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Abstract

Motion Magnification (MM) is a collection of relative recent techniques within the
realm of Image Processing. The human visual field can not capture all possible displace-
ment of an object of interest, in particular the smallest one. This is the main motivation of
introducing these techniques, in fact, the goal is to opportunely process a video sequence
to obtain as output a new video in which motions are magnified and visible to the viewer.
These techniques can amplify very subtle motions, imperceptible to the human eye, on
proper video sequences, made by the aid of high resolution and high speed cameras. In
this work, we propose some preliminary results on MM, developing a technique called
Phase-Based Motion Magnification which is performed in the Fourier Domain and rely on
the Fourier Shifting Property. In particular, we show the mathematical motivation at the
foundation of this method, focusing on some basic test made up using synthetic images.

Keywords: Image Processing, Motion Magnification, Fourier Analysis.

1 Introduction
Image Processing, which usually abbreviates Digital Image Processing (DIP), consists on an
ensemble of methods which enable to manipulate or altering an image to obtain a desired result,
typically for improving its visual quality or extracting useful information from it. Image pro-
cessing requires the use of a variety of techniques and algorithms to modify or analyze images
and it is a fundamental component of artificial intelligence, computer vision and many other
fields, [12]. In general, an image, can be seen as a two-dimensional function I(x,y), where x
and y are the spatial (or plane) coordinates and the amplitude I at any pair of coordinates (x,y)
is called intensity or gray level of the image at that point. The manipulation of the image is
realized through calculators, for this reason both x and y has to be discrete quantities, and so
we refer to the image as a Digital Image. Moreover, since it carries information through the
two axes, we can intend it as a two dimensional signal, and for this cause DIP can be seen as
a specialized form of Digital Signal Processing, where the signal is a two dimensional array
rather than a one-dimensional time series. Many of the same mathematical tools are used in
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both fields, such as the Fourier Transform. The discussion we have done until now can be
naturally extended to videos, since they are composed by a sequence of images, also known
as frames. So, a video, is a three dimensional signal I(x,y, t) since the information varies no
solely over the spatial coordinates, but also over time.
In the context of DIP, we introduce a technique called Motion Magnification (MM). This is
a relatively recent technique, proposed by a research group of the Massachusetts Institute of
Technology [15], [20], [21]. More specifically, this technique establish its roots in DIP. In fact,
given a input video I(x,y, t) it is possible, through appropriate manipulation - by working on the
individual frames that make up the video - to produce an output Ĩ(x,y, t). This output video can
reveals subtle color changes and, more importantly, movements that would be invisible to the
naked eye. The primary goal of MM is the detection of those “invisible” movements that are
indeed present, and that, when analyzed, can provide significant information about the object,
structure, or even person captured in the video. In general, the input video, which may seem
static to the observer, can actually contain extremely subtle movements. Objects in the scene
could shift by as little as 1

50 or 1
100 of a pixel. Through a opportune procedure, these sub-pixel

motions can be amplified, transforming them into more pronounced displacements that stretch
across multiple pixels, making them visible. Essentially, we can think of MM as a kind of
“microscope” that, instead of zooming in to reveal more detailed visuals, actually “zoom in”
on movements or color changes. Imperceptible movements are often much faster than what the
human eye can detect, which explains why it is necessary to use appropriate video cameras.
These cameras offer the possibility of collecting high-density spatial data (high pixel resolu-
tion) at high-speed (high frame rate) from a distant scene of interest.
MM has a various field of applications. For instance, there are numerous examples of its ap-
plication in the medical field. These methodologies can be applied for monitoring respiration,
specifically aiming to estimate breath rate using non-contact methods, [2], [17], or to introduce
non invasive method based on MM for the study of heart failure, [1], [14]. Another particular
branch of application of these techniques is vibration analysis, [6]. This has become a widely
and powerful tool that allows engineers to study how structures respond to vibrations. This has
become a widely and powerful tool that allows engineers to study how structures respond to
vibrations. The estimation of the vibration, is usually performed using the classical contact de-
vices, such as accelerometers. Recently, to perform this task, non-contact devices such as video
cameras, are used for monitoring vibrating systems, [3], [4], [5], [8]. The scientific literature
about this subject is extensive. For example, [9] applied motion magnification and image pro-
cessing techniques to extract the frequency content of vibrations in several ancient structures
in Rome and Istanbul. Additionally, [7] conducted a study on Structural Health Monitoring,
aiming to identify the exact instant of occurrence for damage or sudden structural changes.
Moreover, [22] for rotating fault diagnosis can be mentioned.

