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Continuous flows driving Markov processes and multiplicative L-
semigroups

Lucian Bezne, Mounir Bezzargaﬁ, and Tulian Cimpealﬁ

Abstract. We develop a method of driving a Markov processes through a continuous flow. In partic-
ular, at the level of the transition functions we investigate an approach of adding a first order operator
to the generator of a Markov process, when the two generators commute. A relevant example is a
measure-valued superprocess having a continuous flow as spatial motion and a branching mechanism
which does not depend on the spatial variable. We prove that any flow is actually continuous in a
convenient topology and we show that a Markovian multiplicative semigroup on an LP space is gen-
erated by a continuous flow, completing the answer to the question whether it is enough to have a
measurable structure, like a Cy-semigroup of Markovian contractions on an LP-space with no fixed
topology, in order to esnsure the existence of a right Markov process associated to the given semigroup.
We extend from bounded to unbounded functions the weak generator (in the sense of Dynkin) and
the corresponding martingale problem.
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1 Introduction

The solution of a first order differential equation in an Euclidean domain F, a typical
example of continuous flow on F, may be regarded as a deterministic Markov process and its
generator D acts on functions on E as a derivation, i.e., D(u?) = 2uDu. It turns out this
property remains valid for the generator of a right continuous flow on a general state space F,
hence the approach herein considered provides a substitute for a gradient type operator in a
general setting, possible infinite dimensional.

The purpose of this work is twofold. First, we study Markov processes which are driven by
continuous flows, namely processes X® admitting the structure

(1.1) XP =d,(X,),t >0,

where ® is a continuous flow and X is a Markov process on E. Second, we investigate mul-
tiplicative semigroups in an LP-context and the associated continuous flows, completing the
answer given in [5] to the question whether it is enough to have a measurable structure, like
a Cy-semigroup of Markovian contractions on an LP-space, with no fixed topology, in order to

1Simion Stoilow Institute of Mathematics of the Romanian Academy, Research unit No. 2, P.O. Box 1-764,
RO-014700 Bucharest, Romania, and University POLITEHNICA Bucharest, CAMPUS Institute. E-mail: lu-
cian.beznea@imar.ro

2Institut Préparatoire aux Etudes d’Ingénieurs de Tunis, 2 Rue Jawaher Lel Nehru, 1008 Montfleury-Tunis,
Tunisia. E-mail: mounir.bezzarga@ipeim.rnu.tn

3University of Bucharest, Faculty of Mathematics and Computer Science, and Simion Stoilow Institute of
Mathematics of the Romanian Academy, Research unit No. 2, P.O. Box 1-764, RO-014700 Bucharest Romania.
E-mail: iulian.cimpean@unibuc.ro


http://arxiv.org/abs/2411.09407v1

find a Markov process behind the given semigroup; see also [6], and [8]. We show that the
additional property of being multiplicative on LP (or equivalently, the LP-generator to be a
derivation) is enough for the existence of a continuous flow having the given LP-semigroup as
its transition function.

If L (resp. L?) is the generator of X (resp. X?) and (ILT)) holds, then L®* = L + D, so, we
regard L® as a modification of L with a drift type operator D. In this way, the weak generator
(in the sense of E.B. Dynkin) of a Markov process but also of a right continuous flow are main
tools in our approach. An example for which our method apply is obtained by taking L to be
the fractional power (or more general, a Bochner subordination) of D. We present in particular
a method of extending the domain of the weak generator from bounded to unbounded functions,
enlarging the class of functions for which the associated martingale problem has a solution; for
other related extensions of the weak generator see [31] and [32].

The motivation for the first aim is the application to the measure-valued superprocesses,
cf. e.g. [35]. Recall that the state space of a superprocess X is the set M(FE) of all positive
finite measures on E and the evolution is given by a branching mechanism and a spatial motion
which describe the movement of the particles between the branching moments. If the spatial
motion is a right continuous flow and the branching mechanism does not depend on the spat’lzil
variable then the representation ([LT]) holds on M (E) by means of a second superprocess X0
and of the flow on measures induced by @,

Xt - (I)t()/(;)),t 2 O

Here, the superprocess X0 is such that it has the same branching mechanism as X , however,
it has no a spatial motion.

The structure and main results of the paper are as follows.

In Section 2] we present the basic facts on the right continuous flows and flows on a space
with no fixed topology, called semi-dynamical systems. Theorem 2.4 shows that actually such
a flow is continuous in a convenient topology, extending a result from [40]. As a consequence,
the induced capacity is tight.

The results on the extended weak generator of a Markov process are exposed in Section [3]
including the associated martingale problem. In Subsection B.1] we study the extended weak
generator of a semi-dynamical system. Finally, we show in Subsection 3.2, Proposition [3.9] that
a continuous flow may be stopped at the first entry time in the complement of an open set, a
procedure already used in [I1] and [I3]. Several technical proofs are included in the Appendix.

The theory of continuous flows driving Markov process is investigated in Section [ The
main result (Theorem (1)) about the representation () and the drift modification of the
weak generator of Markov process, is followed by the example on the Bochner subordination of
a right continuous flow, stated in Corollary from Subsection [4.J] The main application in
this framework is given in Subsection

Theorem from Section [l is the central result that relates multiplicative LP-semigroups
with continuous flows.

2 Semi-dynamical systems and right continuous flows

Transition functions, resolvent of kernels, and excessive functions. Let (E,B(FE)) be
a Lusin measurable space, i.e., it is measurable isomorphic to a Borel subset of a metrizable
compact space endowed with the Borel o-algebra.



For a o-algebra G we denote by [G] (resp. pG) the vector space of all real-valued (resp.
the set of all positive, numerical) G-measurable functions on E. Also, for a set of real-valued
functions C we denote by o(C) the o-algebra generated by C, by [C] the vector space spanned
by C, and by pC (resp. bC) the set of all positive (resp. bounded) functions from C.

We consider a sub-Markovian resolvent of kernels i = (U, )a>0 on (E, B(E)). A nonnegative,
numerical, B(E)-measurable function defined on E is called U -excessive provided that

(2.1) alUyu<u foralla>0, and lim alUyu(z) =u(z),z € E.

a—00

We denote by £(U) the set of all real-valued U-excessive functions. If 5 > 0 we denote by
U the sub-Markovian resolvent of kernels (Upiqa)as0. A Ug-excessive function is also called
B-excessive. If w is a Ug-supermedian function (i.e., aUs,w < w for all @ > 0), then its
Us-excessive regularisation W is given by w(x) := sup, alUgiw(z), € E.

Let T = (7})¢>0 be a sub-Markovian transition function on (E,B(F)), that is

- Ty is a sub-Markovian kernel on E, Ty = Id, T, o Ty = T}, for all t, s > 0;
- for every f € bpB(FE) the mapping (z,t) — T3 f(x) is B(E) ® B(R;)—measurable.

Let further U = (U, )a>0 be the resolvent of sub-Markovian kernels induced by T = (7})¢=o0,
U, = / e~ T, dt, for all a > 0,
0

and let U be the potential kernel of T (and of U), U := [~ T, dt.
Recall that condition (2.1]) is equivalent with

Tiu < u for all t > 0 and ll\r%Ttu(:c) = u(z) for all z € F.

If 3 > 0 then clearly, Uz is the resolvent of kernels induced by the sub-Markovian transition
function T = (e "T});0. Notice that the potential kernel of Ty is the bounded kernel Ug, in
contrast with the potential kernel U of T which might be an unbounded kernel.

