(ν) =

∫

E

R(νθ||µθ)dµE (θ).(2.40)

If ν does not admit this decomposition, then I(ν) = ∞. See for instance [?] for a proof.
Since I has a unique zero at µ, we may conclude that (2.38) holds. It remains to prove (2.39).

Define pjkt ∈ Y to be such that pjk0 (Jjk
0 ) = 1 and pjk0 (a) = 0 for a 6= Jjk

0 , and for all a ∈ ΓE ,

pjkt (a) = pjk0 (a) +
∑

b∈ΓE :b6=a

∫ t

0

{

pjkt (b)lb7→a(σ̃
j
s , σ̃

k
s )− pjkt (a)la 7→b(σ̃

j
s , σ̃

k
s )

}

ds.(2.41)

Notice also that, since the evolution of {σ̃l}l∈In is independent of the evolution of {J̃jk
t }j,k∈In , for

a ∈ ΓE ,

pjkt (a) = P
(

J̃jk
t = a

∣

∣ {σ̃l}l∈In

)

.(2.42)

Substituting definitions, we find that

G̃j
t (α, a)− Ĝj

t (α, a) = n−1
∑

k∈In

χ{σ̃k
t = α}Ĵjk

t (a) where(2.43)

Ĵjk
t (a) = χ{J̃jk

t = a} − P
(

J̃jk
t = a

∣

∣ {σ̃l}l∈In

)

.(2.44)

Now

P

(

sup
j∈In

sup
t≤T

sup
a∈ΓE ,α∈Γ

∣

∣G̃j
t (α, a)− Ĝj

t (α, a)
∣

∣ > ǫ

)

≤ n2 sup
j,p∈In

{

P

(

Vn,j
ǫ

(

T (p− 1)/n
)

)

+ |Γ||ΓE | sup
a∈ΓE ,α∈Γ

P

(

sup
(p−1)T/n≤t≤pT/n

∣

∣G̃j
t (α, a)− Ĝj

t (α, a)
∣

∣ ≥ ǫ/2

)}

and we have defined the event, for j ∈ In,

Vn,j
ǫ (t) =

{

sup
α∈Γ,a∈ΓE

∣

∣G̃j
t (α, a) − Ĝj

t (α, a)
∣

∣ ≥ ǫ/2

}

.(2.45)

Employing a Chernoff Bound, for a constant β >,

P
(

Vn,j
ǫ (t)

)

≤
∑

α∈Γ,a∈ΓE

E

[

exp

(

β
∑

k∈In

χ{σ̃k
t = α}Ĵjk

t (a)

)

+ exp

(

− β
∑

k∈In

χ{σ̃k
t = α}Ĵjk

t (a)

)]

exp
(

− nβǫ/2
)

≤2|Γ||ΓE| exp
(

CTnβ
2 − nβǫ/2

)

(2.46)
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for some constant CT that is independent of n and β (as long as β is sufficiently small). Substituting
β = ǫ/(4CT ), we obtain that

P
(

Vn,j
ǫ (t)

)

≤ 2|Γ||ΓE| exp
(

− nǫ2/(8CT )
)

(2.47)

Observe that

(2.48) sup
(p−1)T/n≤t≤pT/n

∣

∣G̃j
t (α, a)− Ĝj

t (α, a)
∣

∣ ≤

n−1
∑

k∈In

χ

{

J̃jk
t 6= J̃jk

(p−1)T/n for some t ∈
[

(p− 1)T/n, pT/n
]

}

For a constant β > 0,

P

(

sup
(p−1)T/n≤t≤pT/n

∣

∣G̃j
t (α, a)− Ĝj

t (α, a)
∣

∣ ≥ ǫ/2

)

≤

E

[

exp

(

β
∑

k∈In

χ

{

J̃jk
t 6= J̃jk

(p−1)T/n for some t ∈
[

(p− 1)T/n, pT/n
]

})]

exp
(

− βǫn/2
)

Now the probability that J̃jk
t 6= J̃jk

(p−1)T/n for some t ∈ [(p − 1)T/n, pT/n] scales as cT/n for a

universal constant c. We thus find that

P

(

sup
(p−1)T/n≤t≤pT/n

∣

∣G̃j
t (α, a) − Ĝj

t (α, a)
∣

∣ ≥ ǫ/2

)

≤

(

1 + cT/n
(

exp(β) − 1
)

)n

exp
(

− βǫn/2
)

≤ exp

(

cT
(

exp(β)− 1
)

− βǫn/2

)

.

