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Inductive construction of path homology chains

Matthew Burfitt and Tyrone Cutler

Abstract

Path homology plays a central role in digraph topology and GLMY theory more

general. Unfortunately, the computation of the path homology of a digraph G is a

two-step process, and until now no complete description of even the underlying chain

complex has appeared in the literature.

In this paper we introduce an inductive method of constructing elements of the path

homology chain modules Ωn(G;R) from elements in the proceeding two dimensions.

This proceeds via the formation of what we call upper and lower extensions, that are

parametrised by certain labeled multihypergraphs which we introduce and call face

multihypergraphs.

When the coefficient ring R is a finite field the inductive elements we construct

generate Ω∗(G;R). With integral or rational coefficients, the inductive elements gen-

erate at least Ωi(G;R) for i = 0,1,2,3. Since in low dimensions the inductive elements

extended over labeled multigraphs coincide with naturally occurring generating sets up

to sign, they are excellent candidates to reduce to a basis.

Inductive elements provide a new concrete structure on the path chain complex

that can be directly applied to understand path homology, under no restriction on

the digraph G. We employ inductive elements to construct a sequence of digraphs

whose path Euler characteristic can differ arbitrarily depending on the choice of field

coefficients. In particular, answering an open question posed by Fu and Ivanov.
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1 Introduction

Path homology, one of the several proposed homology theories for directed graphs G, is based
around the idea of detecting cycles in equal length paths within a graphical structure. Its
construction was laid out by Grigor’yan, Lin, Muranov, and Yau in the foundation paper
[16], which built on earlier work of Dimakis and Müller-Hoissen [10], where elements of the
dual cohomology theory were considered in the study of field theories on discrete space time.

Path homology now sits in the broader study of geometry, topology and homotopy theory
of digraphs and quivers often referred to as GLMY-theory.

A primary motivation for path homology lies in the fact that the simplicial homology of
any abstract simplicial complex can be realised as the path homology of a digraph which is
obtained as the directed edges of a barycentric subdivision of the complex [19]. Moreover,
path homology satisfies certain Eilenberg–Steenrod axioms [14], and shares variations of
many of the important properties enjoyed by singular and simplicial homology, including
functorality, homotopy invariance [17], and a Künneth Theorem for the box product of
digraphs [21]. In particular, these fundamental properties are not necessarily shared by other
homology theories of digraphs. Moreover, path homology cannot in general be obtained as
the homology of a space [12], unlike those homologies derived through singular mappings
such as directed cliques.

Furthermore, path homology appears as a graded submodule of the bigraded path homol-
ogy [22], emerging as the second page of a spectral sequence whose first page is the naturally
bigraded magnitude homology [23]. Although the spectral sequence was introduced in [23,
Remark 8.7], it was Asao [1] who first presented the relationship with path homology and
provided a realisation of the path homology chains as the diagonal magnitude homology.

Investigations into extensions of the path homology construction, however, are far broader,
leading to natural questions regarding cofibration category structures [5, 22], relations to
simplicial homotopy theory [24], and generalised hypergraph homology [13] for use in data
analysis.

More concretely, digraphs occur ubiquitously in the form of networks across many sci-
entific disciplines, being fundamental descriptors in the modeling of complex system inter-
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actions. In particular, in conjunction with persistent homology [3, 11], path homology has
begun to be used across a range of applications. For instance, in the analysis of temporal
networks [7], demonstrating how path homology representatives reveal important complex
sub-networks, and deep learning [6], where the structurally simpler directed clique complex
cannot as easily extract important global features from the network parameters. 1

For the purposes of applications there has been much interest in efficiently computing
path homology, with persistent path homology being known to be stable with respect to
perturbations in edge weighted filtrations of the digraph [8]. Yet, effective computation of
path homology remains limited to low dimensions, with one of the most effective algorithms
devised [9] being only for the computation of path homology in dimension 1 and depending
primarily on the knowledge of low dimensional bases of the path chain complex.

More generally, a simple procedure for the computation of path homology is provided
by Grigor’yan [20, §1.7], as a special case of persistent path homology [8, §5]. However,
the practicality of these algorithms is limited by the computation of a chain level base as it
involves the computation of the null space of certain large matrices whose sizes grow rapidly
with the number of digraph edges.

Path homology algorithms would be greatly simplified in the absence of the need to first
compute directly a basis of the paths chains, as pointed out in [20] Problem 1.7. In particular,
improved computational speed of path homology in higher dimensions would greatly enhance
the practicality of a wide range of applications.

The central problem lies in the fact that unlike simplicial homology, there is no simple
general description of a path chain basis inherent in its construction. More precisely, chains
are provided indirectly through compatibility with the differential, having no predetermined
free module structure generated directly by singular mappings. It is precisely such maps
that are relied upon for more easily computable homologies of digraphs such as the directed
clique complex [26, 27], and digraph cubical homology [15], which like path homology is
a homotopy invariant functor on digraphs satisfying a version of the Mayer–Vietoris exact
sequence. However, [18] demonstrates that for a certain class of cubical digraphs embeddable
in a directed (hyper)cube, the path chains and cubical chains coincide.

Denoting by Ωn(G;R) the path chains in dimension n with coefficients in commutative
ring R, a canonical basis of Ω0(G;R) and Ω1(G;R) is generated by all vertices and edges
respectively. The situation in dimension 2 is made more complicated by the existence of
multisquare digraphs with no canonical basis. However, a basis can be chosen from a subset
of generators corresponding to certain digraphs of the form of squares, triangles and double
edges.

Restricting to coefficients in a field, Grigor’yan [20] gave a description of a basis of
Ω3(G;R) in terms of the images of the top dimensional generator of a trapezohedron under
the constraints that the digraph contains no multisquares and double edges. More generally
when the digraph does not contain any multisquares, by dualising a formula for path cochains,
Fu and Ivanov [12] provided a basis of Ω∗(G;R) making use of a correspondence to certain
graphical constructions. In particular, using their method to obtain a digraph whose path
homology Euler characteristic differs with coefficients in Q and Z2. Which cannot be the

1We note that in some applications, a simplified definition of path homology is used that coincides with

the original construction when the digraph does not contain any double edges.
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case for the singular homology of a space.
In the present work, we make no assumptions on the structure of the digraph G. Our

primary construction is of structures we call face multigraphs and more generally face mul-
tihypergraphs, formed in dimension n + 1 from elements of the path chains in dimensions n
and n−1. Face multigraphs being sufficient when the coefficient ring has no additive torsion
other than 2.

Face multihypergraphs are principally considered together with their complete extensions
by a vertex. The existence of which we show is sufficient to produce elements of Ωn+1(G;R)
from elements of the previous two dimensions.

Restricting further to strongly connected extensions, we establish the notion of induc-
tive element of Ω∗(G;R), built inductively from the vertex basis of Ω0(G;R) as strongly
connected complete extensions over face multihypergraphs. Inductive elements provide the
structure for the following two central results concerning generating set of Ω∗(G;R).

Theorem 1.1 (Corollary 5.2) The n-dimensional inductive elements generate Ωn(G;Zp).

Theorem 1.2 (Corollary 5.3) Inductive elements generate Ω3(G;Z) and Ω3(G;K) when
K is a field of characteristic 0.

In dimensions 0, 1 and 2, for the case of extensions over face multigraphs, the inductive
elements we construct coincide with the previously presented natural generators up to sign.
Of course, when working over a field, any generating set can be reduced to a basis. Thus
we make the following statement, which at least partially addresses Grigor’yan’s Problem
2.11 from [20] regarding the construction of bases of Ωn(G;R) for an arbitrary n under no
restrictions on the digraph.

Corollary 1.3 For any n ≥ 0 and any prime p, the module Ωn(G;Zp) admits a basis of
inductive elements. For any characteristic 0 field K, the module Ω3(G;K) admits a basis of
inductive elements.

Finally, the necessity of the conditions required in the construction of strongly connected
complete extensions over face multihypergraphs is demonstrated by their use in the construc-
tion of two important examples. The first of these provides a sequence of digraphs whose
path homology differential with respect to an inductive basis contains entries of arbitrary
multiplicity. The second, contributes the following theorem.

Theorem 1.4 (Example 6.2) For any positive integer t ≥ 2 and fields K and K ′, there is
a digraph Et such that

dim(Ω4(Et;K)) =
⎧⎪⎪
⎨
⎪⎪⎩

1 ifK = Zpj for j ∈ {1, . . . , k},
0 otherwise

where t = pi1
1
⋯pik

k
is the prime decomposition of t and

dim(Ωi(Et;K)) = dim(Ωi(Et;K
′)),

for i ≠ 4.

This resolves the second open problem of Fu and Ivanov contained in the introduction of
[12] regarding the existence of digraphs whose path Euler characteristic is different with Q

and Zp coefficients for p ≥ 3.

4



2 Background

We first provide the necessary background material required for the rest of the paper.
Throughout this work, Z is the ring of integers, Zp for a prime number p is the finite
field with p elements, and R denotes an arbitrary commutative ring with a unit.

2.1 Algebraic preliminaries

A basis of a free module F over R is a family {fi ∣ i ∈ I} of distinct elements fi ∈ F , where i

runs over the members of some indexing set I, such that every element f ∈ F can be uniquely
expressed as a linear combination

f = ∑
i∈I

αifi

where each coefficient αi ∈ R and at most finitely many αi ≠ 0. In particular, every free
R-module has a basis.

Let V be a vector space over a field K, with basis B = {vi}i∈I for some set I. The lattice
of B in V consists of all points in V that can be obtained as a linear combination of elements
of B with integer coefficients.

2.2 Directed graphs, labeled hypergraphs, and labeled multihy-

pergraphs

A digraph G is a pair (VG,EG), whose vertices are elements of the set VG and whose edges
are element of the set

EG ⊆ {(u, v) ∈ VG × VG ∣ u ≠ v}.

Throughout this work we assume that G is an arbitrary digraph, unless stated otherwise.
We also denote edges (u, v) ∈ EG by u→ v. A digraph G is called finite if the set VG is finite.
A subdigraph of a digraph G is a digraph H such that

VH ⊆ VG and EH ⊆ EG.

A multihypergraph M consists of a pair (VM ,EM), whose vertices are elements of the set
VM and whose hyperedges are elements of the multiset EM , all of whose elements consist of
subsets of VM . We refer to elements of EM with multiplicity 2 as edges of M . A multihy-
pergraph M is called a multigraph if all elements of EM have multiplicity 2. A multigraph
M is called a graph if each member of EM has multiplicity 1.

A vertex labeled multihypergraph with label set LV is a multigraph M together with a
function lV ∶VM → LV . Similarly, an edge labeled multihypergraph with label set LE is a
multihypergraph M together with a function lE ∶EM → LE . A multihypergraph that is both
vertex labeled and edge labeled is called a labeled multihypergraph.

A multihypergraph is said to be connected if for any distinct vertices u,w ∈ VM , there
exists a positive integer t and a sequence of hyperedges

u ∈ {v11, . . . , v
1

m1
},{v21 , . . . v

2

m2
}, . . . ,{vt−11 , . . . vt−1mt−1

}, v ∈ {vt1, . . . , v
t
mt
} ∈ EM
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such that {vi
1
, . . . , vim1

} ∩ {vi+1
1

, . . . , vi+1m1
} ≠ ∅ for i = 1, . . . , t − 1. The same terminology

applies to labeled multihypergraphs, so that one such is connected in case the underlying
multihypergraph is.

