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Continuous flows driving Markov processes and multiplicative Lp-
semigroups

Lucian Beznea1, Mounir Bezzarga2, and Iulian Ĉımpean3

Abstract. We develop a method of driving a Markov processes through a continuous flow. In partic-

ular, at the level of the transition functions we investigate an approach of adding a first order operator

to the generator of a Markov process, when the two generators commute. A relevant example is a

measure-valued superprocess having a continuous flow as spatial motion and a branching mechanism

which does not depend on the spatial variable. We prove that any flow is actually continuous in a

convenient topology and we show that a Markovian multiplicative semigroup on an Lp space is gen-

erated by a continuous flow, completing the answer to the question whether it is enough to have a

measurable structure, like a C0-semigroup of Markovian contractions on an Lp-space with no fixed

topology, in order to esnsure the existence of a right Markov process associated to the given semigroup.

We extend from bounded to unbounded functions the weak generator (in the sense of Dynkin) and

the corresponding martingale problem.
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1 Introduction

The solution of a first order differential equation in an Euclidean domain E, a typical
example of continuous flow on E, may be regarded as a deterministic Markov process and its
generator D acts on functions on E as a derivation, i.e., D(u2) = 2uDu. It turns out this
property remains valid for the generator of a right continuous flow on a general state space E,
hence the approach herein considered provides a substitute for a gradient type operator in a
general setting, possible infinite dimensional.

The purpose of this work is twofold. First, we study Markov processes which are driven by
continuous flows, namely processes XΦ admitting the structure

(1.1) XΦ
t = Φt(Xt), t > 0,

where Φ is a continuous flow and X is a Markov process on E. Second, we investigate mul-
tiplicative semigroups in an Lp-context and the associated continuous flows, completing the
answer given in [5] to the question whether it is enough to have a measurable structure, like
a C0-semigroup of Markovian contractions on an Lp-space, with no fixed topology, in order to
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find a Markov process behind the given semigroup; see also [6], and [8]. We show that the
additional property of being multiplicative on Lp (or equivalently, the Lp-generator to be a
derivation) is enough for the existence of a continuous flow having the given Lp-semigroup as
its transition function.

If L (resp. LΦ) is the generator of X (resp. XΦ) and (1.1) holds, then LΦ = L+D, so, we
regard LΦ as a modification of L with a drift type operator D. In this way, the weak generator
(in the sense of E.B. Dynkin) of a Markov process but also of a right continuous flow are main
tools in our approach. An example for which our method apply is obtained by taking L to be
the fractional power (or more general, a Bochner subordination) of D. We present in particular
a method of extending the domain of the weak generator from bounded to unbounded functions,
enlarging the class of functions for which the associated martingale problem has a solution; for
other related extensions of the weak generator see [31] and [32].

The motivation for the first aim is the application to the measure-valued superprocesses,
cf. e.g. [35]. Recall that the state space of a superprocess X̂ is the set M(E) of all positive
finite measures on E and the evolution is given by a branching mechanism and a spatial motion
which describe the movement of the particles between the branching moments. If the spatial
motion is a right continuous flow and the branching mechanism does not depend on the spatial

variable then the representation (1.1) holds on M(E) by means of a second superprocess X̂0

and of the flow on measures induced by Φ,

X̂t = Φt(X̂0
t ), t > 0.

Here, the superprocess X̂0 is such that it has the same branching mechanism as X̂ , however,
it has no a spatial motion.

The structure and main results of the paper are as follows.
In Section 2 we present the basic facts on the right continuous flows and flows on a space

with no fixed topology, called semi-dynamical systems. Theorem 2.4 shows that actually such
a flow is continuous in a convenient topology, extending a result from [40]. As a consequence,
the induced capacity is tight.

The results on the extended weak generator of a Markov process are exposed in Section 3,
including the associated martingale problem. In Subsection 3.1 we study the extended weak
generator of a semi-dynamical system. Finally, we show in Subsection 3.2, Proposition 3.9, that
a continuous flow may be stopped at the first entry time in the complement of an open set, a
procedure already used in [11] and [13]. Several technical proofs are included in the Appendix.

The theory of continuous flows driving Markov process is investigated in Section 4. The
main result (Theorem 4.1) about the representation (1.1) and the drift modification of the
weak generator of Markov process, is followed by the example on the Bochner subordination of
a right continuous flow, stated in Corollary 4.2 from Subsection 4.1. The main application in
this framework is given in Subsection 4.2.

Theorem 5.3 from Section 5 is the central result that relates multiplicative Lp-semigroups
with continuous flows.

2 Semi-dynamical systems and right continuous flows

Transition functions, resolvent of kernels, and excessive functions. Let (E,B(E)) be
a Lusin measurable space, i.e., it is measurable isomorphic to a Borel subset of a metrizable
compact space endowed with the Borel σ-algebra.
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For a σ-algebra G we denote by [G] (resp. pG) the vector space of all real-valued (resp.
the set of all positive, numerical) G-measurable functions on E. Also, for a set of real-valued
functions C we denote by σ(C) the σ-algebra generated by C, by [C] the vector space spanned
by C, and by pC (resp. bC) the set of all positive (resp. bounded) functions from C.

We consider a sub-Markovian resolvent of kernels U = (Uα)α>0 on (E,B(E)). A nonnegative,
numerical, B(E)-measurable function defined on E is called U-excessive provided that

(2.1) αUαu 6 u for all α > 0, and lim
α→∞

αUαu(x) = u(x), x ∈ E.

We denote by E(U) the set of all real-valued U-excessive functions. If β > 0 we denote by
Uβ the sub-Markovian resolvent of kernels (Uβ+α)α>0. A Uβ-excessive function is also called
β-excessive. If w is a Uβ-supermedian function (i.e., αUβ+αw 6 w for all α > 0), then its
Uβ-excessive regularisation ŵ is given by ŵ(x) := supα αUβ+αw(x), x∈ E.

Let T = (Tt)t>0 be a sub-Markovian transition function on (E,B(E)), that is

- Tt is a sub-Markovian kernel on E, T0 = Id, Tt ◦ Ts = Tt+s for all t, s > 0;

- for every f ∈ bpB(E) the mapping (x, t) → Ttf(x) is B(E)⊗ B(R+)−measurable.

Let further U = (Uα)α>0 be the resolvent of sub-Markovian kernels induced by T = (Tt)t>0,

Uα :=

∫ ∞

0

e−αtTt dt, for all α > 0,

and let U be the potential kernel of T (and of U), U :=
∫∞

0
Tt dt.

Recall that condition (2.1) is equivalent with

Ttu 6 u for all t > 0 and lim
tց0

Ttu(x) = u(x) for all x ∈ E.

If β > 0 then clearly, Uβ is the resolvent of kernels induced by the sub-Markovian transition
function Tβ = (e−βtTt)t>0. Notice that the potential kernel of Tβ is the bounded kernel Uβ, in
contrast with the potential kernel U of T which might be an unbounded kernel.

Assume now that E is a Lusin topological space (i.e., E is homeomorphic to a Borel subset
of a metrizable compact space) and let B(E) its Borel σ-algebra. Let X = (Ω,F ,Ft, Xt,P

x, ζ)
be a right Markov process on E having (Pt)t>0 as transition function, hence

Ptf(x) = Ex(f(Xt), t < ζ), t > 0, f ∈ pB(E),

and let U = (Uα)α>0 be the resolvent on (E,B(E)) associated with (Pt)t>0. The fine topology is
the coarsest topology on E making continuous all β-excessive functions for some (and equiva-
lently for all) β > 0. Recall that in this context, a function f from pB(E) is finely continuous if
and only if t → f(Xt) is a.s. right continuous on [0, ζ). Using this characterization and the fact
that X is has right continuous paths, any continuous function on E is also finely continuous.

Semi-dynamical systems. Let (E,B) be a Lusin measurable space and let Φ = (Φt)t>0 be a
family of mappings Φt : E → E, t > 0. Then Φ is called semi-dynamical system on E provided
that the following conditions are satisfied:

(sd1) Φt+s(x) = Φt(Φs(x)) for all s, t > 0 and x ∈ E;
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(sd2) Φ0(x) = x for all x ∈ E;

(sd3) For each t > 0 the function E ∋ x 7−→ Φt(x) is B(E)/B(E)-measurable;

(sd4) There exists a countable set Co ⊂ bpB such that Co separates the points of E and
limtց0 f(Φt(x)) = f(x) for all x ∈ E and f ∈ Co.

In the sequel, if f ∈ [B] and N is a kernel on (E,B(E)), then by Nf ∈ [B(E)] we mean
that N |f | < ∞, hence N(f+) and N(f−) are real-valued functions and Nf = N(f+)−N(f−).