Choosing β = logn, we find that for large enough n,

sup
p,j∈In

P

(

sup
(p−1)T/n≤t≤pT/n

∣

∣G̃j
t (α, a)− Ĝj

t (α, a)
∣

∣ ≥ ǫ/2

)

≤ exp
(

− n
)

Combining the above estimates, we find that

lim
n→∞

n−1 logP

(

sup
j∈In

sup
t≤T

sup
a∈ΓE ,α∈Γ

∣

∣G̃j
t (α, a)− Ĝj

t (α, a)
∣

∣ > ǫ

)

< 0,

as required.

2.2. Coupling of Systems. Next, we outline a coupling of the n-dimensional systems in the
same space (this roughly means that the probability laws of {σj

t }j∈In and {σ̃j
t }j∈In remain the

same, but the system is constructed to maximize the correlations as much as possible). To do this,
we will employ the time-rescaling formalism that has been extensively employed by Kurtz [9] and
Anderson [2] (amongst others).

To this end, let

{

Ỳ j
α7→β(·), Ȳ

j
α7→β(·), Y̆

j
α7→β(·)

}

α,β∈Γ#α6=β#j∈In
⊂ D

(

[0,∞),Z+
)

(2.49)

be independent unit intensity Poisson Processes. For the edge dynamics, we analogously let

{

Ỳ jk
a 7→b(·), Ȳ

jk
a 7→b(·), Y̆

jk
a 7→b(·)

}

a,b∈ΓE#a 6=b#j,k∈In
(2.50)

be another set of mutually independent unit intensity Poisson Processes. We are going to define
the stochastic processes {σj

t , σ̃
j
t , Ĝ

j
ζ,t}j∈In,ζ∈E to be functions of the above processes. To this end,

9



we first note that the initial conditions are as previously specified, i.e. σ̃j
0 = σj

0, J̃
jk
0 = Jjk

0 . As
previously, we define

(2.51) Ĝj
t = ψθj

n,t
(σ̃j , µt)

We next define
{

Zj
α7→β(t), Z̃

j
α7→β(t), Z̀

j
α7→β(t), Z̆

j
α7→β(t)

}

j∈In
to be counting processes, and such that

Zj
α7→β(t) =Z̀

j
α7→β(t) + Ȳ j

α7→β

(
∫ t

0

f̄ j
α7→β(s)ds

)

(2.52)

Z̃j
α7→β(t) =Z̆

j
α7→β(t) + Ȳ j

α7→β

(
∫ t

0

f̄ j
α7→β(s)ds

)

(2.53)

Z̀j
α7→β(t) =Ỳ

j
α7→β

(
∫ t

0

f̀ j
α7→β(s)ds

)

(2.54)

Z̆j
α7→β(t) =Y̆

j
α7→β

(
∫ t

0

f̆ j
α7→β(s)ds

)

(2.55)

f̄ j
α7→β(t) = inf

{

fα7→β(G
j
t )χ{σ

j
t = α}, fα7→β(Ĝ

j
t )χ{σ̃

j
t = α}

}

(2.56)

f̀ j
α7→β(t) =fα7→β(G

j
t )χ{σ

j
t = α} − f̄ j

α7→β(t)(2.57)

f̆ j
α7→β(t) =fα7→β(Ĝ

j
t )χ{σ̃

j
t = α} − f̄ j

α7→β(t).(2.58)

The edge variables are coupled in an analogous manner to the node variables.

Zjk
a 7→b(t) =Z̀

jk
a 7→b(t) + Ȳ jk

a 7→b

(
∫ t

0

l̄jα7→β(s)ds

)

(2.59)

Z̃jk
a 7→b(t) =Z̆

jk
a 7→b(t) + Ȳ jk

a 7→b

(
∫ t

0

l̄jα7→β(s)ds

)

(2.60)

Z̀jk
a 7→b(t) =Ỳ

jk
a 7→b

(
∫ t

0

l̀jka 7→b(s)ds

)

(2.61)

Z̆jk
a 7→b(t) =Y̆

jk
a 7→b

(
∫ t

0

l̆jka 7→b(s)ds

)