In this paper, we propose a preliminary study of the so called Phase-based MM, [20]. This
approach to MM is performed in the frequency domain, and exploits the Fourier Shift Theo-
rem. This algorithm is effective for global movements due to the Fourier basis, which is defined
in the entire domain. The magnification procedure has been implemented in MATLAB and the
“Code metadata” are:

Current code version v. 1.0
Permanent link to repository https://github.com/eTrebo98/MotMagArt1
Code versioning system used git
Software code languages MATLAB
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This paper is organized as follows.
In section 2, we explore the mathematical background under the proposed procedure, describ-
ing the steps needed to perform the magnification of a shift between two consecutive frame of
a video. In section 3, since the algorithm needs to be applied on a calculator, we focus our
attention on the discretized version of it, introducing the Discrete Fourier Transform (DFT).
Next, in section 4, we show some numerical results made up with MATLAB using synthetic
gray-scale images. We put much emphasis on presenting the amplification of the movement
between two consecutive frames, furthermore we consider also an example of an output video
sequence in which the shift are exaggerated respect to the input one. In section 5, we provide
conclusions and future developments.

2 Fourier Analysis and Motion Magnification
Many Image Processing techniques are based on the Fourier Transform. In fact, many task such
filtering, or noise reduction are performed in the frequency domain [12]. Another important
aspect in which spectral techniques can be useful, is the motion estimation in video-sequences.
There are several methods based on the Optical Flow Equation that are effective in performing
this task [13], [16]. One of these due to [10] is specialized for the computation of 2D component
velocity from image sequences, by analyzing local phase changes. Motion causes shifts in the
phase and, by measuring how the phase evolves in small regions, the procedure compute the
object’s speed. So, the motivation for the proposed motion magnification procedure lies on
the properties of the phase in image sequences, particularly its sensitivity to small motions and
robustness to changes in intensity. This method uses the phase information from the frequency
domain, which provides a more stable and precise representation of motion, especially for
subtle, or sub-pixel movements.

2.1 Fourier Analysis
Briefly, we recall the definition of the d-dimensional Fourier transform.

Definition 2.1. Let f ∈ L1(Rd). The Fourier transform F f = f̂ of f is defined by:

F f (ω) = f̂ (ω) =
∫
Rd

f (x)e−2πιωT ·x dx, ω ∈ Rd, (1)

where x = (x1,x2, · · · ,xd), ω = (ω1,ω2, · · · ,ωd), and · denotes the Euclidean inner product.

The Fourier Transform, satisfies many important properties [19], in this paper we recall one
of these, since it is fundamental for the magnification algorithm.

Theorem 2.1 (Fourier Shift Theorem). Let δ ∈ Rd , then:

F [ f (x−δ )] = e−2πιδ T ·ω f̂ (ω). (2)

Proof. See [19] for details.

The last result says that if a given function is shifted in the positive direction by a vector
δ , no Fourier components changes in amplitude. Therefore, it is expected that the changes in
its Fourier Transform will be confined to the phase. In other words, a translation in the spatial
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domain corresponds to a multiplication by a complex exponential in the frequency domain.
Moreover, for a real function f (x) we have the so called hermitian-symmetric property:

f̂ (−ω) = f̂ (ω), ∀ω ∈ Rd,

where · denotes the complex conjugate.
Clearly, it is important to remind that, once performed the operations in the Fourier Domain,
under appropriate condition, it is possible to return back, in the original domain, by taking the
Inverse Fourier Transform, that is:

Theorem 2.2. If f , f̂ ∈ L1(Rd) then

f (x) =
∫
Rd

f̂ (ω)e2πιωT ·x dω (3)

for almost all x ∈ Rd . In addition, if f ∈C0(Rd) then (3) is true of all x ∈ Rd .

Proof. See [19] for a detailed proof.