Remark 2.1. Note that if Φ = (Φt)t>0 is a semi-dynamical system on E then the function
E×[0,∞) ∋ (x, t) 7−→ Φt(x) is B(E)⊗B([0,∞))/B(E)-measurable. This follows by a monotone
class argument, observing first that from (sd4) it follows that for every f ∈ Co the real-valued
function t 7−→ f(Φt(x)) is right continuous on [0,∞).

For each t > 0 define the Markovian kernel on E as

Stf := f ◦ Φt for all f ∈ pB(E).

Then the family S = (St)t>0 is a Markovian transition function on E, called the transition
function of the semi-dynamical system Φ = (Φt)t>0.

Remark 2.2. (i) The transition function S = (St)t>0 of a semi-dynamical system Φ =
(Φt)t>0 on E is multiplicative, that is, St(fg) = (Stf)(Stg) for all t > 0 and f, g ∈
bpB(E).

(ii) It is known that the converse of assertion (i) holds: Let S = (St)t>0 be a Markovian
transition function on E which is multiplicative and

(2.2) there exists a countable set Co ⊂ bpB such that Co separates the points of E,

and limtց0 St(x) = f(x) for all x ∈ E and f ∈ Co. Then there exists a semi-dynamical
system on E, having the transition function S.
Indeed, for x ∈ E and t > 0 let St,x be the probability on E induced by the measure
f 7−→ Stf(x). If A ∈ B(E) then, St being multiplicative, we have St,x(1A) = (St,x(1A))

2,
so, either St,x(1A) = 0 or St,x(1A) = 1. It follows that there exists Φt(x) ∈ E such that
St,x = δΦt(x). Since Stf ∈ bpB(E) for all f ∈ bpB(E) it follows that (sd3) holds. The
semigroup property of (St)t>0 implies that (sd1) is verified and from (2.2) it follows that
(sd4) also holds. Finally, because S0 = Id we get (sd2).

(iii) Let A be a collection of bounded real-valued functions defined on E which is multiplicative
(i.e., if f, g ∈ A then fg ∈ A) and generates B(E). Let further S = (St)t>0 be a sub-
Markovian transition function on E such that St(fg) = (Stf)(Stg) for all f, g ∈ A.
Then S = (St)t>0 is multiplicative. Indeed, if we fix x ∈ E and g ∈ A then, writing
g = g+ − g−, the functionals f 7−→ St(fg)(x) and f 7−→ St(f)(x)St(g)(x) are differences
of two positive finite measures which coincide on A. By a monotone class argument we
get St(fg) = (Stf)(Stg) for all f ∈ bpB(E). Fixing now f ∈ bpB(E) and arguing as
before, we conclude that the last equality holds for all f, g ∈ bpB(E).
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(iv) We have

(2.3) if S = (St)t>0 is multiplicative and v is β-excessive then v2 is 2β-excessive,

where β > 0. Indeed, since S = (St)t>0 is multiplicative we have e−2βtSt(v
2) = (e−βtStv)

2 6

v2, where the inequality holds because v is β-excessive. Then clearly limtց0 e
−2βtSt(v

2) =
limtց0(Stv)

2 = v2, where the last equality follows from limtց0 Stv = v.

If E is a Lusin topological space and B = B(E) is the Borel σ-algebra, then a family
Φ = (Φt)t>0 of mappings on E is called right continuous flow (cf. [40], page 41) provided that
(sd1)− (sd3) hold and in addition:

(sd4′) For each x ∈ E the function t 7−→ Φt(x) is right continuous on [0,∞).

Clearly, any right continuous flow is a semi-dynamical system, because (sd4′) implies (sd4),
by taking Co a countable subset of bpC(E) which separates the points of E. If the function
t 7−→ Φt(x) is continuous on [0,∞) for all x ∈ E then Φ is called continuous flow.

Remark 2.3. One may regard a right continuous flow Φ = (Φt)t>0 as a deterministic right
Markov process X = (Ω,F ,Ft, Xt,P

x) in the following way: Ω := E, F = Ft := B(E),
Xt(x) := Φt(x) for all x ∈ Ω and t > 0, and Px := δx.

Let V = (Vα)α>0 be the resolvent of kernels associated with S, Vαf =
∫∞

0
e−αtf(Φt) dt. We

fix β > 0, a strictly positive function fo ∈ bpB(E), and put uo := Vβfo. We define now the
capacity induced by φ, by regarding φ as a (deterministic) right process. Let λ be a finite
measure on E and consider the functional M 7−→ cβλ(M), M ⊂ E, defined as

cβλ(M) := inf

{∫

E

e−βDGuo(ΦDG
) dλ : G open, M ⊂ G

}
,

where DG is the first entry time of G, DG(x) := inf{t > 0 : Φt(x) ∈ G}, x ∈ E. For measura-
bility properties of the first entry and hitting times in a set, for semi-dynamical systems with
general state space see [19]. It turns out that cβλ is Choquet capacity on E; see e.g. [3] and also

[15] and [4]. Recall that the capacity cβλ is called tight provided that there exists an increasing

sequence (Kn)n of compact sets such that infn c
β
λ(Kn) = 0.

We can state now the first main result, which shows that every semi-dynamical system
becomes a continuous flow with respect to a convenient Lusin topology.

Theorem 2.4. Let Φ = (Φt)t>0 be a semi-dynamical system on a Lusin measurable space
(E,B). Then there exists a Luzin topology T on E such that B = B(E) is the Borel σ-algebra
and Φ is a continuous flow with respect to this topology, such that the map x 7−→ Φt(x) is
continuous on E for all t > 0. For every finite measure λ on E and β > 0 the capacity cβλ is
tight.

Proof. Since by (sd3) we have limα→∞ αVαf = f pointwise on E for all f ∈ Co, it follows that
E(Vβ) generates B(E), where β > 0. In addition, if u, v ∈ E(Vβ) then u ∧ v := inf(u, v) also
belongs to E(Vβ), so, all the points of E are non-branch points with respect to Vβ .

The required Lusin topology T is going to be generated by a convex cone of bounded Vβ-
excessive functions R, called a Ray cone. Let us recall its usual construction, as, e.g., in [15],
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the proof of Proposition 2.2: Let R0 := Vβ(Co) ∪Q+. The Ray cone R is given by the closure
in the sup norm of

⋃
n>0Rn, where Rn is defined inductively as follows:

Rn+1 := Q+ · Rn ∪ (
∑

f Rn) ∪ (
∧

f Rn) ∪ (∪α∈Q∗

+
Vα(Rn)) ∪ (∪t∈Q∗

+
St(Rn)) ∪ Vβ((Rn −Rn)+),

where
∧

f Rn is the set of all functions of the form u1 ∧ u2 ∧ · · · ∧ uk with ui ∈ Rn, i 6 k, and∑
fQ+·Rn is the set of all functions of the form q1u1 + q2u2 + · · ·+ qkuk with qi ∈ Q+.
Note that R generates B(E) which is thus the Borel σ-algebra of T . Since t 7−→ StVαf(x)

is continuous and St(u ∧ v) = Stu ∧ Stv, it follows inductively that t 7−→ Stu(x) is continuous
on [0,∞) for all x ∈ E and u ∈

⋃
n>0Rn, and therefore for all u ∈ R. Hence t 7−→ u(Φt(x)) is

continuous on [0,∞) for all u ∈ R, that is, Φ is a T -continuous flow.
We have St(R) ⊂ R for all t ∈ Q+. So, clearly, Stu is T -continuous on E if t ∈ Q+ and

therefore x 7−→ Φt(x) is T -continuous on E for all t ∈ Q+. Because for all u ∈ R the function
t 7−→ Stu(x) is decreasing, it follows that Stu = supQ+∋tnցt Stnu = infQ+∋tnրt Stnu and thus the
function Stu is T -continuous on E for all t > 0. We conclude that x 7−→ Φt(x) is T -continuous
on E for all t > 0.

According to [37] and [4] (see also [38], [16], and [17]), the tightness property of the capacity
cβλ is a direct consequence of the continuity of the trajectories of Φ in the topology T .

Remark 2.5. (i) The Lusin topology from the above theorem is actually a Ray topology with
respect to the resolvent (Vα)α>0 of S; for details see e.g. [4] and [6].

(ii) Theorem 2.4 extends a result about right continuous flows from [40], (47.8) at page 220.

3 The extended weak generator

In this section we extend to unbounded real-valued functions the classical weak generator
acting on bounded functions, considered by E.B. Dynkin (cf. [23] pag. 55); see also [26] and
[35]. Notice that an extended generator was considered in [20] (and the references therein),
however, only for bounded functions in the domain of the operator. Also, we shall complete
the approach from [31].