(2.62)

l̄jka 7→b(t) = inf
{

la 7→b(σ
j
t , σ

k
t )χ{J

jk
t = a}, la 7→b(σ̃

j
t , σ̃

k
t )χ{J̃

jk
t = a}

}

(2.63)

l̀jka 7→b(t) =la 7→b(σ
j
t , σ

k
t )χ{J

jk
t = a} − l̄jka 7→b(t)(2.64)

l̆jka 7→b(t) =la 7→b(σ̃
j
t , σ̃

k
t )χ{J̃

jk
t = a} − l̄jka 7→b(t).(2.65)

We then stipulate that, for any α ∈ Γ,

σj
t = α if and only if(2.66)

γjt (α) := χ{σj
0 = α} +

∑

β 6=α

(

Zj
β 7→α(t)− Zj

α7→β(t)
)

= 1(2.67)

Note that only one of {γjt (α)}α∈Γ can equal one, and the rest must be zero. This is because γjt (α)
counts the net number of transitions to the state α minus the number of transitions away, plus 1
if σj

0 is α. We similarly stipulate that

σ̃j
t = α if and only if(2.68)

χ{σj
0 = α}+

∑

β 6=α

(

Z̃j
β 7→α(t)− Z̃j

α7→β(t)
)

= 1.(2.69)
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For the edge variables, we stipulate that, for any a ∈ ΓE

Jjk
a 7→b(t) = a in and only if(2.70)

χ{Jjk
0 = a}+

∑

b6=a

(

Zjk
b7→a(t)− Zjk

a 7→b(t)
)

= 1(2.71)

and we stipulate that

J̃jk
a 7→b(t) = a if and only if(2.72)

χ{Jjk
0 = a}+

∑

b6=a

(

Z̃jk
b7→a(t)− Z̃jk

a 7→b(t)
)

= 1.(2.73)

Lemma 2.4. The above system is well-defined and consistent with the earlier definitions.

Proof. The fact that the variables
{

Zj
α7→β(t), Z̃

j
α7→β(t), Z̀

j
α7→β(t), Z̆

j
α7→β(t), σ

j
t , σ̃

j
t

}

j∈In
are well-

defined follows from the fact that the counting processes (2.49) - (2.50) are piecewise-constant,
with only a finite number of jumps over a finite time interval. For the time-intervals between
jumps, there is thus existence and uniqueness due to the Picard-Lindelof Theorem for ODEs. We
note also that these stochastic variables are adapted to the same filtration.

We need to control the distance between the two systems. To this end, for t ≤ T , define

δnt =n−1znt where(2.74)

znt =
∑

j∈In

∑

α,β∈Γ:α6=β

(

Z̀j
α7→β(t) + Z̆j

α7→β(t)
)

(2.75)

un,jt =
∑

k∈In

∑

a,b∈ΓE :a 6=b

(

Z̀jk
a 7→b(t) + Z̆jk

a 7→b(t)
)

(2.76)

ϕn
t =n−2unt where(2.77)

unt =
∑

j,k∈In

∑

a,b∈ΓE :a 6=b

(

Z̀jk
a 7→b(t) + Z̆jk

a 7→b(t)
)

(2.78)

ηnt =n−1
∑

j∈In

‖G̃j
t − Ĝj

t‖(2.79)

The main result that we must prove in this section is the following Lemma.

Lemma 2.5. For any ǫ > 0, there exists ǫ̃ > 0 such that

lim
n→∞

n−1 logP
(

δnT ≥ ǫ , sup
t≤T

ηnt ≤ ǫ̃
)

< 0.(2.80)

We next notice how Lemma 2.5 implies the veracity of Theorem 1.4.

Proof. Thanks to the triangle inequality

dW
(

µ̂n
T , µT

)

≤ dW
(

µ̃n
T , µT

)

+ dW
(

µ̃n
T , µ̂

n
T

)

.

