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Abstract

Let H be a hyperplane arrangement in CPn. We define a quadratic form
Q on RH that is entirely determined by the intersection poset of H. Using the
Bogomolov-Gieseker inequality for parabolic bundles, we show that if a ∈ RH is
such that the weighted arrangement (H,a) is stable, then Q(a) ≤ 0.

As an application, we consider the symmetric case where all the weights are
equal. The inequality Q(a, . . . , a) ≤ 0 gives a lower bound for the total sum of
multiplicities of codimension 2 intersection subspaces of H. The lower bound is
attained when every H ∈ H intersects all the other members of H \ {H} along
(1− 2/(n+ 1))|H|+ 1 codimension 2 subspaces; extending from n = 2 to higher
dimensions a condition found by Hirzebruch for line arrangements in the complex
projective plane.
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1 Introduction

Let H be an arrangement of complex hyperplanes H ⊂ CPn. Let N = |H| be the
number of hyperplanes, which we assume to be finite, and fix a labelling, say H =
{H1, . . . , HN}. We assume that Hi 6= Hj for i 6= j. In this paper, we introduce a
quadratic form Q : RN → R associated to the arrangement H and show that Q ≤ 0 on
a certain convex polyhedral cone C ⊂ RN

≥0, that we call the semistable cone of H.

The quadratic form Q of H. The multiplicity mL of a linear subspace L ⊂ CPn

is the number of hyperplanes Hi ∈ H that contain L. A codimension 2 subspace
L ⊂ CPn is reducible if mL = 2, and irreducible if mL ≥ 3. Let σi be the number of
codimension 2 irreducible subspaces contained in the hyperplane Hi. The quadratic
form Q : RN → R of H is defined by the symmetric matrix with entries given by

Qij =






−(n + 1)σi + 2n if i = j ,

−2 if i 6= j and L = Hi ∩Hj is reducible,

n− 1 if i 6= j and L = Hi ∩Hj is irreducible.

Remark. If n = 2, then (−Qij) is equal to the matrix given by [Hir85, Equation (3)]
in the context of Höfer’s formula for ‘the proportionality’ 3c2 − c21 of algebraic surfaces
obtained as branched covers of the projective plane branching along a line arrangement.

The semistable and stable cones. A basis B of H is a subset B ⊂ H of n + 1
linearly independent hyperplanes. The indicator function eB of a basis B is the vector
in RN whose i-th component is 1 if Hi ∈ B and 0 otherwise. The semistable cone C is
the conical hull of the vectors eB with B ranging over all bases of H. Put differently,
if P is the convex hull of the vectors eB , then C = R≥0 · P is the cone over P . The
convex set P is called the matroid polytope of H.

Dually, the cone C can be described in terms of defining linear inequalities. Let L
be the set of non-empty and proper linear subspaces L ⊂ CPn obtained by intersecting
hyperplanes in H. The semistable cone C is the set of points a = (a1, . . . , aN) ∈ RN

with non-negative components ai ≥ 0 such that, for every L ∈ L , the following holds:

∑

i |L⊂Hi

ai ≤
codimL

n + 1
·

N∑

i=1

ai .

The stable cone C◦ is the interior of the semistable cone C. Equivalently, C◦ is the
subset of RN

>0 where the above inequalities hold strictly.

Remark. The hyperplanes Hi ⊂ CPn correspond to points pi ∈ (CPn)∗. If the numbers
ai are positive integers, then a = (a1, . . . , aN) belongs to C (resp. C◦) if and only if the
weighted configuration of points {(pi, ai)}

N
i=1 is semistable (resp. stable) in the sense

of Geometric Invariant Theory, as follows from [Dol03, Theorem 11.2].
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Miyaoka-Yau inequality. Our main result, in its most general form, is Theorem
6.29. It asserts that the quadratic form Q is non-positive on the semistable cone:

C ⊂ {Q ≤ 0} .

We think of this as a version of the Miyaoka-Yau inequality because we have the
following expectation.

Conjecture: suppose that a ∈ C◦ is such that Q(a) = 0 and 0 < ai < 1 for all i.
Then there is a Kähler metric on CPn of constant holomorphic sectional curvature with
cone angles 2παi along the hyperplanes Hi , where αi = 1 − ai. (For a more precise
version, in the case of zero curvature, see Conjecture 1.3.)

This conjecture holds for n = 1, in which case the quadratic form Q is identically
zero, and the existence of the metric is proven in [McO88] and [Tro91] (see also [dBP22]
for an approach similar to this paper). For n = 2 and zero curvature the conjecture
holds by [Pan09, Theorem 1.12]. An important class of examples that fit into the above
conjecture are complex reflection arrangements, for which the existence of the metric
is proved in [CHL05]. In light of our expectation, we propose the following.

Problem: classify the arrangements for which there exists a ∈ C◦ with Q(a) = 0.

Note that if H is as above then its quadratic form Q is degenerate and negative
semidefinite. We believe that such arrangements should be very special and rigid for
n ≥ 2. For example, in dimension 2, their complements are K(π, 1), see [PP16, §11].

Hirzebruch arrangements. We analyse the above problem in the particular case
that a is the vector 1 = (1, . . . , 1) ∈ RN . It is easy to see that 1 belongs to the kernel
of Q precisely when every Hi ∈ H intersects the other members of H \ {Hi} along

(
1−

2

n+ 1

)
·N + 1

codimension 2 subspaces. If H satisfies this property, and the additional requirement
that 1 ∈ C, we say that H is a Hirzebruch arrangement. We show that complex reflec-
tion arrangements, defined by irreducible unitary reflection groups G ⊂ U(n + 1), are
Hirzebruch. It remains an open problem to understand if all Hirzebruch arrangements
come from reflection groups. If n = 2, this is an old question posed by Hirzebruch in
[Hir85, §3], and it has a positive answer for real line arrangements by [Pan18].

The Hirzebruch quadratic form of a matroid. In Section 7.4 , we state our results
in the wider context of matroid theory. Given a simple matroid M on the ground set
with N elements, we define a quadratic form Q : RN → R, which we call the Hirzebruch
quadratic form of M . Our results show that, if M is representable over C, then the
quadratic form Q is ≤ 0 on the cone over the matroid polytope of M .
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1.1 Main result: klt and CY arrangements

Let (H, a) be a weighted hyperplane arrangement. To avoid writing unnecessary in-
dices, we don’t label the elements of the arrangement. Thus, H is a finite set of
pairwise distinct complex hyperplanes H ⊂ CPn, and a is a weight vector in RH whose
components are positive real numbers aH > 0 indexed by the elements H ∈ H.

Let L be the set of non-empty and proper linear subspaces L ⊂ CPn obtained as
intersections of hyperplanes in H.

Klt and CY arrangements. The weighted arrangement (H, a) is:

• klt if
∀L ∈ L :

∑

H |L⊂H

aH < codimL , (1.1)

where the sum runs over all the hyperplanes H ∈ H that contain L;

• Calabi-Yau, or CY for short, if
∑

H∈H

aH = n+ 1 . (1.2)

Remark. Equation (1.1) applied to H ⊂ L, together with the assumption that the
weights aH are positive, imply that

∀H ∈ H : 0 < aH < 1 .

Our main result, in its primitive technical form is the following.

Theorem 1.1. Suppose that (H, a) is a weighted arrangement that is both klt and CY.
Then the following inequality holds:

∑

L∈Ln−2

irr

a2L −
1

2

∑

H∈H

BH · a2H −
n+ 1

2
≤ 0 . (1.3)

The terms in Equation (1.3) are defined as follows:

• Ln−2
irr is the set of codimension 2 irreducible subspaces L ⊂ CPn ;

• aL for L ∈ Ln−2
irr is given by 2 · aL =

∑
H |L⊂H

aH ;

• BH + 1 is equal to the number of elements L ∈ Ln−2
irr that are contained in H .

Remark 1.2. The set of weights a ∈ RH such that (H, a) is klt and CY is equal to
the relative interior P ◦ of the matroid polytope P of H as a subset of the hyperplane∑

aH = n+1. It is well-known that, if the arrangement H is essential and irreducible,1

then dimP = |H| − 1 and therefore P ◦ is non-empty. See [BGW03, Theorem 1.12.9]
and Appendix B for a self contained proof.

1I.e.
⋂

H∈H
H = ∅ and H is not isomorphic to a product -as in Definition 2.5- of two non-empty

arrangements.
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1.2 Sketch proof of Theorem 1.1

If n = 2, then Theorem 1.1 is part of Theorem 1.12 in [Pan09]. Our proof follows
the same approach: we work on a logarithmic resolution of the arrangement, define
a natural parabolic structure on the pullback tangent bundle, show that it is slope
stable, and deduce Theorem 1.1 from Mochizuki’s Bogomolov-Gieseker inequality for
parabolic bundles [Moc06]. Next, we present a more detailed account of these steps.

The resolution. We take the logarithmic resolution of the arrangement given by
the minimal De Concini-Procesi model of H. This is a smooth projective variety X
together with a birational morphism

X
π
−→ CPn

such that D = π−1(H) is a simple normal crossing divisor. We refer to X as the
resolution of H. The variety X is constructed as an iterated blowup of CPn along the
irreducible subspaces of the arrangement, and it is a particular instance of the wonderful
models of subspace arrangements introduced in [DCP95].

Concretely, a linear subspace L ⊂ CPn obtained as intersection of hyperplanes in
H is irreducible, if the localized arrangement HL = {H ∈ H |H ⊃ L} is irreducible
(Definition 2.1). We denote by Lirr the set of all non-empty and proper irreducible
subspaces. The irreducible components of the divisor D = π−1(H) are in one to one
correspondence with elements L ∈ Lirr. Specifically, the irreducible decomposition of
D is

D =
⋃

L∈Lirr

DL ,

where DL is the unique irreducible component of D such that π(DL) = L.

The parabolic bundle. Let X
π
−→ CPn be the resolution of H and let E = π∗(TCPn)

be the pullback tangent bundle. We define a natural parabolic bundle (Definition 4.1)
E∗ on (X,D) where D = π−1(H).

The parabolic bundle E∗ is defined by increasing filtrations of E|DL
(for L ∈ Lirr)

by vector subbundles FL
a with 0 < a ≤ 1. The vector subbundles FL

a are defined as

FL
a =

{
π∗(TL) if a < aL,

E|DL
if a ≥ aL,

where the weights aL are given by

aL = (codimL)−1
∑

H|L⊂H

aH .

Note that the klt condition (1.1) implies that 0 < aL < 1.
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The parabolic first Chern class par-c1(E∗) (Definition 4.7) is an element of the real
cohomology group H2(X,R). Using the CY condition (1.2), we show that

par-c1(E∗) = 0 .

The locally abelian property and the parabolic second Chern character. A
parabolic bundle E∗ on (X,D) is locally abelian (Definition 4.8) if the filtrations that
define it satisfy certain compatibility conditions at the intersections ∩Di , where Di are
the irreducible components of the divisor D. In a few words, the locally abelian condi-
tion requires that E∗ is locally isomorphic to a direct sum of parabolic line bundles. If
the complex dimension is n = 2, then every parabolic bundle is locally abelian. How-
ever, if n > 2, the locally abelian condition imposes strong restrictions on the parabolic
structure, and the compatibility conditions are not satisfied for generic choices of fil-
trations.

Theorem 4.29 asserts that the parabolic bundle E∗ on the resolution X is locally
abelian. The proof relies on the fact that a collection of divisors DL with L ∈ S ⊂ Lirr

has non-empty common intersection
⋂

L∈S DL if and only if the set S is nested relative
to Lirr (Definition 3.11). The locally abelian property of E∗ is used to define the
parabolic second Chern character par-ch2(E∗) ∈ H4(X,R) (Definition 4.17).

We calculate par-ch2(E∗) in terms of the intersection poset of the arrangement H.
Let h = c1(OPn(1)) be the generator of H2(CPn,Z), and let γL ∈ H2(X,Z) -with
L ∈ Lirr- be the Poincaré dual of the divisor DL. We derive the formula

par-ch2(E∗) = −
n + 1

2
· (π∗h)2+

1

2

∑

L∈Lirr

a2L ·codimL ·γ2
L+

∑

L(M

aLaM ·codimM ·γL ·γM ,

where the last sum is over all pairs (L,M) ∈ Lirr × Lirr with L ( M .

The Picard group of X and the polarization. The Picard group of X is the free
abelian group generated by [π∗(OPn(1)] together with the classes [DL] of the exceptional
divisors DL of the birational morphism π : X → CPn. The exceptional divisors DL

correspond to non-empty irreducible subspaces L ⊂ CPn of codimension ≥ 2, we denote
the set of all such subspaces by L◦

irr := Lirr \ H.
We fix positive integers bL for each L ∈ L◦

irr , that we call polarization coefficients,
such that

Pk = k · π∗
(
OPn(1)

)
−
∑

L∈L◦

irr

bL ·DL

is an ample divisor on X for all k ≫ 1.

Stability of the parabolic bundle. Theorem 5.1 asserts that the parabolic bundle
E∗ is Pk-stable (Definition 4.22) for all k ≫ 1. Theorem 5.1 is a central result of this
paper, we refer to it as the stability theorem. To prove it, we must show that for every
non-zero and proper saturated subsheaf V ⊂ E (Definition A.51), we have

par-degPk
(V∗) < 0 ,
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where V∗ is the naturally induced parabolic structure on V (Definition 4.18).
The saturated subsheaf V ⊂ E defines a distribution on CPn (Section A.4) which,

by a slight abuse of notation, we denote by V ⊂ TCPn. To prove stability, it is easy to
reduce to the case where the index ı (Definition A.57) of the distribution V is positive
(this is essentially a consequence of the fact that, with our conventions, the parabolic
degree is less or equal than the degree). We show that, if ı ≥ 0, then

par-degPk
(V∗) ≤



ı −
∑

H |H⋔V

aH



 · kn−1 + O(kn−2) .