Let T = (Tt)t>0 be a sub-Markovian transition function with induced resolvent U = (Uα)α>0,
and set

(3.1) B0 = B0(T) := {f ∈ [B] : Tt(|f |) < ∞ for all t > 0 and f =lim
sց0

Tsf pointwise on E}

Clearly, we have [Eα] ⊂ B0 = B0(Tα) for every α > 0. If T = (Tt)t>0 is the transition
function of a right Markov process with (Lusin topological) state space E, then every bounded
finely continuous function belongs to B0, in particular, bC(E) ⊂ B0.

Define also

Be := {f ∈ [B] : ∃ h ∈ E with |f | 6 h and f =lim
sց0

Tsf pointwise on E},(3.2)

Bo = Bo(T)(3.3)

:= {f ∈ B0 : ∀α > 0 ∃ to > 0, hα ∈ pB such that sup
0<s<to

Ts|f | 6 hα and Uαhα < ∞}

Boo = Boo(T)(3.4)

:= {f ∈ Bo : ∀t > 0 ∃ to > 0, ht ∈ pB such that sup
0<s<to

Ts|f | 6 ht and Ttht < ∞}.

Several properties of the sets B0, Be, Bo, and Boo are collected in the following lemma, whose
proof is included in Appendix (A.1).
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Lemma 3.1. The following assertions hold.

(i) For each α > 0 one has Uα(Bo) ⊂ Boo and if t > 0 then Tt(Boo) ⊂ Boo. If β > 0 then
Bo = Bo(Tβ) and Boo = Boo(Tβ).

(ii) If α, t > 0 then Uα(Be) ⊂ Be ⊂ Boo and Tt(Be) ⊂ Be.

(iii) We have bBo = bBoo = bBe = bB0.

(iv) We have [E ] ∪ b[Eα] ⊂ Boo, α > 0. If f ∈ [B] is such that U(|f |) < ∞ then Uf ∈ Boo.

Corollary 3.2. If T = (Tt)t>0 is the transition function of a right Markov process with Lusin
topological state space E, and f ∈ C(E) is such that there exists h ∈ E with |f | 6 h, then
f ∈ Be. In particular, bC(E) ⊂ Be.

Further, let us consider

D(L) :=

{
u ∈ Bo : ∀α > 0 ∃to > 0, hα ∈ pB with sup

0<t<to

∣∣∣∣
Ttu− u

t

∣∣∣∣ ≤ hα, Uαhα < ∞,

and lim
tց0

Ttu− u

t
∈ Bo pointwise on E

}(3.5)

Clearly, Bo, Boo, Be, and D(L) are vector spaces and define the linear operator

(3.6) L : D(L) → Bo, Lu(x) := lim
tց0

Ttu(x)− u(x)

t
, f ∈ D(L), x ∈ E.

Define also

(3.7) Do(L) := {u ∈ D(L) : Lu ∈ Boo} and De(L) := {u ∈ D(L) ∩ Be : Lu ∈ Be}.

The operator (L,D(L)) is called the extended weak generator of T = (Tt)t>0.

Remark 3.3. (i) Recall the definition of the weak generator (Lw,D(Lw)) considered in [23]:

D(Lw) is the set of all bounded functions f ∈ B0 such that
(

Ttf(x)−f(x)
t

)
t,x

is bounded for

x ∈ E and t in a neighbourhood of zero, there exists limtց0
Ttf−f

t
pointwise and the above

limit is an element of B0. If α > 0 then D(Lw) = Uα(bB
0), it is independent of α > 0

and if u = Uαf with f ∈ B0, then (α− Lw)u = f .

(ii) In [31] an extended generator (L,D(L)) of T = (Tt)t>0 was considered by taking into
account unbounded real-valued functions also, as follows: Let u, g ∈ B0, then u belongs to
the domain D(L) of L and g = Lu provided that

(3.8) ∀ t > 0, x ∈ E we have

∫ t

0

Ts(|g|)(x) ds < ∞ and Ttu(x) = u(x) +

∫ t

0

Tsg(x) ds.

(iii) Assume that T = (Tt)t>0 is the transition function of a right Markov process X =
(Ω,Ft, Xt,P

x) with Lusin topological state space E. According to [31], Proposition 4.1 (see
also [26], page 354, the proof of Theorem (4.1)), we have the following equivalent definition
for the extended generator: If u, g ∈ B0 then u ∈ D(L) and Lu = g if and only if for all

x ∈ E we have

∫ t

0

Ts(|g|)(x) ds < ∞ for all t > 0 and

(
u(Xt)− uX0)−

∫ t

0

g(Xs) ds

)

t>0

is a (Ft)-martingale under Px.
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The next result collects properties of the extended weak generator. Several arguments used
in the proof are similar to the case of the C0-semigroups of contractions on a Banach space of
functions; see, e.g., [25], Ch. 1, section 2. In particular, assertion (viii) below is a pointwise
version of Theorem 1.3 from [23], Ch. I, section 3. For the reader convenience we present its
proof in Appendix (A.2).

Proposition 3.4. The following assertions hold for a sub-Markovian transition function T =
(Tt)t>0, its resolvent U = (Uα)α>0, and the extended weak generator (L,D(L)).

(i) If α > 0 then D(L) = Uα(Bo) and it is independent of α > 0. If f ∈ B0(T), α > 0 and
u = Uαf then (α − L)u = f . If f ∈ bB0, t > 0, and u =

∫ t

0
Tsf ds then u ∈ D(L) and

Lu = Ttf − f .

(ii) The operator (L,D(L)) is well defined and we have Lu(x) = limtց0
Ttu(x)−u(x)

t
, x ∈ E,

u ∈ D(L).

(iii) We have D(Lw) ⊂ De(L) ⊂ D(L) = {u ∈ D(L) ∩ Bo : Lu ∈ Bo} ⊂ Boo, L|D(L) = L, and
L|D(Lw) = Lw.

(iv) One has Do(L) = Uα(Boo) for each α > 0. If t > 0 then Tt(Do(L)) ⊂ Do(L), Tt(D(L)) ⊂
D(L), L ◦ Tt = Tt ◦ L on D(L), and L ◦ Tt = Tt ◦ L on Do(L).

(v) If β > 0 and (Lβ,D(Lβ)) (resp. (Lβ ,D(Lβ)) denotes the extended weak generator (resp.
the extended generator) of the transition function Tβ, then D(L) ⊂ D(Lβ) (resp. D(L) ⊂

D(Lβ)), Lβu = Lu− βu for every u ∈ D(L) (resp. Lβu = Lu− βu for every u ∈ D(L)),
and Do(L) = Do(L

β).

(vi) We have De(L) = Uα(Be) ⊂ Do(L) for each α > 0 and if t > 0 then Tt(De(L)) ⊂ De(L).

(vii) Let Dc
o(L) := {u ∈ Do(L) : [0,∞) ∋ t 7−→ LTtu(x) is continuous for each x ∈ E}. If

t, α > 0 then Tt(D
c
o(L)) ⊂ Dc

o(L) and Uα(D(L)) ⊂ Dc
o(L). If β > 0 then UβUα(b[B]) ⊂

Dc
o(L).

(viii) If u ∈ bDc
o(L) then [0,∞) ∋ t 7−→ Ttu(x) is continuously differentiable for each x ∈ E

and (Ttu(x))
′ = LTtu(x). Moreover, ut := Ttu, t > 0, is the unique solution of the

equation

(3.9)
dut

dt
= Lut, t > 0,

such that u0 = u, ut ∈ Do(L), ‖ut‖∞ is bounded, Lut ∈ Boo, and [0,∞) ∋ t 7−→ Lut(x) is
continuous for all x ∈ E.

Corollary 3.5. Assume that T = (Tt)t>0 is the transition function of a right Markov process
X = (Ω,F ,Ft, Xt,P

x) with Lusin topological state space E. Then the following assertions hold.

(i) If f ∈ C(E) is such that there exists h ∈ E with |f | 6 h, then Uαf ∈ De(L) for each
α > 0. In particular, Uα(bC(E)) ⊂ De(L). The above assertions are still true if we
replace the continuity condition by the weaker one of fine continuity.

(ii) If T = (Tt)t>0 is a Feller semigroup, i.e., each kernel Tt, t > 0, leaves invariant bC(E),
then Uα(bC(E)) ⊂ Dc

o(L).
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(iii) The martingale problem associated with (L,D(L)) has a solution. More precisely, for
every u ∈ D(L) and x ∈ E, the process

(
u(Xt)− u(X0)−

∫ t

0

Lu(Xs) ds

)

t>0

is a (Ft)-martingale under Px.