2.3 Path homology

We detail here the construction of path homology as laid out in the foundational paper [16].
In the next subsection we provide an alternative characterisation of the path chain modules
in terms of diagonal magnitude homology. Throughout this section, let G be a digraph and
n a non-negative integer, unless stated otherwise.

An elementary n-path (n ≥ 0) in a set V is a sequence v0, . . . , vn ∈ V , which we denote
ev0,...,vn. Define Λn(V ;R) to be the free R-module generated by all elementary n-paths in V .
In addition, set Λn(V ;R) = 0 for n < 0. Then every x ∈ Λn(V ;R) has a unique expression

x = ∑
v0,...,vn∈V

αv0,...,vnev0,...,vn (2.1)

where each αv0,...,vn ∈ R and at most finitely many αv0,...,vn ≠ 0.
Define maps ∂P

n,i∶Λn(V ;R)→ Λn−1(V ;R) for each i = 0, . . . , n by linearly extending

∂P
n,i(ev0,...,vn) = ev0,...,v̂i,...,vn

where v0, . . . , v̂i, . . . , vn denotes the sequence v0, . . . , vn with the element vi removed. The
graded module Λ∗(V ;R) becomes a chain complex (Λ∗(V ;R), ∂P

∗ ) with differential

∂P
n =

n

∑
i=0

(−1)i∂P
n,i.

We call ∂P
n the path differential. Clearly, the chain complex (Λ∗(V ;R), ∂P

∗ ) has trivial ho-
mology in all but degree 0.

An elementary n-path ev0,...,vn ∈ Λn(V ;R) is called regular if vi−1 ≠ vi for every i = 1, . . . , n,
and irregular otherwise. Denote by In(V ;R) the free R-module generated by the set of
elementary irregular n-paths and define a graded module R∗(V ;R) by

Rn(V ;R) = Λn(V ;R)/In(V ;R).

The path differential ∂P
∗ descends to the quotient and (R∗(V ;R), ∂P

∗ ) becomes a chain com-
plex. Still, (R∗(V ;R), ∂P

∗ ) like (Λ∗(V ;R), ∂P
∗ ) has trivial homology in all but degree 0.

An (allowed) n-path in a digraph G = (VG,EG) is an elementary n-path ev0,...,vn in VG

such that
(vi−1, vi) ∈ EG

for each i = 1, . . . , n. The allowed paths span a submodule of Λ∗(VG;R) which is mapped
injectively into R∗(VG;R) by the quotient projection. Let A∗(G;R) ⊆ R∗(VG;R) be the
image of this submodule. Following a standard abuse, we call also the members of A∗(G;R)
allowed paths, and will denote the cosets in A∗(G;R) by their unique allowed representatives.
A fact that we use repeatedly in the sequel is that A∗(G;R) is a free R-module.
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On the other hand, the graded module A∗(G;R) is not generally a subcomplex of
(R∗(VG;R), ∂P

∗ ), as it need not be the case that ∂P
n (An(G;R)) ⊆ An−1(G;R). Therefore,

we pass to the submodule Ω∗(G;R) of An(G;R) defined to be

Ωn(G;R) = {x ∈ An(G;R) ∣ ∂P
n (x) ∈ An−1(G;R)}.

By construction, Ω∗(G;R) is the smallest submodule of An(G;R) on which ∂P
n is a differen-

tial. Following the usual convention we assume that Ωn(G;R) = 0 for n < 0.

Definition 2.1 We call the chain complex (Ω∗(G;R), ∂P
∗ ) the path chain complex of the

digraph G with coefficients in R. An element of Ωn(G;R) is called a path chain of dimension
n. The homology HP

∗ (G;R) of (Ω∗(G;R), ∂P
∗ ) is called the path homology of the digraph G

with coefficients in R.

We note that similar to the expression in equation (2.1), it remains the case that each
x ∈ Ωn(G;R) can be written uniquely in the form

x = ∑
ev0,...,vn∈P

G
n

αv0,...,vnev0,...,vn (2.2)

where PG
n is the set of all n-paths of G and αv0,...,vn ∈ R with at most finitely may αv0,...,vn ≠ 0.

2.4 Magnitude homology and path homology

Throughout this section, G is a digraph, n a non-negative integer, and l a non-negative real
number, unless stated otherwise.

Magnitude homology was introduced by Hepworth and Willerton [23] as a homology
theory for graphs. The original definition has since been broadly generalised to quasi-metric
spaces, as presented here, and further to enriched categories [25]. The relationship between
the magnitude and path homologies of a digraph was first presented by Asao [1], making use
of a spectral sequence identified by Hepworth and Willerton. The first page of the spectral
sequence coincides with the magnitude homology and the second page contains the path
homology along a row. Asao showed, moreover, that all pages of this spectral sequence past
the first are homotopy invariants of the digraph. The modules on the second page constitute
what is now known as bigraded path homology [22]. Here we focus on the path homology
chains described in the previous section and details required later in this work.

A (extended) quasi-metric space (X,d) is a set X together with a function

d∶X ×X → [0,∞]

such that

(1) d(x1, x1) = 0,

(2) d(x1, x3) ≤ d(x1, x2) + d(x2, x3) and

(3) d(x1, x2) = d(x2, x1) = 0 implies that x1 = x2

7



for all x1, x2, x3 ∈ X .
Thus let (X,d) be a quasi-metric space. We denote by ⟨x0, . . . , xn⟩ an (n + 1)-tuple

(x0, . . . , xn) ∈Xn+1 for which xi−1 ≠ xi for all i = 1, . . . , n. We write

ℓ⟨x0, . . . , xn⟩ =
n

∑
i=1

d(xi−1, xi), (2.3)

and call this quantity the length of ⟨x0, . . . , xn⟩. Define free R-modules CM
n,l(X ;R) by

CM
n,l(X ;R) = R [{⟨x0, . . . , xn⟩ ∣ ℓ⟨x0, . . . , xn⟩ = l}]

for n ≥ 0, with CM
n,l(X ;R) = 0 for n < 0. For i = 1, . . . , n − 1 define ∂M

i,n∶C
M
n,l(X ;R) →

CM
n−1,l(X ;R) by linearly extending

∂M
n,l,i⟨x0, . . . , xn⟩ =

⎧⎪⎪⎨⎪⎪⎩

⟨x0, . . . , xi−1, xi+1, . . . , xn⟩ if d(xi−1, xi) + d(xi, xi+1) = d(xi−1, xi+1),
0 otherwise

and set

∂M
n,l =

n−1

∑
i=1

(−1)i∂M
n,l,i

making (CM
∗,l(X ;R), ∂M

∗,l) a chain complex for each l ∈ R.

Definition 2.2 For l ∈ R define the magnitude homology HM
∗,l(X ;R) to be the homology of

the chain complex (CM
∗,l(X ;R), ∂M

∗,l).

A digraph G comes furnished with a natural quasi-metric dG given by

dG(u, v) =min{n ≥ 0 ∣ ∃ eu=v0,...,vn=v ∈ PG
n } (2.4)

with the understanding that dG(u, v) = ∞ if there is no allowed path in G from u to v. We
will generally suppress this quasi-metric from notation, writing CM

n,l(G;R) and HM
n,l(G;R)

for the magnitude chains and magnitude homology of the quasi-metric space (G,dG). Note
that in this case we need only consider integer values of l to obtain all information about
the magnitude homology.

The magnitude homology HM
n,n(G;R) for n ≥ 0 is called the diagonal magnitude homology

of the digraph G. As CM
n,l(G;R) = 0 for l < n, it holds that

HM
n,n(G;R) = ker(∂M

n,n). (2.5)

Lemma 2.1 ([1] Lemma 6.8) The map φn∶An(G;R) → CM
n,n(G;R) given by linearly ex-

tending
φn(ev0,...,vn) = ⟨v0, . . . , vn⟩

is an isomorphism of R-modules and induces an isomorphism

φn∶Ωn(G;R) →HM
n,n(G;R).
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Proof When n = l, condition (2.3) together with the structure of G as a quasi-metric space
implies that for any ⟨v0, . . . , vn⟩ ∈ CM

n,n(G;R) we have d(vi−1, vi) = 1 for i = 1, . . . , n, so
(vi−1, vi) ∈ EG. Therefore, φn∶An(G;R) → CM

n,n(G;R) is a well defined isomorphism, as
An(G;R) and CM

n,n(G;R) are free R-modules on generators indexed by precisely the same
sequences of vertices.

Now, for any allowed path ev0,...,vn we have that

∂P
n (ev0,...,vn) = ev1,...,vn + (−1)nev0,...,vn−1 +

n−1

∑
i=1

(−1)iev0,...,v̂i,...,vn

= ev1,...,vn + (−1)nev0,...,vn−1 + ∑
i=1,...,n−1

(vi−1,vi+1)∈EG

(−1)iev0,...,v̂i,...,vn + ∑
i=1,...,n−1

(vi−1,vi+1)∉EG

(−1)iev0,...,v̂i,...,vn

where the last summation contains all non-allowable elementary paths which appear in the
expression. Moreover, these are the only elementary (n − 1)-paths whose images under φn−1

can correspond to non-trivial summands ⟨v0, . . . , v̂i, . . . , vn⟩ in the image of ∂M
n,n,j(φn(ev1,...,vn))

for some j = 1, . . . , n − 1. By linearly extending the above calculation, we obtain that any
x ∈ An(G;R) satisfies ∂P

n (x) ∈ Ωn−1(G;R) only when ∂M
n,n(x) = 0.

In the remainder of this work, making use of the isomorphism (2.5), we treat path ho-
mology chains Ωn(G;R) as the kernel of ∂M

n,n under the identification provided by the map
φn from Lemma 2.1.

2.5 Basis constructions for Ωn(G;R)
Most of the material covered in this section is contained in [20]. However, some of the content
is from, or was originally presented in, other works that we cite at the corresponding parts
of the section. Throughout this section, let n be a non-negative integer, G a digraph, and R

a commutative ring with a unit.
For any vertex v ∈ VG, ev is an allowed path and ∂P

0
ev = 0. Hence,

{ev ∣ v ∈ VG} is a basis of Ω0(G;R).

Similarly, for any (u, v) ∈ EG, the element eu,v is an allowed path and ∂P
1
(eu,v) = eu − ev ∈

A0(G;R). Therefore,

{eu,v ∣ (u, v) ∈ EG} is a basis of Ω1(G;R).

The first non-straightforward case occurs when n = 2. Let v0, v1, v
′
1
, v2 ∈ EG. When

(v0, v1) ∈ EG and (v1, v0) ∈ EG we call ev0,v1,v0 a double edge. We call ev0,v1,v2 a directed
triangle if (v0, v1), (v1, v2), (v0, v2) ∈ EG. Finally, we call ev0,v1,v2 − ev0,v′1,v2 a directed square if
(v0, v1), (v0, v′1), (v1, v2), (v′1, v2) ∈ EG, v0 ≠ v2, v1 ≠ v′1, and (v0, v2) ∉ EG. It is straightforward
to check that double edges, directed squares, and directed triangles are elements of Ω2(G;R).
Analogously, a digraph G is said to contain a double edge, a directed triangle, or a directed
square (at the same associated vertices as above) if it contains the respective subdigraphs

9



v0 v1

v0 v1

v2

v0

v1 v′
1

v2

and, in the last case, provided also that there is no edge v0 → v2. Moreover, a digraph G

is said to contain no double edge, no directed triangle, or no directed square if it does not
contain any subdigraphs of the above respective forms.