In the following, for our purpose, d = 2 since we work with images. Furthermore, we denote
with I(x,y) a continuous valued real image, while with J(n,m) the corresponding digital one,
obtained by a process of sampling and quantization from I(x,y), [12]. More in detail, J(n,m)
is a matrix, such that n = 0,1,2, · · · ,N − 1, where N is the height of the digital image and
m = 0,1,2, · · · ,M−1, where M is the width.

2.2 Motion Magnification
Let us suppose that I1(x) is an image at time t = 0, that is the initial frame of a video. The next
frame can be viewed as the initial frame which undergoes a small motion δ = (δ1,δ2) ∈ R2.
That is:

I2(x) = I1(x+δ ). (4)

The goal is to synthesize a new frame with modified motion, that is

Ĩ2(x) = I1(x+(1+α)δ ) = I1(x1 +(1+α)δ1, x2 +(1+α)δ2).

Recalling definition (1), we have that the Fourier Transform of the two images are defined as:

Î j(ω) =
∫

∞

−∞

I j(x,y)e−2πιωT ·x dx, ω ∈ R2, j = 1,2. (5)

Since I2(x) is defined like (4), we can rewrite (5) by using the Shifting property (2). So we
have:

Î2(ω) = e2πιδ T ·ω Î1(ω). (6)

Since, for all ω ∈ R2, Î j(ω), j = 1,2 are complex numbers, we can express them as:

Î j(ω) = |Î j(ω)|eφ j(ω), j = 1,2. (7)

At this stage, we can define, for all ω ∈ R2 the quantity:

E(ω) =
Î2(ω)

Î1(ω)
=

|Î2(ω)|eφ2(ω)

|Î1(ω)|eφ1(ω)
=

|Î1(ω)|eφ1(ω)e2πιδ T ·ω

|Î1(ω)|eφ1(ω)
= e2πιδ T ·ω . (8)
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where the third equality of (8) is due to Relation (6). Now, by multiplying the Fourier Transform
Î2(ω) for E(ω)α , we obtain:

̂̃I2(ω) = E(ω)α Î2(ω) = e2πι(ω+(1+α)δ )Î1(ω).

Finally taking the Inverse Fourier transform (3) of ̂̃I2(ω), we have:

Ĩ2(x) = I1(x+(1+α)δ ),

which is the magnified frame. This the mathematical motivation under the concept of motion
magnification.
From a practical point of view, we need to introduce the Discrete Fourier Transform (DFT) in
order to compute the magnification procedure on the calculator.

3 DFT and Motion Magnification
In this section, we introduce the basic definition of the DFT and some key properties useful in
the sequel, and then we discuss the motion magnification algorithm.

Definition 3.1. Let J(n,m), with n = 0,1 · · · ,N −1 and m = 0,1, · · · ,M−1, a digital image of
size N ×M. The 2D DFT of J denoted by Ĵ, is given by:

Ĵ(k, l) =
N−1

∑
n=0

M−1

∑
m=0

J(n,m)W kn
N W lm

M , (9)

for k = 0, · · · ,N −1 and l = 0, · · · ,M−1.
The 2D Inverse DFT (IDFT) of Ĵ is defined as:

J(n,m) =
1

NM

N−1

∑
k=0

M−1

∑
l=0

Ĵ(k, l)W−kn
N W−lm

M , (10)

with n = 0, · · · ,N −1 and m = 0, · · · ,M−1. Where W kn
N = e−2πι

kn
N and W lm

M = e−2πι
lm
M .

It can be proved that the Discrete Fourier Transform satisfies the following translation prop-
erties, as in theorem (2.1):

Proposition 3.1. If J(n,m) has Fourier transform Ĵ(k, l) then J(n+ δ1,m+ δ2) has Fourier
Transform given by:

Ĵ(k, l)e2πι(
kδ1
N +

lδ2
M ). (11)

Proof. See [18] for more details.