The above sum is over all hyperplanes H ∈ H that are transverse to V. The term
O(kn−2) denotes a polynomial in k of degree at most n− 2 whose coefficients are uni-
formly bounded in absolute value by a number that depends only on the arrangement
H and the polarization coefficients bL.

Given the above inequality for par-degPk
(V∗), the key estimate necessary to prove

the stability theorem is provided by Proposition 5.10. This proposition asserts that,
if the weighted arrangement (H, a) is klt and CY, then there is δ > 0 such that, for
every distribution V ⊂ TCPn of index ı ≥ 0 the following holds:

∑

H |H⋔V

aH ≥ ı + δ .

The stability Theorem 5.1 follows from this.

The Bogomolov-Gieseker inequality. Since the parabolic bundle E∗ is stable with
respect to the polarization Pk for all k ≫ 1 and par-c1(E∗) = 0 , the Bogomolov-Gieseker
inequality [Moc06, Theorem 6.5] implies that

∀k ≫ 1 : c1(Pk)
n−2 · par-ch2(E∗) ≤ 0 .

The cup product p(k) = c1(Pk)
n−2 ·par-ch2(E∗) defines a polynomial of degree n−2

in k that we write as
p(k) = Cn−2 · k

n−2 +O(kn−3) .

The leading order coefficient of p(k) is given by Cn−2 = (π∗h)n−2 · par-ch2(E∗) . More
geometrically, the coefficient Cn−2 is the parabolic second Chern character of the re-
striction of E∗ to a generic 2-plane.

Note that, since p(k) < 0 for k ≫ 1 , we must have Cn−2 ≤ 0. Using results on
the cohomology ring of X from Section 3.2 together with our previous formula for
par-ch2(E∗), we show that

Cn−2 =
∑

L∈Ln−2

irr

a2L −
1

2

∑

H∈H

BH · a2H −
n+ 1

2
.

Theorem 1.1 follows from this together with the inequality Cn−2 ≤ 0.
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1.3 Context: PK manifolds

Our motivation for proving Theorem 1.1 comes from the study of polyhedral Kähler
(PK) manifolds. Let X be a complex manifold and let D ⊂ X be a complex hyper-
surface with irreducible decomposition D = ∪iDi. We say that g is a PK metric on X
with cone angles 2παi along Di if the following conditions hold:

(i) g is a flat Kähler metric on X \D ;

(ii) the metric completion of g is a polyhedral manifold M and the inclusion map
X \D ⊂ X extends continuously to M as a homeomorphism M ∼= X ;

(iii) if p ∈ Di is a smooth point of D then g is holomorphically isometric near p to
the product of a 2-cone of total angle 2παi with a flat Euclidean factor Cn−1.

The Levi-Civita connection ∇ of a PK metric is a meromorphic flat torsion-free
unitary connection on TX with simple poles along the hypersurfaces Di. The residues
of ∇ give a number of topological relations on the pair (X,D). Conjecturally, these
topological relations characterize the existence of PK metrics. In the particular case
when X = CPn and D is a union of hyperplanes, we believe that these topological
relations can be derived from quadratic expression (1.3) and we propose the following.

Conjecture 1.3. If equality holds in (1.3) then there is a PK metric on CPn with cone
angles 2παH along the hyperplanes H ∈ H, with αH = 1− aH .

As we already mentioned, this conjecture holds for n = 2 by [Pan09, Theorem 1.12].
The proof for n = 3, under some additional stability assumptions and applying the
foundational results established in [dBP21], will be the subject of a forthcoming paper.

1.4 Outline

Section 2 contains background material on hyperplane arrangements.

In Section 3 , we review the minimal De Concini-Procesi modelX ofH, calculate certain
cup products in the integer cohomology H∗(X,Z), and introduce the polarizations Pk

used in the stability theorem.

In Section 4 , we define the parabolic bundle E∗, show that it is locally abelian, and
calculate its first and second Chern characters.

In Section 5 , we show that the parabolic bundle E∗ is Pk-stable for k ≫ 1 and deduce
our main Theorem 1.1 from this.

In Section 6 , we introduce the quadratic form Q of the arrangement H, we define the
semistable cone C, and show that C ⊂ {Q ≤ 0} (Theorem 6.29).

9



In Section 7 , we introduce the class of Hirzebruch arrangements, show that complex
reflection arrangements defined by irreducible unitary reflection groups belong to this
class, and define the quadratic form Q in the broader context of matroids. We propose
an extension (Conjecture 7.42) of Theorem 6.29 to pseudoline arrangements, which
relates to Bogomolov-Miyaoka-Yau inequality for symplectic 4-maniolds.

Appendix A contains supplementary results needed in our proofs. We collect some basic
results on filtrations of vector spaces, adapted basis, and nested sets; which are used
in the proof of the locally abelian property of our parabolic bundle. We also provide
some background results on exterior algebra, saturated subsheaves, and distributions
on CPn; that are used in the proof of stability of our parabolic bundle.

In Appendix B , we prove that if H is essential and irreducible then the stable cone C◦

is non-empty.

In Appendix C , we show that if the weighted arrangement (H, a) is klt and CY then
there is a (unique up to scale) weak Ricci-flat Kähler metric on CPn whose volume form
has prescribed singularities of conical type along the hyperplanes of the arrangement.

Acknowledgments

We thank Nikolai Mnëv, Artie Prendergast-Smith, and Calum Spicer for useful discus-
sions. We also thank Jorge Vitório Pereira for giving us Example 5.8.

2 Hyperplane arrangements

In Section 2.1 , we review standard terminology related to hyperplane arrangements.

In Section 2.2 , we introduce irreducible arrangements and subspaces, and discuss their
basic properties.

In Section 2.3 , we consider weighted arrangements. We show that if the weighted
arrangement (H, a) is klt and CY, then H is essential and irreducible. This implies
that there are no non-zero holomorphic vector fields on CPn that are tangent to all the
hyperplanes in H. We will make use of this fact later, in Section 5, to show that our
parabolic bundle is stable.

2.1 Basic definitions

Let CPn = P(Cn+1) be the complex projective space of dimension n,

CPn =
(
Cn+1 \ {0}

) /
C∗ .

A hyperplane arrangement H, or an arrangement for short, is a finite collection
of complex hyperplanes H ⊂ CPn. We don’t allow multiplicities, meaning that the

10



elements of H are distinct hyperplanes. By abuse of notation, we write H ⊂ CPn if
we want to emphasize the ambient projective space. Two arrangements H and K are
isomorphic if they are linearly equivalent, i.e., if there is an element of PGL(n+ 1,C)
that maps the hyperplanes in H to the hyperplanes in K.

Linear subspaces. A (projective or linear) subspace L ⊂ CPn is the image of a linear
subspace of Cn+1 under the quotient projection

Cn+1 \ {0} → CPn.

We write P(Lc) = L, where Lc ⊂ Cn+1 is the unique linear subspace that projects to L.
Similarly, Hc denotes the linear arrangement of hyperplanes Hc ⊂ Cn+1 with H ∈ H,
and we write P(Hc) = H. The codimension of L ⊂ CPn is equal to the codimension
of the linear subspace Lc ⊂ Cn+1. We also consider the empty subset of CPn to be a
linear subspace with ∅c = {0} and codim ∅ = n+ 1.

Centre and essential arrangements. The centre T of H is the common intersection
of all its members, i.e.,

T =
⋂

H∈H

H.

We say that H is essential if T = ∅, or alternatively, if the common intersection of
the elements of Hc is the origin {0} ⊂ Cn+1. Clearly, H is essential if and only if it
contains n+ 1 linearly independent hyperplanes.

Sum and complementary subspaces. If U and V are two projective subspaces of
CPn then their sum (or join) U + V is the smallest projective subspace that contains
both U and V . Equivalently,

U + V = P(Uc + V c) ,

where Uc + V c denotes the usual sum of vector subspaces of Cn+1. The subspaces U
and V are said to be complimentary if U + V = CPn and U ∩ V = ∅. In this case, we
also say that V is a complement of U , and vice-versa.

Essentialization. Let H ⊂ CPn be an arrangement with centre T . Choose a subspace
S that is a complement of T . The essentialization of H is the arrangement given by

H/T = {H ∩ S with H ∈ H}.

Since T ∩ S = ∅, the arrangement H/T is essential. Suppose that S ′ is another
complement of T and let f : S → S ′ be the projective transformation which maps
p ∈ S to p′ = f(p) with p′ = (p+ T ) ∩ S ′. Since every hyperplane H ∈ H contains T ,
it follows that f maps the intersection H ∩ S to H ∩ S ′ for all H ∈ H; showing that
H/T is independent of the choice of complement.

11



Intersection poset. The intersection poset L of H is the set of all subspaces L ⊂ CPn

obtained as intersection of hyperplanes in H. We equip L with the partial order given
by reverse inclusion. The intersection poset L has a unique minimal element L = CPn

corresponding to the intersection over the empty subset of H and a unique maximal
element L = T given by the centre of the arrangement. We will mainly work with
the subposet L ⊂ L consisting of all non-empty and proper intersection subspaces. In
other words, we exclude CPn and ∅ (if H is essential) from L and let L = L \ {∅, CPn}.

Localization and multiplicity. The localization of H at a subspace L ∈ L is the set
of all hyperplanes of the arrangement that contain L,

HL = {H ∈ H such that L ⊂ H}.

The centre of HL is equal to L. The link of H at L is the essential arrangement
HL/L ⊂ CPm where m = codimL − 1. The multiplicity mL of L is the number of
hyperplanes that contain L, i.e., mL = |HL|.

Induced arrangement and complements. Let L ∈ L. The induced arrangement
HL is the hyperplane arrangement obtained by intersecting L with the elements H ∈ H
such that L 6⊂ H ,

HL = {H ∩ L with H ∈ H \ HL}.

The complement of HL in L is denoted by L◦, i.e.,

L◦ = L \
⋃

H|L 6⊂H

(L ∩H).

Similarly, we write (CPn)◦ for the arrangement complement,

(CPn)◦ = CPn \
⋃

H∈H

H .

2.2 Irreducible arrangements and subspaces

A splitting of a hyperplane arrangement H ⊂ CPn consists of two subsets H1,H2 ⊂ H
satisfying the following two properties.

(i) Every hyperplane of H belongs to either H1 or H2, i.e.,

H = H1

⋃
H2 . (2.1)

(ii) If T1 and T2 are the centres of H1 and H2, then

T1 + T2 = CPn . (2.2)

The splitting is non-trivial if furthermore:

12



(iii) Both H1 and H2 are non-empty.

We write H = H1⊎H2 to indicate that H1 and H2 form a splitting of H. It follows
from Equation (2.2) that the union (2.1) is disjoint. If H = H1 ⊎ H2 then H1 = HT1

and H2 = HT2
. If the splitting is non-trivial then T1 and T2 belong to the poset L of

non-empty and proper hyperplane intersections.

Definition 2.1. The arrangement H is reducible if it admits a non-trivial splitting.
The arrangement H is irreducible if it is not reducible.

Example 2.2. The empty arrangement is irreducible. An arrangement consisting of
only one hyperplane is irreducible. An arrangement made of two hyperplanes is always
reducible.

Example 2.3. If n = 1 then H ⊂ CP1 is reducible if and only if |H| = 2. Indeed, if
|H| ≥ 3 and H = H1⊎H2 is a splitting of H, then at least one of the subarrangements,
say H1, must contain 2 or more points, so T1 = ∅ and T2 = CP1, i.e., H2 = ∅; showing
that H is irreducible.

Lemma 2.4. An arrangement H is reducible if and only if, up to a linear change
of coordinates, we can write H = H1 ∪ H2 where H1 and H2 are non-empty and the
defining linear equations for the hyperplanes in H1 and H2 share no common variables.

Proof. Suppose that H is reducible and let H = H1 ⊎ H2 be a non-trivial splitting of
H. Take linear coordinates x1, . . . , xn+1 in Cn+1 such that

T1 = {xi = 0 for i ∈ I1} and T2 = {xi = 0 for i ∈ I2}

where I1 and I2 are subsets of [n + 1] = {1, . . . , n + 1}. The defining linear equation
for the hyperplanes in H1 depend only on the variables xi for i ∈ I1 and similarly for
H2. We will show that I1 ∩ I2 = ∅. The subspace T1 is the span in projective space of
the vectors ∂xi

for i in the complement index set Ic1 = [n+ 1] \ I1 and similarly for T2.
The fact that T1 + T2 = CPn implies that Ic1 ∪ Ic2 = [n + 1]. Taking complements we
get that I1 ∩ I2 = ∅. The converse is similar.

Definition 2.5. Let H1 ⊂ CPn1 and H2 ⊂ CPn2 be two arrangements. Let CPn =
P(Cn1+1 ×Cn2+1) with n = n1 + n2 + 1. Embed the projective spaces CPni as disjoint
subspaces Pi ⊂ CPn with P1 + P2 = CPn given by

P1 = P
(
Cn1+1 × {0}

)
and P2 = P

(
{0} × Cn2+1

)
.

The product arrangement H1 ×H2 ⊂ CPn is obtained by taking the joins H1 + P2 for
H1 ∈ H1 together with P1 +H2 for H2 ∈ H2 .

Remark 2.6. The arrangement H1 × H2 is the projectivization of Hc

1 × Hc

2 , where
Hc

1 × Hc

2 is the usual product of linear arrangements in a vector space as defined in
[OT92, Definition 2.13].
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From the Lemma 2.4 , we have the following.