Assume now that £ is a Lusin topological space (i.e., E' is homeomorphic to a Borel subset
of a metrizable compact space) and let B(FE) its Borel o-algebra. Let X = (Q, F, F;, X, P*, ()
be a right Markov process on E having (P;);>¢ as transition function, hence

bif(z) = E*(f(Xe),t <), t =0, f € pB(E),

and let U = (U, )a>0 be the resolvent on (F, B(F)) associated with (P;)i~o. The fine topology is
the coarsest topology on E making continuous all S-excessive functions for some (and equiva-
lently for all) 8 > 0. Recall that in this context, a function f from pB(E) is finely continuous if
and only if t — f(X;) is a.s. right continuous on [0, {). Using this characterization and the fact
that X is has right continuous paths, any continuous function on E is also finely continuous.

Semi-dynamical systems. Let (F,B) be a Lusin measurable space and let & = (®;);>¢ be a
family of mappings &, : £ — E,t > 0. Then & is called semi-dynamical system on E provided
that the following conditions are satisfied:

(sdl) ®yy4(x) = Dy(Py(x)) for all s,¢ >0 and x € E;
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(sd2) ®o(x) =z for all z € F;
(sd3) For each t > 0 the function E 3 x —— ®,(z) is B(E)/B(E)-measurable;

(sd4) There exists a countable set C, C bpB such that C, separates the points of E and
limp o f(Pi(x)) = f(x) for all x € E and f € C,.

In the sequel, if f € [B] and N is a kernel on (E,B(F)), then by Nf € [B(E)] we mean
that N|f| < oo, hence N(f*) and N(f~) are real-valued functions and Nf = N(f*)—N(f7).

Remark 2.1. Note that if & = (P;)i=0 is a semi-dynamical system on E then the function
Ex[0,00) 3 (z,t) — y(x) is B(E)®B([0,00))/B(E)-measurable. This follows by a monotone
class argument, observing first that from (sd4) it follows that for every f € C, the real-valued
function t — f(®4(x)) is right continuous on [0, 00).

For each ¢ > 0 define the Markovian kernel on £ as
Sif := fo®, forall f e pB(F).

Then the family S = (S;)i>0 is a Markovian transition function on FE, called the transition
function of the semi-dynamical system ® = (®;);>.

Remark 2.2. (i) The transition function S = (Si)=0 of a semi-dynamical system ® =
(®y)i=0 on E is multiplicative, that is, Si(fg) = (Sif)(Sig) for allt > 0 and f,g €
bpB(E).

(i1) It is known that the converse of assertion (i) holds: Let S = (Si)i=o be a Markovian
transition function on E which is multiplicative and

(2.2) there exists a countable set C, C bpB such that C, separates the points of F,

and limp o Si(x) = f(z) for all x € E and f € C,. Then there exists a semi-dynamical
system on E, having the transition function S.

Indeed, for x € E andt > 0 let Sy, be the probability on E induced by the measure
f— S.f(x). If A€ B(E) then, S; being multiplicative, we have Sy .(14) = (Si2(14))?%,
so, either S;(14) = 0 or S;.(1a) = 1. It follows that there exists ®;(x) € E such that
Stz = Oa,)- Since Sif € bpB(E) for all f € bpB(E) it follows that (sd3) holds. The
semigroup property of (Si)e=o implies that (sdl) is verified and from (Z2)) it follows that
(sd4) also holds. Finally, because Sy = Id we get (sd2).

(iii) Let A be a collection of bounded real-valued functions defined on E which is multiplicative
(i.e., if f,g € A then fg € A) and generates B(E). Let further S = (S;)i=0 be a sub-
Markovian transition function on E such that Si(fg) = (S.f)(Sig) for all f,g € A.
Then S = (Sy)i=0 s multiplicative. Indeed, if we fir ©+ € E and g € A then, writing
g =gt —g, the functionals f —— Si(fg)(x) and f+—— Si(f)(x)S:(g)(z) are differences
of two positive finite measures which coincide on A. By a monotone class argument we
get Si(fg) = (Sif)(Sig) for all f € bpB(E). Fizing now f € bpB(E) and arguing as
before, we conclude that the last equality holds for all f, g € bpB(E).



(iv) We have
(2.3) if S = (St)e=0 is multiplicative and v is B-excessive then v* is 23-excessive,

where 3 > 0. Indeed, sinceS = (S;)s=0 is multiplicative we have e=2'S,(v?) = (e P1Sw)? <
v?, where the inequality holds because v is 3-excessive. Then clearly limp e 2718, (v?) =
limp o(S;v)? = 02, where the last equality follows from limpy o Siv = v.

If £ is a Lusin topological space and B = B(F) is the Borel o-algebra, then a family
® = (Dy)i=0 of mappings on E is called right continuous flow (cf. [40], page 41) provided that
(sdl) — (sd3) hold and in addition:

(sd4") For each x € E the function t — ®,(z) is right continuous on [0, c0).

Clearly, any right continuous flow is a semi-dynamical system, because (sd4’) implies (sd4),
by taking C, a countable subset of bpC'(E) which separates the points of E. If the function
t — ®,(z) is continuous on [0, 00) for all x € E then & is called continuous flow.

Remark 2.3. One may regard a right continuous flow ® = (®;);=0 as a deterministic right
Markov process X = (0, F, F, Xy, P*) in the following way: Q = E, F = F, = B(F),
Xi(x) := O(z) for allz € Q and t > 0, and P* := 4,.

Let V = (V,)a>0 be the resolvent of kernels associated with S, V,,f = fooo e f(D,) dt. We
fix 5 > 0, a strictly positive function f, € bpB(E), and put u, := Vzf,. We define now the
capacity induced by ¢, by regarding ¢ as a (deterministic) right process. Let A be a finite
measure on £ and consider the functional M — cf(M ), M C E, defined as

cf(M) := inf {/ e_BDGuO((IDDG)d)\ : G open, M C G} ,
E

where D¢ is the first entry time of G, Dg(z) := inf{t > 0 : &;(z) € G}, x € E. For measura-
bility properties of the first entry and hitting times in a set, for semi-dynamical systems with
general state space see [19]. It turns out that cf is Choquet capacity on Ej; see e.g. [3] and also
[T5] and [4]. Recall that the capacity cf is called tight provided that there exists an increasing
sequence (K,), of compact sets such that inf, ¢} (K,) = 0.

We can state now the first main result, which shows that every semi-dynamical system
becomes a continuous flow with respect to a convenient Lusin topology.

Theorem 2.4. Let & = (®y)i=0 be a semi-dynamical system on a Lusin measurable space
(E,B). Then there ezists a Luzin topology T on E such that B = B(E) is the Borel o-algebra
and ® is a continuous flow with respect to this topology, such that the map x —— ®y(x) is
continuous on E for allt > 0. For every finite measure A\ on E and § > 0 the capacity cf 8
tight.

Proof. Since by (sd3) we have lim,_,., oV, f = f pointwise on E for all f € C,, it follows that
E(Vs) generates B(E), where § > 0. In addition, if u,v € £(Vs) then u A v := inf(u,v) also
belongs to £(V3), so, all the points of E are non-branch points with respect to V.

The required Lusin topology 7T is going to be generated by a convex cone of bounded Vs-
excessive functions R, called a Ray cone. Let us recall its usual construction, as, e.g., in [15],
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the proof of Proposition 2.2: Let Ry := V3(C,) U Q4. The Ray cone R is given by the closure
in the sup norm of (J,., R, where R,, is defined inductively as follows:

R := Q- R U (2 Rn) U (Af Rn) U (Vaey Va(Ran)) U (Utegy St(Ran)) U Va((Rn — R4 ),
where /\f R, is the set of all functions of the form u; A ug A -+ Auy with u; € R, i < k, and
Zf(@+-72n is the set of all functions of the form qyu; + quo + - - - + qrug with ¢; € Q...