Hence

(2.81) lim
n→∞

n−1 logP
(

dW
(

µ̂n
T , µT

)

≥ ǫ, sup
t≤T

ηnt ≤ ǫ̃
)

≤

max

{

lim
n→∞

n−1 logP

(

dW
(

µ̃n
T , µT

)

≥ ǫ/2, sup
t≤T

ηnt ≤ ǫ̃

)

,

lim
n→∞

n−1 logP

(

dW
(

µ̂n
T , µ̃

n
T

)

≥ ǫ/2, sup
t≤T

ηnt ≤ ǫ̃

)}
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Thanks to Lemma 2.3, the first term on the RHS is negative. Lemma 2.5 implies that the second
term on the RHS of (2.81) is negative. We therefore find that

lim
n→∞

n−1 logP
(

dW
(

µ̂n
T , µT

)

≥ ǫ, sup
t≤T

ηnt ≤ ǫ̃
)

< 0.

The rest of this paper is dedicated to proving Lemma 2.5. To this end, we must first prove that
the intensities of the ‘remainder’ Poisson Processes can be uniformly bounded in terms of δnt and
ϕn,j
t .

Lemma 2.6. There exists a constant cT (the constant is independent of n and j) such that for
all t ≤ T , all j ∈ In,

n−1
∑

k∈In

∑

α,β∈Γ : α6=β

(

f̀k
α7→β(t) + f̆k

α7→β(t)
)

≤ cT
(

δnt + ϕn
t + ηnt

)

(2.82)

n−2
∑

j,k∈In

∑

a,b∈ΓE : a 6=b

(

l̀jka 7→b(t) + l̆jka 7→b(t)
)

≤ cT
(

δnt + ϕn
t

)

(2.83)

Proof. Since the function fα7→β is Lipschitz and bounded, there is a constant c > 0 such that

n−1
∑

k∈In

∑

α,β∈Γ : α6=β

(

f̀k
α7→β(t) + f̆k

α7→β(t)
)

≤ n−1c
∑

k∈In

(

‖Gk
t − Ĝk

t ‖+ χ{σk
t 6= σ̃k

t }
)

(2.84)

Furthermore

n−1
∑

k∈In

χ{σk
t 6= σ̃k

t } ≤ |Γ|δnt

Furthermore, thanks to the triangle inequality,

‖Gk
t − Ĝk

t ‖ ≤‖G̃k
t − Ĝk

t ‖+ ‖Gk
t − G̃k

t ‖

≤‖G̃k
t − Ĝk

t ‖+Const× n−1
∑

q∈In

χ{σq
t 6= σ̃q

t }+Const× n−1un,kt

≤‖G̃k
t − Ĝk

t ‖+Const× n−1un,kt +Const× δnt .(2.85)

Combining these bounds, we obtain (2.82). The proof of (2.83) is analogous.

For ǫ̃ > 0, define the event

Wn,ǫ̃ =

{

sup
t≤T

ηnt ≤ ǫ̃

}

(2.86)

Now suppose that y(t), q(t) are independent unit intensity counting proceses, and for a constant
c > 0, define the counting processes to be such that

z̃n(t) =y

(

ncT ǫ̃+ c

∫ t

0

{

z̃n(s) + n−1ũn(s)
}

ds

)

(2.87)

ũn(t) =q

(

c

∫ t

0

nz̃n(s)ds+ ũn(s)ds

)

(2.88)

Lemma 2.7. As long as the constant c > 0 is sufficiently large, it holds that

P

(

max{δnT , φ
n
T } ≥ ǫ , Wn,ǫ̃

)

≤ P

(

max{n−1z̃n(T ), n
−2ũn(T )} ≥ ǫ

)

(2.89)
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Proof. We define c = cT , where cT is specified in Lemma 2.6. Now zn(t) and un(t) are
inhomogeneous counting processes (i.e. they increase by increments of 1, with random intensities).
Substituting the upper bounds for the intensities that are obtained in Lemma 2.6, we obtain (2.87)
- (2.88). This implies the Lemma.

For a large positive integer m, let t
(m)
i = iT/m and for any t ∈ [0, T ], t(m) := sup

{

s ≤ t : s =

t
(m)
i for some i ≤ m

}

. Write

pn(t) = max{n−1z̃n(t), n
−2ũn(t)}(2.90)

For a constant a > 0, let ǫ̃m > 0 be such that (i)

ǫ̃m > T ǫ̃/m+ T ǫ exp
(

aT
)

/m

and (ii) limm→∞ ǫ̃m = 0. Define the stopping times

τm = inf
{

t ≤ T : z̃n(t)− z̃n
(

t(m)
)