That is, multiplying Ĵ(k, l) by the such complex exponential shifts the origin of J(n,m) to
(δ1,δ2). Moreover, by the quantities W kn

N , we have that the DFT of a real function is hermi-
tian symmetric, which implies it has the following symmetries about the center of the matrix
J(n,m):

Ĵ(N − k,M− l) = Ĵ(k, l), k = 0, · · · ,N −1 l = 0, · · · ,M−1

Ĵ(k,M− l) = Ĵ(N − k, l) k = 0, · · · ,N −1 l = 0, · · · ,M−1.
(12)
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3.1 Algorithm implementation
We discuss the algorithmic approach used to perform the magnification. Let suppose that
J j(n,m), j = 1,2 are two consecutive digital frame of a video sequence. In particular, J2(n,m)=
J1(n+δ1,m+δ2), with n = 0,1, · · · ,N−1, m = 0,1, · · · ,M−1 and δ = (δ1,δ2)∈R2. To com-
pute the magnification by a factor α , with α ∈ R, we consider the DFT of the two frames, that
is, by definition (9):

Ĵ j(k, l) =
N−1

∑
n=0

M−1

∑
m=0

J1(n,m)W kn
N W lm

M , j = 1,2. (13)

where k = 0,1, · · · ,N −1 and l = 0,1, · · · ,M−1. But, by relation (11), we can rewrite (13) as
follows:

Ĵ2(k, l) = e2πι(δ1
k
N +δ2

l
M )Ĵ1(k, l).

Now, we proceed by constructing the magnified signal. First of all, we consider the quantity

E(k, l) =
Ĵ2(k, l)/|Ĵ2(k, l)|
Ĵ1(k, l)/|Ĵ1(k, l)|

= e2πι(δ1
k
N +δ2

l
M ), (14)

where we divide both Ĵ2(k, l) and Ĵ1(k, l) by their modulus respectively, to guarantee that
|E(k, l)|= 1.
In order to compute the DFT of the magnified frame ̂̃J2(k, l) we have to notice that by (12) there
is a hermitian symmetry with respect to the central element of the matrix which constitutes the
DFT of the frame, thus we compute the DFT of the magnified frame not for all k and l. In
particular, it is necessary to consider different cases, depending on the parity of N and M.

• N and M are both odd.

– Symmetry along the first row, k = 0. The symmetry occurs only along the row itself,
that is, for l = 1, · · · , M−1

2 , we compute:

̂̃J2(0, l) = Ĵ2(0, l)(E(0, l))α and ̂̃J2(0,M− l) = ̂̃J2(0, l).

– Symmetry along the first column, l = 0. The symmetry is only along the column
itself, so for k = 1, · · · , N−1

2 , we compute:

Ĵmag
2 (k,0) = Ĵ2(k,0)(E(k,0))α and Ĵmag

2 (N − k,0) = Ĵmag
2 (k,0).

– In the limit case for which both k = 0 and l = 0 there is no conjugate symmetric to
compute.

– For the rest of the DFT array, symmetry is governed by the general two-dimensional
conjugate symmetry. So, For all k = 1, · · · , N−1

2 , l = 1, · · · , M−1
2 we calculate:

̂̃J2(k, l) = Ĵ2(k, l)(E(k, l))α and ̂̃J2(N − k,M− l) = ̂̃J2(k, l).

Also ̂̃J2(k,M− l) needs to be explicitly computed, that is:

̂̃J2(k,M− l) = Ĵ2(k, l)(E(k,M− l))α and ̂̃J2(N − k, l) = ̂̃J2(k,M− l).
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• N and M are both even.

– An additional symmetry appear along the center row, at k = N
2 . In particular, for

l = 1,2, · · · ,
(M

2 −1
)

we compute:

̂̃J2(
N
2 , l) = Ĵ2(

N
2 , l)(E(

N
2 , l))

α and ̂̃J2(
N
2 ,M− l) = ̂̃J2(

N
2 , l).

– An additional symmetry appear along the center column, at l = M
2 . In particular, for

k = 1,2, · · · ,
(N

2 −1
)

we compute:

̂̃J2(k, M
2 ) = Ĵ2(k, M

2 )(E(k,
M
2 ))

α and ̂̃J2(N − k, M
2 ) =

̂̃J2(k, M
2 ).

– The points at the intersections, such as ̂̃J2(0, M
2 ),

̂̃J2(
N
2 ,0),

̂̃J2(
N
2 ,

M
2 ), are purely real.

– The remaining regions in the DFT are computed as in the previous case.

• The cases with N even and M odd, or vice versa, are handled as an appropriate combina-
tion of the previously discussed situations.