Note that R generates B(E) which is thus the Borel o-algebra of 7. Since t — S;V,, f(z)
is continuous and Sy(u A v) = Syu A Syv, it follows inductively that ¢ — Syu(x) is continuous
on [0,00) for all z € E and u € | J,,., Rn, and therefore for all u € R. Hence t — u(Py(z)) is
continuous on [0, 00) for all u € R, that is, ® is a T-continuous flow.

We have Sy(R) C R for all t € Q. So, clearly, Syu is T-continuous on E if ¢t € Q, and
therefore x — ®,(z) is T-continuous on F for all t € Q. Because for all u € R the function
t — Syu(z) is decreasing, it follows that S;u = supg, 54, \ 4 St u = infg, 54, » Si,u and thus the
function Syu is T-continuous on E for all £ > 0. We conclude that x — ®,(x) is T-continuous
on E forall t > 0.

According to [37] and [4] (see also [38], [16], and [17]), the tightness property of the capacity

cf is a direct consequence of the continuity of the trajectories of ® in the topology T. O

Remark 2.5. (i) The Lusin topology from the above theorem is actually a Ray topology with
respect to the resolvent (V,)aso of S; for details see e.g. [4)] and [6].
(i1) Theorem[27] extends a result about right continuous flows from [{0], (47.8) at page 220.

3 The extended weak generator

In this section we extend to unbounded real-valued functions the classical weak generator
acting on bounded functions, considered by E.B. Dynkin (cf. [23] pag. 55); see also [26] and
[35]. Notice that an extended generator was considered in [20] (and the references therein),
however, only for bounded functions in the domain of the operator. Also, we shall complete
the approach from [31].

Let T = (7}):=0 be a sub-Markovian transition function with induced resolvent U = (U, )a>0,
and set

(3.1) B =B"T):={f€[B]: Ti(|f|) < oo forallt >0 and f :li\r‘%Tsf pointwise on E'}

Clearly, we have [£,] C B = B%(T,) for every a > 0. If T = (T})s»0 is the transition
function of a right Markov process with (Lusin topological) state space E, then every bounded
finely continuous function belongs to B, in particular, bC'(E) C B°.

Define also

(3.2) B.:={fe€[B]:3he& with |f|]<hand f :li\r‘%Tsf pointwise on E},

(3.3) B,=B,(T)
={feB’:Va>03t,>0,h, € pBsuch that sup T}|f| < hq and U,h, < o0}

0<s<to
(3.4) By, = B,(T)
={feB,:Vt>03t, > 0,h; € pBsuch that sup Ts|f| < hy and T;h; < 00}.

0<S<to

Several properties of the sets B°, B., B,, and B,, are collected in the following lemma, whose
proof is included in Appendix (A.1).



Lemma 3.1. The following assertions hold.

(i) For each o > 0 one has U,(B,) C By, and if t > 0 then Ty(By,) C Boo. If 5 > 0 then
B, = B,(Ts) and Bo, = Boo(Ts).

(ii) If a,t > 0 then Uy(B.) C B. C B,, and Ty(B.) C B..
(111) We have bB, = bB,, = bB. = bB°.
(iv) We have [E]Ub[E,| C By, a > 0. If f € [B] is such that U(|f|) < oo then Uf € B,,.

Corollary 3.2. If T = (T})i>0 is the transition function of a right Markov process with Lusin
topological state space E, and f € C(E) is such that there exists h € € with |f| < h, then
f € B.. In particular, bC(E) C B..

Further, let us consider

Tiu—u
D(L) := {u € B, :Va>03t,>0,h, € pB with sup ! < hy, Uyhy < 0,
0<t<to
(3.5)
. Twu—u L
and 11\1% € B, pointwise on E

Clearly, B,, B,o, B., and D(L) are vector spaces and define the linear operator

(3.6) L:D(L) =B, Lu(x) = lim 4@ =)

lim : L feD(L), zcE.

Define also
(3.7) D,(L) :={ueD(L): Lu € B,,} and D,(L):={ueDL)NB,: LucB.}.
The operator (L, D(L)) is called the eztended weak generator of T = (T});=0.

Remark 3.3. (i) Recall the definition of the weak generator (L., D(L,,)) considered in [23):
D(Ly) is the set of all bounded functions f € B° such that <w) is bounded for
t,x

x € E andt in a neighbourhood of zero, there exists limy g T“;_f pointwise and the above
limit is an element of BY. If « > 0 then D(L,) = U,(bB°), it is independent of a > 0
and if u = Uy f with f € B°, then (o — Ly,)u = f.

(ii) In [31] an extended generator (L,D(L)) of T = (1})i=0 was considered by taking into
account unbounded real-valued functions also, as follows: Let u,g € B°, then u belongs to
the domain D(L) of L and g = Lu provided that

t t
(3.8) Vt>0,z € FE we have /TS(|g|)(1’) ds < oo and Tyu(x) = u(x) +/ng(z) ds.
0 0

(iii) Assume that T = (T})i=0 is the transition function of a right Markov process X =
(Q, Fy, Xy, P¥) with Lusin topological state space E. According to [31)], Proposition 4.1 (see
also [20]], page 354, the proof of Theorem (4.1)), we have the following equivalent definition
for the extended gfnemtor: Ifu,g € B° then u € D(L) and Lu = g if andtonly iof for all

x € E we have /Ts(|g\)(aj) ds < oo for allt >0 and <u(Xt) —uXp) — / 9(Xs) ds)
0 0 t>0

is a (F;)-martingale under P*.



The next result collects properties of the extended weak generator. Several arguments used
in the proof are similar to the case of the Cy-semigroups of contractions on a Banach space of
functions; see, e.g., [25], Ch. 1, section 2. In particular, assertion (viii) below is a pointwise
version of Theorem 1.3 from [23], Ch. I, section 3. For the reader convenience we present its
proof in Appendix (A.2).

Proposition 3.4. The following assertions hold for a sub-Markovian transition function T =
(T3)1=0, its resolvent U = (Uy)as0, and the extended weak generator (L, D(L)).

(i) If o > 0 then D(L) = U,(B,) and it is independent of o > 0. If f € B(T), a > 0 and
u="U,f then (¢ — L)u = f. If f € bB°, t > 0, and u = ngsfds then uw € D(L) and

Lu=Tf—-F.

(i) The operator (L,D(L)) is well defined and we have Lu(x) = limp g w, r € F,
ue D(L).

(iii) We have D(L,,) C Do(L) C D(L) = {u € D(L)N B, : Lu € By} C By, Llpzy = L, and
Llp(r,) = L.

(iv) One has Dy(L) = Uy(Byo) for each o > 0. Ift > 0 then T;(D,(L)) C D,(L), Ty(D(L)) C
D(L), LoTy=TioL on D(L), and LoT; =T, o L on D,(L).

(v) If B > 0 and (L°, D(LP)) (resp. (LB, D(LF)) denotes the extended weak generator (resp.
the extended generator) of the transition function Tg, then D(L) C D(LP) (resp. D(L) C
D(LP)), LPu = Lu — Bu for every u € D(L) (resp. LPu = Lu — fu for every u € D(L)),
and D,(L) = D,(L").

(vi) We have D (L) = U,(B.) C D,(L) for each o > 0 and if t > 0 then T;(D.(L)) C D.(L).