Corollary 2.7. The arrangement H is reducible if and only if it is linearly isomorphic
to the product of two non-empty arrangements.

Remark 2.8. Every arrangement is linearly isomorphic to the product of irreducible
arrangements. Moreover, this decomposition is unique up to re-labelling of the factors.
See [dBP21, Lemma 2.32].

Remark 2.9. An arrangement is reducible if and only if the Euler characteristic of its
complement is equal to zero. One direction is easy, namely if H is reducible then there
is a free C∗-action on (CPn)◦, hence its Euler characteristic is zero. The converse is
more subtle and involves the theory of Möbius functions, see [STV95, Theorem 5 (2)].

The next result will be crucial in the proof of Theorem 5.1 .

Lemma 2.10. Suppose that H ⊂ CPn is essential and irreducible. If Y is a holomor-
phic vector field on CPn that is tangent to all the hyperplanes in H then Y = 0.

Proof. The vector field Y is given by a linear transformation f of Cn+1. The tangency
condition means that f(Hc) ⊂ Hc for all H ∈ H. Let g = f ∗ be the dual action on
(Cn+1)∗. Choose defining linear equations ℓH for the hyperplanes of the arrangement.
The tangency condition implies that g(ℓH) = λH · ℓH for some λH ∈ C. Since H
is essential, we can take n + 1 linearly independent hyperplanes H1, . . .Hn+1 whose
corresponding defining equations ℓi make a basis of (Cn+1)∗ of eigenvectors of g with
eigenvalues λi. We claim that λ1 = . . . = λn+1. If not, let W1 be the λ1-eigenspace of
g and let W2 be the direct sum of all the other eigenspaces. Then

H = {H | ℓH ∈ W1} ⊎ {H | ℓH ∈ W2}

is a non-trivial splitting of H, contradicting irreducibility. We conclude that f is a
scalar multiple of the identity, hence Y = 0.

Remark 2.11. If H is essential and irreducible, then the proof above shows that
the stabilizer of H, consisting of all elements in PGL(n,C) that preserve each of the
hyperplanes in H, is trivial. In particular, the automorphism group of H, consisting of
linear isomorphisms that permute the members of H, is finite.

Definition 2.12. A subspace L ∈ L is irreducible if the localization HL is an irre-
ducible arrangement. Similarly, a subspace L is reducible if HL is reducible.

Example 2.13. If L = ∅ then HL = H, so L is irreducible if and only if H is. In the
other extreme case, if L = CPn, then HL = ∅, which is always irreducible.

Example 2.14. The hyperplanes H ∈ H are irreducible subspaces.

Example 2.15. A subspace L ∈ L of codimension 2 is irreducible if and only if its
multiplicity mL is ≥ 3.
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Example 2.16. If L ∈ L is an irreducible subspace of codimension ≥ 2 then mL >
codimL. However, if codimL ≥ 3 then the converse is not true. For example, consider
the arrangement in CP3 made of 3 planes intersecting along a line L together with an
extra plane H transverse to L. The intersection point p = L ∩ H has multiplicity 4
but the point p is a reducible subspace.

Notation 2.17. Write

Lirr =

n−1⋃

i=0

Li
irr

for the set of non-empty and proper irreducible subspaces, where Li
irr is the subset of

all L ∈ Lirr with dimL = i. In particular, Ln−1
irr is equal to H.

Definition 2.18. Let L ∈ L. The irreducible components of L are the maximal (with
respect to the order in L by reverse inclusion) elements of Lirr that contain L.

The term irreducible component is taken from [CHL05, §2.1].

Notation 2.19. Write Irr(L) for the irreducible components of L. In particular, L ∈ L
is reducible if and only if | Irr(L)| > 1.

Lemma 2.20. Let L ∈ L and let Irr(L) = {L1, . . . , Lk}. Then the following holds.

(i) If M ∈ Lirr contains L then M ⊃ Li for some 1 ≤ i ≤ k.

(ii) L is the transversal intersection2 of the subspaces Li, i.e.,

L =

k⋂

i=1

Li and codimL =

k∑

i=1

codimLi . (2.3)

Proof. Item (i) follows immediately from the definition. Item (ii) follows from the fact
that the arrangement HL/L is linearly isomorphic to the product

HL/L ∼= (HL1
/L1)× . . .× (HLk

/Lk) ,

see [dBP21, Lemma 2.44].

Lemma 2.21. Let L1 and L2 be two irreducible subspaces such that their intersection
L = L1 ∩ L2 is non-empty and reducible. Then Irr(L) = {L1, L2}. In particular,
L1 + L2 = CPn.

Proof. Let Irr(L) = {L′
1, . . . , L

′
p}. We want to show that p = 2 and that, up to a

re-label, L1 = L′
1 and L2 = L′

2. Since L1 is irreducible, it must contain one of the
irreducible components of L, say L1 ⊃ L′

1. Similarly, L2 ⊃ L′
i for some i. We claim

that i 6= 1. Indeed, if L2 ⊃ L′
1 then L = L1 ∩ L2 would contain L′

1 but L ( L′
1. We

2See Definition A.21 .
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can assume that L2 ⊃ L′
2. Since L = L1 ∩ L2 and codimLi ≤ codimL′

i for i = 1, 2; we
get that

codimL ≤ codimL1 + codimL2 ≤

p∑

i=1

codimL′
i = codimL,

where the last equality follows from Equation (2.3). We conclude that all inequalities
must be equalities. In particular, p = 2 and codimLi = codimL′

i for i = 1, 2; therefore
L1 = L′

1 and L2 = L′
2.

Notation 2.22. Let L1, L2 ∈ Lirr , we write L1 ⋔ L2 if L1 ∩ L2 is non-empty and
reducible.

Example 2.23. Let H1 and H2 be two hyperplanes of the arrangement H and let L
be their intersection. Then H1 ⋔ H2 if and only if HL = {H1, H2}.

2.3 Weighted arrangements

Definition 2.24. A weighted arrangement (H, a) is a hyperplane arrangement H in
CPn together with a weight vector a ∈ RH whose components are positive real numbers
aH > 0 indexed by the elements H ∈ H.

Let (H, a) be a weighted arrangement. For an arbitrary non-empty and proper
linear subspace L ( CPn, consider the equation

∑

H|L⊂H

aH < codimL . (2.4)

Lemma 2.25. The following conditions are equivalent:

(i) Equation (2.4) holds for every L ∈ Lirr ;

(ii) Equation (2.4) holds for every L ∈ L ;

(iii) Equation (2.4) holds for every non-empty and proper linear subspace L ( CPn.

Proof. Let us show first that (i) implies (ii). Let L ∈ L and consider its irreducible
decomposition

HL = HL1
⊎ . . . ⊎HLk

. (2.5)

Each Li ∈ Lirr and L = ∩k
i=1Li is their common transverse intersection. In particular,

codimL = codimL1 + . . .+ codimLk. (2.6)

Equation (2.5) implies that every H ∈ H that contains L must contain exactly one of
the irreducible components Li. It follows that

∑

H|L⊂H

aH =
∑

H|L1⊂H

aH + . . .+
∑

H|Lk⊂H

aH (2.7)
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Applying Equation (2.4) to each Li together with Equations (2.7) and (2.6), implies
that Equation (2.4) holds for L. This finishes the proof that (i) implies (ii).

Let us now show that (ii) implies (iii). Let L ⊂ CPn be a linear subspace and let L′

be the common intersection of all H ∈ H that contain L. If there are no hyperplanes
of the arrangement that contain L then Equation (2.4) is trivially satisfied because
the left hand side is equal to zero and codimL ≥ 1. Since L ⊂ L′, we get that L′ is
non-empty and therefore L′ ∈ L. Applying Equation (2.4) to L′ we obtain

∑

H|L⊂H

aH =
∑

H|L′⊂H

aH < codimL′ ≤ codimL.

This finishes the proof that (ii) implies (iii). Since (iii) clearly implies (i), the lemma
follows.

As a direct consequence of Lemma 2.25 , We obtain 3 slightly different but equivalent
formulations of the klt condition.

Corollary 2.26. Let (H, a) be a weighted arrangement with weights aH > 0. Then
(H, a) is klt if and only if any of the following equivalent conditions is satisfied:

(i) Equation (2.4) holds for every L ∈ Lirr ;

(ii) Equation (2.4) holds for every L ∈ L ;

(iii) Equation (2.4) holds for every non-empty and proper linear subspace L ( CPn.

The next result will be crucial in Section 5.

Lemma 2.27. If (H, a) is klt and CY then H is essential and irreducible.

Proof. If the centre T of the arrangement is non-empty then the klt condition applied to
L = T implies that

∑
H aH < n but this contradicts the CY condition

∑
H aH = n+1.

Therefore, H is essential.
If H is reducible then there are two linear subspaces L1, L2 ∈ L such that L1+L2 =

CPn and every H ∈ H contains either L1 or L2. Since H is essential, the subspaces L1

and L2 are disjoint, thus codimL1 + codimL2 = n+ 1. It follows that

∑

H∈H

aH =
∑

H|L1⊂H

aH +
∑

H|L2⊂H

aH

< codimL1 + codimL2 = n + 1 ,

which contradicts the CY condition.

Lemmas 2.27 and 2.10 together yield the following:

Corollary 2.28. If (H, a) is klt and CY then there are no non-zero holomorphic vector
fields tangent to all the members of H.
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Recall that the multiplicity mL of a subspace L ∈ L is the number of hyperplanes
H ∈ H that contain L. The next results asserts that arrangements with no subspaces
of relatively high multiplicity are irreducible.

Corollary 2.29. Let H ⊂ CPn be a non-empty arrangement such that

∀L ∈ L : mL < codimL ·
|H|

n+ 1
. (2.8)

Then H is essential and irreducible.

Proof. Since for L ∈ L the multiplicity mL is always greater or equal than codimL,
we must have |H| > n + 1. Consider the CY weighted arrangement (H, a) where all
weights aH are equal to (n + 1)/|H|. As |H| > n + 1, we have 0 < aH < 1. Equation
(2.8) guarantees that (H, a) is klt. The result follows from Lemma 2.27 .

3 The resolution

In Section 3.1 , we recall a canonical compactification X of an arrangement complement
that replaces H with a simple normal crossing divisor. This compactification is a
particular instance of the wonderful models of subspace arrangements, introduced by
De Concini and Procesi [DCP95].

We review the construction of X as an iterated blowup of CPn along linear sub-
spaces and recall the notion of nested set. The upshot is that the common intersection⋂

L∈S DL is non-empty, where {DL |L ∈ S} is a collection of irreducible components
of D = π−1(H), if and only if the set S is nested relative to Lirr.

In Section 3.2 , we discuss the Picard group of X . We also calculate some intersection
numbers in the cohomology ring H∗(X,Z). We will make use of the results on the
Picard group and cohomology ring of X later, in Sections 4 and 5, in calculations
of parabolic Chern classes of our parabolic bundle E∗ and their products with the
polarizations Pk.

In Section 3.3 , we introduce the polarizations Pk on X which are used in the stability
Theorem 5.1 .

3.1 The minimal De Concini-Procesi model

Before introducing De Concini and Procesi’s wonderful models, we recall, as a warmup,
one of the standard constructions of the blowup of CPn along a linear subspace.

Let L ⊂ CPn be a linear subspace and let PL be a complementary subspace, that
is L+ PL = CPn and L ∩ PL = ∅. The linear projection

prL : CPn \ L → PL ,
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sends a point p ∈ CPn \ L to the intersection of L + p with PL. The blowup of CPn

along L is the map B
σ
−→ CPn, where B ⊂ CPn × PL is the closure of the graph of prL

and σ is the restriction to B of the projection to the first factor.
Consider now a hyperplane arrangement H ⊂ CPn. Let (CPn)◦ be the arrangement

complement and let Lirr be the set of non-empty and proper irreducible subspaces. For
each L ∈ Lirr choose a complementary subspace PL and define

pr : (CPn)◦ →
∏

L∈Lirr

PL , (3.1)

with components the linear projections prL .

Definition 3.1. Let X ⊂ CPn ×
∏

PL be the closure of the graph of (3.1) and let

π : X → CPn (3.2)

be the restriction to X of the projection to the first factor.
The resolution of H is the variety X together with the map π. For brevity, we will

also refer to it simply as the resolution X , omitting the map π, or as the resolution π,
omitting the variety X , depending on which aspect we wish to emphasize.

Remark 3.2. De Concini and Procesi define a resolution XG for any building set G
of the poset L [DCP95, §2.3]. The irreducible subspaces Lirr form a building set of L
and any building set of L contains Lirr. Definition 3.1 corresponds to X = XG with
G = Lirr. If G1 and G2 are building sets with G1 ⊂ G2, then XG2

is obtained from XG1

by performing a finite sequence of blowups along smooth subvarieties. For this reason,
(3.2) is known as the minimal De Concini-Procesi model of H.

The map π is a bijection on the preimage of (CPn)◦ with inverse ı(x) = (x, pr(x)).
By slight abuse of notation, suppressing ı, we can regard (CPn)◦ as an open subset of
X and write

X \ (CPn)◦ = π−1(H).

The main result that we are after is the next.

Theorem 3.3 ([DCP95, §3.2 and §4.2]). The variety X is smooth and the preimage
of the arrangement D = π−1(H) is a simple normal crossing divisor whose irreducible
components are in one to one correspondence with the elements of Lirr.

More precisely,

D =
⋃

L∈Lirr

DL, (3.3)

where DL is the unique irreducible component of D such that π(DL) = L.