After the procedure has been completed, we recover the magnified frame by taking its inverse
DFT (10), that is:

J̃2(n,m) =
1

NM

N−1

∑
k=0

M−1

∑
l=0

̂̃J2(k, l)W−kn
N W−lm

M ,

where n = 0, · · · ,N −1 and m = 0, · · · ,M−1.
From a practical point of view the two initial DFTs and the final IDFT are computed using a
FFT algorithm for 2-dimensional arrays, [11].

3.2 MATLAB code listings
The algorithmic procedure discussed in section 3.1 has been implemented in MATLAB. Here
we illustrate the function that computes the magnified frame for odd-sized images. A general-
ized version of the function for any image size can be found on https://github.com/eTrebo98/
MotMagArt1.

• Syntax. [imMag, ifail] = CompMagMatrix(im1,im2,alpha)

• Purpose. Computes the digital image containing the magnified motion.

• Description. [imMag, ifail] = CompMagMatrix(im1,im2,alpha), takes two gray-scale
images im1 and im2, and computes the magnified digital image imMag with a magnifi-
cation factor al pha by the procedure outlined in section 3.1.

• Parameters.

– input im1, im2 - gray-scale images of data type uint8 with values in the interval
[0,255].

– input al pha - double scalar specifying the magnification factor of the motion

– output imMag - uint8 matrix of the same size as im1 and im2 representing the
digital image with the magnified motion.
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– output i f ail - integer scalar. i f ail = 0 unless the function detects an error (see
Error Indicators and Warnings)

• Error Indicators and Warnings. Here is the list of errors or warnings detected by the
function:

– i f ail = 1 - if the size of im1 and im2 differs.

– in f ail = 2 - if im1 and im2 are not odd-sized.

In code 1 the MATLAB implementation of [imMag, ifail] = CompMagMatrix(im1,im2,alpha).

Code 1: MATLAB Function for computing the magnified frame
1 function [imMag, ifail] = CompMagMatrix(im1,im2,alpha)
2
3 %This function perform a magnification between two images (matricies) which differs
4 %from each other by a certain amount of motion. The procedure is
5 %constructed in such way to work with odd−sized images.
6 % INPUT: im1: first frame in greyscale
7 % im2: second frame shifted, in greyscale
8 % alpha: magnification factor
9 % OUTPUT:imMag: Magnified frame
10 % ifail: integer scalar, ifail = 0 unless the function detects
11 % an error (ifail = 1 the two images have different
12 % sizes, ifail = 2 if one N or M are not odd)
13
14 %calculate the sizes of the two frames
15 ifail = 0;
16
17 [N_1,M_1] = size(im1);
18 [N_2,M_2] = size(im2);
19
20 %if the frames have different sizes we can’t compute this task.
21 if N_1 ~= N_2 || M_1 ~= M_2
22 ifail = 1;
23 imMag = 0;
24 return;
25 end
26
27 %if one of N or M is even we can’t compute this task.
28 if mod(N_1,2) == 0 || mod(M_1,2) == 0
29 ifail = 2;
30 imMag = 0;
31 return;
32 end
33
34
35 %initialize the dimension of the image
36 N = N_1;
37 M = M_1;
38
39 fftImMag = zeros(N,M); %matrix which contains the DFT of the magnified frame
40
41 %compute the Discrete Fourier Transform of the two frames. Converting
42 %to double the images since they are expressed in greyscale (values from 0
43 %to 255).
44 fftIm1 = fft2(im2double(im1));
45 fftIm2 = fft2(im2double(im2));
46
47 %the Cycle is performed only for the half−size of the matrix, because of
48 %the hermitian symmetry of the DFT.
49 for k=1:ceil(N/2)
50 for l=1:ceil(M/2)
51 if (k == 1) %we have a symmetry in the first row of the matrix
52 if (l == 1) %the first element of the matrix has no symmetric
53 %calling ComputeMag function, which computes the DFT of the
54 %current (k,l) element of the magnified DFT
55 [fftImMag(k,l)] = CompElemMag(fftIm1(k,l),fftIm2(k,l),alpha);
56 else
57 refl = M−l+2;%take the reflected index for the symmetry
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58 [fftImMag(k,l), fftImMag(k,refl)] = CompElemMag(fftIm1(k,l),fftIm2(k,l),
alpha);