(vit) Let DS(L) := {u € D,(L) : [0,00) > t — LTu(x) is continuous for each x € E}. If
t,a > 0 then Ty(D:(L)) € DS(L) and Uy(D(L)) € DS(L). If B> 0 then UgU,(b[B]) C
D:(L).

(viii) If uw € bDS(L) then [0,00) 3 t — Tyu(x) is continuously differentiable for each x € E
and (Tyu(x)) = LTiu(z). Moreover, uy := Tyu, t > 0, is the unique solution of the
equation

du
(3.9) d—tt = Luy,t >0,

such that ug = u, uy € Dy(L), ||ug]|eo s bounded, Lu; € B,,, and [0,00) 3 t — Luy(x) is
continuous for all x € E.

Corollary 3.5. Assume that T = (T});>0 is the transition function of a right Markov process
X = (Q, F, Fi, Xy, P*) with Lusin topological state space E. Then the following assertions hold.

(1) If f € C(E) is such that there exists h € € with |f| < h, then Uyf € D.(L) for each
a > 0. In particular, Uy(bC(E)) C D.(L). The above assertions are still true if we
replace the continuity condition by the weaker one of fine continuity.

(i) If T = (1})i=0 is a Feller semigroup, i.e., each kernel Ty, t > 0, leaves invariant bC(FE),
then U, (bC(E)) C DS(L).



(iii) The martingale problem associated with (L,D(L)) has a solution. More precisely, for

every u € D(L) and x € E, the process

<u(Xt) — u(Xy) /0 Tu(x) ds)

t=0

is a (F;)-martingale under P*.

The following additional property of S = (S;);>¢ will be considered further on:

(3.10) 3 C, C bpB such that 1 € C,,C, generates B, and wlf{IOI Sif(x) = f(x) for all z € E.

Remark 3.6. As a consequence of (B10) we have for all o, 5 > 0:
(3.11) If BI0Q) holds then o(V5Va(bByo)) = 0(Va(bB,,)) = B,

where V = (V,)as0 is the resolvent of S and B,y = Boo(S). Indeed, by BI0) if follows that
for every f € C, we have pointwise limq_ooaVof = f and therefore C, C bpo(V,(bpB)), hence
B =0(C,) C a(Vy(bpB)), so, a(V,(b[B])) = B. On the other hand by Lemma[31 (iv) we have
Va(b[B]) C bB,, C b[B] and therefore o(bB,y,) = B. By Lemma [2.1 (i) Va(bBoo) C Boo and
therefore the vector space Vo (bB,,) does not depend on o > 0 and o(Vy(bBs)) C Boo. The
converse inclusion also holds because for every f € bB, we have lim,_,o, aV,f = f pointwise
on E and we conclude that the last equality from [B.I0Q) is proven. Observe that the resolvent
equation implies that the vector space V3V, (bB,,) also does not depend on o and 5. If f €
bB, then limp_ooSV5Vaf = Vof pointwise on E, hence V,f € bo(V3Va(bBo)) and therefore
0(Va(bBoo)) C 0(V5Va(bB,,)) and so, the first equality is also clear.

Non-autonomous semi-dynamical systems. Let (E,B) be a Lusin measurable space and
let ® = (®54)1>5>0 be a family of mappings &, : £ — E,t > s > 0. Inspired by e.g. [33],
we say that ® is a non-autonomous semi-dynamical system on E provided that the following
conditions are satisfied:

(Nsdl) @ 4(x) = Dyt (D () forallt >r>s>0and z € E;

(Nsd2) &, (z) = forall s >0,z € E;

(Nsd3) For each ¢ > 0 the function [0,00) X E' 3 (s,z) — ®; s4(2) is measurable;
(

Nsd4) There exists a countable set C, C bpB such that C, separates the points of E and
limp o f(Ps s4e(x)) = f(z) for all s > 0,2 € E and f € C,.

The paths of unique strong solutions to Ito SDEs on R? which depend continuously on the initial
data are typical examples of such non-autonomous semi-dynamical systems (see e.g. [27]).
Given a ® as above, it is a straightforward to check that & := (@t) i~ defined by

D, :[0,00) x E— [0,00) X B, ®y(s,7) := (s +t, P, 14(x)), t,s>0,2€F,

is a semi-dynamical system on [0, 00) X E.
Thus, the results obtained in this work for (autonomous) semi-dynamical systems can be
easily reinterpreted for non-autonomous semi-dynamical systems.
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3.1 The extended weak generator of a semi-dynamical system

We have the following characterization of those Markovian transition functions that corre-
spond to semi-dynamical systems:

Proposition 3.7. Let S = (S;)i=0 be a Markovian transition function on (E,B) and (D,D(D))
be its extended weak generator. Then the following assertions are equivalent.

(i) S = (S¢)i=0 is the transition function of a semi-dynamical system on E.

(ii) The transition function S = (S;)=0 satisfies BIQ) and it is multiplicative, that is, for
every f,g € bpB and t > 0 we have S;(fg) = (S¢f)(S:g).

(111) S = (St)=0 satisfies BI0), B. and D.(D) are algebras, S = (St)i=o is multiplicative on
B., and if u € D.(D) then Du? = 2uDu.

(iv) S = (S)i=0 satisfies BI0), Di(D) := {u € bDS(D) : Du € bB,,} is an algebra, and if
u € DE(D) then Du? = 2uDu.

(v) S = (St)i=o satisfies BI0) and there exists an algebra A C Dy(D) which generates B,
Siu € A, t >0, and Du® = 2uDu for each u € A.

Proof. The implication (i) — (i) is clear; notice that (sd4) implies that (BI0) holds.
(13) — (i1i). We show first that

(3.12) if S = (S;)i=0 is multiplicative and v € s then v? € Eyg,

where 3 > 0 and & = &. Indeed, since S = (S;);0 is multiplicative we have e, (v?) =
(e7PSv)? < v?, where the inequlity holds because v € £;. Then clearly limg o e 295, (v?) =
limp o(S;v)? = v?, where the last equality follows from limg o S;v = v.

As a consequence of ([3.12)) we have:

3.13 if S = (S,)i=0 is multiplicative then B, is an algebra, i.e., if f € B, then f* € B..
(3.13) >

Indeed, if f € B, and |f| < h € € then by BI2) we get f? < h? € £ and because S,(f?) =
(Ssf)? we also have limg o S5(f?) = (limg o Ssf)* = f%. So, by Lemma Bl (i7) we conclude
that f2 also belongs to B..

Let now u € D.(D), |u| < h € £ By BI3) we get u? € B, and Siu? — u? = (Su —
u(z))(Seu +u), t > 0. We have |Syu + u| < 2h and supg.,o;, 24| < hq, with Vohe < 00
on E, where V = ( a)a>0 is the resolvent of S. Consequently, supg.;.; |5t“ —u*| < 2hoh

and we have V,( fo e~ (Sshy)Ssh < hVyh, < oo on E. Because hmt\o S = u

pointwise on E, we conclude that for every x € E there exists the limit limy M =

limp g M limpo(Syu(z) + u(z)) = Du(z)2u(z). So, u> € D(D) N B, and Du® = 2uDu.
Moreover, u and Du both belong to B,, therefore (B.I3) implies that Du? € B, hence u* €
D.(D).

(7ii) — (iv) Notice first that Dj(D) C D.(D), because 1 € £. If u € D§(D) then by the
hypothesis (i77) we have u? € D.(D) and Du? = 2uDu. In addition, u, Du € bB,,, hence Du?
also belongs to bB, which is an algebra included in bB,,. Consequently, u?> € D,(D). Since
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DS;(u?) = 2(Syu)(DSyu) and the functions Syu and DSyu are continuous in ¢, we conclude that
u? also belongs to DE(D).