Definition 2.3 Let v0, v2 ∈ V such that v0 ≠ v2, (v0, v2) ∉ G and,

Sv0,v2 = {v1 ∈ V ∣ (v0, v1), (v1, v2) ∈ EG}.

When ∣Sv0,v2 ∣ ≥ 3, we say that G contains a multisquare between v0 and v2. If G does not con-
tain any multisquares between any pair of vertices, then we say G contains no multisquares.

Variations of the following proposition have been proved for both field and integral co-
efficients in [16, Proposition 4.2], [17, Proposition 2.9], and [20, Theorem 1.8]. We include a
proof at the end of the next section.

Proposition 2.2 ([16, 17, 20]) The double edges, directed triangles, and directed squares
generate Ω2(G;R). Once a basis of directed squares within each multisquare is chosen, these
directed squares, double edges, directed triangles, and a choice up to sign of directed squares
not contained in a multisquare form a basis of Ω2(G;R).

We note that the existence of multisquares implies that no canonical basis of Ω2(G;R)
exists in general. Moreover, the following example demonstrates that this is also the case
for Ωn(G;R) when n ≥ 2.

Example For t ≥ 3 consider the digraph G with VG = {v0, v11, v21 , v31 , v2, v3, . . . , vt−1, vt} and
edges

EG ={(v0, v11), (v11 , v2), (v11 , v3), (v0, v21), (v21 , v2), (v21 , v3), (v0, v31), (v31 , v2), (v31 , v3)}
∪ {(vi, vi+1) ∣ i = 2, . . . , t − 1} ∪ {(vi, vi+2) ∣ i = 2, . . . , t − 2}.

v0

v1
1

v2
1

v3
1

v2 v3

v4

v5

v6

vt−2

vt−1

vt

⋯

⋯

The digraph G contains a multisquare between v0 and v2. Each of the t-chains

e
v0,v

j
1
,v2,v3...,vt−1,vt

− e
v0,v

j′

1
,v2,v3...,vt−1,vt

for j, j′ = 1,2,3, and j ≠ j′, generate Ωt(G;R) and any two of them form a basis of Ωt(G;R).
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To end the section, we summarise the existing results under restrictions for bases of
Ωn(G;R) when n ≥ 3.

Definition 2.4 For t ≥ 2 let Tt be the following digraph on vertices

VTt
= {T,u1, . . . , ut, v1, . . . , vt,H}

and edges
T → ui, ui → vi, ui → vi+1, and vi →H

for i = 1, . . . , t where all index values are assumed to be modulo t.

T

u1 u2

v1 v2

⋯

⋯

ut−1

vt−1

ut

vt

H

The digraph Tt is called a trapezohedron of order t.

Proposition 2.3 ([20] Proposition 2.1) The free R-module Ω3(Tt;R) has rank 1 and
HP

n (Tt;R) = 0 for n ≥ 1.

The unique up to sign generator of Ω3(Tt;R) is called a trapezohedron element and can be
explicitly realised as

t

∑
i=1

eT,ui,vi,H − eT,ui,vi+1,H

where vt+1 = v1.
A map of digraphs f ∶H → G is a function f ∶VH → VG such that for all (u, v) ∈ EH either

f(u) = f(v) or (f(u), f(v)) ∈ EG.

Theorem 2.4 ([20] Theorem 2.10) Let K be a field and G a digraph containing no double
edges and no multisquares. Then there is a basis of Ω3(G;K) consisting of elements obtained
as the induced image of a trapezohedron element under a digraph map from Tt → G for some
integer t ≥ 2.

LetK be a field. Generalising the basis description above, under only the assumption that
G contains no multisquares, Fu and Ivanov [12, Theorem 4.7] give an explicit description of
a basis of Ωn(G;K) in terms of certain connected components of labeled graphs called short
move graphs [12, Definition 3.1]. In particular, the short move graphs have vertices labeled
with n-paths in G and positive integer edge labels correspond to a single vertex difference
between path at that position index. Moreover, the construction of Fu and Ivanov’s basis is
unique up to sign.

11



3 Structure morphisms on the path chain complex

Throughout this section let G be a digraph equipped with the quasi-metric dG given in
equation (2.4), n a non-negative integer, and R a commutative ring with a unit, unless stated
otherwise. In the section we define several morphisms on Ωn(G;R) that are fundamental to
the constructions presented in the rest of the paper.

3.1 A further characterisation of Ωn(G;R)
We first provide the following lemma, which gives a characterisation of the elements of
Ωn(G;R), further refining that given in Lemma 2.1. We are not aware of the lemma having
been proved previously in the form presented. However, a related statement is made in [16,
Lemma 4.1].

Lemma 3.1 Let x ∈ An(G;R). Then x ∈ Ωn(G;R) if and only if

∂M
n,n,i(x) = 0

for each i = 1, . . . , n − 1.

Proof Sufficiency is clear from Lemma 2.1, as by definition ∂M
n,n = ∑

n−1
i=1 (−1)i∂M

n,n,i. To
show necessity we adopt the notation for magnitude homology from Section 2.4, identifying
An(G;R) with CM

n,n(G;R) and Ωn(G;R) with HM
n,n(G;R) using the map φn from Lemma 2.1.

Thus if x ∈ Ωn(G;R), then, similarly to equation (2.2), x can be written uniquely as

x = ∑
j∈J

αj⟨vj0, . . . , vjn⟩

where J is a finite set, e
v
j
0
,...,v

j
n
is an allowed n-path, and each αj ∈ R is nonzero for all j ∈ J .

We claim that it is enough to show that for any i = 1, . . . , n − 1 and j ∈ J satisfying

(vji−1, vji+1) ∉ EG and v
j
i−1 ≠ v

j
i+1 (3.1)

there is a K
j
i ⊆ J ∖ {j} with (vki−1, vki+1) ∉ EG and vki−1 ≠ v

k
i+1 for each k ∈Kj

i such that

∑
k∈Kj

i
∪{j}

αk⟨xk
0, . . . , x̂

k
i , . . . , x

k
n⟩ = 0.

Indeed, if this holds, then it can be applied a second time to the set J∖(Ki
j∪{j}). Successive

applications will eventually yield the empty set.
To show the claim, note that x ∈ ker ∂M

n,n by Lemma 2.1, so for any i = 1, . . . , n − 1 and
j ∈ J , there is a minimally sized K ⊆ J ∖ {j} and an Sk ⊆ {1, . . . , n − 1} for each k ∈ K such
that

(−1)iαj⟨vj0, . . . , v̂ji , . . . , vjn⟩ + ∑
k∈K

∑
sk∈Sk

(−1)skαk⟨vk0 , . . . , v̂ksk , . . . , vkn⟩ = 0. (3.2)

Suppose that for some k ∈ K and sk ∈ Sk it is the case that sk ≠ i. In particular, by the
minimal size of K we can assume

⟨vj
0
, . . . , v̂

j
i , . . . , v

j
n⟩ = ⟨vk0 , . . . , v̂ksk , . . . , vkn⟩.

12



Without loss of generality assume i < sk. Then

vj
0
, . . . , vji−1 = v

k
0
, . . . , vki−1

while vji+1, . . . , x
j
sk
= xk

i , . . . , x
k
sk−1

(3.3)

and vjsk+1, . . . , v
j
n = v

k
sk+1

, . . . , vkn.

As ℓ(⟨vj
0
, . . . , v

j
n⟩) = n and the distance on the vertices of G comes from the digraph quasi-

metric, we must have that dG(vjt , vjt+1) = 1 and dG(vkt , vkt+1) = 1 for t = 0, . . . , n − 1. However,
the construction of the digraph quasi-metric also implies that

dG(vji−1, vji+1) = dG(vki−1, vki ) = 1. (3.4)

by using the last position of the first line of equation (3.3) and the first position of the second
line. Meanwhile, by the assumption in equation (3.1), we also have that

dG(vji−1, vji+1) = dG(vji−1, vji ) + dG(vji , vji+1) = 2

which contradicts equation (3.4). Therefore, sk = i for all sk ∈ SK and all k ∈ K. Together
with equation (3.2) the proof is complete by setting K

j
i =K.

3.2 Bigrading of path chains and face maps at a vertex

The material presented in this section, which is related to connectedness and bigradings of
Ωn(G;R), constitutes a generalisation of parts of [20, Section 2.2] to the case of non-field
coefficients. In the reminder of the section, given x ∈ Ωn(G;R) or x ∈ An(G;R), we assume
that x has the form

x = ∑
ev0,...,vn∈P

G
v

αv0,...,vnev0,...,vn (3.5)

where each αv0,...,vn ∈ R and only finitely many αv0,...,vn ≠ 0.

Definition 3.1 Let x ∈ Ωn(G;R). Define the head set h̄(x) and the tail set t̄(x) to be

h̄(x) = {vn ∣ ev0,...,vn ∈ PG
v and αv0,...,vn ≠ 0}

and t̄(x) = {v0 ∣ ev0,...,vn ∈ PG
v and αv0,...,vn ≠ 0}.

If ∣h̄(x)∣ = 1, then x is called upper connected and the unique element h(x) ∈ h̄(x) is called
the head of x. Similarly, if ∣t̄(x)∣ = 1, then x is called lower connected and the unique
element t(x) ∈ t̄(x) is called the tail of x. The element x is called connected if it is both
upper connected and lower connected.

Recall from Lemma 2.1 that there are isomorphisms φn∶A(G;R) → CM
n,n(G;R) and

φn∶Ω(G;R)→ HM
n,n(G;R). From equation (2.5) it follows that

ker(∂M
n,n) =HM

n,n(G;R) ≅ Ω(G;R)

where ∂M
n,n is the magnitude differential. Since ∂M

n,n preserves the endpoints of the (n +
1)-tuples in the magnitude chain complex, ker(∂M

n,n) admits a basis consisting of elements
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which are sums of tuples having the same endpoints. These elements correspond under
the isomorphism above to elements of Ω(G;R) which are sums of paths having the same
endpoints. Therefore, Ωn(G;R) admits a basis of connected elements (compare [20, Lemma
2.2], where a similar statement was made for field coefficients).

It now follows that for any vertices vh, vt ∈ VG, the connected elements with head vh and
tail vt span a free submodule Ωvt,vh

n (G;R) of Ωn(G;R). Since the connected elements with
different endpoints are linearly independent, there is a decomposition

Ωn(G;R) = ⊕
vt,vh∈VG

Ωvt,vh
n (G;R). (3.6)

which we use to define a bigrading on Ωn(G;R).
We say that a basis of Ωn(G;R) respects the bigrading Ω∗,∗∗ (G;R) if it restricts to a basis

on each Ωvt,vh
n (G;R). From the discussion above, it follows that Ωn(G;R) always admits a

basis that respects the bigrading.

Definition 3.2 For v ∈ VG define homomorphisms

δhn,v, δ
t
n,v∶An(G;R) →An−1(G;R)

by
δhn,v(x) = ∑

ev0,...,vn∈P
G
n

vn−1=v

αv0,...,vnev0,...,vn−1

and
δtn,v(x) = ∑

ev0,...,vn∈P
G
n

v1=v

αv0,...,vnev1,...,vn

where we assume that x ∈ An(G;R) has the form (3.5).