59 end
60 else
61 %Hermitian symmetry along the first column
62 if (l == 1)
63 refk = N−k+2; %take the reflected index for the symmetry
64 [fftImMag(k,l), fftImMag(refk,l)] = CompElemMag(fftIm1(k,l),fftIm2(k,l),

alpha);
65
66 else %now the symmetry is respect the centre of the matrix
67
68 %computing the reflected indices for the symmetry
69 refk = N−k+2;
70 refl = M−l+2;
71
72 %calling the ComputeMag function, which performs the
73 %magnification of the (k,l) element of the matrix and its
74 %conjugate symmetric
75 [fftImMag(k,l), fftImMag(refk,refl)] = CompElemMag(fftIm1(k,l),fftIm2(k,l)

,alpha);
76
77 %compute the magnification of the (k,refl) element and its
78 %conjugate symmetric.
79 [fftImMag(k,refl), fftImMag(refk,l)] = CompElemMag(fftIm1(k,refl),fftIm2(k

,refl),alpha);
80 end
81 end
82 end
83 end
84 %compute the ifft of the magnified Frame
85 imMag = im2uint8(ifft2(fftImMag));
86
87 end

4 Numerical Results
In this section, we present some numerical simulations of the described procedure for motion
magnification using test images generated in MATLAB. The goal of these numerical simu-
lations is to validate the theoretical framework discussed for the amplification of movements
applied to images. The input frame used in the simulation is a gray-scale image with a circle
centered in a specific position of the image. The pixel intensity values vary smoothly from
the center of the circle to the edges, representing a transition from white at the center to black
at the boundaries. To generate the test image, we used a sigmoid function to create a smooth
transition at the edges of the circle. This allowed us to avoid hard, pixelated boundaries. The
sigmoid function used is defined as follows:

S(ρ) =
255

1+ e
ρ

σ

,

where ρ represents the distance from the center of the circle, σ is a parameter that controls the
color transition at the boundary.

4.1 Multi-frame
Firstly, to implement the motion amplification, we consider two images, having the same in-
tensity, but the second one has applied a shift of (δ1,δ2), expressed in pixels.
In figure 1, δ1 = 2 and δ2 =−2, that is, all the intensity values of the second image are translated
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by two pixels down along the rows and two pixels left along the columns. We consider a mag-
nification factor α = 20, so that the magnified image is shifted by an amount (1+α)δ1 = 42
pixels along the rows and (1+α)δ2 = −42 pixels along the columns. We show the reference
frame, the shifted frame and the magnified one. All three images have a resolution of 801×801
pixels.
In figure 2, δ1 = 0 and δ2 = 1, that is, all the intensity values of the second image are translated

(a) (b) (c)

Figure 1: (a) Original Frame (b) Shifted Frame (c) Magnified Frame (α = 20)

by 1 pixel right along the columns. We consider a magnification factor α = 105, so that the
magnified image is shifted by an amount (1+α)δ2 = 106 pixels along the columns. Again,
We show the reference frame, the shifted frame and the magnified one. All three images have
a resolution of 512× 512 pixels, showing that the algorithm fits well also when N and M are
both even numbers.
In figure 3, δ1 = 3 and δ2 = 4, that is, all the intensity values of the second image are translated

(a) (b) (c)

Figure 2: (a) Original Frame (b) Shifted Frame (c) Magnified Frame (α = 105)

by 3 pixels down along the rows and 4 pixels left along the columns. We consider a magnifica-
tion factor α = 25, so that the magnified image is shifted by an amount (1+α)δ1 = 78 pixels
along the rows and (1+α)δ2 = 104 pixels along the columns. The reference frame, shows
a image with many circles in the scene, but all of these are subjected to the same amount of
motion. All three images have a resolution of 1023×1023 pixels.

The procedure is effective in handling no squared images, and for images in which N is odd
and M is even and vice versa. In fact, in Figure 4, we set N = 399 and M = 800, moreover we
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(a) (b) (c)

Figure 3: (a) Original Frame (b) Shifted Frame (c) Magnified Frame (α = 25)

apply a shift of δ1 = 2 and δ2 = −5.This means that the second image is shifted by a 2 pixels
down along the rows and 5 pixel left along the columns with respect to the reference one.
The magnification factor used is α = 50, so that the magnified image is shifted by an amount
(1+α)δ1 = 102 pixels along the rows and (1+α)δ2 =−255 pixels along the columns.