(tv) — (v) Assume that (iv) holds, then Dj(D) is multiplicative and we show that it
generates B. Indeed, by Proposition B.4] (vii) we have V3V, (bB,) C Di(D). From (B.I1]) we get
B =oc(V3V,(bB,)) C o(Dg(D)) and thus o(bDg(D)) = B.

(v) — (i1). Let now v € A as in (v). If we put v; := (S;u)? then by hypothesis we have
v € A, £ 20, SUPocyens [Velloo < |JullZ, and ¢ — Duvy(x) is continuous for each x € E. Using
PropositionB4l (viii) we obtain % = 2Su-DSyu = Duv,, t > 0, with vy = u?. By the uniqueness
property of the equation (3.) it follows that (S;u)? = Siu?, hence (Syu)(Syv) = S;(uv) for all
u,v € A. Applying Remark2.2] (iii), we conclude that S = (.5;);¢ is multiplicative and therefor
assertion (i7) holds.

(7i) — (7). The proof of this implication is straightforward, however, for the reader conve-
nience we give some details here. Let S;(z, ) be the probability on E induced by the Markovian
kernel S; and = € E, Si(x, A) := Si(14)(x) for all A € B. Taking f = g = 14 in the prop-
erty of S = (S})i=0 to be multiplicative we get Si(14) = (S;(14))? and therefore the number
Si(z, A) should be either 0 or 1. Hence Si(x,-) is a Dirac measure on E, concentrated at a
point ®,(x) € E, Si(x, ) = ba,@). We obtain Sif(z) = f(®(x)) for all f € pB, x € E, and
t > 0, and it is easy to check now that ® = (®;);~o verifies (sd1) — (sd3), while (sd4) follows
from [2.2). So, & = (P;)>0 is a semi-dynamical system on E and S = (S;);> is its transition
function. O

The following result concerns the algebraic structure of the extended generator of a semi-
dynamical system; its proof is deferred to Appendix (A.3).

Proposition 3.8. Let S = (S1)i=0 be the transition function of a semi-dynamical system on
(E,B) and let (D, D(D)) be its extended generator. If f € D(D) and f(f Ss(|fDf|)ds < 0o for
allt > 0 then f? € D(D) and Df? = 2fDf. In particular, bD(D) is an algebra.

Example: The classical case of an Euclidean gradient flow. Let B : R? — RY be a
continuous vector field such that:

(B.i) For each r > 0 there exists a constant ¢(r) such that for all z,y € R?, |z|, |y| < r

(B(z) — B(y),z —y) < c(r)|z — y|? (local weak monotonicity).

(B.ii) There exists a constant ¢ such that for all z € R¢

(B(x), ) < co(1 + |2]?) (weak coercivity).

Then, by e.g. [Rockner-Wei Liu|, Therem 3.1.1 (applied for o = 0), for each x € R? there exists
a unique solution (®4());>0 € C([0,00); R?) to the equation

{ d®,(z) = B(®,(z))dt, t >0,

3.14

(Py)i>0 is a semi-dynamical system as considered in Section 2, which can be regarded as a
(deterministic) right process with transition function (S;):>o,

Sif(x) = f(®u(x)), t>0,2cR? febBRY.

11



Note that if (D, D(D)) denotes the weak generator of the continuous flow ® = (®;);, then it
is clear that
Dv =B-Vv for all v € C}(R™).

3.2 Stopped continuous flows

In this subsection (more precisely, in Proposition below) we apply to continuous flows
the classical technique of stopping a Markov process at its first entry time in a given set. This
stopping technique has been used in [I1], Remark 3.4, in studying stochastic fragmentation
processes for particles with spatial position on a surface.

Let ® = (®;);~0 be continuous flow on a Lusin topological space E and let O be an open
susbset of E. Let T be the first entry time in O° = E \ O,

T(x)=inf{t > 0: Oy(x) € O°}.
The following properties are immediate:
1. T is a terminal time, that is, the mapping E > x — T'(x) is B(F)-measurable and
t+To6,=Ton [t <T],
or equivalently, t + T'(®(x)) = T'(z) if t < T'(x) for all z € E.

2. If x € O then ®r(,)(z) € 00.

3. If € O then T(x) = 0, s0, Pr(y(r) = .

4. We have ®p(z)(x) € O° for every z € E.

For each t > 0 define the map ®7 : £ — FE as

,x € FE.

() = Oy (x), t <T(x)
T ), > Tl)

The announced result of this subsection is the following collection of statements, whose
proofs are presented in Appendix (A.4).

Proposition 3.9. Then the following assertions hold.

(i) The family ®° := (®F)i=0 is a continuous flow on E and it is called the stopped flow w.r.t.
T. We have ®y(x) = y(x) if t < T'(x) and OY(x) = x for every x € O° and t > 0.

(ii) Let (D, D(D)) (resp. (D°,D(D°))) be the extended weak generator of the continuous flow
O (resp. of the continuous flow ®°) on E. We have D°u = 0 on O° for all uw € D(D?)
and if in addition uw € D(D) then D°u = Du on O.

(iii) The set O is absorbing for ®° := (®?),s¢, that is, if v € O then ®%(x) € O for allt > 0.
(iv) Define the restriction ®° = (39)=g of ® to O as BO(z) := ®%(x) for all z € O and

t > 0. Then ®° is a continuous flow on O.
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4 Continuous flow driving a Markov process
Let (L,D(L)) and (D, D(D)) be two extended weak generators on E. Define
D(DL) := {u e D(D)ND(L) : Lu € D(D) and DLu € BY(T)},

and D(LD) analogously.

We can present now the second main result of this paper.

Theorem 4.1. Let T = (T})=0 be the transition function of a right (resp. Hunt) Markov process
X = (Q,F, Fi, X¢, P7) with state space E and extended weak generator (L, D(L)). Assume that
there exists a multiplicative set C; C bC(E) which generates B(E) such T;(C;) C C(E) for all
t > 0. Let ® = (Dy)=0 be a right continuous flow on E such that the mapping (z,t) — Py (x)
is continuous on E x [0,00), with transition function S = (S;)=0 and extended weak generator
(D,D(D)). Suppose in addition that L and D commute in the sense that

D(DL) = D(LD) =D, and DL=LD onD,.

Furthermore, set
X2 i=®,(X,), t =0.

Then the following assertions hold.

(i) X® = (Q,F, F, X2, P?) is a right (resp. Hunt) Markov process with state space E and
the transition T® := (T*)1=0 defined as T := SyT; for all t > 0.

(ii) Let D, := U,V3(bC(E)), a, 3 > 0. Then D, C D,(L) N Dy(D) N D,(L®), D. C DE(L) N
D,(D)ND(L®) and
L® =L+ D onD,.

Proof. (i) We check first that X is a (simple) Markov process with T® as transition function.
If f € bpB, p is a probability on E, and s,t > 0 then by the Markov property of X we obtain
RALF(XELIF] = T(F(®00))(X0) = ToSeeaf(X) = TS (X)) = TPF(XP). We have also
T2 [(X?) = ST, .Si o f(X,) = Ti_sSif(X,) if s < t. Tt follows that for all t > 0 [s —
T2 f(X2) 1oy is not right continuous|= [s — T;_(S,f)(X;)1j0,) is not right continuous| and
by Corollary (7.9) from [40] we conclude that X® is a right process.