Lemma 3.2 For each v ∈ VG the functions δhn,v, δ
t
n,v ∶An(G;R)→ An−1(G;R) restrict to well

defined R-module homomorphisms

δhn,v, δ
t
n,v∶Ωn(G;R)→ Ωn−1(G;R). (3.7)

Proof We prove only the part of the statement regarding δhn,v. Thus suppose that x ∈
Ωn(G;R) ⊆ An(G;R). Applying Lemma 3.1 gives ∂M

n,n,i(x) = 0 for each i = 1, . . . , n − 1,
which, by the definition of δhn,v, implies that ∂M

n,n,i(δhn,v(x)) = 0 for each i = 1, . . . , n − 2. This
shows that δhn,v(x) ∈ Ωn−1(G;R), again by applying Lemma 3.1.

Observe that the homomorphisms δhn,v and δtn,v respect the Ω∗,∗∗ (G;R) bigrading. That
is, δhn,v, δ

t
n,v restrict to R-module homomorphisms

δhn,v ∶Ω
u,w
n (G;R) → Ωu,v

n−1(G;R) and δtn,v∶Ω
u,w
n (G;R)→ Ωv,w

n−1(G;R)

for any u, v,w ∈ VG. Moreover, for any x ∈ Ωn(G;R) and v ∈ VG, the element δhn,v(x) is upper
connected if nonzero, and δtn,v(x) is lower connected if nonzero. In addition, we obtain
homomorphisms

δhn(x), δtn(x) ∶Ωn(G;R)→ Ωn−1(G;R)
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given by
δhn(x) = ∑

v∈VG

δhn,v(x) and δtn(x) = ∑
v∈VG

δtn,v(x)

that coincide with the maps (−1)n∂P
n,n and ∂P

n,0, respectively. Finally, we verify that δhn and δtn
interact as expected with respect to change of coefficients from Z to a field of characteristic
0 and prove Proposition 2.2 from the previous section.

Lemma 3.3 Let K be a field of characteristic 0. Then the map

µ∗∶Ω∗(G;Z)⊗K → Ω∗(G;K)

given by µn(x⊗k) = kx is an isomorphism of graded modules such that the following diagrams
commute.

Ωn(G;Z)⊗K
µn

//

δhn
��

Ωn(G;K)
δhn
��

Ωn−1(G;Z)⊗K µn−1
// Ωn−1(G;K)

Ωn(G;Z)⊗K
µn

//

δtn
��

Ωn(G;K)
δtn
��

Ωn−1(G;Z)⊗K
µn−1

// Ωn−1(G;K)

Proof The map µn is an isomorphism of modules, as Ωn(G;Z) is a free Z-module. The fact
that the diagrams commute follows directly from the definitions of µ∗, δh∗ and δt∗.

Suppose K is a field of characteristic 0. Using the isomorphism µn from the lemma

above the composite Ωn(G;Z) ↪ Ωn(G;Z)⊗K µn
Ð→ Ωn(G;K) can be interpreted as realising

Ωn(G;Z) as a lattice in Ωn(G;K).

Proof of Proposition 2.2 Using the free module structure in equation (3.6), the result
follows by obtaining generating sets and bases of each free module Ωvt,vh

2
(G;R) for some

vt, vh ∈ VG. If dG(vt, vh) = 0, then vt = vh and Ωvt,vh
2
(G;R) is generated by double edges and

these also form a basis. If dG(vt, vh) = 1, then either Ωvt,vh
2
(G;R) = 0 or it is generated by

a set of directed triangles which also form a basis. If dG(vt, vh) > 2, then Ωvt,vh
2
(G;R) = 0.

Hence, assume that dG(vt, vh) = 2 and Ωvt,vh
2
(G;R) ≠ 0. Then either there is a multisquare

between vt and vh, or Ω
vt,vh
2
(G;R) is generated by a directed square and the result follows

similarly to the previous cases.

4 Upper and lower extensions over face multihyper-

graphs

In this section we introduce the fundamental constructions on the path chain complex which
are needed in the rest of the paper. Throughout the section, let G be a digraph, n a non-
negative integer, and R a commutative ring with unit, unless stated otherwise.
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4.1 Extensions and complete face multihypergraphs

We introduce here the processes of forming upper and lower extensions, which are methods of
constructing upper and lower connected elements of An+1(G;R) from elements of Ωn(G;R).
After this, we define face multigraphs and the more complex generalisation face multihyper-
graphs. These objects contain the data needed to ensure that the extensions formed belong
to Ωn+1(G;R).

The face multigraphs and face multihypergraphs serve essentially the same purpose, but
it becomes essential to work with face multihypergraphs when working over a coefficient
field of odd prime characteristic. Since the face multigraphs we define are much easier to
work with, and are sufficient when working with Z, Z2, or Q coefficients, we feel it useful to
develop their theory in parallel.

To end the section we provide a notion of completeness of a face multihypergraph with
respect to a vertex. The main result of the subsequent subsection states that the existence
of a complete face multihypergraph is sufficient to obtain an extension within Ωn+1(G;R).
Definition 4.1 Let x ∈ Ωn(G;R) have the form

x = ∑
ev0,...,vn∈P

G
n

αv0,...,vnev0,...,vn

where each αv0,...,vn ∈ R. Define the upper extension [x]v of x by v ∈ VG to be

[x]v = ∑
ev0,...,vn,v∈PG

n+1

αv0,...,vnev0,...,vn,v ∈ An+1(G;R).

An upper extension of x is any upper extension by some v ∈ VG. Similarly, define the lower
extension [x]u of x by u ∈ VG to be

[x]u = ∑
eu,v0,...,vn∈P

G
n+1

αv0,...,vneu,v0,...,vn ∈ An+1(G;R).

A lower extension of x is any lower extension by some u ∈ VG. Any upper extension or lower
extension of x will be referred to as an extension of x.

Note that the only nonzero summands of the upper extension [x]v defined above are formed
from paths ev0,...,vn when αv0,...,vn ≠ 0 and (vn, v) ∈ EG, where in particular vn ∈ h̄(x). A
similar statement can also be made for lower extensions and tail sets.

In the sequel, we develop in parallel two separate notions of upper and lower face multi-
graphs corresponding to the use of upper and lower extensions above, which make use of the
maps δhn,v and δtn,v for v ∈ VG, respectively. We focus primarily on the upper case, explaining
any differences for the lower case in brackets immediately after.

Definition 4.2 Let n ≥ 0 and x1, . . . , xm ∈ Ωn(G;R) be such that xi ≠ −xj for any i, j =
1, . . . ,m and i ≠ j. We define an upper (lower) face multigraph on x1, . . . , xm to be a labeled
multigraph F n

G(x1, . . . , xm) together with a choice, for each u ∈ VG and i = 1, . . . ,m such that

δhn,u(xi) ≠ 0 (δtn,u(xi) ≠ 0), of xu,1
i , . . . , x

u,mu
i

i ∈ Ωn−1(G;R) such that

δhn,u(xi) = xu,1
i +⋯ + x

u,mu
i

i (δtn,u(xi) = xu,1
i +⋯+ x

u,mu
i

i ) (4.1)
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where no sub-sequence of x
u,1
i , . . . , x

u,mi

i sums to zero. This data is to be subject to the
following conditions.

(1) The multigraph F n
G(x1, . . . , xm) has m vertices which are labeled with a bijection to

{x1, . . . , xm}.

(2) There can be an edge between distinct vertices xi, xj only if δhn,u(xi) ≠ 0 and δhn,u(xj) ≠ 0
(δtn,u(xi) ≠ 0 and δtn,u(xj) ≠ 0) for some u ∈ VG. If an edge between these vertices exists,
then it is labeled with a pair

({xu,k
i , x

u,l
j }, u) such that x

u,k
i = −x

u,l
j

where k ∈ {1, . . . ,mu
i } and l ∈ {1, . . . ,mu

j }.

(3) For u ∈ VG and i = 1, . . . ,m such that δhn,u(xi) ≠ 0 and k = 1, . . . ,mi, each x
u,k
i appears

in no more than one edge label.

When we draw face multigraphs, for simplicity, an edge labeled ({xu,k
i , x

u,l
j }, u) is often

written only with the label xu,k
i or xu,l

i if no ambiguity can arise. For example, when the xu,k
i

are upper connected with head vertex u. Examples of face multigraphs are constructed and
drawn in the next two subsections.

Remark Digraphs containing multisquares are the simplest examples demonstrating the
necessity of allowing for the decomposition of the form in equation 4.1 as part Definition 4.2.
For example, we will later want to consider the case when the x

u,1
i are elements of a basis.

When n = 3 and there is a multisquare between vertices w and u, then a non-zero δh
3,u(xi)

lies in a Ωw,u
n (G;R) for which a basis consists of at least two elements. A digraph where

a face multigraph is required to contain multiple vertices labeled with the same element is
given later in Example 6.1.

Definition 4.2 does not quite capture all that is needed when the ground ring R has
additive torsion of order greater than 2. To remedy this we introduce also the notion of a
face multihypergraph. It is easy to see that the following definition extends 4.2 in that the
face multihypergraphs introduced there reduce to face multigraphs when all additive torsion
in R has order 2. Since in many applications the ring R is additively torsion free or is the
two-element ring Z2, we continue to develop also the less complex face multigraphs alongside
the face multihypergraphs.

Definition 4.3 Let n ≥ 0. Using the same notation and data as Definition (4.2), define
an upper (lower) face multihypergraph F n

G(x1, . . . , xm) to be any labeled multihypergraph
constructed subject to the constraints (1) and (2) of Definition (4.2) as well as the following
additional conditions

(3) There can be a hyperedge between vertices xi1 , . . . , xit for t ≥ 3 that are not all equal,
only if δhn,u(xij) ≠ 0 (δtn,u(xij) ≠ 0) for j = 1, . . . , t and some u ∈ VG. If a hyperedge
between these vertices exists, then it is labeled with a pair

({xu,k1
i1

, . . . , xu,kt
it
}, u) such that xu,k1

i1
= ⋯ = xu,kt

it
and xu,k1

i1
+⋯+ xu,kt

it
= 0

where kj ∈ {1, . . . ,mu
ij
}.
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(4) For u ∈ VG and i = 1, . . . ,m such that δhn,u(xi) ≠ 0 (δtn,u(xij) ≠ 0) and k = 1, . . . ,mi, each

x
u,k
i appears in no more than one hyperedge label using either parts (2) or (3).

Face multihypergraphs will appear in this work only when we are simultaneously consid-
ering an extension of some form over the sum of their vertex labels, as is made precise in the
following definition. From now on we usually drop words upper and lower when it is clear
which type of face multigraph or multihypergraph is under consideration.

We also set out the notions of properness and completeness with respect to an extension
for a face multihypergraph. The complete extensions will be the central notion used in the
reminder of the paper and it is these extensions which we later show provide a construction
of path chains in one dimension higher. Although it would be possible to package face
multigraphs, proper extensions, and complete extension together as one concept, we choose
to introduce these objects separately, as we believe these notions might be used independently
in the construction of path homology algorithms.

Definition 4.4 Given an upper (lower) face multihypergraph F n
G(x1, . . . , xm) and v ∈ VG,

the upper extension [x1+⋯+xm]v (lower extension [x1+⋯+xm]v) is called an upper (lower)
extension by v over F n

G(x1, . . . , xm), when (vi, v) ∈ EG ((v, vi) ∈ EG) for each vi ∈ h̄(xi)
(vi ∈ t̄(xi)) and i = 1, . . . ,m.