Remark 3.4. It is shown in [DCP95, §1.6] that DL is the closure of π−1(L◦) where
L◦ is the complement of the induced arrangement HL. Moreover, [DCP95, §4.3] shows
that DL is biholomorphic to the product

DL
∼= X(HL)×X(HL/L)

where X(K) denotes the minimal De Concini-Procesi model of the arrangement K.
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3.1.1 Construction of X as an iterated blowup

We present a more hands-on description of X as an iterated blowup. Before stating
the result, we recall first the notion of blowup along a submanifold.

If N is a complex manifold and S ⊂ N is a complex submanifold, then the blowup of
N along S is a complex manifold M together with a proper holomorphic map M

σ
−→ N

such that σ : M \ E ∼= N \ S is a biholomorphism and the restriction of σ to E is
equivalent to the bundle projection P(NS) → S, where P(NS) is the projectivization
of the normal bundle NS of S ⊂ N .

Next, we recall the notions of proper transform and exceptional divisor in a slightly
more general context. Let M and N be complex manifolds of the same dimension and
let

f : M → N

be a proper holomorphic map of degree 1. Let E ⊂ M be the set of critical points of f
and let S = f(E) be the critical values, so that f : M \E → N \S is a biholomorphism.
We recall the following notions.

• If V is a subvariety of N with V 6⊂ S then the proper transform of V by f is the
subvariety of M obtained as the closure of f−1(V \ S).

• A divisor D ⊂ M is f -exceptional if f(D) is an analytic subset of N of codimen-
sion ≥ 2.

In our case of interest, f is a composition of blowups along complex submanifolds.
Furthermore, the set of critical points is a (possibly reducible) f -exceptional divisor.

Example 3.5. The irreducible π-exceptional divisors of the resolution (3.2) are pre-
cisely of the form DL with L ∈ Lirr of codimension ≥ 2.

Notation 3.6. Let L◦
irr = Lirr \ H. In other words, L◦

irr is the set of non-empty
irreducible subspaces of codimension ≥ 2.

Proposition 3.7 ([Li09, Proposition 2.13]). Let L1, . . . , Lk be a labelling of all the
elements in L◦

irr compatible with the inclusion relations, i.e., if Li ⊂ Lj then i ≤ j.

Then the resolution (3.2) is equal to Xk
πk−→ CPn, where the maps Xi

πi−→ CPn for
1 ≤ i ≤ k are defined inductively as follows:

1. X1
σ1−→ CPn is the blowup of CPn along L1 and π1 = σ1;

2. Let i ≥ 2 and suppose that πi−1 : Xi−1 → CPn is defined. Let L̃i be the proper
transform of Li by πi−1. Then L̃i is smooth and πi = πi−1 ◦ σi where σi : Xi →
Xi−1 is the blowup of Xi−1 along L̃i.

Proposition 3.7 guarantees that the end result X
π
−→ CPn is independent of the

labelling, as long as it is compatible with inclusion relations. For example, we can order
the elements of L◦

irr by increasing dimension L0
irr,L

1
irr, . . . ,L

n−2
irr , where the members of

Li
irr are taken in any order, c.f. [OT07, Theorem 4.2.4].
The following three examples illustrate the proposition.
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Example 3.8. If H ⊂ CP2 then X is obtained by blowing up the points p ∈ CP2 of
H of multiplicity mp ≥ 3.

Example 3.9. If H ⊂ CP3 then X is obtained in two steps.

• Step 1: blowup the points in L0
irr.

• Step 2: blowup of the proper transforms L̃ of the lines L ∈ L1
irr.

Here, if L1 and L2 are two irreducible lines meeting at a point p, then, by Lemma 2.21,
the intersection point p must be irreducible. Therefore, the proper transforms L̃ in
Step 2 are mutually disjoint.

Example 3.10. Let P and Q be two projective planes in CP4 meeting at a single
point. Consider the arrangement H ⊂ CP4 made of 6 hyperplanes, 3 of which intersect
along P and the other 3 intersect along Q. This arrangement contains no irreducible
points and no irreducible lines. The resolution X is obtained by blowing up one of the
planes in L2

irr = {P,Q} and then blowing up the proper transform of the other plane.
The result is independent of the order in which the two planes are blown up. In an
affine chart where P = {0} × C2 and Q = C2 × {0} the resolution is the product

Bl0C
2 × Bl0C

2 (σ,σ)
−−−→ C2 × C2

where Bl0C
2 σ
−→ C2 is the blowup of C2 at the origin.

3.1.2 Nested subsets of Lirr and intersections of divisors DL

Next, we analyse when a collection of divisors DL with L ranging over a subset S ⊂ Lirr

has non-empty intersection. To do this, we recall the following.

Definition 3.11 ([DCP95, §2.4]). Let S ⊂ Lirr be a subset of irreducible subspaces.
The set S is nested relative to Lirr if, for any L1, . . . , Lk ∈ S with k ≥ 2 pairwise non-
comparable (i.e. Li 6⊂ Lj for i 6= j), their common intersection

⋂k

i=1 Li is non-empty
and reducible.

Remark 3.12. If S is nested relative to Lirr and L1, . . . , Lk ∈ S are pairwise non-
comparable, then the intersections

⋂
i∈I Li are non-empty and reducible for any subset

I ⊂ [k] with |I| ≥ 2.

Example 3.13. If L,M ∈ Lirr then S = {L,M} is nested if and only if either one
subspace is contained in the other or the intersection L∩M is non-empty and reducible.

Example 3.14. Consider the arrangement H of 4 hyperplanes with defining equations
x1 = 0 , x2 = 0 , x1 + x2 = 0, and x3 = 0.

Then the set S of hyperplanes x1 = 0 , x2 = 0 , x3 = 0 doesn’t form a nested
set. Indeed, the intersection of x1 = 0 with x2 = 0 is not reducible (while all other
intersections are reducible).
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Next, we provide an extension of Lemma 2.21 that will be useful later on. Recall
that we write Irr(L) for the irreducible components of L ∈ L.

Lemma 3.15. Let S be nested relative to Lirr and let L1, . . . , Lk ∈ S be pairwise non-
comparable. If L =

⋂k

i=1 Li is their common intersection, then Irr(L) = {L1, . . . , Lk}.
In particular, the subspaces L1, . . . , Lk intersect transversely.

Proof. Let Irr(L) = {L′
1, . . . , L

′
p}. We want to show that p = k and that, up to a

relabel, Li = L′
i for all 1 ≤ i ≤ k. Since Li is irreducible, it must contain one (and only

one) of the irreducible components of L, say Li ⊃ L′
σ(i). Clearly,

L′
j ⊂

⋂

i | σ(i)=j

Li := Mj

and
p⋂

j=1

Mj =
k⋂

i=1

Li = L .

Therefore,

codimL ≤

p∑

j=1

codimMj ≤

p∑

j=1

codimL′
j = codimL .

Thus, we must have codimMj = codimL′
j for all j, hence

∀j ∈ [p] : L′
j = Mj .

On the other hand, since the elements of {Li | σ(i) = j} ⊂ S are pairwise non-
comparable, their common intersection Mj must be reducible if |σ−1(j)| ≥ 2. Since
Mj = L′

j is irreducible, we must have |σ−1(j)| = 1 for all j. We conclude that σ is a
bijection, so p = k and we can relabel so that Li = L′

i for all i.

The main point of introducing nested sets is that we have the following.

Proposition 3.16 ([DCP95, §3.2]). Let S ⊂ Lirr. The intersection

⋂

L∈S

DL

is non-empty if and only if S is nested relative to Lirr.

In particular, from Example 3.13, we have.

Corollary 3.17. Two divisors DL and DM intersect if and only if one of the following
two cases happens:

(i) L ⊂ M or M ⊂ L;

(ii) L ∩M is non-empty and reducible.
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3.1.3 Example: tetrahedron in CP3

Let p1, . . . , p5 ∈ CP3 be five points in general linear position, i.e., no 3 points lie on
a line and no 4 points lie on a plane. We can represent these five points as the four
vertices of a tetrahedron in CP3 together with its barycentre. Each triplet of points
determines a plane, giving rise to a collection of 10 planes H ⊂ CP3 -see Figure 1 .

p1 p3

p4

p2

p5

H123

L12

Figure 1: The arrangement H of 10 planes in CP3 spanned by triplets of 5 points in
general linear position.

The irreducible subspaces of the arrangement are

L2
irr = {Hijk = pipjpk}, L1

irr = {Lij = pipj}, L0
irr = {p1, . . . , p5}.

The resolution π = σ1 ◦ σ2 is constructed in two steps.

• Step 1: X1
σ1−→ CP3 is the blowup at the five points of L0

irr.

• Step 2: X
σ2−→ X1 is the blowup at the 10 disjoint projective lines L̃, where L̃ are

the proper transforms of the elements L ∈ L1
irr.

The preimage of the arrangement is a normal crossing divisor made of 25 irreducible
components

π−1(H) =



⋃

H∈L2

irr

DH




︸ ︷︷ ︸
10 divisors ∼=Bl4 P2

⋃


⋃

L∈L1

irr

DL




︸ ︷︷ ︸
10 divisors ∼=P1×P1

⋃


⋃

p∈L0

irr

Dp




︸ ︷︷ ︸
5 divisors ∼=Bl4 P2

.

Remark 3.18. More generally, the braid or An+1-arrangement in CPn is the collection
of
(
n+2
2

)
hyperplanes spanned by n out of n + 2 points in general linear position. The

arrangement complement (CPn)◦ is naturally identified with the configuration space
M0,n+3 of n+3 marked points in the Riemann sphere modulo Möbius transformations.
It is well known that the minimal De Concini-Procesi model (3.2) agrees with the
Deligne-Mumford-Knudsen compactification M0,n+3 , see [Kap93, Theorem 4.3.3].
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Remark 3.19. The action of the symmetric group S6 on X = M0,6 is explained in
[Hun06, Chapter 3]. Continuing with the above notation,

X
σ2−→ X1

σ1−→ CPn.

Contracting the ten projective lines L̃ ⊂ X1, which have normal bundle OP1(−1)⊕2,
produces a 3-fold with ten ordinary double point singularities which embeds in CP5 as
the Segre cubic

{ 5∑

i=0

zi = 0,

5∑

i=0

z3i = 0
}

and S6 acts by permuting the coordinates.

3.2 Picard group and cohomology of X

In this section we calculate the Picard group of the resolution X of Section 3.1. We
also calculate some cup products in the integer cohomology of X that will be needed
in the next sections. A set of generators and relations for the ring H∗(X,Z) is given in
[DCP95, §5]. We provide quick and direct proofs of the formulas that we need rather
than algebraic manipulation of the relations there.

If X is a projective manifold, we write Pic(X) for the group of isomorphisms classes
of holomorphic -or equivalently algebraic- line bundles on X . Given a divisor D ⊂ X ,
we denote by OX(D) the line bundle on X defined by the rank 1 locally free sheaf of
rational functions on X with at most simple poles along D. We write [D] for the class
of OX(D) in Pic(X). We will use the following standard result.

Lemma 3.20. Let X be a nonsingular variety and let Y be a nonsingular subvariety
of codimension r ≥ 2. Let π : X̃ → X be the blowup of X along Y .

(i) If Y ′ = π−1(Y ) is the exceptional divisor then

Pic(X̃) = π∗ (Pic(X))⊕ Z · [Y ′]. (3.4)

(ii) If D ⊂ X is a divisor with Y 6⊂ D and D̃ ⊂ X̃ is the proper transform of D then

π∗([D]) = [D̃]. (3.5)

Proof. (i) This is Exercise 8.5 of Chapter II in [Har13].
(ii) Let s be a section of OX(D) with D = s−1(0). Since Y 6⊂ D, the zero set of the

pullback section π∗s is equal to D̃, providing a trivialization of π∗(OX(D))⊗O
X̃
(−D̃).

Taking isomorphism classes gives (3.5).

In the rest of the section we let H ⊂ CPn be an arrangement and let X
π
−→ CPn be

the resolution of H as in Definition 3.1 . Recall that we write L◦
irr = Lirr \ H.
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Proposition 3.21. The Picard group of the resolution X is the free abelian group
generated by the classes [DL] for L ∈ L◦

irr together with the class of π∗OPn(1).

Proof. We begin by recalling the construction of X by a sequence of blowups as in
Proposition 3.7 . The upshot is thatX

π
−→ CPn is equal toXk

πk−→ CPn whereXi
πi−→ CPn

are constructed inductively as follows.
Let L1, . . . , Lk be a labelling of the elements of L◦

irr such that if Li ⊂ Lj then i ≤ j.
Start with X0 = CPn and π0 = the identity map. Then πi = πi−1 ◦ σi for 1 ≤ i ≤ k,
where Xi

σi−→ Xi−1 is the blowup of Xi−1 along L̃i and L̃i is the proper transform of Li

by πi−1.
By construction, each Xi contains exactly i irreducible πi-exceptional divisors Di

j

with πi(D
i
j) = Lj for 1 ≤ j ≤ i. Moreover, if j ≤ i − 1 then Di

j = D̃i−1
j is the proper

transform of Di−1
j by σi while Di

i = σ−1
i (L̃i) is the σi-exceptional divisor.