(ii) Observe that Corollary B.2limplies that bC'(E) C B.(S) N B.(T) N B.(T?). If f € bC(FE),
because T; and V3 commute, by dominate convergence we get limp o SiU, f = U, (limp o St f) =
f. Therefore, by Lemma [3.1] (i7) we deduce that U, f € B,,(S) and consequently, if u = U, Vs f
then u € D,(D). Analogously, u belongs to D,(L) too. In addition, LTiu = aTiu — V5T, f,
DSyu = BSu — UgSyf and so, the functions LTu(x) and DSyu(x), x € E, are continuous in ¢,
hence u € DS(L) N DE(D).

Because limg g T“;_“ = Lu if and only if limy g % = Lu — au, we may suppose
that the potential kernels U and V' are bounded and that u = UV f, hence U|f| and V|f]| are
bounded functions. We have Tf;‘_u = Gy (f1u=) 4 Sti=t and so, to show that u € D(L®) and
L*u = Lu + Du, it is sufficient to prove that limy g St(T”i_“) = —Vf pointwise on E. We
have Tyu —u = =V ([} T f ds), S;(1e=2) = —~V(S,L [ Ty fds) = =V f — V(S,} [ Tugds — f).
Therefore, it remains to show that lim;\ V(St% fot Tsf ds — f) = 0 pointwise on E. We have
V(S [T fds — f) = [ Se( [[(Tof — f)ds)ds’ — [] Sy fds'. Since f € bC(E), the second
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term from the right hand side of the last equality tends to zero when ¢ 0. For the first
IS (5 fOt(Tsf — f)ds) ds" <V(3 f(f T, f — flds) and because
limg\ o T5f = f pointwise on £, the first term also vanishes when ¢ ™\ 0. O

term we have the estimation

4.1 Right continuous flow driving its subordinate process

Let & = (P¢)i=0 be a right continuous flow on E, with transition function S = (S;)io0.
Let further g = (p:)i>0 be a convolution semigroup on R, and consider S# = (S}');>0, the
subordinate of (S;);>o in the sense of Bochner wur.t. g, defined as S}'f = [JS,f pu(ds),
t >0, f € pB(E); for details see e.g. [39] and also [36]. In particular, the subordinate process
YV = (V) is defined as

Vi (2, w) = ey (2), 20, (z,w) € ExQ

and it turns out that Y& = (}/;s)t>0 is a right Markov process with state space E/, path space E X
V', and transition function S* = (S}');>0, where €' is the path space of the subordinator (&):>o,
the positive real-valued stationary stochastic process with path space €, with independent
nonnegative increments induced by p = (1;);>0. So, Y* is obtained by introducing jumps in
the evolution of the given right continuous flow ®, by means of the subordinator induced by
= (He)e=0-

We state now a consequence of Theorem ] involving the right continuous flow ® and the
subordinate process Y¢.

Corollary 4.2. Let S = (S;)i=0 be the transition function of a right continuous flow ® =
(Py)i=0 on E. Let (&)=0 be a positive real-valued stationary stochastic process with independent
nonnegative increments induced by a convolution semigroup v = (u¢)i>0 on Ry. Further, define

VP =@y, t > 0.
Then the following assertions hold.

(i) Y* = (ExQ,Y,*) is a right Markov process with state space E and the transition function
T® := (T?) =0 defined as TF := S, S} for all t > 0.

(ii) Let (D,D(D)), (D*,D(D")), and (L*, D(L®)) be the extended weak generators of S, S*,
and respectively T®. Let further D, = VFVg(bC(FE)), o, > 0, where ¥V = (Vi)as0
(resp. VF = (VH)os0) is the resolvent of S (resp. the resolvent of S*). Then D, C
D¢(D*) N D,(D)ND(L?) and

L® = D*+ D on D,.
Proof. We apply Theorem I for X := Y'®. We clearly have X = ®,(V) = &y(Dg,) = Py,
and observe that the paths ¢t — ®;,¢ ) (x) are right continuous, without assuming that the

right continuous flow @ is continuous. For all ¢, > 0 we have Sy S}’ = SI'Sy = fooo Serepie(ds).
Assertion (ii) follows from Theorem FT] (74). O
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4.2 Continuous flow driving a superprocess

Let ¥ : [0,00) — R be a branching mechanism,
T(N) = —bA — c)? +/ (1 —e™ — \s)N(ds),
0

where b,c € R, ¢ > 0, and N is a measure on (0,00) such that N(u A u?) < co. Consider the
superpocess X? on the set M(FE) of all positive finite measures on E, having the branching

mechanism ¥ and having no spatial motion. According to [I8] the superprocess X is called
pure branching. For details on the measure-valued branching processes see [22], [24], [34] and

also [26], [1], and [2].

Let further ® be a continuous flow on £ and consider the superprocess X on M (E), having
the spatial motion ® and the branching mechanism W. By & we also denote the continuous
flow on M(FE) (endowed with the weak topology) canonically induced by the given flow ® on
E.

It turns out that one can apply Theorem ] on M (FE) for X0 instead of X and the flow
® on M(E). We get the following representation of the superprocess X by means of the pure
branching superprocess X0 .

X, = ®,(XD) for all t >0,
where the equality is in the distribution sense; see [18]. A similar result holds for non-local
branching processes (in the sense of [12] and [14]) on the set of all finite configurations of the
state space of the spatial motion; see also [I3] for an associated nonlinear Dirichlet problem.

5 Multiplicative LP-semigroups and continuous flows

Let & = (®;)=0 be a semi-dynamical system with state space (E,B), S = (S¢)0 its
transition function, and U = (U, )a>0 be the associated resolvent of kernels. Let further m be
a positive o-finite measure on E which subinvariant for S, that is,

mo Sy < m forall t >0,

and fix p € [1,00). Then each kernel S, t > 0, induces a contraction on LP(E,m) which is
Markovian, that is, if f € LP(E,;m), 0 < f <1 then 0 < S;f < 1 and there exists a sequence
(fu)n C LP(E,m), f, <1 for all n, such that the sequence (S.f,), is increasing m-a.e. to the
constant function 1. It turns out that

(5.1) the transition function S of a semi-dynamical system becomes a Cy-semigroup

of Markovian contractions on LP(E,m) which in addition is multiplicative on LP(E,m), i.e.,
Si(fg) = (Sif)(Sig) forall f,g€ L(E,m)NLP(E,m) and t > 0.
In this framework, Theorem [ has a natural correspondent which goes as follows:

Proposition 5.1. Let T = (T})=0 be the transition function of a right Markov process X =
(Q, F, Fy, Xi, P7) with state space E and ® = ()0 a right continuous flow on E, with tran-
sition function S = (St)i=0 as in Theorem[].1. Let m be a positive o-finite measure on E which
is subinvariant for both S and T and let p € (1, 00).
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Consider the generators (L,, D(Ly)), (Dy, D(D,)), and (L}, D(LY)) of T, S, and respectively
T®as Cy-semigroups on LP(E,m), where T® = (T})s=¢ is defined as

T = S, T, for allt > 0.

Let further D, := U, V3(LP(E,m)), o, f > 0, where U and V are the resolvents of T and S on
LP(E,m). Then the following assertions hold.

(i) D, is a core of L, and D,, D, C D(L,) N D(D,) ND(Ly), and

Lg) = L,+ D, onD,.

(ii) Let X = ®,(X,), t >0, go € L’jr,(E,,u) (where % —I—I% = 1) be such that [, godm =1,
and put v = go-m. Then (X2);o solves the martingale problem for (LY, D(LY)) under
P = [, P*v(dx), that is, for every u € D(Ly)

(w0 = uxed) — [ e as)

t=0
is an (Fy)i=o-martingale under P”.