Using the notation of Definitions 4.2 and 4.3, an upper (lower) extension by v over
F n
G(x1, . . . , xm) is said to be v-proper if all hyperedges ({xu,k1

i1
, . . . , xu,kt

it
}, u) corresponding to

u ∈ VG are such that
(u, v) ∉ EG ((v, u) ∉ EG) and u ≠ v.

The upper extension of v over F n
G(x1, . . . , xm) is further called v-complete if the converse

also holds. That is, if for any i = 1, . . . ,m and u ∈ h̄(δh(xi)) ∖ {v} (u ∈ t̄(δt(xi)) ∖ {v})
with (u, v) /∈ EG ((v, u) /∈ EG)), F n

G(x1, . . . , xn) has for each k = 1, . . . ,mu
i a hyperedge labeled

({xu,k1=k
i1=1

, . . . , x
u,kt
it
}, u) for some kj = 1, . . . ,mu

ij
, j = 2, . . . , t.

The terminology introduced in Definition 4.4 is equally applicable to face multigraphs and
in the sequel will be used in this context freely.

Remark Suppose x ∈ Ωn(G;R) and u, v ∈ VG, with either (u, v) ∈ EG, or u = v and δhn,u(x) ≠
0. For any v-proper face multihypergraph that can be upper extended by v, the definition
of v-properness implies that it contains no edges or hyperedges corresponding to δhn,u(x). In
this case we can ignore the decomposition of δhn,u(x) in equation (4.1) of Definition 4.2, as
all possible choices yield isomorphic face multigraphs.

Later, in Section 4.4, Definitions 4.6, 4.8 we provide a further, important property for face
multigraphs and face multihypergraphs. This is a notion of connectedness that is stronger
than the notion of connectedness of the underlying multigraph or multihypergraph itself.

4.2 Initial examples

In this section we give a number of simple explicit and more general examples of extensions
over face multigraphs and face multihypergraphs.
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Example 4.1 For any v ∈ VG, an element x ∈ Ω1(G;R) which is obtained as an upper
extension over a connected v-complete face multigraph must be extended over a multigraph
which consists of a single vertex, since

δhn,uδ
h
n,v(x) = 0

for any u ∈ VG. As discussed in Section 2.5, the set {eu ∣ u ∈ VG} is a basis of Ω0(G;R).
The extension described above over the basis elements eu ∈ Ω0(G;R) is a face multigraph
consisting of a single vertex labeled eu such that (u, v) ∈ EG. That is, such extensions
correspond to edges in G that begin at u and end at some v ∈ VG. In particular, recall again
from Section 2.5 that the set of eu,v such that (u, v) ∈ EG forms a basis of Ω1(G;R).

One may consider also extensions over face multihypergraphs in this context, but it is
easy to see that this gives rise to no additional extensions, and the statements above remain
true in this case.

Example 4.2 Suppose that G is a digraph containing the subdigraph

u

v1

w

v2

such that (u,w) ∉ G. We have that eu,v1 , eu,v2 ∈ Ω1(G;R) and eu ∈ Ω0(G;R). The directed
square

eu,v1,w − eu,v2,w ∈ Ω2(G;R)
can be obtained as the upper extension [eu,v1 − eu,v2]w. Furthermore, this upper extension is
an upper extension over the face multigraph

eu,v1 −eu,v2
eu

where we apply remark 4.1 to the edge label, whose full label would be ({eu,−eu}, u). In fact,
the above upper extension is w-complete over the face multigraph, as (u,w) ∉ G and u ≠ w
with

δhn,u(eu,v1) = δhn,u(eu,v2) = ea.
Moreover,

δhn,v(eu,v1) = δhn,v(eu,v2) = 0
for any v ∈ VG such that v ≠ u. Therefore, the face multigraph above is the unique connected,
w-complete face multigraph containing vertices eu,v1 and −eu,v2 . Similarly, it can be seen that
directed triangle or double edge are extensions over a face multigraph consisting of a single
vertex. Moreover, the example is again equally valid for multihypergraphs.

Example 4.3 Let G be the following digraph containing a single multisquare.
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u

v1

w

v3v2

Up to a choice of signs, there are exactly three w-complete, connected upper face multigraphs
that can be constructed out of paths eu,v1 , eu,v2 , eu,v3 ∈ Ω1(G;R), namely

eu,v1 −eu,v2
eu eu,v1 −eu,v3

eu eu,v2 −eu,v3
eu

When R = Z3 there is in addition the following connected upper face multihypergraph.

({eu, eu, eu}, u)

eu,v1 eu,v2

eu,v3

However, dimΩ2(G;Z3) = 2, and a basis for Ω2(G;Z3) can be obtained by forming extensions
over any two of the face multigraphs above. Digraphs demonstrating the necessity of allowing
face multihypergraphs with hyperedges of size greater than 2 in forming a basis are given in
Example 6.2.

An inclusion of face multihypergraphs is an inclusion of multihypergraphs that preserves
vertex and edge labels. A face multihypergraph F1 is a sub-face multihypergraph of a face
multihypergraph F2 if there is an inclusion of face multihypergraph from F1 to F2.

Example 4.4 For each v ∈ VG, by definition, any connected v-complete face multihypergraph
is maximal among all connected v-proper face multihypergraph when these objects are partially
ordered by inclusion of sub-face multihypergraphs.

A pair (x, v) for x ∈ Ωn(G;R) and v ∈ VG is called upper isolated if for any u ∈
h̄(δhn−1δhn,v(x)) and wh ∈ h̄(x), either u = wh or there is an edge (u,wh) ∈ EG. Similarly,
a pair (x, v) for x ∈ Ωn(G;R) and v ∈ VG is called lower isolated if for any u ∈ t̄(δtn−1δtn,v(x))
and wt ∈ t̄(x), either u = wt or there is an edge (wt, u) ∈ EG. A digraph G is called transitive
when for any u, v,w ∈ V , if (u, v), (v,w) ∈ EG then (u,w) ∈ EG.

Example 4.5 A connected v-proper upper (lower) face multihypergraph containing a vertex
x such that (x, v) is upper (lower) isolated consists of only that vertex. In particular, if G is
a transitive digraph, then all connected v-proper upper (lower) face multihypergraphs are of
this form.
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Example 4.6 Recall from Proposition 2.2 that directed squares of the form

Su,v1,v2,w = eu,v1,w − eu,v2,w ∈ Ω2(G;R)

such that (u,w) ∉ G, u ≠ w and v1 ≠ v2, directed triangles

Tu,v,w = eu,v,w ∈ Ω2(G;R)

such that (u,w) ∈ G, and double edges

Eu,v = euvu ∈ Ω2(G;R)

for some u, v, v1, v2,w ∈ VG generate Ω2(G;Z).
For any v′ ∈ VG, the only nonzero δhn,v′(Tu,v,w) and δhn,v′(Eu,v) occur when v′ = v, in which

case
δhn,v(Tu,v,w) = eu,v and δhn,v(Eu,v) = eu,v.

Hence, if Tu,v,w or Eu,v appears as a vertex in an upper face multigraph, then it has valence
at most 1. Similarly, if Su,v1,v2,w appears as a vertex in an upper face multigraph, then it has
valence at most 2. Therefore, any upper face multigraph with vertices, double edges, directed
triangles, or directed squares in Ω3(G;R) consists of a disjoint union of face multigraphs
that are either lines or cycle as unlabeled multigraphs.

Clearly, an analogous statement also holds for lower face multigraphs, and for lower or
upper face multihypergraphs when G has no multisquares or when R is an abelian group with
no additive torsion of order greater than 2.

4.3 Existence of extensions over face multihypergraphs

The next proposition demonstrates the necessity of considering vertex complete extensions
over face multihypergraphs.

Proposition 4.1 Let F n
G(x1, . . . , xm) be a face multihypergraph, where x1, . . . , xm ∈ Ωn(G;R),

and let v ∈ VG. If the upper extension of x1 +⋯+xm by v is v-complete over F n
G(x1, . . . , xm),

then
[x1 +⋯+ xm]v ∈ Ωn+1(G;R).

Similarly, if the lower extension of x1 +⋯+xm by v is v-complete over F n
G(x1, . . . , xm), then

[x1 +⋯+ xm]v ∈ Ωn+1(G;R).

Proof We prove the case of upper extensions, the proof for lower extensions being similar.
As x1+⋯+xm ∈ Ωn(G), by Lemma 3.1 we have that ∂M

n,n,i(x1+⋯+xm) = 0 and so ∂M
n+1,n+1,i([x1+

⋯+ xm]v) = 0 for each i = 1, . . . , n − 1. Therefore, it remains to check that

∂M
n+1,n+1,n([x1 +⋯ + xm]v) = 0.

To begin, consider any nonzero path eu0,...,un−1
occurring as a nonzero summand αeu0,...,un−1

in some x
un−1,k
i for some i = 1, . . . ,m, k = 1, . . . ,mi from the sum decomposition in equa-

tion (4.1) of Definition 4.2. If (un−1, v) ∈ EG or un−1 = v, then by definition

∂M
n+1,n+1,n([[eu0,...,un−1

]un]v) = 0 (4.2)
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for any un ∈ VG. Thus we reduce to the case that (un−1, v) ∉ EG and un−1 ≠ v.
We consider first the case of edges of F n

G(x1, . . . , xm) and then hyperedges of size greater

than 2. When (un−1, v) ∉ EG, un−1 ≠ v and x
un−1,k
i appears uniquely in an edge of F n

G(x1, . . . , xm),
by the completeness of F n

G(x1, . . . , xm), the unique edge associated to xun−1,k
i provides a unique

j ∈ {1, . . . ,m} such that j ≠ i and l ∈ {1, . . . ,mj} with
x
un−1,k
i = −xun−1,l

j .

In particular, −αeu0,...,un−1
occurs as a summand in x

un−1,l
j uniquely corresponding to summand

αeu0,...,un−1,uj
in xi. Moreover,

∂M
n+1,n+1,n([[eu0,...,un−1

]un]v + [[−eu0,...,un−1
]u′n]v) = 0 (4.3)

for any un, u′n ∈ VG such that (un−1, un), (un−1, u′n), (un, v), (u′n, v) ∈ EG.
We now return to the remaining case of a hyperedge of size greater than 2. Thus suppose

(un−1, v) ∉ EG, un−1 ≠ v and x
un−1,k
i appears uniquely in a hyperedge of F n

G(x1, . . . , xm) of
size greater than 2. Then by the completeness of F n

G(x1, . . . , xm), the unique edge associated
to x

un−1,k
i of size t + 1 ≥ 3 provides unique i1, . . . , it ∈ {1, . . . ,m} such that i ≠ ij′ for some

j′ = 1, . . . , t with

x
un−1,k
i = xun−1,kj

ij
and x

un−1,k
i + xun−1,k1

i1
+⋯+ xun−1,kt

it
= 0

for each j = 1, . . . , t, where kj ∈ {1, . . . ,mu
ij
} is as in Definition 4.3. In particular, αeu0,...,un−1

occurs as a summand in each x
un−1,kj
ij

uniquely corresponding to a summand αeu0,...,un−1,uij
in

xi for each j = 1, . . . , t. Moreover,

∂M
n+1,n+1,n([[eu0,...,un−1

]un]v + [[eu0,...,un−1
]u1

n]v +⋯+ [[eu0,...,un−1
]ut

n]v) = 0 (4.4)

for any un, u1
n,⋯ , ut

n ∈ VG such that

(un−1, un), (un−1, u
1

n), . . . , (un−1, u
t
n), (un, v), (u1

n, v), . . . , (ut
n, v) ∈ EG.