Claim. The Picard group of Xi is a free abelian group of rank i+ 1 generated by
the πi-exceptional divisors [D

i
j ] for 1 ≤ j ≤ i together with the class of π∗

i (OPn(1)).
We prove the claim by induction on i. The case i = 0 follows from the fact that

Pic(CPn) is generated by OPn(1). Suppose that 1 ≤ i ≤ k and assume that the Picard
group ofXi−1 is the free abelian group generated by the πi−1-exceptional divisors [D

i−1
j ]

for 1 ≤ j ≤ i−1 together with the class of π∗
i−1 (OPn(1)). By Lemma 3.20 (i) the Picard

group of Xi is the free abelian group generated by σ∗
i (π

∗
i−1(OPn(1))) = π∗

i (OPn(1))

together with σ∗
i ([D

i−1
j ]) for 1 ≤ j ≤ i − 1 and [σ−1

i (L̃i)] = [Di
i]. Furthermore, if

L̃i ⊂ Di−1
j for some 1 ≤ j ≤ i− 1 then

Li = πi−1(L̃i) ⊂ πi−1(D
i−1
j ) = Lj

which contradicts the inclusion preserving property of the labels. Thus, if 1 ≤ j ≤ i−1
then L̃i 6⊂ Di−1

j and by Lemma 3.20 (ii) σ∗
i ([D

i−1
j ]) = [D̃i−1

j ] = [Di
j]. This finishes the

proof of the claim.
Having proved the claim, the statement follows since the divisors Dk

j for 1 ≤ j ≤ k
are precisely the divisors of the form DL for L ∈ L◦

irr.

For the classes DH with H ∈ H we have the following.

Lemma 3.22. If H ∈ H then

[DH ] = [π∗(OPn(1))]−
∑

L|L(H

[DL] (3.6)

where the sum runs over all L ∈ Lirr properly contained in H.

Proof. Let s be a section of OPn(1) with s−1(0) = H . The zero set of π∗s is equal to

π−1(H) =
⋃

L|L⊂H

DL
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so π∗(s) gives a trivialization of the tensor product of π∗(OPn(1)) with OX (−
∑

DL)
where the sum runs over all irreducible subspaces L contained in H (including L = H).
Splitting the sum as H plus the sum pf all irreducible subspaces which are properly
contained in H and taking classes in Pic(X) gives (3.6).

Now we switch gears and discuss the integer cohomology of X .

Lemma 3.23. The first Chern class is an isomorphism between Pic(X) and H2(X,Z).

Proof. Since X is Kähler and simply connected, it follows that

b0,1(X) = dimH1(X,OX) = 0.

On the other hand, if α is a holomorphic 2-form on X then by Hartogs it defines a
holomorphic 2-form on CPn, so α = 0. It follows that b2,0(X) = 0 and, since X is
Kähler, we have

b0,2(X) = dimH2(X,OX) = 0.

Consider the exponential sequence 0 → Z → OX
exp
−−→ O∗

X → 0. The long exact
sequence in cohomology gives us

0 → H1(X,O∗
X)

c1−→ H2(X,Z) → 0,

showing that c1 is an isomorphism between Pic(X) and H2(X,Z).

Notation 3.24. For L ∈ Lirr we write

γL = c1(DL). (3.7)

Equivalently, γL ∈ H2(X,Z) is the Poincaré dual of the divisor DL ⊂ X .

Definition 3.25. We write h for the generator of H2(CPn,Z) given by the hyperplane
class

h = c1(OPn(1)). (3.8)

So π∗h is the Poincaré dual of the proper transform Q̃ ⊂ X of a generic hyperplane
Q ⊂ CPn that intersects transversely all the members of Lirr.

Corollary 3.26. H2(X,Z) is the free abelian group generated by the classes γL with
L ∈ L◦

irr together with π∗h.

Proof. This follows from Proposition 3.21 together with Lemma 3.23 .

Corollary 3.27. For H ∈ H we have

γH = π∗h−
∑

L|L(H

γL (3.9)

where the sum runs over all L ∈ Lirr properly contained in H.
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Proof. This follows from Equation (3.6) by taking the first Chern class.

If α ∈ H i(X,Z) and β ∈ Hj(X,Z) then

α · β ∈ H i+j(X,Z) (3.10)

is their cup product. In the rest of the section we calculate diverse cup products
between the classes γL and π∗h.

Remark 3.28. If α and β are the Poincaré duals of submanifolds A and B with
transverse intersection, then α · β is the Poincaré dual of A ∩ B. In particular, if
A ∩ B = ∅ then α · β = 0.

We need the following relation between the pullback of the Poincaré dual of a
submanifold and the Poicaré dual of its proper transform.

Lemma 3.29. Let X be a nonsingular variety and let Y be a nonsingular subvariety.
Let π : X̃ → X be the blowup of X along Y . Suppose that V ⊂ X is a nonsingular
subvariety of codimension r that is transversal to Y . Let Ṽ ⊂ X̃ be the proper transform
of V . Then

γṼ = π∗γV , (3.11)

where γV ∈ H2r(X,Z) and γṼ ∈ H2r(X̃,Z) are the Poincaré duals of V and Ṽ

The proof of Lemma 3.29 is standard and we omit it, see [Ful13, Corollary 6.7.2].

Note that, under the hypothesis of Lemma 3.29, the proper transform Ṽ is nonsingular
and is equal to the blowup of V along Y ∩ V .

Let P be a linear subspace P ⊂ CPn of dimension k. We say that P is generic if it
intersects transversely the elements of L. Concretely, if L ∈ L is such that codimL > k
then P ∩ L = ∅, while if codimL ≤ k then P + L = CPn. Clearly, the generic linear
subspaces P ⊂ CPn of dimension k make an open dense subset of the Grassmannian
of k-planes in CPn.

Lemma 3.30. The class (π∗h)n−k is the Poincaré dual of the proper transform P̃ of
a generic k-plane P ⊂ CPn.

Proof. We use the description of X by a sequence of blowups given in Proposition 3.7 .
The generic assumption implies that the proper transform P̃i ⊂ Xi under Xi

πi−→ CPn

is transversal to L̃i+1 for all i. Then the statement follows by repeated application of
Lemma 3.29 .

Lemma 3.31. Let L1, . . . , Lk be a set of not necessarily distinct irreducible subspaces
and assume that the common intersection

L =

k⋂

i=1

Li
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has codimension r. If k < r then

(π∗h)n−k ·
k∏

i=1

γLi
= 0. (3.12)

Proof. By Lemma 3.30, the class (π∗h)n−k is Poincaré dual of the proper transform P̃

of a generic k-plane P ⊂ CPn. If k < r then P does not intersect L. Therefore, P̃ does
not intersect

⋂k

i=1DLi
and the result follows from Remark 3.28 .

Corollary 3.32. Let L ∈ Lirr with codimL = r.

(i) If r > 1 then (π∗h)n−1 · γL = 0.

(ii) If r > 2 then (π∗h)n−2 · γ2
L = 0.

Lemma 3.33. For every H ∈ H we have

(π∗h)n−1 · γH = 1. (3.13)

Proof. It follows from Equation (3.9) together with Corollary 3.32 (i) that

(π∗h)n−1 · γH = (π∗h)n−1 ·


π∗h−

∑

L|L(H

γL




= (π∗h)n = 1

where the last equality holds because hn = 1 and π has degree 1.

Lemma 3.34. For every L ∈ Lirr with codimL = 2 we have

(π∗h)n−2 · γ2
L = −1. (3.14)

Proof. Let P be a generic 2-plane that intersects L transversely at a point p ∈ L◦. The
class (π∗h)n−2 is the Poincaré dual of the proper transform P̃ ⊂ X of P .

In a neighbourhood of p, we can identify the resolution X
π
−→ CPn with the blowup

of CPn along L so that:

• DL = P(NL) is the exceptional divisor, where P(NL) is the projectivization of
the normal bundle NL of L ⊂ CPn;

• the class (π∗h)n−2 · γL is the Poincaré dual of a curve C = π−1(p) which is a fibre
of the bundle projection P(NL)

π
−→ L.

Since NDL
= OP(NL)(−1) is the tautological bundle on P(NL) that restricts to OP1(−1)

on each fibre, we have
C · γL = deg(NDL

|C) = −1

and Equation (3.14) follows.
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Lemma 3.35. If L ∈ Ln−2
irr and H ∈ H contains L, then

(π∗h)n−2 · γL · γH = 1 . (3.15)

Proof. By Equation (3.9), the product (π∗h)n−2 · γL · γH is equal to

(π∗h)n−2 · γL ·


π∗h−

∑

L′|L′(H

γL′


 . (3.16)

By Corollary 3.32 (i) the product (π∗h)n−1 · γL is zero. By Lemma 3.31, if L′ 6= L then
(π∗h)n−2 · γL · γL′ = 0. It follows that (3.16) is equal to

−(π∗h)n−2 · γ2
L

and the result follows from Equation (3.14).

Definition 3.36. For H ∈ H let BH be the number of irreducible subspaces of codi-
mension 2 contained in H minus 1, i.e.,

BH =
∣∣{L ∈ Ln−2

irr |L ⊂ H}
∣∣− 1 . (3.17)

Lemma 3.37. For every H ∈ H we have

(π∗h)n−2 · γ2
H = −BH . (3.18)

Proof. By the above results, we have

(π∗h)n−2 · γ2
H = (π∗h)n−2 ·



π∗h−
∑

L|L(H

γL




2

= (π∗h)n−2 ·


(π∗h)2 +

∑

L⊂H
codimL=2

γ2
L




= 1−
∣∣{L ∈ Ln−2

irr |L ⊂ H}
∣∣ .

The first equality uses Equation (3.9) . The second equality gets rid of the parenthesis
terms γL · γL′ , π∗h · γL , and γ2

L if codimL ≥ 3 ; by using Equation (3.12) together
with items (i) and (ii) of Corollary 3.32 respectively. Finally, the third equality follows
from Equation (3.14).

3.3 Polarization

Let X
π
−→ CPn be the resolution of H as in Definition 3.1 . Recall that we write

L◦
irr = Lirr \ H

for the subset of irreducible subspaces of codimension ≥ 2.
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Lemma 3.38. We can choose integers bL > 0 for each L ∈ L◦
irr such that

Pk = k · π∗
(
OPn(1)

)
−
∑

L∈L◦
irr

bL ·DL (3.19)

is an ample divisor on X for all k ≫ 1.

Proof. This is standard and can be proved inductively by considering a single blowup
along a smooth subvariety, see item (ii) of Corollary 4.1.4 in [Laz17].

Notation 3.39. Fix positive integers bL such that Pk as in Lemma 3.38 is an ample
line bundle on X for all k ≫ 1. We refer to bL as the polarization coefficients.

The next bound on the volumes of exceptional divisors and proper transforms of
hyperplanes will be useful later in the proof of the main result.

Lemma 3.40. Let L ∈ Lirr and let

volPk
(DL) = c1(Pk)

n−1 · γL

be the volume of DL with respect to Pk. Then

volPk
(DL) =

{
f(kn−2) if codimL ≥ 2,

kn−1 + f(kn−2) if codimL = 1,
(3.20)

where f =
∑n−2

j=0 Cjk
j is a polynomial in k of degree at most n− 2.

Moreover, there is Λ > 0 that depends only on H and the polarization coefficients
such that |Cj| ≤ Λ for all j.

Proof. Write c1(Pk) = k · π∗h − e with e =
∑

L′∈L◦

irr

bL′ · γL′ and use the binomial

expansion to obtain

volPk
(DL) =

n−1∑

j=0

Cj · k
j

where

Cj =

(
n− 1

j

)
· (−e)n−1−j · (π∗h)j · γL. (3.21)

By Corollary 3.32 (i) and Lemma 3.33, the leading coefficient Cn−1 = (π∗h)n−1 · γL is

Cn−1 =

{
0 if codimL ≥ 2,

1 if L = H ∈ H

and (3.20) follows from this. It follows from (3.21) that we can bound |Cj| in terms of
max bL and the maximum absolute value of the top products

(π∗h)j ·
∏

L′∈S

γL′

with S a set of not necessarily distinct n−j irreducible subspaces L′ ∈ Lirr, which only
depends on H.
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Lemma 3.41. The following holds

c1(Pk)
n−1 · π∗h = kn−1 + f(kn−2)

where f(kn−2) is as in Lemma 3.40 .

Proof. The same proof of Lemma 3.40 applies by replacing γL with π∗h.

Remark 3.42. An alternative differential-geometric proof of Lemma 3.40 can be done
as follows. Let ǫ = 1/k and take a Kähler metric ωǫ in the cohomology class of (1/k)Pk

given by
ωǫ = π∗ωFS + ǫ · η

where ωFS is the Fubini-Study metric normalized so that [ωFS] ∈ c1(OPn(1)) and η
is a fixed real and closed (1, 1)-form. The form η depends only on the polarization
coefficients and it is positive when restricted to the kernel of π∗, it can be constructed
as in the proof of Proposition 3.24 in [Voi07a].

If codimL ≥ 2, then π∗ωFS is degenerate along TDL and we get that

∫

DL

ωn−1
ǫ = O(ǫ).

Similarly,
∫
DH

ωn−1
ǫ = 1 +O(ǫ) for every H ∈ H.

4 The parabolic bundle

In Section 4.1 , we present background material from the theory of parabolic bundles.

In Section 4.2 , we define a natural parabolic bundle E∗ on (X,D), where X is the
minimal De Concini-Procesi model of H and D = π−1(H). The underlying vector
bundle is the pullback tangent bundle E = π∗(TCPn). The parabolic structure is
defined by the filtrations of E|DL

for L ∈ Lirr given by the subbundles π∗(TL) ⊂ E|DL

together with weights aL.

In Section 4.3 , we show that the parabolic bundle E∗ is locally abelian.

In Sections 4.4 and 4.5 , we calculate the first and second parabolic Chern characters
of E∗. Specifically, we show that par-ch1(E∗) = 0 and give a formula for par-ch2(E∗) in
terms of the poset Lirr.