The following additional property of S = (St)t>0 will be considered further on:

(3.10) ∃ Co ⊂ bpB such that 1 ∈ Co, Co generates B, and lim
tց0

Stf(x) = f(x) for all x ∈ E.

Remark 3.6. As a consequence of (3.10) we have for all α, β > 0:

(3.11) If (3.10) holds then σ(VβVα(bBoo)) = σ(Vα(bBoo)) = B,

where V = (Vα)α>0 is the resolvent of S and Boo = Boo(S). Indeed, by (3.10) if follows that
for every f ∈ Co we have pointwise limα→∞αVαf = f and therefore Co ⊂ bpσ(Vα(bpB)), hence
B = σ(Co) ⊂ σ(Vα(bpB)), so, σ(Vα(b[B])) = B. On the other hand by Lemma 3.1 (iv) we have
Vα(b[B]) ⊂ bBoo ⊂ b[B] and therefore σ(bBoo) = B. By Lemma 3.1 (i) Vα(bBoo) ⊂ Boo and
therefore the vector space Vα(bBoo) does not depend on α > 0 and σ(Vα(bBoo)) ⊂ Boo. The
converse inclusion also holds because for every f ∈ bBo we have limα→∞ αVαf = f pointwise
on E and we conclude that the last equality from (3.10) is proven. Observe that the resolvent
equation implies that the vector space VβVα(bBoo) also does not depend on α and β. If f ∈
bBo then limβ→∞βVβVαf = Vαf pointwise on E, hence Vαf ∈ bσ(VβVα(bBoo)) and therefore
σ(Vα(bBoo)) ⊂ σ(VβVα(bBoo)) and so, the first equality is also clear.

Non-autonomous semi-dynamical systems. Let (E,B) be a Lusin measurable space and
let Φ = (Φs,t)t≥s≥0 be a family of mappings Φs,t : E → E, t ≥ s ≥ 0. Inspired by e.g. [33],
we say that Φ is a non-autonomous semi-dynamical system on E provided that the following
conditions are satisfied:

(Nsd1) Φs,t(x) = Φr,t(Φs,r(x)) for all t ≥ r ≥ s ≥ 0 and x ∈ E;

(Nsd2) Φs,s(x) = x for all s ≥ 0, x ∈ E;

(Nsd3) For each t > 0 the function [0,∞)× E ∋ (s, x) 7−→ Φs,s+t(x) is measurable;

(Nsd4) There exists a countable set Co ⊂ bpB such that Co separates the points of E and
limtց0 f(Φs,s+t(x)) = f(x) for all s ≥ 0, x ∈ E and f ∈ Co.

The paths of unique strong solutions to Ito SDEs on Rd which depend continuously on the initial
data are typical examples of such non-autonomous semi-dynamical systems (see e.g. [27]).

Given a Φ as above, it is a straightforward to check that Φ :=
(
Φt

)
t≥0

defined by

Φt : [0,∞)× E → [0,∞)× E, Φt(s, x) := (s+ t,Φs,s+t(x)), t, s ≥ 0, x ∈ E,

is a semi-dynamical system on [0,∞)×E.
Thus, the results obtained in this work for (autonomous) semi-dynamical systems can be

easily reinterpreted for non-autonomous semi-dynamical systems.
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3.1 The extended weak generator of a semi-dynamical system

We have the following characterization of those Markovian transition functions that corre-
spond to semi-dynamical systems:

Proposition 3.7. Let S = (St)t>0 be a Markovian transition function on (E,B) and (D,D(D))
be its extended weak generator. Then the following assertions are equivalent.

(i) S = (St)t>0 is the transition function of a semi-dynamical system on E.

(ii) The transition function S = (St)t>0 satisfies (3.10) and it is multiplicative, that is, for
every f, g ∈ bpB and t > 0 we have St(fg) = (Stf)(Stg).

(iii) S = (St)t>0 satisfies (3.10), Be and De(D) are algebras, S = (St)t>0 is multiplicative on
Be, and if u ∈ De(D) then Du2 = 2uDu.

(iv) S = (St)t>0 satisfies (3.10), Dc
b(D) := {u ∈ bDc

o(D) : Du ∈ bBoo} is an algebra, and if
u ∈ Dc

b(D) then Du2 = 2uDu.

(v) S = (St)t>0 satisfies (3.10) and there exists an algebra A ⊂ Dc
b(D) which generates B,

Stu ∈ A, t > 0, and Du2 = 2uDu for each u ∈ A.

Proof. The implication (i) → (ii) is clear; notice that (sd4) implies that (3.10) holds.

(ii) → (iii). We show first that

(3.12) if S = (St)t>0 is multiplicative and v ∈ Eβ then v2 ∈ E2β,

where β > 0 and E0 := E . Indeed, since S = (St)t>0 is multiplicative we have e−2βtSt(v
2) =

(e−βtStv)
2 6 v2, where the inequlity holds because v ∈ Eβ. Then clearly limtց0 e

−2βtSt(v
2) =

limtց0(Stv)
2 = v2, where the last equality follows from limtց0 Stv = v.

As a consequence of (3.12) we have:

(3.13) if S = (St)t>0 is multiplicative then Be is an algebra, i.e., if f ∈ Be then f 2 ∈ Be.

Indeed, if f ∈ Be and |f | 6 h ∈ E then by (3.12) we get f 2 6 h2 ∈ E and because Ss(f
2) =

(Ssf)
2 we also have limsց0 Ss(f

2) = (limsց0 Ssf)
2 = f 2. So, by Lemma 3.1 (ii) we conclude

that f 2 also belongs to Be.
Let now u ∈ De(D), |u| 6 h ∈ E . By (3.13) we get u2 ∈ Be and Stu

2 − u2 = (Stu −
u(x))(Stu + u), t > 0. We have |Stu + u| 6 2h and sup0<t<to

|Stu−u
t

| 6 hα, with Vαhα < ∞

on E, where V = (Vα)α>0 is the resolvent of S. Consequently, sup0<t<to
|Stu

2−u2

t
| 6 2hαh

and we have Vα(hαh) =
∫∞

0
e−αs(Sshα)Ssh 6 hVαhα < ∞ on E. Because limtց0 Stu = u

pointwise on E, we conclude that for every x ∈ E there exists the limit limtց0
Stu

2(x)−u2(x)
t

=

limtց0
Stu(x)−u(x)

t
limtց0(Stu(x) + u(x)) = Du(x)2u(x). So, u2 ∈ D(D) ∩ Be and Du2 = 2uDu.

Moreover, u and Du both belong to Be, therefore (3.13) implies that Du2 ∈ Be, hence u2 ∈
De(D).

(iii) → (iv) Notice first that Dc
b(D) ⊂ De(D), because 1 ∈ E . If u ∈ Dc

b(D) then by the
hypothesis (iii) we have u2 ∈ De(D) and Du2 = 2uDu. In addition, u,Du ∈ bBoo, hence Du2

also belongs to bBe which is an algebra included in bBoo. Consequently, u2 ∈ Do(D). Since
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DSt(u
2) = 2(Stu)(DStu) and the functions Stu and DStu are continuous in t, we conclude that

u2 also belongs to Dc
b(D).

(iv) → (v) Assume that (iv) holds, then Dc
b(D) is multiplicative and we show that it

generates B. Indeed, by Proposition 3.4 (vii) we have VβVα(bBo) ⊂ Dc
b(D). From (3.11) we get

B = σ(VβVα(bBo)) ⊂ σ(Dc
b(D)) and thus σ(bDc

b(D)) = B.

(v) → (ii). Let now u ∈ A as in (v). If we put vt := (Stu)
2 then by hypothesis we have

vt ∈ A, t > 0, sup06t<∞ ‖vt‖∞ 6 ‖u‖2∞, and t 7−→ Dvt(x) is continuous for each x ∈ E. Using
Proposition 3.4 (viii) we obtain dvt

dt
= 2Stu·DStu = Dvt, t > 0, with v0 = u2. By the uniqueness

property of the equation (3.9) it follows that (Stu)
2 = Stu

2, hence (Stu)(Stv) = St(uv) for all
u, v ∈ A. Applying Remark 2.2, (iii), we conclude that S = (St)t>0 is multiplicative and therefor
assertion (ii) holds.