≥ nǫ̃m and z̃n(t) ≤ ǫ̃m + ǫ exp(aT )

or ũn(t)− ũn
(

t(m)
)

≥ n2ǫ̃m and ũn(t) ≤ ǫ̃m + ǫ exp(aT )
}

(2.91)

τ̃m = inf
{

t ≤ T : t = t(m)
a and pn(t) ≥ ǫ exp(at)

}

(2.92)

Lemma 2.8. For all m ≥ 2,

(2.93) lim
n→∞

n−1 logP

(

sup
0≤b≤m−1

sup
t∈[t

(m)
b

,t
(m)
b+1]

{

z̃n
(

t
)

− z̃n
(

t
(m)
b

)}

≥ nǫ̃m or

sup
0≤b≤m−1

sup
t∈[t

(m)
b

,t
(m)
b+1]

{

ũn
(

t
)

− ũn
(

t
(m)
b

)}

≥ n2ǫ̃m , and t ≤ τ ∧ τ̃m

)

< 0.

Proof. For all times t ≤ τ ∧ τ̃m, z̃n
(

t
)

− z̃n
(

t
(m)
b

)

is Poissonian, with intensity upperbounded
by

n
(

ǫ̃m + ǫ exp(aT )
)

.

Similarly, ũn
(

t
)

− ũn
(

t
(m)
b

)

is Poissonian, with intensity upperbounded by

n2
(

ǫ̃m + ǫ exp(aT )
)

.

Since ǫ̃m > T
m

(

ǫ̃m + ǫ exp(aT )
)

, the result is now a standard result from Poisson Processes.

Corollary 2.9.

lim
n→∞

n−1 logP
(

τm < T
)

< 0.

Lemma 2.10.

lim
n→∞

n−1 logP
(

τ̃m < T and τm ≥ T
)

< 0.

Proof. For all times t ≤ τm, z̃n(t) is Poissonian, and is such that

z̃n(t) ≤ y

(

2cn
(

ǫ̃m + ǫa−1 exp(at)
)

)

.

Similarly, for all times t ≤ τm, ũn(t) is Poissonian, with intensity upperbounded by

ũn(t) ≤ q

(

2cn2
(

ǫ̃m + ǫa−1 exp(at)
)

)

.
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Standard Poisson Identities dictate that, as long as (i) 2cǫ̃m ≤ ǫ exp(aT ) and (ii) a is such that
2c/a < 1/2, it must hold that

lim
n→∞

n−1 logP

(

For some t = t
(m)
b , y

(

2cn
(

ǫ̃m + ǫa−1 exp(at)
)

)

≥ ǫn exp(at)

)

< 0.(2.94)

Similarly,

lim
n→∞

n−1 logP

(

For some t = t
(m)
b , q

(

2cn2
(

ǫ̃m + ǫa−1 exp(at)
)

)

≥ ǫn2 exp(at)

)

< 0.(2.95)

Observe that the intensity of the process over the time interval

Lemma 2.11. For any ǫ > 0,

lim
n→∞

n−1 logP

(

(δnT + φnT ) ≥ ǫ

)

< 0.(2.96)

Proof. For the constant cT > 0 of Lemma, define the counting process zjt ∈ D([0, T ],Z) to be
such that z0 = 1, and for independent unit-intensity counting processes {yj(·)}j∈In ,

zjt = y

(

2cT

∫ t

0

zjsds

)

.(2.97)

We next claim that

P

(

(δnT + φnT ) ≥ ǫ, ηnT ≤ ǫ̃

)

≤ P

( ⌊TcT ǫ̃n⌋
∑

j=1

zjt ≥ nǫ

)

(2.98)

Let m≫ 1 be a positive integer, and write t
(m)
i = iT/m. For some ǫ≪ 1, define the stopping

time

τnǫ = inf
{

t ≤ T : δnt = ǫ or ϕn
t = ǫ

}

(2.99)

Lemma 2.12. For any ǫ < 1, writing qnt = n−1(znt + unt ), it holds that

lim
n→∞

n−1 logP
(

sup
0≤a≤m−1

(qn
t
(m)
a+1

− qn
t
(m)
a

) ≥ 2ǫ/m
)

< 0.(2.100)

Define the stopping time, for a constant c > 0

τ̃n = inf
{

t ≤ τnǫ :
}

(2.101)
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