4.1 General theory

Let X be a complex manifold and let D be a simple normal crossing divisor with
irreducible decomposition D =

⋃
i∈I Di . Let E be a holomorphic vector bundle on X .
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Definition 4.1. A parabolic structure E∗ on E is given by a collection of locally free
subsheaves E i

a ⊂ E indexed by i ∈ I and a ∈ (0, 1] such that the following holds.

(i) Support/Increasing: for 0 < a′ < a ≤ 1 we have inclusions of OX-modules

E(−Di) ⊂ E i
a′ ⊂ E i

a ⊂ E ,

where E(−Di) is the subsheaf of holomorphic sections of E that vanish along Di.

(ii) Semi-continuity: for any given a ∈ (0, 1) there is ǫ > 0 such that E i
a+ǫ = E i

a.

(iii) Filtration in the category of vector bundles on D: the quotient sheaves

F i
a = E i

a|Di

/
E(−Di)|Di

(4.1)

define an increasing filtration of E|Di
by vector subbundles.

In this case, we say that E∗ is a parabolic bundle on (X,D).

Remark 4.2. Since the sheaves E i
a and E(−Di) are locally free OX-modules, the re-

strictions E i
a|Di

and E(−Di)|Di
are locally free ODi

-modules. The quotient (4.1) is a
subsheaf of

E|Di
= E|Di

/
E(−Di)|Di

.

Item (iii) requires that the F i
a are locally free ODi

-modules and that for a′ < a the
inclusions of ODi

-modules
F i
a′ ⊂ F i

a ⊂ E|Di

are inclusions of vector subbundles.

Remark 4.3. If we extend the index a ∈ (0, 1] to a ∈ R by requiring that E i
a−1 =

E i
a(−Di) and define Ea =

⋂
i∈I E

i
ai

for a = (ai)i∈I ∈ RI . Then the collection of sheaves
Ea form a parabolic bundle as defined in [IS06, §2.1].

If E∗ satisfies items (i) and (ii) of Definition 4.1 then E∗ is a c-parabolic sheaf as
defined in [Moc06, §3.1.1] where c = 1 is the vector in RI with all entries equal to 1.
Item (iii) is taken from [Moc06, Definition 3.12].

Notation 4.4. Write
F i
<a =

⋃

a′<a

F i
a′ .

By item (iii) of Definition 4.1 , F i
<a is a vector subbundle of F i

a.

Definition 4.5. For i ∈ I and a ∈ (0, 1], we let

Gria = F i
a

/
F i
<a . (4.2)

Thus, we have an exact sequence of vector bundles on Di

0 → F i
<a → F i

a → Gria → 0 .

The Gria are the graded components of the filtration F i
a ⊂ E|Di

.
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Definition 4.6. For i ∈ I, let wt(i) ⊂ (0, 1] be the finite set of weights of the filtration
F i
a ⊂ E|Di

given by
wt(i) = {a | Gria 6= 0} , (4.3)

and let
λi =

∑

a∈wt(i)

a · rank(Gria) , (4.4)

where rank(Gria) is the rank of the vector bundle Gria on Di .

Definition 4.7 ([Moc06, §3.1.2]). The parabolic first Chern class of E∗ is the element
of H2(X,R) given by

par-c1(E∗) = c1(E)−
∑

i∈I

λi · c1(Di) . (4.5)

To define parabolic second Chern character, we must introduce an extra compati-
bility condition.

Definition 4.8 ([Moc06, Definition 3.12]). Let E∗ be a parabolic bundle on (X,D) as in
Definition 4.1 . We say that E∗ is locally abelian, if for every subset J = {i1, . . . , ik} ⊂ I
such that the intersection DJ =

⋂
j∈J Dj is non-empty, the following holds.

• (Compatibility condition.) There is a decomposition of E|DJ
locally on DJ as a

direct sum of subbundles Ua indexed by a ∈ Rk

E|DJ
=
⊕

a∈Rk

Ua

such that for all a = (a1, . . . , ak) ∈ (0, 1]k we have

k⋂

j=1

F ij
aj

∣∣∣
DJ

=
⊕

a′≤a

Ua′ (4.6)

where the sum is over all a′ = (a′1, . . . , a
′
k) such that a′j ≤ aj for all 1 ≤ j ≤ k.

Remark 4.9. If k = 1 and DJ = Di , then (4.6) is satisfied by taking complements,
locally on Di, to the subbundle F i

<a ⊂ F i
a; so that F i

a = F i
<a ⊕ Ua with Ua

∼= Gria.

Remark 4.10. The term locally abelian is taken from [IS06, §2.1].

Next, we reformulate the locally abelian condition in terms of local frames spanning
the filtrations F i

a. To do this, we introduce some notation.
Let E∗ be a parabolic bundle on (X,D) and let J = {i1, . . . , ik} ⊂ I be such that

the intersection DJ =
⋂

j∈J Dj is non-empty. For each j ∈ J , we have a filtration of

E|DJ
given by the subbundles F j

a |DJ
. Altogether, we have k = |J | different filtrations

on DJ .
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Notation 4.11. For a = (a1, . . . , ak) ∈ Rk, we write Fa for the fibrewise intersection
(see Remark 4.12 below)

Fa =

k⋂

j=1

F ij
aj

∣∣∣
DJ

.

If a = (a1, . . . , ak) and a′ = (a′1, . . . , a
′
k) are vectors in Rk, we write a′ � a if a′i ≤ ai

for all i and a′ 6= a. Similarly, we write
∑

a′�a
Fa′ for the fibrewise sum

∑

a′�a

Fa′ := F i1
<a1

∩ F i2
a2
∩ . . . ∩ F ik

ak
+ . . . + F i1

a1
∩ F i2

a2
∩ . . . ∩ F ik

<ak
,

where we have omitted all the restrictions |DJ
on the right hand side.

Remark 4.12. Without compatibility conditions on E∗, the above Fa and
∑

a′�a
Fa′

are merely subsets of the total space of E|DJ
which intersect the fibres along linear

subspaces; however the dimension of these subspaces might vary. By definition, we
have an inclusion of sets

∑
a′�a

Fa′ ⊂ Fa.

Lemma 4.13. Let E∗ be a parabolic bundle on (X,D). Then E∗ is locally abelian if
and only if for every non-empty intersection DJ =

⋂
j∈J Dj the following conditions

hold.

(i) For every point p ∈ DJ the k-tuple of filtrations {F j
p | j ∈ J} of the fibre E|p given

by F j
p = {F j

a |p , a ∈ R} , are compatible as in Definition A.8 .

(ii) For any a = (a1, . . . , ak) ∈ Rk, the intersection Fa is a vector bundle on DJ ; and
the sum

∑
a′�a

Fa′ is a vector subbundle of Fa .
3

Proof. Suppose that E∗ is locally abelian. We want to prove items (i) and (ii). Item
(i) is immediate, since Definition 4.8 implies Definition A.8 by restricting to fibres.
To show (ii), note that Equation (4.6) implies that Fa = ⊕a′≤aUa′ is a vector bundle.
Similarly, ∑

a′�a

Fa′ =
⊕

a′�a

Ua′

is a vector subbundle of Fa , proving (ii).
Conversely, suppose that items (i) and (ii) hold. Fix p ∈ DJ , by item (i) we can

find a direct sum decomposition E|p = ⊕aUa|p of E|p such that

Fa|p =

(
∑

a′�a

Fa′|p

)
⊕ Ua|p . (4.7)

By item (ii), we can locally extend Ua|p to a vector subbundle Ua ⊂ Fa such that
Equation (4.7) holds for all points in a neighbourhood of p. By construction, Fa =

3For generic values of a, e.g. if a does not belong to the finite set
∏k

j=1
wt(ij), the subbundle∑

a
′�a

Fa
′ is actually equal to Fa.
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∑
a′≤a

Ua′ for any a. On the other hand, since the subspaces Ua|p form a direct sum
at p, they also form a direct sum near p. This shows that Fa = ⊕a′≤aUa′ and therefore
E∗ is locally abelian.

Definition 4.14. Let E∗ be a parabolic bundle on (X,D). Let S = {s1, . . . , sr} be a
local frame of sections of E defined on an open set of DJ = ∩j∈JDj . The frame S is
adapted to E∗, if for every j ∈ J and a ∈ R, the subset Sj

a ⊂ S given by

Sj
a = {s ∈ S | s is a section of F j

a}

is a frame of F j
a .

The main characterization of the local abelian condition that we are after is given
by the next.

Lemma 4.15. Let E∗ be a parabolic bundle on (X,D). Then E∗ is locally abelian if
and only if for every non-empty intersection DJ and every p ∈ DJ , there is a frame of
sections of E defined on a neighbourhood of p in DJ that is adapted to E∗.

Proof. If E∗ is locally abelian, then we can decompose E = ⊕aUa locally on DJ as in
Definition 4.8 . Choose a frame Sa for each component Ua and let S = ∪aSa. It is easy
to see that S is adapted to E∗ .

Conversely, suppose that such adapted frames exist. To show that E∗ is locally
abelian, we verify items (i) and (ii) of Lemma 4.13 . Item (i) follows immediately from
Lemma A.15 . To show item (ii), take a local trivialization of E|DJ

given by an adapted
frame. In such a trivialization, the intersections Fa and sums

∑
a′�a

Fa′ are constant,
hence they are vector bundles. This proves (ii) and finishes the proof of the lemma.

Definition 4.16. Suppose that E∗ is a locally abelian parabolic bundle on (X,D). For
each pair i, j ∈ I , let Dij = Di ∩Dj. For a, b ∈ (0, 1] , let Gri,ja,b be given by

Gri,ja,b =
(
F i
a

∣∣
Dij

∩ F j
b

∣∣
Dij

) / (
F i
<a

∣∣
Dij

∩ F j
b

∣∣
Dij

+ F i
a

∣∣
Dij

∩ F j
<b

∣∣
Dij

)
. (4.8)

By Lemma 4.13 (ii), Gri,ja,b is a vector bundle on Dij.

The quotient Gri,ja,b is zero unless a ∈ wt(i) and b ∈ wt(j). It is helpful to picture

the Gri,ja,b inside the unit square (0, 1]2. The F i
a are represented by intersections of the

square with left half planes x ≤ a for a ∈ wt(i); similarly the F j
b are intersections of

the square with lower half planes y ≤ b for b ∈ wt(j). The Gri,ja,b correspond to the
smallest sub-rectangles of the square obtained as intersections of half spaces, indexed
by the coordinates (a, b) of their upper right corners.

Definition 4.17 ([Moc06, §3.1.5]). Suppose that E∗ is a locally abelian parabolic bun-
dle on (X,D). The parabolic second Chern character of E∗ is the element of H4(X,R)
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given by

par-ch2(E∗) = ch2(E)−
∑

i

∑

a

a · ı∗
(
c1(Gria)

)

+
1

2

∑

i

∑

a

a2 · rank(Gria) · c1(Di)
2

+
∑

i<j

∑

a,b

ab · rank(Gri,ja,b) · c1(Di) · c1(Dj) .

(4.9)

The terms in Equation (4.9) have the following meaning: ch2(E) denotes the second
Chern character of the vector bundle E given by

ch2(E) =
1

2

(
c1(E)

2 − 2c2(E)
)
;

ı is the inclusion Di ⊂ X and ı∗ is the associated Gysin map in cohomology

ı∗ : H
2(Di,Z) → H4(X,Z) .

Finally, rank(Gri,ja,b) denotes the rank of the vector bundle Gri,ja,b .

Stable bundles and Bogomolov-Gieseker inequality

Next, we define (slope) stability for parabolic bundles. To do this, we must consider
saturated subsheaves (see Definition A.51).

We recall the way a parabolic bundle induces a parabolic structure on subsheaves.
Let E∗ be a parabolic bundle on (X,D) as in Definition 4.1 and suppose that V ⊂ E is
a saturated subsheaf.

Definition 4.18. The induced parabolic structure V∗ is defined by the collection of
subsheaves V i

a ⊂ V indexed by i ∈ I and a ∈ (0, 1] given by

V i
a = V

⋂
E i
a.

Remark 4.19. Since V is saturated, by Corollary A.53 there is an analytic subset
Z ⊂ X with codimZ ≥ 2 such that V is a vector subbundle of E on X \ Z. In
particular, on the complements Di \ Z we have an increasing filtration of the vector
bundle V|Di

by vector subbundles V i
a = F i

a

⋂
V|Di

.

Let
λV
i =

∑

a∈(0,1]

a · rank
(
V i
a / V

i
<a

)
, (4.10)

where rank (V i
a / V

i
<a) is the rank of the quotient vector bundle on Di \ Z.
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Definition 4.20. The parabolic first Chern class of V∗ is the element par-c1(V∗) of
H2(X,R) defined as

par-c1(V∗) = c1(V)−
∑

i∈I

λV
i · c1(Di) ,

where c1(V) is as in Definition A.56 .

To define slope stability, we fix a polarization, given by an ample line bundle P on
X . The parabolic degree of E∗ is defined as

par-degP (E∗) = c1(P )n−1 · par-c1(E∗) ,

where n is the dimension of X . Similarly, the parabolic degree of the induced parabolic
structure V∗ is defined as

par-degP (V∗) = c1(P )n−1 · par-c1(V∗) .

Remark 4.21. If degP (V) = c1(P )n−1 · c1(V) is the degree of V ⊂ E , then

par-degP (V∗) = degP (V)−
∑

i

λV
i · volP (Di)

where volP (Di) = c1(P )n−1 · c1(Di) > 0 is the volume of Di ⊂ X with respect to P .
Since λV

i ≥ 0,
par-degP (V∗) ≤ degP (V) . (4.11)

If the induced parabolic structure is non-trivial, in the sense that λV
i are not all zero,

then strict inequality holds in (4.11).

A main notion we need is the next.