(ii) → (i). The proof of this implication is straightforward, however, for the reader conve-
nience we give some details here. Let St(x, ·) be the probability on E induced by the Markovian
kernel St and x ∈ E, St(x,A) := St(1A)(x) for all A ∈ B. Taking f = g = 1A in the prop-
erty of S = (St)t>0 to be multiplicative we get St(1A) = (St(1A))

2 and therefore the number
St(x,A) should be either 0 or 1. Hence St(x, ·) is a Dirac measure on E, concentrated at a
point Φt(x) ∈ E, St(x, ·) = δΦt(x). We obtain Stf(x) = f(Φt(x)) for all f ∈ pB, x ∈ E, and
t > 0, and it is easy to check now that Φ = (Φt)t>0 verifies (sd1)− (sd3), while (sd4) follows
from (2.2). So, Φ = (Φt)t>0 is a semi-dynamical system on E and S = (St)t>0 is its transition
function.

The following result concerns the algebraic structure of the extended generator of a semi-
dynamical system; its proof is deferred to Appendix (A.3).

Proposition 3.8. Let S = (St)t>0 be the transition function of a semi-dynamical system on
(E,B) and let (D,D(D)) be its extended generator. If f ∈ D(D) and

∫ t

0
Ss(|fDf |) ds < ∞ for

all t > 0 then f 2 ∈ D(D) and Df 2 = 2fDf. In particular, bD(D) is an algebra.

Example: The classical case of an Euclidean gradient flow. Let B : Rd → Rd be a
continuous vector field such that:

(B.i) For each r > 0 there exists a constant c(r) such that for all x, y ∈ Rd, |x|, |y| ≤ r

〈B(x)−B(y), x− y〉 ≤ c(r)|x− y|2 (local weak monotonicity).

(B.ii) There exists a constant c0 such that for all x ∈ Rd

〈B(x), x〉 ≤ c0(1 + |x|2) (weak coercivity).

Then, by e.g. [Rockner-Wei Liu], Therem 3.1.1 (applied for σ ≡ 0), for each x ∈ Rd there exists
a unique solution (Φt(x))t≥0 ∈ C([0,∞);Rd) to the equation

(3.14)

{
dΦt(x) = B(Φt(x)) dt, t > 0,

Φ0(x) = x.

(Φt)t≥0 is a semi-dynamical system as considered in Section 2, which can be regarded as a
(deterministic) right process with transition function (St)t≥0,

Stf(x) = f(Φt(x)), t ≥ 0, x ∈ Rd, f ∈ bB(Rd).
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Note that if (D,D(D)) denotes the weak generator of the continuous flow Φ = (Φt)t>0, then it
is clear that

Dv = B·∇v for all v ∈ C1
b (R

m).

3.2 Stopped continuous flows

In this subsection (more precisely, in Proposition 3.9 below) we apply to continuous flows
the classical technique of stopping a Markov process at its first entry time in a given set. This
stopping technique has been used in [11], Remark 3.4, in studying stochastic fragmentation
processes for particles with spatial position on a surface.

Let Φ = (Φt)t>0 be continuous flow on a Lusin topological space E and let O be an open
susbset of E. Let T be the first entry time in Oc = E \ O,

T (x) = inf{t > 0 : Φt(x) ∈ Oc}.

The following properties are immediate:

1. T is a terminal time, that is, the mapping E ∋ x 7−→ T (x) is B(E)-measurable and

t+ T ◦ θt = T on [t < T ],

or equivalently, t+ T (Φt(x)) = T (x) if t < T (x) for all x ∈ E.

2. If x ∈ O then ΦT (x)(x) ∈ ∂O.

3. If x ∈ O
c
then T (x) = 0, so, ΦT (x)(x) = x.

4. We have ΦT (x)(x) ∈ Oc for every x ∈ E.

For each t > 0 define the map Φo
t : E → E as

Φo
t (x) :=

{
Φt(x), t < T (x)

ΦT (x)(x), t > T (x)
, x ∈ E.

The announced result of this subsection is the following collection of statements, whose
proofs are presented in Appendix (A.4).

Proposition 3.9. Then the following assertions hold.

(i) The family Φo := (Φo
t )t>0 is a continuous flow on E and it is called the stopped flow w.r.t.

T . We have Φt(x) = Φt(x) if t < T (x) and Φo
t (x) = x for every x ∈ Oc and t > 0.

(ii) Let (D,D(D)) (resp. (Do,D(Do))) be the extended weak generator of the continuous flow
Φ (resp. of the continuous flow Φo) on E. We have Dou = 0 on Oc for all u ∈ D(Do)
and if in addition u ∈ D(D) then Dou = Du on O.

(iii) The set O is absorbing for Φo := (Φo
t )t>0, that is, if x ∈ O then Φo

t (x) ∈ O for all t > 0.

(iv) Define the restriction ΦO = (ΦO
t )t>0 of Φ to O as ΦO(x) := Φo

t (x) for all x ∈ O and

t > 0. Then ΦO is a continuous flow on O.
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4 Continuous flow driving a Markov process

Let (L,D(L)) and (D,D(D)) be two extended weak generators on E. Define

D(DL) := {u ∈ D(D) ∩ D(L) : Lu ∈ D(D) and DLu ∈ B0(T)},

and D(LD) analogously.

We can present now the second main result of this paper.

Theorem 4.1. Let T = (Tt)t>0 be the transition function of a right (resp. Hunt) Markov process
X = (Ω,F ,Ft, Xt,P

x) with state space E and extended weak generator (L,D(L)). Assume that
there exists a multiplicative set C1 ⊂ bC(E) which generates B(E) such Tt(C1) ⊂ C(E) for all
t > 0. Let Φ = (Φt)t>0 be a right continuous flow on E such that the mapping (x, t) 7−→ Φt(x)
is continuous on E × [0,∞), with transition function S = (St)t>0 and extended weak generator
(D,D(D)). Suppose in addition that L and D commute in the sense that

D(DL) = D(LD) =: Do and DL = LD on Do.

Furthermore, set
XΦ

t := Φt(Xt), t > 0.

Then the following assertions hold.

(i) XΦ := (Ω,F ,Ft, X
Φ
t ,P

x) is a right (resp. Hunt) Markov process with state space E and
the transition TΦ := (TΦ

t )t>0 defined as TΦ
t := StTt for all t > 0.

(ii) Let Dc := UαVβ(bC(E)), α, β > 0. Then Do ⊂ Do(L) ∩ Do(D) ∩ Do(L
Φ), Dc ⊂ Dc

o(L) ∩
Do(D) ∩ D(LΦ) and

LΦ = L+D on Dc.

Proof. (i) We check first that XΦ is a (simple) Markov process with TΦ as transition function.
If f ∈ bpB, µ is a probability on E, and s, t > 0 then by the Markov property of X we obtain
Eµ[f(XΦ

t+s|Ft] = Ts(f(Φt+s))(Xt) = TsSt+sf(Xt) = SsTsStf(Xt) = TΦ
s f(X

Φ
t ). We have also

TΦ
t−sf(X

φ
s ) = SsTt−sSt−sf(Xs) = Tt−sStf(Xs) if s < t. It follows that for all t > 0 [s 7−→

TΦ
t−sf(X

φ
s )1[0,t) is not right continuous]= [s 7−→ Tt−s(Stf)(Xs)1[0,t) is not right continuous] and

by Corollary (7.9) from [40] we conclude that XΦ is a right process.
(ii) Observe that Corollary 3.2 implies that bC(E) ⊂ Be(S)∩Be(T)∩Be(T

φ). If f ∈ bC(E),
because Tt and Vβ commute, by dominate convergence we get limtց0 StUαf = Uα(limtց0 Stf) =
f . Therefore, by Lemma 3.1 (ii) we deduce that Uαf ∈ Boo(S) and consequently, if u = UαVβf
then u ∈ Do(D). Analogously, u belongs to Do(L) too. In addition, LTtu = αTtu − VβTtf ,
DStu = βStu−UβStf and so, the functions LTtu(x) and DStu(x), x ∈ E, are continuous in t,
hence u ∈ Dc

o(L) ∩ Dc
o(D).

Because limtց0
Ttu−u

t
= Lu if and only if limtց0

e−αtTtu−u
t

= Lu − αu, we may suppose
that the potential kernels U and V are bounded and that u = UV f , hence U |f | and V |f | are

bounded functions. We have
TΦ
t
u−u

t
= St(

Ttu−u
t

) + Stu−u
t

and so, to show that u ∈ D(LΦ) and
LΦu = Lu + Du, it is sufficient to prove that limtց0 St(

Ttu−u
t

) = −V f pointwise on E. We

have Ttu− u = −V (
∫ t

0
Tsf ds), St(

Ttu−u
t

) = −V (St
1
t

∫ t

0
Tsf ds) = −V f − V (St

1
t

∫ t

0
Tsg ds− f).

Therefore, it remains to show that limtց0 V (St
1
t

∫ t

0
Tsf ds − f) = 0 pointwise on E. We have

V (St
1
t

∫ t

0
Tsf ds− f) =

∫∞

t
Ss′(

1
t

∫ t

0
(Tsf − f) ds) ds′ −

∫ t

0
Ss′f ds′. Since f ∈ bC(E), the second
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term from the right hand side of the last equality tends to zero when t ց 0. For the first

term we have the estimation
∣∣∣
∫∞

t
Ss′(

1
t

∫ t

0
(Tsf − f) ds) ds′

∣∣∣ 6 V (1
t

∫ t

0
|Tsf − f |ds) and because

limsց0 Tsf = f pointwise on E, the first term also vanishes when t ց 0.