We note that it is possible that the path eu0,...,un−1
does not upper extend by some un ∈ VG

and correspond to a path in a nonzero summand of xi. However, all such paths cancel within
the decomposition x

un−1,1
i + ⋯ + xun−1,mi

i = δhn,un−1
(xi) prior to upper extension. Otherwise,

equations (4.3) and (4.4) together with the unique determination of j, ij and the case cor-
responding to equation (4.2), imply that ∂M

n+1,n+1,n([xn−1
1
+⋯ + xn−1

m ]v) = 0 as required.

We remark that the proof of Proposition 4.1 for the special case of face multigraphs alone is
somewhat simpler.

4.4 Connectedness and mutations of face multihypergraphs

We now give a variant notion of connectedness for face multihypergraphs which is stronger
than that of the connectedness of the underlying multihypergraph. This is done initially in
the case of face multigraphs, and then for face multihypergraphs.

The incentive for introducing this notation of connectedness will become apparent in
the next section while trying to reduce the size of the generating sets for Ωn(G;R). There
are usually many face multihypergraphs which can be extended to the same element, and
restricting to mutation equivalence classes is a way to reduce the number under consideration.
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Definition 4.5 A face multigraph F n
G(x1, . . . , xm) is called a mutation of a face multigraph

F̄ n
G(x1, . . . , xm) on x1, . . . , xm ∈ Ωn(G;R) if F n

G(x1, . . . , xm) can be obtained from F̄ n
G(x1, . . . , xm)

by replacing two edges ({xu,k
i , x

u,l
j }, u) and ({xu,k′

i′ , x
u,l′

j′ }, u) by edges

({xu,k
i , x

u,l′

j′ }, u) and ({xu,l
j , x

u,k′

i′ }, u), or
({xu,k

i , x
u,k′

i′ }, u) and ({xu,l
j , x

u,l′

j′ }, u).

Mutations are symmetric by construction and generate an equivalence relation on face multi-
graphs F n

G(x1, . . . , xm) with x1, . . . , xm ∈ Ωn(G;R). We therefore call two face multigraphs
mutation equivalent if they are obtainable from each other by a sequence of mutations.

By construction, mutations preserve properness and completeness of face multigraphs.
Furthermore, upper (lower) extensions by a vertex v ∈ VG over a v-complete face multi-
graph F n

G(x1, . . . , xm) are invariant under mutation equivalence of the face multigraph as the
extension only depends on the choice of x1, . . . , xm ∈ Ωn(G;R) and v ∈ VG.

Example 4.7 Consider the trapezohedron T2 of order 2 from Definition 2.4.

T

u1 u2

v1 v2

H

There are up to sign two directed squares

S1 = eT,u1,v1 − eT,u2,v1 ∈ Ω2(T2;R)
S2 = eT,u1,v2 − eT,u2,v2 ∈ Ω2(T2;R)

whose tail vertices are T . The upper extension [S1 − S2]H is an upper extension over the
H-complete face multigraph

S1 −S2.

T → u1

T → u2

Hence, [S1−S2]H ∈ Ω3(G;R) by Proposition 4.1 and coincides with the trapezohedron element
generating Ω3(T2;R).

On the other hand, consider the following two H-complete face multigraphs
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S1

−S2

S1

−S2

T → u1T → u2

T → u2T → u1

S1

−S2

S1

−S2

T → u1

T → u2

T → u2

T → u1

and note that they are mutation equivalent. The element [S1 + S1 − S2 − S2]H upper extends
over the left-hand face multigraph, and disconnectedness of the right-hand face multigraph
gives

[S1 + S1 − S2 − S2]H = 2[S1 − S2]H .
Hence, for example, [S1 + S1 − S2 − S2]H cannot be an element of a basis of Ω3(T2;Z).

More generally, the unique generator up to sign of Ω3(Tt;Z) for t ≥ 3 (c.f. Definition 2.4)
can be similarly obtained as an extension over a face multigraph whose underlying multigraph
is a cycle on t vertices.

The previous example demonstrates that within mutation equivalence classes, connected-
ness of the underlying multigraphs need not be preserved. Therefore, we require a stronger
notion of connectedness for mutation equivalence classes of face multigraphs.

Definition 4.6 A face multigraph is called strongly connected if it and all its mutation
equivalent multigraphs are connected as multigraphs.

The definitions given above are only applicable to face multigraphs. More complicated
definitions must be formulated to cover the more general case of face multihypergraphs, and
we turn now to this task.

Definition 4.7 Let x1, . . . , xm ∈ Ωn(G;R). A face multihypergraph F n
G(x1, . . . , xm) is called

a mutation of a face multihypergraph F̄ n
G(x1, . . . , xm) if it can be obtained from F̄ n

G(x1, . . . , xm)
by any of the following operations;

(1) a mutation on edges of the form in Definition 4.5,

(2) replacing two hyperedges

({xu,k1
i1

, . . . , x
u,kt
it
}, u) and ({xu,k′

1

i′
1

, . . . , x
u,k′t
i′t
}, u)

for t ≥ 3 by edges

({xu,kj
ij

, x
u,k′j
i′
j
}, u)

for each j = 1, . . . , t, or by the reverse replacement,
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(3) replacing two hyperedges

({xu,k1
i1

, . . . , xu,kt
it
}, u) and ({xu,kt+1

it+1
, . . . , xu,k2t

i2t
}, u)

for t ≥ 3 by hyperedges

({xu,kj1
ij1

, . . . , x
u,kjt
ijt
}, u) and ({xu,kjt+1

ijt+1
, . . . , x

u,kj2t
ij2t
}, u)

for some permutation j1, . . . , j2t of 1, . . . ,2t.

Mutations generate an equivalence relation on face multihypergraphs F n
G(x1, . . . , xm) with

x1, . . . , xm ∈ Ωn(G;R). We call two face multihypergraphs mutation equivalent if they are
obtainable from each other by a sequence of mutations.

Definition 4.8 A face multihypergraph is called strongly-connected if it and all its mutation
equivalent multihypergraphs are connected as multihypergraphs.

From the perspective of obtaining a generating set for Ωn(G;R), it is important to note
that the existence of a face multihypergraph with hyperedges of size greater than 2 can
increase the number of possible extensions in a given degree. Moreover, this can occur even
up to mutation equivalence and can produce additional, linearly dependent elements. Such
a situation is highlighted in the next example.

Example 4.8 The face multihypergraph appearing in Example 4.3 is not mutation equivalent
to any of the other multihypergraphs appearing in the same example.

5 Inductive elements Ωn(G;R) generating sets and bases

We are now ready to define our main objects of study and prove the central results demon-
strating their use. Throughout this section, let G be a digraph, n a non-negative integer, R
a commutative ring with unit, and Zp (for a prime number p) the finite field with p elements,
unless stated otherwise.

5.1 Inductively extending bases

In this subsection we show how to inductively define elements of Ωn(G;R) in terms of
arbitrary bases in the previous two dimensions. In the next subsection we set out the
important special case in which we are primarily interested. When considering a non-finite
G in this section, we note that the axiom of choice is required in the construction of bases
as a subset of infinite spanning sets of a vector space.

Definition 5.1 Let n ≥ 1 and suppose that En−1 ⊆ Ωn−1(G;R) and En−2 ⊆ Ωn−2(G;R) are
subsets whose elements respect the bigradings within Ω∗,∗n−1(G;R) and Ω∗,∗n−2(G;R), respectively.
An upper (lower) connected element x ∈ Ωn(G,R) is called upper (lower) (En−1,En−2)-
inductive if it can be obtained as an upper (lower) extension over a strongly connected
h(x)-complete (t(x)-complete) face multihypergraph F n−1

G (x1, . . . , xm) satisfying the following
conditions.
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(1) Each x1, . . . , xm is up to sign an element of En−1.

(2) The elements x
un−1,k
i for i = 1, . . . ,m, and k = 1, . . . ,mi which appear in the sum de-

composition (4.1) are elements of En−2 up to sign.

A face multihypergraph F n−1
G (x1, . . . , xm) of the form above is called an upper (lower)

(En−1,En−2)-inductive face multihypergraph of x. Given an upper (lower) (En−1,En−2)-
inductive element x ∈ Ωn(G;R), we call the choice of an upper (lower) (En−1,En−2)-inductive
face multihypergraph of x an upper (lower) (En−1,En−2)-inductive structure on x.

Theorem 5.1 Let n ≥ 1, R = Z or R = Zp for a prime p, Bn−1 be an R-basis of Ωn−1(G;R),
and Bn−2 an R-basis of Ωn−2(G;R), both of which respect the bigradings within Ω∗,∗n−1(G;R)
and Ω∗,∗n−2(G;R), respectively. Then the upper (lower) (B1,B2)-inductive elements gener-
ate Ωn(G;R). Moreover, we have the following conditions on (B1,B2)-inductive elements
containing a basis.

(1) When R = Zp, a choice of Zp-basis always exists as a subset of (Bn−1,Bn−1)-inductive
elements.

(2) LetK be a field of characteristic 0. Then a subset of the image of (Bn−1,Bn−1)-inductive
elements under

Ωn(G;Z) ↪ Ωn(G;Z)⊗K µn

Ð→ Ωn(G;K),
where µn is the isomorphism from Lemma 3.3, form a basis of Ωn(G;K).

Proof We prove the case of upper inductive, the proof for lower inductive being similar. First
we prove that the (Bn−1,Bn−2)-inductive elements generate Ωn(G;R) when R = Z or R = Zp.
To this end take a basis Bn of Ωn(G;R) that respects the bigrading Ω∗,∗n (G;R) and let x ∈ Bn.
As Bn respects the bigrading Ω∗,∗n (G;R), x is upper connected and the vertex h(x) ∈ VG

is well defined. Our aim is to construct an upper connected h(x)-complete (Bn−1,Bn−2)-
inductive face multihypergraph F n−1

G (x1, . . . , xm) such that x is the upper extension by h(x)
over F n−1

G (x1, . . . , xm) and so
x = [x1 +⋯+ xm]h(x).

For any v ∈ V , we have that δhn,v(x) ∈ Ωn−1(G;R) by Lemma 3.2. Assuming δhn,v(x) ≠ 0,
then as Bn−1 is an R-basis, there is a smallest integer tv > 0 with a unique up to reordering
sum decomposition

δhn,v(x) = xv
1 +⋯+ x

v
tv

(5.1)

where either xv
k ∈ Bn−1 or −xv

k ∈ Bn−1 for k = 1, . . . , tv. Here it is important to realise that we
allow for repetition of the xv

i ’s and expand

k ⋅ y =
⎧⎪⎪⎨⎪⎪⎩

y + y +⋯+ y (k times) k ≥ 0
−y − y −⋯ − y (−k times) k < 0

for a (mod p) integer k.
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In any case, we may take the multiset x1, . . . , xm to be an enumeration of the elements
in the finite multiset

{xv
k ∣ v ∈ VG, δ

h
n,v(x) ≠ 0, and xv

k appears in decomposition (5.1) for k = 1, . . . , tv}

Note that we cannot have xi = −xj for any i, j = 1, . . . ,m, as this would imply that paths in
[xi]h(x) and [xj]h(x) cancel, which is impossible as x ∈ Bn ⊆ Ωn(G;R).