Definition 4.22 ([Moc06, §3.1.3]). Let E∗ be a parabolic bundle on (X,D) with
par-c1(E∗) = 0 and let P be an ample line bundle on X . We say that E∗ is stable
with respect to P , or P -stable for short, if for every non-zero and proper saturated
subsheaf V ⊂ E we have

par-degP (V∗) < 0 . (4.12)

Remark 4.23. Our P -stable parabolic bundles are referred as µL-stable in [Moc06].

The main result we need is the next version of the Bogomolov-Gieseker inequality.

Theorem 4.24 ([Moc06, Theorem 6.5]). Let E∗ be locally abelian parabolic bundle
on (X,D). Suppose that par-c1(E∗) = 0 and that E∗ is P -stable. Then the following
inequality holds:

c1(P )n−2 · par-ch2(E∗) ≤ 0 . (4.13)

Remark 4.25. Mochizuki proves Theorem 4.24 in the more general case where E∗
is only locally abelian in codimension 2, meaning that the compatibility condition in
Definition 4.8 holds outside a set of codimension ≥ 3.
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4.2 Weights and filtration

Let (H, a) be a weighted arrangement as in Theorem 1.1 . Let X
π
−→ CPn be the

resolution of H and let E be the pullback tangent bundle

E = π∗(TPn) . (4.14)

We use the weights aH to define a natural parabolic structure on E whose filtered
subsheaves are indexed by the irreducible components of the simple normal crossing
divisor D = π−1(H).

Definition 4.26. The weight aL at an irreducible subspace L ∈ Lirr is

aL = (codimL)−1
∑

H|L⊂H

aH . (4.15)

Note that 0 < aL < 1 because of the klt condition (1.1).

Recall that the irreducible components of D = π−1(H) are of the form DL, where
π(DL) = L and L is a non-empty proper irreducible subspace. For L ∈ Lirr let EL be
the subsheaf of E generated by sections tangent to π∗TL when restricted to DL.

4 Set

EL
a =

{
EL for 0 < a < aL ,

E for aL ≤ a ≤ 1 .
(4.16)

Lemma 4.27. The collection of subsheaves EL
a ⊂ E given by Equation (4.16) define a

parabolic bundle E∗ as in Definition 4.1 .

Proof. First of all, the sheaves EL are locally free, for if p ∈ DL then we can pick
a frame of sections s1, . . . , sn of TCPn in a neighbourhood of π(p) of which the first
d = dimL generate TL. Then EL is freely generated near p by the sections

π∗s1, . . . , π
∗sd, z · π∗sd+1, . . . z · π

∗sn

where z is a local defining equation of DL = {z = 0}. Alternatively, the sections
s1, . . . , sn give a splitting TCPn = V ⊕W in a neighbourhood of π(p) where V |L = TL
and W |L is isomorphic to the normal bundle of L. Then EL is locally isomorphic to
the direct sum of π∗V and π∗W (−DL).

Let us now verify that EL
a satisfy properties (i), (ii), and (iii) in Definition 4.1 . Items

(i) support and (ii) semi-continuity are immediate from Equation (4.16). Finally, item
(iii) follows from

EL|DL

/
E(−DL)|DL

= π∗(TL),

which implies that the quotient ODL
-modules FL

a = EL
a |DL

/
E(−DL)|DL

are given by

FL
a =

{
π∗(TL) if a < aL,

E|DL
if a ≥ aL.

(4.17)

This shows that FL
a is an increasing filtration of E|DL

by vector subbundles.
4Alternatively, EL is the pullback of the subsheaf of TCPn generated by vector fields tangent to L.
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Definition 4.28. The parabolic bundle E∗ is defined by the increasing filtrations EL
a

with L ∈ Lirr and a ∈ (0, 1] given by Equation (4.16).

4.3 Locally abelian property

Theorem 4.29. The parabolic bundle E∗ on (X,D) is locally abelian.

Proof. We use the characterization of the locally abelian property in terms of adapted
frames given by Lemma 4.15 . Outside D = π−1(H) there is nothing to prove. Take
p̄ ∈ D and let S be the set of all irreducible subspaces L ∈ Lirr such that p̄ ∈ DL.
Let DS be their common intersection DS =

⋂
L∈S DL, so that p̄ ∈ DS and p̄ /∈ DL′

for L′ /∈ S. Since the intersection DS is non-empty, by Proposition 3.16 , the set S is
nested relative to Lirr. By Lemma 3.15 , S is a nested set of projective subspaces as
in Definition A.32. Let M =

⋂
L∈S L be the projective subspace of CPn obtained as

the common intersection of the members of S. Let p = π(p̄) ∈ M . By Lemma A.36
(ii), there is a frame of vector fields e1, . . . , en of TCPn defined on a neighbourhood of
p ∈ U ⊂ M such that for every q ∈ U and L ∈ S, the vectors ei(q) that belong to
TqL form a basis of TqL. The pullbacks π∗e1, . . . , π

∗en form a frame of E = π∗(TCPn)
on π−1(U). Since π(DS) ⊂ M , the preimage π−1(U) contains an open neighbourhood
Ū ⊂ DS of p̄. By construction, the frame π∗e1, . . . , π

∗en is adapted -as per Definition
4.14- to the parabolic structure E∗. This finishes the proof of the theorem.

4.4 The parabolic first Chern class

In this section we show that par-ch1(E∗) = 0. We begin with a preliminary formula.

Lemma 4.30. The parabolic first Chern class of E∗ is given by

par-c1(E∗) = c1(E)−
∑

L∈Lirr

aL · codimL · γL . (4.18)

Proof. By Equation (4.17), the graded terms GrLa = FL
a

/
FL
<a are

GrLa =

{
π∗
(
TCPn|L

/
TL
)

if a = aL,

0 otherwise.

Therefore rank(GrLaL) = codimL and Equation (4.18) follows from the formula for
par-ch1(E∗) given in Definition 4.7 .

Lemma 4.31. In H2(X,R) the following identity holds:

∑

L∈Lirr

aL · codimL · γL = s · π∗h , (4.19)

where s =
∑

H∈H aH is the sum of all hyperplane weights.
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Proof. We split the left hand side of Equation (4.19) as a sum over hyperplanes and
irreducible subspaces of codimension ≥ 2,

∑

L∈Lirr

aL · codimL · γL =
∑

H∈H

aH · γH +
∑

L∈L◦

irr

aL · codimL · γL . (4.20)

On the other hand, Equation (3.9) implies that

∑

H∈H

aH · γH = s · π∗h−
∑

L∈L◦

irr



∑

H|L⊂H

aH


 · γL

= s · π∗h−
∑

L∈L◦

irr

aL · codimL · γL ,

(4.21)

where the second equality follows from the definition of aL given by Equation (4.15).
Equation (4.19) follows from Equations (4.20) and (4.21).

Lemma 4.32. The parabolic first Chern class of E∗ is zero

par-ch1(E∗) = 0. (4.22)

Proof. Since E = π∗TPn, we have

c1(E) = (n+ 1) · π∗h.

It follows from Equations (4.18) and (4.19) that

par-ch1(E∗) =
(
n + 1− s

)
· π∗h.

The lemma follows by using the CY condition (1.2) which requires s = n+ 1.

4.5 The parabolic second Chern character

By Equation (4.9), the parabolic second Chern character of E∗ is given by

par-ch2(E∗) = ch2(E)−
∑

L∈Lirr

aL · ı∗
(
c1(GrLaL)

)

+
1

2

∑

(L,M)

aLaM · νL,M · γL · γM .
(4.23)

The last sum runs over all ordered pairs (L,M) of (not necessarily distinct) elements
in Lirr × Lirr with DL ∩DM 6= ∅ , and

νL,M =

{
rank

(
GrL,MaL,aM

)
if L 6= M ,

rank
(
GrLaL

)
= codimL if L = M ,

where GrL,MaL,aM
is given by formula (4.8).
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Lemma 4.33. For every L ∈ Lirr the following identity holds:

ı∗
(
c1(GrLaL)

)
= codimL · π∗h · γL . (4.24)

Proof. On DL we have

GrLaL = π∗
(
TCPn|L

/
TL
)
= π∗

(
OPn(1)|⊕r

L

)
,

where r = codimL. This implies that

c1(GrLaL) = ı∗α ,

where α = r · π∗h ∈ H2(X,Z) and ı∗ is the pullback by the inclusion map of DL ⊂ X .
The projection formula ı∗ (ı

∗α) = α · γL -see Equation 1.6 in [Voi07b]- implies that

ı∗
(
c1(GrLaL)

)
= ı∗

(
ı∗α
)
= α · γL = r · π∗h · γL .

This finishes the proof.

Lemma 4.34. Let L and M be irreducible subspaces with DL ∩DM 6= ∅ . Then

νL,M = codim(L+M) . (4.25)

Proof. Since DL ∩DM 6= ∅, the subspace N = L ∩M is non-empty and

π(DL ∩DM) ⊂ N.

Since FL
<aL

= π∗TL , FL
aL

= π∗TCPn , and similarly for M ; on DL ∩ DM the vector

bundle GrL,MaL,aM
(given by formula (4.8)) is equal to

GrL,MaL,aM
= π∗

(
TPn

/(
TL|N + TM |N

))

and the result follows.

Split the terms that define par-ch2(E∗) in Equation (4.23) as

par-ch2(E∗) = A + B (4.26)

with
A = ch2(E)−

∑

L∈Lirr

aL · ı∗
(
c1(GrLaL)

)

and

B =
1

2

∑

(L,M)

aLaM · νL,M · γL · γM .

Lemma 4.35. The term A in par-ch2(E∗) is equal to

A = −
n + 1

2
· (π∗h)2. (4.27)
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Proof. By definition, the second Chern class of the vector bundle E is

ch2(E) =
1

2

(
c1(E)

2 − 2c2(E)
)
.

Euler’s exact sequence implies that

ck(TCP
n) =

(
n + 1

k

)
· hk

and we get that the second Chern character of E = π∗
(
TCPn

)
is

ch2(E) =
n+ 1

2
· (π∗h)2 . (4.28)

On the other hand, it follows from Equations (4.24) and (4.19) that

∑

L∈Lirr

aL · ı∗
(
c1(GrLaL)

)
=

(
∑

L∈Lirr

aL · codimL · γL

)
· π∗h

= s · (π∗h)2.

(4.29)

Taking the difference of Equations (4.28) and (4.29) gives us

A =

(
n + 1

2
− s

)
· (π∗h)2.

The result follows from the CY condition (1.2) which requires s = n+ 1.

Lemma 4.36. The term B in par-ch2(E∗) is equal to

B =
1

2

∑

L∈Lirr

a2L · codimL · γ2
L +

∑

L(M

aLaM · codimM · γL · γM , (4.30)

where the second sum runs over all pairs of irreducible subspaces with L ( M .

Proof. Clearly,

B =
1

2

∑

L∈Lirr

a2L · νL · γ2
L +

1

2

∑

L 6=M

aLaM · νL,M · γL · γM , (4.31)

where the second sum runs over all pairs (L,M) ∈ Lirr × Lirr with L 6= M and
DL ∩DM 6= ∅. By Proposition 3.16 , the set S = {L,M} is nested relative to Lirr, so
one of the following must happen:

(i) one subspace is contained in the other;

(ii) the intersection L ∩M is non-empty and reducible.
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If (ii) occurs then, by Lemma 2.21 , L + M = CPn and νL,M = codim(L + M) = 0.
Therefore, we can assume that for all pairs (L,M) occurring in the second sum in
Equation (4.31) we have either L ⊂ M or M ⊂ L. Since every pair of irreducible
subspaces L,M with one contained in the other contributes twice to the sum as (L,M)
and (M,L); and since νL,M = codim(L+M), we have

1

2

∑

L 6=M

aLaM · νL,M · γL · γM =
∑

L(M

aLaM · codimM · γL · γM . (4.32)

Finally, Equation (4.30) follows from Equations (4.31) and (4.32).

Lemmas 4.35 and 4.36 together give us the next.

Corollary 4.37. The parabolic second Chern character of E∗ is given by

par-ch2(E∗) = −
n + 1

2
· (π∗h)2

+
1

2

∑

L∈Lirr

a2L · codimL · γ2
L +

∑

L(M

aLaM · codimM · γL · γM ,
(4.33)

where the last sum is over all pairs (L,M) ∈ Lirr ×Lirr with L ( M .

5 Stability of the parabolic bundle

In this section, we show that the parabolic bundle E∗ that we defined in Section 4.2
is slope stable. To state a precise result, fix polarization coefficients bL, as in Lemma
3.38 , so that Pk is an ample line bundle on X for all k ≫ 1. In this section, we prove
the following stability theorem.

Theorem 5.1. The parabolic bundle E∗ is Pk-stable for all k ≫ 1. More precisely,
there is k0, depending only on (H, a) and the polarization coefficients bL, such that for
every non-zero and proper saturated subsheaf V ⊂ E , we have

∀k > k0 : par-degPk
(V∗) < 0 , (5.1)

where V∗ is the parabolic structure on V induced from E∗ .

In Section 5.1 , we establish some auxiliary results.

In Section 5.2 , we prove the key estimate needed to show stability. This boils down to
analysing the tangencies between H and distributions V ⊂ TCPn with c1(V) ≥ 0, as
described in Proposition 5.10 .

In Section 5.3 , we prove the stability Theorem 5.1 .

In Section 5.4 , we prove our main Theorem 1.1 . We derive Theorem 1.1 as a conse-
quence of Theorem 5.1 together with Mochizuki’s version of the Bogomolov-Gieseker
inequality for parabolic bundles [Moc06, Theorem 6.5].
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5.1 Auxiliary results

The next result is an analogue of [Pan09, Lemma 7.7].