4.1 Right continuous flow driving its subordinate process

Let Φ = (Φt)t>0 be a right continuous flow on E, with transition function S = (St)t>0.
Let further µ = (µt)t>0 be a convolution semigroup on R+ and consider Sµ = (Sµ

t )t>0, the
subordinate of (St)t>0 in the sense of Bochner w.r.t. µ, defined as Sµ

t f :=
∫∞

0
Ssf µt(ds),

t > 0, f ∈ pB(E); for details see e.g. [39] and also [36]. In particular, the subordinate process
Y ξ = (Y ξ

t )t>0 is defined as

Y ξ
t (x, ω) := Φξt(ω)(x), t > 0, (x, ω) ∈ E × Ω

and it turns out that Y ξ = (Y ξ
t )t>0 is a right Markov process with state space E, path space E×

Ω′, and transition function Sµ = (Sµ
t )t>0, where Ω

′ is the path space of the subordinator (ξt)t>0,
the positive real-valued stationary stochastic process with path space Ω′, with independent
nonnegative increments induced by µ = (µt)t>0. So, Y ξ is obtained by introducing jumps in
the evolution of the given right continuous flow Φ, by means of the subordinator induced by
µ = (µt)t>0.

We state now a consequence of Theorem 4.1 involving the right continuous flow Φ and the
subordinate process Y ξ.

Corollary 4.2. Let S = (St)t>0 be the transition function of a right continuous flow Φ =
(Φt)t>0 on E. Let (ξt)t>0 be a positive real-valued stationary stochastic process with independent
nonnegative increments induced by a convolution semigroup µ = (µt)t≥0 on R+. Further, define

Y Φ
t := Φt+ξt , t > 0.

Then the following assertions hold.

(i) Y Φ := (E×Ω, Y Φ
t ) is a right Markov process with state space E and the transition function

TΦ := (TΦ
t )t>0 defined as TΦ

t := StS
µ
t for all t > 0.

(ii) Let (D,D(D)), (Dµ,D(Dµ)), and (LΦ,D(LΦ)) be the extended weak generators of S, Sµ,
and respectively TΦ. Let further Do := V µ

α Vβ(bC(E)), α, β > 0, where V = (Vα)α>0

(resp. Vµ = (V µ
α )α>0) is the resolvent of S (resp. the resolvent of Sµ). Then Do ⊂

Dc
o(D

µ) ∩ Do(D) ∩ D(LΦ) and

LΦ = Dµ +D on Do.

Proof. We apply Theorem 4.1 for X := Y Φ. We clearly have XΦ
t = Φt(Y

ξ
t ) = Φt(Φξt) = Φt+ξt

and observe that the paths t 7−→ Φt+ξt(ω)(x) are right continuous, without assuming that the
right continuous flow Φ is continuous. For all t, t′ > 0 we have St′S

µ
t = Sµ

t St′ =
∫∞

0
Ss+t′µt(ds).

Assertion (ii) follows from Theorem 4.1 (ii).
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4.2 Continuous flow driving a superprocess

Let Ψ : [0,∞) → R be a branching mechanism,

Ψ(λ) = −bλ− cλ2 +

∫ ∞

0

(1− e−λs − λs)N(ds),

where b, c ∈ R, c > 0, and N is a measure on (0,∞) such that N(u ∧ u2) < ∞. Consider the

superpocess X̂0 on the set M(E) of all positive finite measures on E, having the branching

mechanism Ψ and having no spatial motion. According to [18] the superprocess X̂0 is called
pure branching. For details on the measure-valued branching processes see [22], [24], [34] and
also [26], [1], and [2].

Let further Φ be a continuous flow on E and consider the superprocess X̂ on M(E), having
the spatial motion Φ and the branching mechanism Ψ. By Φ we also denote the continuous
flow on M(E) (endowed with the weak topology) canonically induced by the given flow Φ on
E.

It turns out that one can apply Theorem 4.1 on M(E) for X̂0 instead of X and the flow

Φ on M(E). We get the following representation of the superprocess X̂ by means of the pure

branching superprocess X̂0:

X̂t = Φt(X̂
0
t ) for all t > 0,

where the equality is in the distribution sense; see [18]. A similar result holds for non-local
branching processes (in the sense of [12] and [14]) on the set of all finite configurations of the
state space of the spatial motion; see also [13] for an associated nonlinear Dirichlet problem.

5 Multiplicative Lp-semigroups and continuous flows

Let Φ = (Φt)t>0 be a semi-dynamical system with state space (E,B), S = (St)t>0 its
transition function, and U = (Uα)α>0 be the associated resolvent of kernels. Let further m be
a positive σ-finite measure on E which subinvariant for S, that is,

m ◦ St 6 m for all t > 0,

and fix p ∈ [1,∞). Then each kernel St, t > 0, induces a contraction on Lp(E,m) which is
Markovian, that is, if f ∈ Lp(E,m), 0 6 f 6 1 then 0 6 Stf 6 1 and there exists a sequence
(fn)n ⊂ Lp(E,m), fn 6 1 for all n, such that the sequence (Stfn)n is increasing m-a.e. to the
constant function 1. It turns out that

(5.1) the transition function S of a semi-dynamical system becomes a C0-semigroup

of Markovian contractions on Lp(E,m) which in addition is multiplicative on Lp(E,m), i.e.,

St(fg) = (Stf)(Stg) for all f, g ∈ L∞(E,m) ∩ Lp(E,m) and t > 0.

In this framework, Theorem 4.1 has a natural correspondent which goes as follows:

Proposition 5.1. Let T = (Tt)t>0 be the transition function of a right Markov process X =
(Ω,F ,Ft, Xt,P

x) with state space E and Φ = (Φt)t>0 a right continuous flow on E, with tran-
sition function S = (St)t>0 as in Theorem 4.1. Let m be a positive σ-finite measure on E which
is subinvariant for both S and T and let p ∈ (1,∞).
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Consider the generators (Lp,D(Lp)), (Dp,D(Dp)), and (LΦ
p ,D(LΦ

p )) of T, S, and respectively
TΦas C0-semigroups on Lp(E,m), where TΦ = (TΦ

t )t>0 is defined as

TΦ
t := StTt for all t > 0.

Let further Do := UαVβ(L
p(E,m)), α, β > 0, where U and V are the resolvents of T and S on

Lp(E,m). Then the following assertions hold.

(i) Do is a core of Lp and Dp, Do ⊂ D(Lp) ∩ D(Dp) ∩ D(LΦ
p ), and

LΦ
p = Lp +Dp on Do.

(ii) Let Xφ
t := Φt(Xt), t > 0, g0 ∈ Lp′

+(E, µ) (where 1
p
+ 1

p′
= 1) be such that

∫
E
g0 dm = 1,

and put ν = g0 ·m. Then (XΦ
t )t>0 solves the martingale problem for

(
LΦ
p ,D(LΦ

p )
)
under

Pν =
∫
E

Pxν( dx), that is, for every u ∈ D(LΦ
p )

(
u(XΦ

t )− u(XΦ
0 )−

∫ t

0

LΦ
p u(X

Φ
s ) ds

)

t>0

is an (Ft)t>0-martingale under Pν.

Proof. Because D(Lp) = Uα(L
p(E,m)) and D(Dp) = Vβ(L

p(E,m)) we clearly have that Do is
dense in Lp(E,m). Assertion (i) follows arguing as in the proof of Theorem 4.1 (ii).

Assertion (ii) is a consequence of Proposition 1.4 from [6].

Proposition 3.7 has an Lp-version as well, and its proof is given in Appendix (A.5).

Proposition 5.2. Let (Pt)t>0 be a sub-Markovian strongly continuous semigroups of contrac-
tions on Lp(E, µ). Then the following assertions are equivalent.

(i) The semigroup (Pt)t>0 is multiplicative on Lp(E,m).