Now, for any v ∈ V and i = 1, . . . ,m, we have that δhn,v(xi) ∈ Ωn−2(G;R) by Lemma 3.2.
Suppose that i = 1, . . . ,m, δhn,v(xi) ≠ 0, (v, h(xi)) ∉ EG and v ≠ h(xi). Then, similarly
to equation (5.1), there is a smallest integer tiv > 0 with a unique up to reordering sum
decomposition

δhn,v(xi) = xv,i
1
+⋯+ x

v,i

tiv
(5.2)

where either xv,i
k ∈ Bn−2 or −xv,i

k ∈ Bn−2 for k = 1, . . . , tiv. Again, as previously

x
v,i
k ≠ −x

v,i
k′ (5.3)

for any k, k′ = 1, . . . , tiv. Moreover, no sub-sequence of xv,i
1
, . . . , x

v,i

tiv
can sum to zero as equa-

tion (5.3) is obtained as a refinement of a unique linear combination in the members of the
R-basis Bn−2.

Let

Vx = {v ∈ VG ∣ δhn,v(xi) ≠ 0, (v, h(x)) ∉ EG and v ≠ h(x) for some i = 1, . . . ,m}.

As x ∈ Bn ⊆ Ωn(G;R), by Lemma 3.1, ∂M
n,n,j(x) = 0 for each j = 1, . . . , n − 1 and hence

∂M
n−1,n−1,j′δ

h
n,v(x) = 0 for each v ∈ VG, and j′ = 1, . . . , n − 2. Furthermore,

0 = ∂M
n−1,n−1δ

h
n,v(x) = ∑

v∈Vx

tiv

∑
k=1

x
v,i
k .

Hence when R = Z or R = Z2, using the fact that each x
v,i
k is up to sign an element of

Bn−2 and that any additive torsion in R of order 2, any x
v,i
k can be paired with another xv,i′

k′

such that
x
v,i
k = −x

v,i′

k′ (5.4)

for some i′ = 1, . . . ,m and k′ = 1, . . . , ti′v . In addition, as a consequence of equation (5.3), it
must be the case that i ≠ i′.

When R = Zp for p ≥ 3, not all x
v,i
k can necessarily be paired in the form of equation (5.4),

and there may be additional matchings of the form

x
v,i
k = x

v,i1
k1
= ⋯ = xv,ip−1

kp−1
such that x

v,i
k + x

v,i1
k1
+⋯+ x

v,ip−1
kp−1

= 0

for some ij ∈ {1, . . . ,m} and kj ∈ {1, . . . , tijv }. In addition, as no sub-sequence of xv,i
1
, . . . , x

v,i

tiv

from equation (5.2) can sum to zero, it must be the case that k ≠ kj for some j = 1, . . . , p−1.
We may now construct a face multihypergraph F n−1

G (x1, . . . , xm) on vertices x1, . . . , xm

with all edges and hyperedges described by the labels

({xv,i
k , x

v,i′

k′ }, v) and ({xv,i
k , x

v,i1
k1

, . . . , x
v,ip−1
kp−1
}, v)
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using the pairings and matchings obtained above. The face multihypergraph F n−1
G (x1, . . . , xm)

is h(x)-complete as we have constructed all required hyperedges for vertices in Vx. However,
the face multihypergraph F n−1

G (x1, . . . , xm) need not be strongly connected. Nevertheless,
a minimal subdivision of F n−1

G (x1, . . . , xm) into strongly connected face multihypergraph
provides (Bn−1,Bn−2)-inductive elements whose sum is x. Therefore, every basis element
in Bn can be written as a linear combination of (Bn−1,Bn−2)-inductive elements and so
(Bn−1,Bn−2)-inductive elements generate Ωn(G;R) as required.

For part (1), when R = Zp, a generating set is a spanning set of a vectors space and
can always be reduced to a basis. Finally, part (2) follows from the fact that (Bn−1,Bn−2)-
inductive elements generate Ωn(G;Z) combined with Lemma 3.3 and again that a spanning
sets of a vector space always reduce to a basis.

5.2 Inductive elements

In this subsection we describe an inductive method for constructing generating sets of the
path chain modules Ωn(G;R). The heavy lifting here is done by Theorem 5.1. The main
theorems included in the introduction are stated with greater generality in this subsection
and proved in full.

Definition 5.2 Define sets Ēh
n , Ē

t
n ⊆ Ωn(G;R) for n ≥ −1 by means of the following inductive

construction.

(1) Let Ēh
−1 = Ē

t
−1 = ∅ and Ēh

0
= Ēt

0
= {±ev ∣ v ∈ VG}.

(2) For n ≥ 1, the set Ēh
n (Ēt

n) consists of all upper (lower) (Ēh
n−1, Ē

h
n−2)-inductive elements

((Ēt
n−1, Ē

t
n−2)-inductive elements).

An element belonging to Ēh
n (Ēt

n) for some n ≥ 0 is called an upper (lower) inductive element.
The members of Ēh

n (Ēt
n) for a fixed n are called n-dimensional upper (lower) inductive

elements.

Note that, by construction, all upper and lower inductive elements are connected. In partic-
ular, h(x) and t(x) are well defined for any upper or lower inductive element x.

Denote the submodule of Ωn(G;R) generated by Ēh
n (Ēt

n) as

ΩI,h
n (G;R) ⊆ Ωn(G;R) (ΩI,t

n (G;R) ⊆ Ωn(G;R)) .

An (Ēh
n−1, Ē

h
n−2)-face multihypergraph ((Ēt

n−1, Ē
t
n−2)-face multihypergraph) is called an upper

(lower) inductive face multihypergraph. Given an upper (lower) inductive x ∈ Ωn(G;R), we
call a choice of upper (lower) inductive face multihypergraph for which x is an upper (lower)
extension by h(x) (t(x)) an upper (lower) inductive structure on x. For all this terminology,
to refer to either the upper or lower inductive cases, we simply write inductive rather than
upper inductive or lower inductive.

Theorem 5.1 now has the following immediate consequence when coefficients are taken
in a finite field.
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Corollary 5.2 Let G be any digraph and n a non-negative integer. Then the n-dimensional
inductive elements generate Ωn(G;Zp). That is,

ΩI,h
n (G;Zp) = ΩI,t

n (G;Zp) = Ωn(G;Zp).

Moreover, the n-dimensional inductive elements contain a subset that is a basis of Ωn(G;Zp).

Proof The corollary in the cases n = 0,1 follow from Example 4.1. The full statement
follows by induction on n using Theorem 5.1.

Recall that when R has no additive torsion other than 2, face multihypergraphs are
face multigraphs. In particular, when R = Z or R = Z2, inductive elements are obtained by
extending over inductive face multigraphs only. Theorem 5.1 also provides the next corollary,
which corresponds to Corollary 5.2 in the integral and field of characteristic zero cases.

Corollary 5.3 Let G be any digraph and K a field of characteristic 0. Then the following
statements hold.

(1) Inductive elements contain a basis of Ωi(G;Z) and Ωi(G;K) for i = 0,1,2.

(2) The 3-dimensional inductive elements generate Ω3(G;Z).

(3) A subset of the 3-dimensional inductive elements forms a basis of Ω3(G;K).

Proof We give the proof in the upper inductive case, the lower inductive case being almost
identical. The corollary in the cases n = 0,1 follows from Example 4.1 and the determination
of bases in Section 2.5. In particular, Ēh

0
and Ēh

1
are bases of vertices eu and edges eu,v

respectively for u, v ∈ VG and u ≠ v. To obtain the statement of the corollary when n = 2,
we apply Theorem 5.1 and the result of Section 2.5 with the bases B0 = Ēh

0
and B1 = Ēh

1
.

Together with Example 4.2, this implies that double edges, directed triangles and directed
squares are the inductive elements in dimension 2. Hence, using Proposition 2.2, we choose
a subset of these inductive elements that form a basis B2. Finally, apply again Theorem 5.1
to show that inductive elements generate Ω3(G;Z), and a subset of these forms a basis of
Ω3(G;K).

Corollaries 5.2 and 5.3 can together be considered a generalisation of Theorem 2.4, in the
sense that a Ω3(G;R) generating set is constructed explicitly without either of the restrictions
on double edges or multisquares. Moreover, using Example 4.7, it is straightforward to see
that trapezohedra of any order are examples of inductive elements.

In the case of integral coefficients, it is not generally true that a generating set of a finite-
dimensional free Z-module may be reduced to a basis. This fact is the only obstruction to
further extending Corollary 5.3 to higher dimensions. However, we are not currently aware
of any examples where a subset of inductive elements do not form a basis. In general, a basis
can still be determined from a generating set of Ωn(G;Z) by the computation of a Hermite
normal form with respect to the intersection with the usual basis of An(G;Z). In particular,
when the number of paths in the generating set Ωn(G;Z) is significantly smaller than the
rank of An(G;Z), this approach would be more computationally efficient than computing
Ωn(G;Z) directly as a submodule of An(G;Z).
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6 Important examples

The examples here are derived and justified using the theory developed in Sections 3, 4 and 5.
However, once the digraphs have been constructed, their properties can be checked directly by
computer without reference to the theory developed in this paper. For example, an algorithm
for path homology with real coefficients, including computation of boundary matrices, is
publicly available at [4], released accompanying the paper [5]. Similarly, the details of a
straightforward algorithm for path homology with field coefficients can be found in [20,
§1.7].

Accompanying this work, we provide [2] an implementation for computing path homology,
path homology boundary matrices, and bases of the path chain complex of a digraph with
respect to Q and Zp coefficients.

Throughout this section assume that n is a non-negative integer, G is a digraph, Zp (for
a prime number p) is the finite field with p elements, K a field, and R a commutative ring
with a unit, unless otherwise stated.

6.1 Boundary matrix multiplicities

The next example, demonstrates that the path homology differential with respect to an
inductive basis can contain arbitrary multiplicities in its boundary matrix.

Example 6.1 Let t ≥ 2 be an integer. Throughout this example, all index values are
assumed to be integers modulo 2t. We construct a digraph Mt with vertices

VMt
= {T,uA

1 , u
A
2 , u

B, vA1 , v
A
2 , v

B
1 , . . . , v

B
2t,w

A,wB
1 , . . . ,w

B
2t,H}

and edges

T → uA
1 , T → uA

2 , T → uB,

uA
1 → vA1 , u

A
1 → vA2 , u

A
2 → vA1 , u

A
2 → vA2 , u

B → vBi , u
A
1 → vB2i+1, u

A
2 → vB2i,

vA1 → wA, vA2 → wA, vBi → wB
i , v

B
i → wB

i+1, v
A
1 → wB

2i, v
A
2 → wB

2i+1,

wA
→H, wB

i → H

for i = 1, . . . ,2t. In the case t = 2, we obtain the following digraph M2.

H

T

uA
1

uA
2uB

vA
1

vA
2

vB
1

vB
2

vB
3

vB
4

wAwB
1

wB
2

wB
3

wB
4
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All maximal length paths in Mt have length 4 and Mt contain no directed triangles. It
follows that Ωn(Mt;Z) = 0 for n ≥ 5.

We now construct an element I t
4
of Ω4(Mt;Z) as an upper inductive element by identifying

the unique (up to mutation equivalence) upper inductive structure it lies over. Using this
construction, we show that ∂P

4
I t
4
= t ⋅ A + ⋯ for a certain inductive element A ∈ Ω3(Mt;Z).

Although the example will be presented with integral coefficients, the conclusions are equally
valid for coefficients in a field of characteristic 0 or p, for a prime p > t.