(a) (b) (c)

Figure 4: (a) Original Frame (b) Shifted Frame (c) Magnified Frame (α = 50)

4.2 Video Sequence
The following numerical example demonstrates the motion magnification process applied to
a video sequence. The video consists of a series of frames of circles, generated in MATLAB
following the method outlined previously. Specifically, the video spans T = 5 seconds, at a
frame rate of 150 frames per second. Every frame has a resolution of 709× 709. Motion is
introduced by applying time-varying displacements δ1(t) and δ2(t) to each time. More in detail
the functions used to generate motion in the video sequence are:

δ1(t) =
1
2

e−
1
2 t sin(2π 10t),

δ2(t) =
1
2

e−
1
2 t cos(2π 10t),

where t ∈ [0,5].
We then apply the motion magnification procedure to the video sequence, amplifying the dis-
placement between each consecutive frame with a magnification factor α = 40. Notice that
the shifting function are both such that δ1(t),δ2(t) ≤ 1

2 for t ∈ [0,5] meaning that a sub-pixel
motion is applied.
Figure 6, illustrates the effect of the magnification of this sub-pixel displacement. We plot the
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Figure 5: The figure shows a frame of the video sequence in which we point out the line of
intensities pixels value in red, used to exhibit the effect of the amplification.

Figure 6: A line of pixel values over time. The first plot shows the line of the original frame,
the second one the line of the magnified video sequence.
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values of a pixel along a specific line (highlighted in red in Figure 5) as they vary over time.
The plot on the left shows the pixel line over time without magnification, while the plot on
the right displays the magnified version. As seen, the right image appears significantly more
dynamic, demonstrating the enhanced motion achieved through the algorithm. The generated
video frames can be viewed at https://github.com/eTrebo98/MotMagArt1.

5 Conclusion
In this paper, we show some preliminary results on the so called Motion Magnification algo-
rithm. The goal of MM is to reveal subtle motion in a video sequence. Our procedure, which
works in the Fourier domain, rely on the Fourier Shift Theorem, since motion in the original
domain is related to a modification on the phase in the frequency one. That is, by amplifying
the phase variation between two consecutive frame of a video we can obtain an output video in
which the motion is exaggerated. This algorithm is effective for global motion, by the defini-
tion of the Fourier basis. The magnification procedure has been implemented in MATLAB and
the current code version (v. 1.0) is available on Github. Future outline of work, surely involves
to consider real video sequences, instead of the synthetic one. Moreover, since MM has appli-
cations in Vibration Analysis, extracting information on the shift (δ1,δ2) has to be considered.
Moreover, in general, in a video sequence, motions are not global, but local. That is, the shift
depends both on the spatial coordinates and the temporal one. From this, the necessity to find
adaptive procedures, which allows to extract and magnify local motions. For these methods,
the usage of the Windowed Fourier Transform, or the Wavelet Transform can be helpful, since
provides a localization of the image. Last but not least, instead on focusing on the phase infor-
mation, amplitude-based MM techniques should be analyzed. In such one, the magnification is
performed by directly modifying the intensity of the pixel values.
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https://www.sciencedirect.com/science/article/pii/S0263224119311546
https://www.sciencedirect.com/science/article/pii/S0263224119311546
https://doi.org/10.1145/1186822.1073223
https://doi.org/10.1145/1186822.1073223
https://www.sciencedirect.com/science/article/pii/S1746809423005815
https://doi.org/10.1145/2461912.2461966
https://doi.org/10.1145/2185520.2185561
https://doi.org/10.1145/2185520.2185561
https://www.mdpi.com/1424-8220/23/23/9582
https://www.mdpi.com/1424-8220/23/23/9582


A Declaration of interests
For the Declaration of interests, the authors must choose one of the following formulas, pro-
viding further details if necessary:

□ The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

□ The authors declare the following financial interests/personal relationships which may be
considered as potential competing interests: . . .

B Bibliography with BibTEX
• References need to be provided in a .bib BibTeX database (best if exported from a big

bibliographic database, such as MathSciNet).

• All references should be made with the command \cite, e.g,

• DOI and URL of the references should be included where available.

N. Egidi, J. Giacomini, P. Leonesi, P. Maponi, F. Mearelli, E. Trebović 16/16
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