(ii) If (L,D(L)) is the infinitesimal generator of (Pt)t>0, then

u ∈ D(L) ∩ L∞(E, µ) ⇒ u2 ∈ D(L) and Lu2 = 2uLu.

Example. Let E = [0, 1) ∪ (1,∞), µ = Lebesgue measure on E and for f ∈ Lp(E, µ), let
Ptf := f(. + t). Then (Pt)t>0 is a sub-Markovian C0- semigroup of contractions on LP (E, µ)
which is multiplicative. Let E ′ = [0,∞). Then clearly (Pt)(t>0) coincides (on Lp) with the
transition function of the semi-dynamical system on E ′ ⊃ E given by uniform motion to the
right.

The next theorem is the main result on multiplicative Lp-semigroups and continuous flows,
and it represents a converse of statement (5.1).

Theorem 5.3. Let p ∈ [1,+∞) and (St)t>0 be a C0-semigroup of Markovian contractions on
Lp(E, µ) which is multiplicative, where (E,B) is a Lusin measurable space and µ is a σ-finite
measure on (E,B). Then there exist a Lusin topological space E ′ with E ⊂ E ′, E ∈ B′ (the
σ-algebra of all Borel subsets of E ′), B = B′|E, and a continuous flow with state space E ′ such
that its transition function S = (St)t>0, regarded on Lp(E ′, µ), coincides with (St)t>0, where µ
is the measure on (E ′,B′) extending µ by zero on E ′ \ E.
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Proof. Let (Vα)α>0 be the resolvent of sub-Markovian contractions on Lp(E, µ) associated with
(St)t>0. By Theorem 2.2 from [5] there exist a Lusin topological space E ′ with E ⊂ E ′, E ∈ B′

(the σ-algebra of all Borel subsets of E ′), B = B′|E, and a right Markov process X with state
space E ′ such that its resolvent (Vα)α>0, regarded on Lp(E ′, µ′), coincides with (Vα)α>0, where
µ′ is the measure on (E ′,B′) extending µ by zero on E ′ \ E.

Let (P ′
t)t>0 be the transition function of X and A be a countable subset of bpB′ ∩Lp(E ′, µ′)

which is multiplicative and generates the σ-algebra B′. Consider the set

Fo = {x ∈ E ′ : P ′
t(Vβf · Vβg) = P ′

t (Vβf)P
′
t(Vβg) for all t ∈ Q+ and f, g ∈ A}

for some β > 0. Clearly, P ′
t coincides with St as an operator on Lp(E ′, µ′) for each t > 0, hence

it is multiplicative on Lp(E ′, µ′) and therefore µ′(E ′ \ Fo) = 0. We have Fo ∈ B′ and applying
Lemma 2.8 from [7] we deduce that it is finely closed. By Lemma 2.1 and its proof from [5]
there exists a finely closed set F ∈ B′, F ⊂ Fo, such that µ′(E ′ \ F ) = 0 and Vα(1E′\F ) = 0 on
F . Since Vα(1E′\F ) > 0 on the finely open set E ′ \ F , if follows that F is an absorbing subset
of E ′. Therefore we may consider the restriction (Pt)t>0 of the transition function (P ′

t)t>0 from
E ′ to F , Ptf := P ′

tf
′|F , where f ′ ∈ pB′ is such that f ′|F = f .

Because the functions t 7−→ P ′
t (Vβf · Vβg) and t 7−→ P ′

t (Vβf) are right continuous on [0,∞)
it follows that P ′

t (Vβf ·Vβg) = P ′
t (Vβf)P

′
t(Vβg) on F for all t > 0 and f, g ∈ A. By a monotone

class argument we get that (Pt)t>0 is a multiplicative transition function on F and condition
(2.2) is satisfied. Consequently, Remark 2.2 implies that there exists a semi-dynamical system
Φo = (Φo

t )t>0 on F having the transition function (Pt)t>0.
Let Φ = (Φt)t>0 on E ′ be the trivial extension of Φo from F to E ′, Φt(x) := Φo

t (x) if x ∈ F
and Φt(x) = x if x ∈ E ′ \ E for all t > 0. Since (sd4) holds on F for Φo with the countable
set Co ⊂ bpB then (sd4) also holds for Φ on E ′ considering a countable set C′

o ⊂ bpB′ which
separates the points of E ′ and C′

o|E = Co. So, Φ = (Φt)t>0 is a semi-dynamical system on E ′

and applying Theorem 2.4 we may replace the topology of E ′ with a a conveninent Ray one,
such that Φ becomes a continuous flow on E ′ as claimed.

Remark 5.4. It is proven in [6] that under additional assumptions on the domain of the
generator of a C0-semigroup of sub-Markovian contractions on Lp(E,m) the associated Markov
process exists on E, so, it is not more necessary to consider a larger state space; for applications
in significant examples see also [29], [30] and [21]. In this case, if the semigroup is multiplicative
on Lp(E,m), one can see that the associated continuous flow from Theorem 5.3 remains on E.

Appendix

(A.1) Proof of Lemma 3.1. Observe first that if f ∈ Bo then Uα|f | 6 Uαhα < ∞ for all α > 0,
so, Uαf ∈ [B].

(i) Let α, α′ > 0 and αo := inf(α, α′). If f ∈ Bo then there exist to > 0 and hαo
∈ pB such

that sup0<s<to
Ts|f | 6 hαo

with Uαo
hαo

< ∞. Then one can see that sup0<s<to
Ts|Uαf | 6 Uαhαo

.
Since αo 6 α, α′ and Uαo

hαo
< ∞, it follows that Uαhαo

and Uα′Uαhαo
are also real-valued

functions. We conclude that Uαf ∈ Bo. We have also TtUαhαo
6 eαtUαhαo

< ∞, t > 0, hence
Uαf ∈ Boo.

Let now f ∈ Boo, α, t
′ > 0 and to > 0 be such that sup0<s<to

Ts|f | 6 h := inf(ht, ht+t′ , hα) ∈
pB with Ttht + Tt+t′ht+t′ + Uαhα < ∞. Then Tt|Tsf | 6 Ttht < ∞ for every s < to. Since
limsց0 Tsf = f , we deduce by dominated convergence that Tt|f | < ∞ and limsց0 TsTtf = Ttf .
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We have also sup0<s<to
Ts|Ttf | 6 Tth < ∞ with UαTth 6 eαtUαh < ∞ and Tt′Tth < ∞.

Therefore Ttf ∈ Boo.

Assertion (ii) follows because Uαh, Tth ∈ E , provided that h ∈ E .

(iii) Let f ∈ B0 be bounded, so, we may assume that |f | 6 1. Then |f | 6 1̂ := limtց0 Tt1
which is excessive and therefore f belongs to Be.

(iv) The first assertion follows from (ii) since f = limtց0 Ttf if f ∈ [E ]∪ b[Eα]. If U |f | < ∞
then Uf ∈ [E ] and therefore Uf ∈ Boo. �

(A.2) Proof of Proposition 3.4. (i) Since by assertion (i) of Lemma 3.1 we have Uα(Bo) ⊂ Boo,
it is clear that the set Uα(Bo) does not depend on α > 0. Let u = Uαf with f ∈ Bo. Then u also
belongs to Bo, hence in particular, Uα|u| < ∞. Let further to > 0 and hα ∈ pB be such that
Ts|f | 6 hα for all s < to and Uαhα < ∞. We have |Ttu− u| 6 (eαt − 1)|u| + hαe

αt
∫ t

0
e−αs ds

if t < to. Therefore sup0<t<to
|Ttu−u

t
| 6 h := α|u| + hα and Uαh < ∞. We also have Ttu−u

t
=

eαt−1
t

u + 1−eαt

αt
f − eαt

t

∫ t

0
e−αs(Tsf − f) ds. Clearly, when t ց 0, the first term from the right

hand side converges pointwise to αu, the second one to −f , while the third one converges to
zero because limsց0 Tsf = f . We conclude that u ∈ D(L) and Lu = αu − f. Conversely,
if u ∈ D(L) then let α, to > 0, and hα ∈ pB with Uαhα < ∞ and sup0<t<to

|Ttu−u
t

| 6 hα.
Let v := Lu = limtց0

Ttu−u
t

∈ Bo. Because Uαhα < ∞, by dominated convergence we get
limtց0

TtUαu−Uαu
t

= Uαv. On the other hand, from the first part of the proof we have Uαu ∈ D(L)
and limtց0

TtUαu−Uαu
t

= L(Uαu) = αUαu− u. We conclude that u = Uα(αu− v) ∈ Uα(Bo).
To prove the last assertion of (i) we argue as in the proof of Proposition 1.5 (a) from [25].