First we note that, if the vertex H and all its incoming edges are removed from Mt, the
remaining subdigraph is the union of the digraphs

T

uA
1

uA
2

vA
1

vA
2

wA

T

uA
1 uB uA

2

vA
1

vBi−1 vBi

wB
i

T

uA
2 uB uA

1

vA
2

vBi vBi+1

wB
i+1

where i = 1,3 . . . ,2t−1 is an odd integer. In particular, by Definition 2.4, the digraphs above
are trapezohedra of order 2, 3, and 3, respectively. Each of the trapezohedron digraphs
contains a unique trapezohedron element generating the dimension 3 path chains

A = −eT,uA
1
,vA

1
,wA
+ eT,uA

1
,vA

2
,wA
− eT,uA

2
,vA

2
,wA
+ eT,uA

2
,vA

1
,wA

Bi = eT,uA
1
,vA

1
,wB

i
− eT,uA

1
,vB

i−1
,wB

i
+ eT,uB ,vB

i−1
,wB

i
− eT,uB,vB

i
,wB

i
+ eT,uA

2
,vB

i
,wB

i
− eT,uA

2
,vA

1
,wB

i

Bi+1 = eT,uA
2
,vA

2
,wB

i+1
− eT,uA

2
,vB

i
,wB

i+1
+ eT,uB,vB

i
,wB

i+1
− eT,uB,vB

i+1
,wB

i+1
+ eT,uA

1
,vB

i+1
,wB

i+1
− eT,uA

1
,vA

2
,wB

i+1

respectively, where i = 1,3 . . . ,2t − 1. We can verify the above generators by applying Theo-
rem 5.1 and realising A, Bi, Bi+1 for i = 1,3 . . . ,2t − 1 as upper extensions

A = [−SA
1 − S

A
2 ]w

a

, Bi = [SB
i − S

B
i−1 + S

A
1 ]w

B
i , Bi+1 = [SB

i+1 − S
B
i + S

A
2 ]w

B
i+1 ,

over the face multigraphs,

−SA
1

−SA
2

T → uA
1

T → uA
2

SA
1

SB
i −SB

i−1
T → uB

T → uA
2

T → uA
1

SA
2

SB
i+1 −SB

i
T → uB

T → uA
1

T → uA
2

where

SA
1 = eT,uA

2
,vA

1

− eT,uA
1
,vA

1

, SA
2 = eT,uA

1
,vA

2

− eT,uA
2
,vA

2

,

SB
i = eT,uB,vB

i
− eT,uA

2
,vB

i
, SB

i+1 = eT,uB,vB
i+1
− eT,uA

1
,vB

i+1

31



are a basis of directed squares whose tail vertices are T . In fact, it can also be easily checked
that the above generators form a basis of

ΩT,wA

3
(Mt;Z), Ω

T,wB
i

3
(Mt;Z) and Ω

T,wB
i+1

3
(Mt;Z)

respectively for i = 2,4, . . . ,2t. Moreover, together the above elements form a basis of
ΩT,∗

3
(Mt;Z).
We obtain an element of Ω4(Mt;Z) as the upper extension

I t4 = [A +⋯+A´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
t

+B1 + ⋅ ⋅ ⋅ +B2t]H

which is an extension over the following strongly connected H-complete upper face multi-
graph.

B1

B2 B3

B4

B2t−1

B2t

A A

A ⋰

⋰

SB
1

SB
2

SB
3

SB
2t−1

SB
2t

SA
1

SA
2

SA
1

SA
2

SA
1

SA
2

However, the upper face multigraph above is not unique up to mutation equivalence. For
example, when t = 2 either of the following two mutation equivalent face multigraphs would
suffice as an upper inductive structure.

A

A

B1

B2

B3

B4

SB
1

SB
2

SB
3

SB
4

SA
1

SA
2

SA
1

SA
2

A

A
B1

B2

B3

B4

SB
1

SB
2

SB
3

SB
4

SA
1

SA
2

SA
2

SA
1
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Finally, due to the structure of the ΩT,∗
3
(Mt;Z) basis, the inductive structure on I t

4
above

is the only strongly connected H-complete face multigraph that can be constructed on lower
connected elements of Ω3(Mt;Z) with tail T up to mutations. Therefore, by Theorem 5.1, I t

4

is the unique generator of Ω4(Mt;Z) up to sign. Furthermore, the element I t
4
is constructed

using an inductive structure containing t copies of the element A ∈ Ω3(Mt;Z). Hence, with
respect to a Ω∗(Mt;Z) basis extending the elements used to construct I t

4
, the image of

δh
4
consists of a vector containing an element of degree t. Moreover, using the Ω∗,∗∗ (G;R)

bigrading detailed in equation (3.6), we see that the image of δh
4
lies in a separate summand of

Ω3(Mt;Z) from ∂P
4
−δh

4
. Therefore, the matrix representing ∂P

4
with respect to the Ω∗(Mt;Z)

basis chosen above, has at least one entry of multiplicity t.

6.2 Digraphs with different Zp Euler characteristics

The following definition is from [12, §5.2]. Let K be a field and let G be a finite digraph such
that only finitely many HP

n (G;K) ≠ 0 for n ≥ 0. In this case, the (path) Euler characteristic
of G with coefficients K is given by

χK(G) =
∞

∑
i=0

(−1)i dim(HP
i (G;K)) =

∞

∑
i=0

(−1)i dim(Ωi(G;K)).

The next example is, to our knowledge, the first known construction of a digraph G such that
χQ(G) ≠ χZp(G) when p ≥ 3. In particular, the example answers the second open question
of Fu and Ivanov set out in the introduction of [12].

In the course of their work, Fu and Ivanov show that a digraph G containing no mul-
tisquares satisfies χQ(G) = χZp(G) for any odd prime p. In the following example, it is
therefore essential that the construction of inductive elements is applicable to digraphs con-
taining multisquares.

Example 6.2 Let t ≥ 2 be an integer. Throughout the example, all index values are assumed
to be integers modulo t. We construct a digraph Et with vertices

VEt
= {T,uA

1 , u
A
2 , u

C
1 , . . . , u

C
t , v

A, vB1

1
, . . . , vB1

t , vB2

1
, . . . , vB2

t , vC1 , . . . , v
C
t ,w1, . . . ,wt,H}

and edges

T → uA
1 , T → uA

2 , T → uC
i , T → vCi ,

uA
1 → vA, uA

2 → vA, uA
1 → vB1

i , uA
2 → vB2

i , uC
i → vB1

i , uC
i → vB2

i , uC
i → vCi ,

vA → wi, v
B1

i → wi+1, v
B2

i → wi, v
C
i → wi, v

C
i → wi+1,

vB1

i →H, vB2

i →H,wi →H

for i = 1, . . . , t. In the case t = 3, we obtain the following digraph E3.

33



H

T

uA
1

uA
2

uC
1

uC
2

uC
3

vAvC
1

vC
2

vC
3 vB1

1
vB1

2
vB1

3
vB2

1
vB2

2
vB2

3

w1w2w3

All maximal length paths in Et have length 3 or 4. Therefore Ωn(G;R) = 0 when n ≥ 5.
When t is prime, we now construct an element of Ω4(Et;Zt) as an upper inductive element

by identifying the unique up to sign upper inductive structure it lies over. We first note that,
if the vertex H and all its incoming edges are removed from Et, the remaining subdigraph
is the union of the digraphs

T

uC
iuA

1
uA
2

uC
i−1

vAvB1

i−1 vB2

i
vCi−1 vCi

wi

for i = 1 . . . , t. Each of the digraphs above have up to sign a single generator of their
dimension 3 path chains, which can be constructed as an upper inductive element as follows.

Consider the Et directed squares and directed triangles

SA = eT,uA
1
,vA − eT,uA

2
,vA

SB1

i = eT,uC
i
,v

B1

i

− e
T,uA

1
,v

B1

i

SB2

i = eT,uA
2
,v

B2

i

− e
T,uC

i
,v

B2

i

TC
i = eT,uC

i
,vC

i

which by Proposition 2.2 are up sign the only generators of ΩT,v
2
(Et;R) for any v ∈ VG. The

generators of the dimension 3 path chains of the digraphs above are given by the upper
extensions

Ei = [−TC
i−1 + S

B1

i−1 + S
A
+ SB2

i + T
C
i ]wi

respectively where i = 1 . . . , t, over the strongly connected wi-complete face multigraphs
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−TC
i−1 SB1

i−1 SA SB2

i
TC
i .

T → uC
i−1 T → uA

1
T → uA

2
T → uC

i

In particular, as no other face multihypergraphs can be constructed up to sign, the only
generators up to sign of ΩT,wi

3
(G;R) are those obtained using the extensions above. Moreover,

the only face multihypergraph up to sign and mutation that can be constructed on the
elements Ei for i = 1, . . . ,2t is

⎛
⎜⎜
⎝
{SA, . . . , SA

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
t

}, vA
⎞
⎟⎟
⎠

E1

E2

E3

E4E5

Et−2

Et−1

Et

⋱

TC
1

TC
2

TC
3

TC
4

TC
t−2

TC
t−1

TC
t

which is an inductive structure for the upper extension

[E1 +⋯+Et]H .

The face multihypergraph above cannot be constructed with coefficients Z, Q or Zp for prime
p ≠ t, as there is no combination of labeled hyperedges that contains all of the t required SA

labels simultaneously unless p divides t, which is impossible as p and t are distinct primes.
In Examples 4.1 and 4.2, a basis for Ωi(G;R) when i = 0,1,2 is constructed in the same

way for all coefficient rings. All these basis elements are inductive elements and the basis
has the same size irrespective of the choice of coefficients. In the case i = 3, similarly to the
argument above for the elements Ei, we can deduce that Ω3(Et;R) has a basis consisting of
Ei and the unique up to sign generators in the dimension 3 path chains obtained from Et

subdigraphs

T

uC
1

uA
1

uC
j uA

2

vB2

1
vB1

1
vB1

j vB2

j

H

T

vC
1

vC
2

vCt−1 vCt⋯

w1 w2 wt−1 wt⋯

H

uA
1

vB1

1 vA vB1

j

w2 wj+1

H

uA
2

vB2

1 vA vB2

j

w1 wj

H

uC
i

vB1

i
vCi vB2

i

wi+1 wi

H
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where i = 1, . . . , t and j = 2, . . . , t. In particular, the above basis generators exist over any
field as they can be obtained as upper extensions over upper inductive face multigraphs
similarly to elements Ei. Moreover, by counting the number of basis elements, we deduce
that dim(Ω3(Et;K)) = 2t + 3(t − 1) + 1 = 5t − 2 for any field K.

Finally we conclude that, as the dimension of Ωi(Et;K) depends only on the choice of
field K when i = 4, the path Euler characteristic of Et with coefficients Zt for prime t differs
from that of Et with coefficients Q and Zp when p ≠ t.

More generally, let t ≥ 2 be an arbitrary integer with unique prime factorisation

t = pi1
1
⋯pik

k

where p1, . . . , pk are distinct primes and i1, . . . , ik positive integers. Similarly to the argument
above, we obtain that

dim(Ω4(Et;K)) =
⎧⎪⎪⎨⎪⎪⎩

1 ifK = Zpj for j ∈ {1, . . . , k},
0 otherwise

and
dim(Ωi(Et;K)) = dim(Ωi(Et;K

′))
for coefficient fields K, K ′ with any integer i ≠ 4.
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