Proof. Because D(L,) = U, (LP(E,m)) and D(D,) = V3(LP(E, m)) we clearly have that D, is
dense in LP(E,m). Assertion (i) follows arguing as in the proof of Theorem [T] (ii).
Assertion (ii) is a consequence of Proposition 1.4 from [6]. O

Proposition 3.1 has an LP-version as well, and its proof is given in Appendix (A.5).

Proposition 5.2. Let (P,);so be a sub-Markovian strongly continuous semigroups of contrac-
tions on LP(E, ). Then the following assertions are equivalent.

(i) The semigroup (P))=o is multiplicative on LP(E,m).
(i) If (L, D(L)) is the infinitesimal generator of (P;)i=o, then

uw€ DL)YNL®(E, pn) = u®> e D(L) and Lu* = 2ulLu.

Example. Let £ = [0,1) U (1,00), u = Lebesgue measure on F and for f € LP(E, u), let
P,f := f(.+1t). Then (P,);s is a sub-Markovian Cy- semigroup of contractions on LY (E, i)
which is multiplicative. Let £’ = [0,00). Then clearly (P,)u=0) coincides (on LP) with the
transition function of the semi-dynamical system on £’ O E given by uniform motion to the
right.

The next theorem is the main result on multiplicative LP-semigroups and continuous flows,
and it represents a converse of statement (5.1]).

Theorem 5.3. Let p € [1,4+00) and (S;)i=0 be a Cy-semigroup of Markovian contractions on
LP(E, 1) which is multiplicative, where (E,B) is a Lusin measurable space and p is a o-finite
measure on (E,B). Then there exist a Lusin topological space E' with E C E', E € B’ (the
o-algebra of all Borel subsets of E'), B = B'|g, and a continuous flow with state space E' such
that its transition function S = (S;)i>0, regarded on LP(E' Ti), coincides with (S¢)i=0, where I
is the measure on (E',B') extending j by zero on E'\ E.
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Proof. Let (V4)a>0 be the resolvent of sub-Markovian contractions on LP(FE, i) associated with
(St)t=0. By Theorem 2.2 from [5] there exist a Lusin topological space E' with £ C E', E € B/
(the o-algebra of all Borel subsets of E'), B = B'|g, and a right Markov process X with state
space E’' such that its resolvent (V,)a~0, regarded on LP(E’, i), coincides with (V,)as0, where
i is the measure on (E’, B') extending p by zero on E' \ E.

Let (P))i=0 be the transition function of X and A be a countable subset of bpB' N LP(E’, 1/')
which is multiplicative and generates the o-algebra B’. Consider the set

F,={x € E : P/(Vaf - Vzg) = P/(Vsf)P/(Vsg) for all t € Q; and f,g € A}

for some § > 0. Clearly, P/ coincides with S; as an operator on LP(E’, ') for each t > 0, hence
it is multiplicative on LP(E’, ') and therefore p/(E’\ F,) = 0. We have F, € B’ and applying
Lemma 2.8 from [7] we deduce that it is finely closed. By Lemma 2.1 and its proof from [5]
there exists a finely closed set F' € B, F' C F,, such that p/(E"\ F) = 0 and V,(1g\r) = 0 on
F. Since V,(1gnp) > 0 on the finely open set £\ F, if follows that F is an absorbing subset
of E’. Therefore we may consider the restriction (P;);>o of the transition function (P/);>o from
E' to F, P.f := P/f'|r, where f" € pB is such that f'|r = f.

Because the functions ¢ — P/(Vf - Vzg) and t — P}(Vjf) are right continuous on [0, 0o)
it follows that P/(Vsf -Vzg) = P/(Vsf)P/(Vsg) on F for allt > 0 and f, g € A. By a monotone
class argument we get that (F;);>o is a multiplicative transition function on F' and condition
[22) is satisfied. Consequently, Remark implies that there exists a semi-dynamical system
O° = (P?);>0 on F having the transition function ().

Let ® = (®;)=0 on E’ be the trivial extension of ®° from F to E', ®;(z) := ®¢(z) if z € F
and ®,(z) =z if x € E'\ E for all t > 0. Since (sd4) holds on F' for ®° with the countable
set C, C bpB then (sd4) also holds for ® on E’ considering a countable set C C bpB’ which
separates the points of E' and C/|p = C,. So, ® = (P;);>0 is a semi-dynamical system on £’
and applying Theorem 2.4] we may replace the topology of E’ with a a conveninent Ray one,
such that ® becomes a continuous flow on £’ as claimed. O

Remark 5.4. It is proven in [6] that under additional assumptions on the domain of the
generator of a Cy-semigroup of sub-Markovian contractions on LP(E,m) the associated Markov
process exists on E, so, it is not more necessary to consider a larger state space; for applications
in significant examples see also [29], [30] and [21)]. In this case, if the semigroup is multiplicative
on LP(E,m), one can see that the associated continuous flow from Theorem[5.3 remains on E.

Appendix

(A.1) Proof of Lemma(31d. Observe first that if f € B, then U,|f| < Uyh, < oo for all o > 0,
so, Unf € [B].

(1) Let a, @’ > 0 and «, := inf(a,a’). If f € B, then there exist t, > 0 and h,, € pB such
that supg_,. Ts|f| < ha, with Uy, ha, < 00. Then one can see that supy_,, Ts|Uaf| < Ugha,.
Since a, < «,a’ and U, h,, < oo, it follows that U,h,, and U, Uyh,, are also real-valued
functions. We conclude that U,f € B,. We have also T,U,h,, < €*Uyh,, < 0o, t > 0, hence
Usf € Boo.

Let now f € By, o, t' > 0 and ¢, > 0 be such that supg_,, Ti|f| < h = inf(hy, by, ha) €
pB with Tyhy + Tivphivy + Uyhy < 00. Then Ty T f| < Tihy < oo for every s < t,. Since
limg o 7 f = f, we deduce by dominated convergence that 7| f| < oo and limg o T, f = T} f.
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We have also supg.,.,, Ts|T;f| < Tih < oo with U,T;h < e*Uyh < oo and TyT,h < oo,
Therefore Ty f € B,,.

Assertion (ii) follows because U,h, T;h € £, provided that h € £.

(ii1) Let f € B° be bounded, so, we may assume that |f| < 1. Then |f] < 1 := limpT;1
which is excessive and therefore f belongs to B..

(tv) The first assertion follows from (ii) since f = limp o T3 f if f € [E]UBE,]. IEU|f] < o0
then Uf € [£] and therefore U f € B,,. O O

(A.2) Proof of Proposition[3.4). (i) Since by assertion (i) of Lemma Bl we have U, (B,) C By,
it is clear that the set U, (B,) does not depend on o > 0. Let u = U, f with f € B,. Then u also
belongs to B,, hence in particular, U, |u| < oco. Let further ¢, > 0 and h, € pB be such that
T,|f| < hq for all s < t, and Uyh, < co. We have |Tiu — u| < (e — 1)|u| + hy eatfg e~ ds
if t < t,. Therefore sup0<t<t | Bv=t| < b= alu| 4 he and Uyh < co. We also have T4=% =

atl

—lu + 1a—e:t — (Zt fo (T f — f)ds. Clearly, when t N\, 0, the first term from the right
hand side converges pointwise to au, the second one to —f, while the third one converges to
zero because limgy o Tsf = f. We conclude that v € D(L) and Lu = au — f. Conversely,
if w € D(L) then let o,t, > 0, and h, € pB with Uyh, < oo and supg.,q, |74 < ha.
Let v := Lu = limy g Tt“ t ¢ B,. Because U,h, < oo, by dominated convergence we get
limy o M = Uyv. On the other hand, from the first part of the proof we have U,u € D(L)
and limp o £t0et=bat — [(U,u) = aUyu — u. We conclude that u = U, (au — v) € Uy (B,).