We have Thu−u
h

= 1
h

∫ t

0
[Ts+hf − Tsf ] ds = 1

h

∫ t+h

t
Tsf ds − 1

h

∫ h

0
Tsf ds. Because the function

s 7−→ Tsf(x) is right continuous on [0,∞) for every x ∈ E, it follows that limhց0
Thu−u

h
= Ttf−f

pointwise on E. Since we also have |Thu−u
h

| 6 2‖f‖∞ for all h > 0, we conclude that u belongs
to D(L) and Lu = Ttf − f .

(ii) Let x ∈ E. Since g ∈ B0 we have limtց0 Ttg(x) = g(x) and therefore limtց0
Ttu(x)−u(x)

t
=

limtց0
1
t

∫ t

0
Tsg(x)ds = g(x) = Lu(x).

(iii) We clearly have D(Lw) ⊂ De(L) because bB0 ⊂ Be. Let u = Uαf ∈ D(L). Then, by
assertion (i) of Lemma 3.1 we get u ∈ Boo and we have

∫ t

0
Ts(αu−f) = α

∫ t

0

∫∞

0
e−αrTr+sf dr ds−∫ t

0
Tsf ds =

∫∞

0
(eαr∧t − 1)e−αrTtf dr −

∫ t

0
Tsf ds = −u + et

∫∞

t
e−αrTrf dr = −u + TtUαf =

−u+Ttu, where for the second equality we used Fubini’s Theorem. We conclude that u ∈ D(L)
and by assertion (ii) we clearly have Lu = Lu. Let now u ∈ D(L) ∩ Bo such that Lu ∈ Bo, let
α > 0 and hα ∈ pB with Uαhα < ∞, be such that Ts(|Lu|) 6 hα for all s < to for some to > 0.
Then |Ttu−u

t
| 6 1

t

∫ t

0
Ts(|Lu|)ds 6 hα for all t < to. It follows that u ∈ D(L).

(iv) Let u ∈ Do(L) and α > 0. Then u = Uα(αu− Lu) with u, Lu ∈ Boo, so, u ∈ Uα(Boo).
Conversely, if u = Uαf with f ∈ Boo, then by assertion (i) we have u ∈ D(L) and Lu = αu−f ∈
Boo, hence u ∈ Do(L).

Let u = Uαf ∈ Do(L), f ∈ Boo. According to Lemma 3.1 (i) we get Ttf ∈ Boo. Therefore
Ttu = UαTtf also belongs to Do(L) and we have LTtu = LUαTtf = αUαTtf − Ttf = TtLu.

The proof of (v) is straightforward.

Assertion (vi) follows arguing as in the proof of (iv) and using Lemma 3.1 (ii).

(vii) The first inclusion follows from assertion (iv). Let now u ∈ Uα(D(L), u = UαUβf with
f ∈ Bo. Then LTtu = αTtu − TtUβf and it is continuous in t, according with the following
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remark: If g ∈ [B] is such that Uα|g| < ∞ then the real-valued function t 7−→ TtUαg(x) is
continuous on [0,∞) for each x ∈ E because TtUαg = eαt

∫∞

t
e−αsTsg ds.

To prove the last inclusion of assertion (vii), observe that by Lemma 3.1 (iv) we have
Uα(b[B]) ⊂ Boo and by assertion (iv) we obtain UβUα(b[B]) ⊂ Do(L). The continuity property
is obtained using again the above remark.

(viii) Let u ∈ Dc
o(L), u = Uαf with f ∈ Boo. Then by Lemma 3.1 (i) we have Ttf ∈ Boo for

each t > 0 and LTtu = αTtu − Ttf . Because t 7−→ Ttu(x) is continuous, it follows that Ttf(x)
is also continuous in t on [0,∞) for each x ∈ E. We have Ttu = eαt(u−

∫ t

0
eαsTsf ds) and from

the above considerations the first statement of assertion (viii) follows. In particular, we proved
that ut := Ttu, t > 0, is a solution to the equation (3.9), satisfying the requested conditions:
T0 = u, ‖Ttu‖∞ 6 ‖u‖∞, Ttu ∈ Do(L) by the above assertion (iv), LTt ∈ Boo, and LTtu(x) is
continuous in t because we assumed that u belongs to Dc

o(L).
We show now the uniqueness property for the solution to the equation (3.9) and as an-

nounced, we use a classical argument, e.g., as in the proof of Theorem 1.3 from [23], Ch. I,
section 3, page 28. Let ut, t > 0, be a solution of (3.9) such that u0 = 0, ut ∈ Do(L), ‖ut‖∞ is
bounded, Lut ∈ Boo, and Lut(x) is continuous in t for each x ∈ E. We have to show that ut = 0
for each t > 0. Let α > 0 and vt := e−αtut. Then

dvt
dt

= (L−α)vt with vt ∈ Do(L). It follows that

Uα(
dvt
dt

) = −vt for each t > 0 and therefore
∫ t

0
vs ds = −Uα(

∫ t

0
dvs
ds

ds) = −Uαvt. Consequently,∫ t

0
e−αsus(x) ds = −e−αtUαut(x). Since ‖ut‖∞ is bounded, letting t → ∞, it follows that the

right hand side of the above equality tends to zero. We conclude that
∫∞

0
e−αsus(x) ds = 0 for

every α > 0 and x ∈ E and therefore us(x) = 0 for each s > 0 and x ∈ E.

(A.3) Proof of Crefprop3.6. Let g = Df with f ∈ D(D) and
∫ t

0
Ss(|fDf |) ds < ∞ for all t > 0.

We have to prove that Stf
2 = f 2+2

∫ t

0
SsfSsg ds for all t > 0, provided that Stf = f+

∫ t

0
Ssg ds.

Indeed, we have
∫ t

0
SsfSsg ds = 2

∫ t

0
[f +

∫ s

0
Sug du]Ssg ds = f

∫ t

0
Ssg ds+

∫ t

0
dsSsg

∫ s

0
Sug du =

f
∫ t

0
Ssg ds +

∫ t

0
duSug[

∫ t

0
Ssg ds−

∫ u

0
Ssg ds] = f

∫ t

0
Ssg ds+

∫ t

0
duSug[

∫ t

0
Ssg ds + f − Suf ] =

2f
∫ t

0
Ssg ds−

∫ t

0
SufSug du = Stf

2+ f 2− 2fStf . We conclude that 2
∫ t

0
SsfSsg ds = 2f(Stf −

f) + Stf
2 + f 2 − 2fStf = Stf

2 − f 2.

(A.4) Proof of Proposition 3.9. The proof of (i) is a straightforward verification.

(ii) Let u ∈ D(Do) and x ∈ Oc. Then by (i) we have Φo
t (x) = x and therefore Dou(x) = 0.

Let further S = (St)t>0 (resp. So = (So
t )t>0) be the transition function of Φ (resp. of Φo). If

u ∈ pB(E) the S0
t u(x) = Stu(x) provided that t < T (x) and S0

t u(x) = u(ΦT (x)(x) if t > T (x)
and T (x) < ∞. If u ∈ D(D) and x ∈ O then there exists ε > 0 such that Φt(x) ∈ O for all
t 6 ε, hence T (x) > ε and therefore So

t u(x) = Stu(x) for all t 6 ε. We conclude that Du = Dou
on O.

(iii) Let x ∈ O. If x ∈ ∂O then by (i) we have Φo
t (x) = x ∈ O for all t > 0. If x ∈ O

then clearly Φo(x) = Φt(x) ∈ O for all t < T (x). If t > T (x) then Φo
t (x) = ΦT (x)(x) ∈ ∂O by

property (2) of T .

Assertion (iv) follows from (iii).

(A.5) Proof of Proposition 5.2. Let u ∈ D(L) ∩ L∞(E, µ). We have Ptu
2−u2

t
= Ptu−u

t
(Ptu +

u) and since Ptu−u
t

(resp. Ptu) is converging in Lp(E, µ) to Lu (resp. to u) as t → 0, we

deduce that Ptu
2−u2

t
is converging to 2uLu, hence u2 ∈ D(L) and Lu2 = 2uLu. Conversely,

let u ∈ D(L) ∩ L∞(E, µ) and put ut := (Ptu)
2 ∈ D(L). Since dut

dt
= 2Ptu · LPtu = Lut and
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u0 = u2, we get that ut = Ptu
2, hence (Ptu)

2 = Ptu
2. It follows that Pt(uv) = Ptu · Ptv for all

u, v ∈ D(L) ∩ L∞(E, µ) and because D(L) ∩ L∞(E, µ) is dense in Lp(E, µ) we conclude that
the semigroup (Pt)t>0 is multiplicative on Lp(E, µ).
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