To prove the last assertion of () we argue as in the proof of Proposition 1.5 (a) from [25].

We have T’”‘ L= hfo Toinf —Tsf]lds = t+hde — foh Tsf ds. Because the function
=T.f—f

pointwise on E. Since we also have |Z4=%| < 2|| f||« for all > 0, we conclude that u belongs
to D(L) and Lu =Ty f — f.

s+— Tof (z ) is right continuous on [0, c0) for every x € E, it follows that limy o 22

(i) Let z € E. Since g € B® we have limy o T;g(z) = g(z) and therefore limp g M =

limy o %f(f T.g(z)ds = g(x) = Lu(x).

(iit) We clearly have D(L,) C D.(L) because bB° C B Let w = U,f € D(L). Then, by
assertion (i) of LemmaBIwe get u € B,, and we have fo (au—f) =« fo J e Ty f drds—
fods—f (e — 1)e~ Ty f dr — fOdeS——u—Fetj; e fdr = —u+ T,U,f =
—u+ Tyu, where for the second equality we used Fubini’s Theorem. We conclude that u € D(L)
and by assertion (i7) we clearly have Lu = Lu. Let now u € D(L) N B, such that Lu € B,, let

a >0 and h, EpB with U,h, < 00, be such that Ti(|Lu|) < h,, for all s < ¢, for some ¢, > 0.
Then |fit=4| <1 fo (|Lu|)ds < h,, for all t < t,. It follows that u € D(L).

(iv) Let u € D,(L) and a > 0. Then u = U,(au — Lu) with u, Lu € By, s0, u € Uy(Byy).
Conversely, if u = U, f with f € B,,, then by assertion (i) we have u € D(L) and Lu = au—f €
B, hence u € D,(L).

Let w = Uyf € D,(L), f € Boo. According to Lemma BT (i) we get T;f € B,,. Therefore
Tiu = U,T, f also belongs to D,(L) and we have LTyu = LU, T f = aU,T,f — T f = T, Lu.

The proof of (v) is straightforward.
Assertion (vi) follows arguing as in the proof of (iv) and using Lemma B1] (i7).

(vii) The first inclusion follows from assertion (iv). Let now u € U,(D(L), u = U,Usf with
f € B,. Then LTiu = oTyu — TiUszf and it is continuous in ¢, according with the following
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remark: If g € [B] is such that U,|g| < oo then the real-valued function t — TiU,g(x) is
continuous on [0,00) for each x € E because T,U,g = €™ ftoo e~ *Tgds.

To prove the last inclusion of assertion (vii), observe that by Lemma Bl (iv) we have
U.(b[B]) C B,, and by assertion (iv) we obtain UzU, (b[B]) C D,(L). The continuity property
is obtained using again the above remark.

(viii) Let w € DE(L), u = U,f with f € B,,. Then by Lemma [B.1] (i) we have T;f € B,, for
each t > 0 and LTyu = oTyu — Ty f. Because t — Tyu(z) is continuous, it follows that T} f(z)
is also continuous in ¢ on [0, 00) for each z € E. We have Tyu = e (u — fot e**Tsf ds) and from
the above considerations the first statement of assertion (viii) follows. In particular, we proved
that u, := Tyu, t > 0, is a solution to the equation (B.9]), satisfying the requested conditions:
Ty = u, ||[Tiul|so < ||t]|oo, Tiu € Do(L) by the above assertion (iv), LT € By, and LTiu(z) is
continuous in ¢ because we assumed that u belongs to DS(L).

We show now the uniqueness property for the solution to the equation ([39) and as an-
nounced, we use a classical argument, e.g., as in the proof of Theorem 1.3 from [23], Ch. I,
section 3, page 28. Let u;, t > 0, be a solution of ([B.9) such that ug =0, uy € Dy(L), ||ts|l0o 1S
bounded, Lu; € B,,, and Lu,(x) is continuous in ¢ for each x € E. We have to show that u, = 0
for each t > 0. Let o > 0 and v, := e~ *'u;. Then 9% = (L—a)v, with v, € D,(L). It follows that

Ua( gft) = —u, for each ¢ > 0 and therefore fo Vs ds —U,( (f d;’s ds) = —U,v;. Consequently,

fot e~ %ug(r)ds = —e “Uyuy(x). Since ||uslloo 18 bounded, letting ¢ — oo, it follows that the
right hand side of the above equality tends to zero. We conclude that fooo e~ *ug(r)ds =0 for
every a > 0 and = € E and therefore ug(z) = 0 for each s > 0 and = € E. O

(A.3) Proof of Crefprop3.6. Let g = Df with f € D(D) and fo (|fDf|)ds < oo for all t > 0.
We have to prove that S, f? = f2+2 fo SsfSsgds for allt > 0, provided that S, f = f+f0 sg ds.
Indeed, we have f(f S, fSsgds =2 fg[f + J5 Sug du]Ssgds = ff(f S.gds + f(f dsSsg [, Sugdu =
f 3 Segds + [7 duS,glfs Ssgds — [ Segds] = f [ Ssgds + [i duS,glf; Ssgds + f — Suf] =
2f [ Ssgds — [y SufSugdu = S, f>+ > —2fS,f. We conclude that 2 [, S, fS,gds = 2f(S,f —
)+ Sef> + f2=2fSif =S f* = [ O

(A.4) Proof of Proposition[3.9. The proof of (i) is a straightforward verification.

(17) Let w € D(D°) and = € O°. Then by (i) we have ®¢?(z) = = and therefore D°u(x) = 0.
Let further S = (S¢)=0 (resp. S° = (57)1=0) be the transition function of ® (resp. of ®°). If
u € pB(E) the Sfu(z) = Syu(x) provided that ¢ < T'(z) and Spu(x) = u(Pr)(x) if t > T(x)
and T'(z) < oco. If w € D(D) and = € O then there exists € > 0 such that ®,(z) € O for all
t < g, hence T'(x) > € and therefore SPu(x) = Syu(x) for all t < . We conclude that Du = D°u
on O.

(iii) Let * € O. If € O then by (i) we have ®¢(z) =z € O forallt > 0. If v € O
then clearly ®°(z) = ®,(x) € O for all t < T'(x). If t > T'(x) then ®¢(x) = Pp)(x) € 0O by
property (2) of T'.

Assertion (iv) follows from (7iz). O

2

(A.5) Proof of Proposition[2.2. Let u € D(L) N L>®(E, ). We have P’f“i_“ = Duu(py +
u) and since £ (resp. Pu) is converging in LP(E,p) to Lu (resp. to u) as t — 0, we

deduce that t“i_“2 is converging to 2uLu, hence u? € D(L) and Lu* = 2uLu. Conversely,

let w € D(L)N L>®(E, u) and put uy = (Ptu) D(L). Since 4 = 2Pu - LPyu = Lu; and
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up = u?, we get that u; = Pyu?, hence (Pyu)? = Pu?. It follows that Pi(uv) = Pu - P for all
u,v € D(L) N L*(E, u) and because D(L) N L*>®(E, u) is dense in LP(E, u) we conclude that
the semigroup (F;)so is multiplicative on LP(E, p). O
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