Lemma 5.2. Let M ( CPn be a non-empty linear subspace, then

∑

H|M 6⊂H

aH > dimM + 1. (5.2)

Proof. The CY and klt conditions together give us

∑

H|M 6⊂H

aH = n+ 1−
∑

H|M⊂H

aH

> n+ 1− codimM = dimM + 1 ,

where we used Corollary 2.26 (iii) in the inequality step.

Let V be a saturated subsheaf of E . By Corollary 3.26 we can write

c1(V) = ı · π∗h+
∑

L∈L◦
irr

dL · γL (5.3)

for unique integers ı and dL. The next result is an analogue of [Pan09, Lemma 7.6].

Lemma 5.3. Let ı and dL be as in Equation (5.3). Then

ı ≤ r , (5.4)

where r is the rank of V, and
∀L : dL ≤ n− ı . (5.5)

Proof. To show that ı ≤ r, to take a generic line Q in CPn which does not intersect
any of the irreducible subspaces of the arrangement of codimension ≥ 2 and such that
V|Q is a vector subbundle of TCPn|Q which does not contain TQ. The same argument
used to prove Lemma A.58 in the Appendix shows that Equation (5.4) holds.

To establish the bound on the coefficients dL, we argue similarly. Given L, take a
projective line Q ⊂ CPn such that: (i) Q meets L at single point; (ii) Q ∩M = ∅ for
all M ∈ L \ {L} with codimM ≥ 2; (iii) V|Q̃ is a vector subbundle of

E|Q̃
∼= OP1(2)⊕OP1(1)⊕(n−1) ,

where Q̃ is the proper transform of Q. It is clear that we can take a line Q with the
above three properties.

Item (iii) implies that
deg(V|

Q̃L
) ≤ n. (5.6)
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On the other hand, items (i) and (ii) together with Equation (5.3) give us

deg(V|Q̃L
) = ı+ dL . (5.7)

Equations (5.6) and (5.7)
ı + dL ≤ n

which is equivalent to Equation (5.5).

Next, we discuss tangencies between hyperplanes and distributions.

Definition 5.4. Let V ⊂ TCPn be a distribution and let H ⊂ CPn be a hyperplane.
We say that V is tangent to H (or that H is tangent to V), if for every point x ∈ H∩U
-where U is the regular set of V- we have

Vx ⊂ TxH ,

where Vx denotes the fibre at x of the vector subbundle V ⊂ TCPn on U . We denote
by Tan(V) the collection of all hyperplanes tangent to V,

Tan(V) = {H | H is tangent to V} .

We analyse the set Tan(V) for distributions with non-negative index (see Definition
A.57). Our next result is an analogue of [Pan09, Lemma 7.4]. The proof relies on results
from Appendix A.4 .

Proposition 5.5. Let V ⊂ TCPn be a distribution of index ı ≥ 0.

(i) If ı > 0 then there is a linear subspace M ⊂ CPn with

dimM ≥ ı− 1 (5.8)

such that any hyperplane H ∈ Tan(V) contains M .

(ii) Suppose that ı = 0 and that V is tangent to the n + 1 coordinate hyperplanes.
Then there is a non-zero holomorphic vector field Y on CPn that is tangent to
all the hyperplanes in Tan(V).

Proof. Let r be the rank of V and let d = r − ı be its degree. By Corollary A.67 , the
distribution V defines an (r + 1)-vector field v on Cn+1 with homogeneous polynomial
coefficients of degree d+1. By Lemma A.76 , a hyperplane H ⊂ CPn belongs to Tan(V)
if and only if the corresponding linear hyperplane Hc ⊂ Cn+1 belongs to Tan(v), the
set of linear hyperplanes in Cn+1 that are tangent to v (Definitions A.70 and A.74).

(i) By Proposition A.75 , there is a linear subspace Mc ⊂ Cn+1 with dimMc ≥ ı
that is contained in all hyperplanes in Tan(v). Item (i) follows by taking M = P(Mc).

(ii) Since V is tangent to the coordinate hyperplanes, the multivector field v belongs
to the subspace T ◦

r+1 from Definition A.77 . By Proposition A.82 , there is a linear vector
field v′ on Cn+1 that is tangent to all the hyperplanes in Tan(v) and such that e ∧ v′

is non-zero. We let Y be the projection of v′ down to CPn. Then Y is tangent to all
elements in Tan(V) and, since e ∧ v′ 6= 0, the vector field Y is non-zero.
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Example 5.6. Let M ⊂ CPn be a linear subspace with dimM = r − 1 for some
1 ≤ r ≤ n− 1. The collection of all r-dimensional subspaces that contain M defines a
distribution V ∼= OPn(1)⊕r of index ı = r. A hyperplane H belongs to Tan(V) if and
only if H ⊃ M . In particular, ⋂

H∈Tan(V)

H = M .

This example shows that the inequality (5.8) is sharp.

Remark 5.7. The proof of item (ii) of Proposition A.82 shows that the vector field
Y is tangent to V, meaning that Y (x) ∈ Vx for all points x in the regular set of V.
The next example shows that, in general, distributions of index zero do not necessarily
admit non-zero tangent vector fields.

Example 5.8. Let f and h be homogeneous polynomials in C[x0, . . . , x3] with deg h =
1 and f generic with deg f = 3. The 1-form on C4 given by

ω = 3fdh− hdf

has homogeneous polynomial coefficients of degree 3 and the contraction of ω with
the Euler vector field on C4 is identically zero. The 1-form ω defines a codimension 1
distribution V on CP3 of rank r = 2 and degree d = 2 (see Remark A.69). The index of
V is equal to ı = r−d = 0. The distribution V is integrable. The leaves of the foliation
defined by V make a pencil of cubic surfaces in CP3 given by {λ1 · f +λ2 ·h3 = 0} with
[λ1, λ2] ∈ CP1. A holomorphic vector field Y tangent to V must also be tangent to the
smooth cubic surface {f = 0} and therefore it must vanish.

5.2 Key estimate

Let V ⊂ TCPn be a distribution and let Tan(V) be the set of all hyperplanes tangent
to V.

Definition 5.9. We say that a hyperplane H ⊂ CPn is transverse to V if

H /∈ Tan(V) . (5.9)

We write this condition as H ⋔ V.

The next result lies at the core of the proof of Theorem 5.1 .

Proposition 5.10. Suppose that (H, a) is a weighted arrangement that is klt and CY.
Then there is δ > 0 such that, for any distribution V ⊂ TCPn with non-negative index
ı ≥ 0, we have ∑

H|H⋔V

aH ≥ ı+ δ , (5.10)

where the sum is over all H ∈ H that are transverse to V.
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Proof. Take
δ = min{δ1, δ2} (5.11)

with

δ1 = min
H∈H

aH and δ2 = min
L⊂CPn


codimL−

∑

H|L⊂H

aH


 ,

where the minimum in the definition of δ2 is taken over all non-empty linear subspaces
L ⊂ CPn with codimL ≥ 2. The klt condition implies that δ > 0.

We prove that Equation (5.10) holds with the above δ. We analyse the cases ı = 0
and ı > 0 separately.

• Case ı = 0. We want to show that there is at least one hyperplane H ′ ∈ H
such that V is not tangent to H ′. We proceed by contradiction and suppose that
V is tangent to every hyperplane in H. Then, since H contains n + 1 linearly
independent hyperplanes, by Proposition 5.5 there is a non-zero holomorphic
vector field Y that is tangent to all the members of H, but this contradicts
Corollary 2.28 . We conclude that there is H ′ ∈ H such that V is not tangent to
H ′; therefore ∑

H|H⋔V

aH ≥ aH′ ≥ δ1 = ı+ δ1. (5.12)

• Case ı > 0. By Proposition 5.5 there is a subspace M ⊂ CPn with dimM ≥ ı−1
such that if V is tangent to H then H ⊃ M . In particular, if M 6⊂ H then H ⋔ V
and hence ∑

H|H⋔V

aH ≥
∑

H|M 6⊂H

aH .

Using the CY condition, we have
∑

H|M 6⊂H

aH = n + 1−
∑

H|M⊂H

aH

= n + 1− codimM +



codimM −
∑

H|M⊂H

aH





≥ ı+ δ2 ,

where the last inequality uses the bound dimM ≥ ı− 1 and the definition of δ2.
We conclude that ∑

H|H⋔V

aH ≥ ı+ δ2. (5.13)

The statement follows from Equations (5.11), (5.12), and (5.13).

Remark 5.11. The number δ > 0 in Proposition 5.10 depends only on the weighted
arrangement (H, a) -as given by Equation (5.11)- and not on the distribution V.
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5.3 Proof of Theorem 5.1

Let V be a saturated subsheaf of E . We want to show that there is k0, independent of
V, such that par-degPk

(V∗) < 0 for all k ≥ k0. Let ı be ‘the index’ of V, as defined by
Equation (5.3).

Notation 5.12. We denote by O(kn−2) a polynomial in k of degree at most n−2, say∑n−2
j=0 Cjk

j , such that there is a positive number K = K(H, bL), depending only on H
and the polarization coefficients bL, such that |Cj| ≤ K for all j.

Lemma 5.13. Suppose that ı < 0. Then there is k0, that depends only on the arrange-
ment H and the polarization coefficients bL, such that degPk

(V) < 0 for all k > k0.

Proof. By Equation (5.3), we have

degPk
(V) = ı · c1(Pk)

n−1 · π∗h+
∑

L∈L◦

irr

dL · c1(Pk)
n−1 · γL .

By Lemmas 3.40 and 3.41, we have c1(Pk)
n−1 · γL = fL with fL = O(kn−2) and

c1(Pk)
n−1 · π∗h = kn−1 + f0

with f0 = O(kn−2). Together with the bound dL ≤ n− ı from Lemma 5.3, we obtain

degPk
(V) = ı · kn−1 + ı · f0 +

∑

L∈L◦

irr

dL · fL

≤ ı ·


kn−1 + f0 −

∑

L∈L◦

irr

fL


+ n

∑

L∈L◦

irr

fL

Dividing by kn−1, we get

1

kn−1
degPk

(V) ≤ ı · A + B

with
A = 1 +O(ǫ) and B = O(ǫ),

where O(ǫ) denotes a polynomial in the variable ǫ = 1/k with zero constant term whose
coefficients are uniformly bounded in absolute value in terms of the arrangement and
the fixed integers bL. Thus, if we choose k0 sufficiently big so that, say A > 1/2 and
B < 1/3 for all k ≥ k0, then

1

kn−1
degPk

(V) ≤ ı ·A + B < −
1

2
+

1

3
< 0

for all ı ≤ −1.
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The saturated subsheaf V ⊂ E induces in a natural way a distribution on CPn.
Concretely, V is a vector subbundle of E = π∗TCPn outside a codimension 2 analytic
subset Z ⊂ X . The analytic subset W ⊂ CPn given by

W = π(Z) ∪




⋃

L∈L◦
irr

L





has codimension ≥ 2 and π restricts to a biholomorphism between π−1(U) and U ,
where U = CPn \ W . On the open set U , the push-forward sheaf π∗V is a vector
subbundle of TCPn, thus defining a distribution on CPn. By slight abuse of notation,
we shall also write V for the distribution V ⊂ TCPn.

Lemma 5.14. If ı ≥ 0, then

par-degPk
(V∗) ≤


ı−

∑

H|H⋔V

aH


 · kn−1 +O(kn−2) . (5.14)

Proof. The induced parabolic bundle V∗ is given by the filtration

VL
a = V ∩ EL

a =

{
VL for 0 < a < aL,

V for aL ≤ a ≤ 1;

where L ranges over all elements in Lirr and VL is the sheaf of sections of V which are
tangent to π∗(TL) when restricted to DL. In particular, if on the regular set of V (c.f.
Remark 4.19), the restriction of V to DL is contained in π∗(TL), then the filtration VL

a

is trivial, in the sense that VL
a = V for all 0 < a ≤ 1.

If L = H is a hyperplane, then the quotient V/VH is non-zero if and only if

V|DH
6⊂ π∗(TH) .

This is equivalent to H being transverse to the distribution V ⊂ TCPn as in Definition
5.9. It follows that

par-degPk
(V∗) = degPk

(V) −


∑

H|H⋔V

aH · c1(Pk)
n−1 · γH +

∑

L∈L◦

irr

rLaL · c1(Pk)
n−1 · γL


 ,

(5.15)

where rL is the rank (possibly zero) of the quotient sheaf on DL given by V/VL. Same
as in the proof of Lemma 5.13 ,

degPk
(V) = ı · c1(Pk)

n−1 · π∗h +
∑

L∈L◦
irr

dL · c1(Pk)
n−1 · γL

≤ ı · kn−1 + ı · f0 +
∑

L∈L◦

irr

(n− ı) · fL
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where f0 = O(kn−2) and fL = O(kn−2). Since 0 ≤ ı ≤ n, we get

degPk
(V) ≤ ı · kn−1 +O(kn−2). (5.16)

On the other hand, since the weights aH , aL ∈ (0, 1) and 0 ≤ rL ≤ n,

∑

H|H⋔V

aH · c1(Pk)
n−1 · γH +

∑

L∈L◦

irr

rLaL · c1(Pk)
n−1 · γL

=



∑

H|H⋔V

aH


 · kn−1 +O(kn−2).

(5.17)

The lemma follows from Equations (5.15), (5.16), and (5.17).

Lemma 5.15. Let p(k) be a polynomial with real coefficients

p(k) = cn−1k
n−1 + . . .+ c1k + c0.

Suppose that cn−1 = −δ with δ > 0 and that cn−2, . . . , c0 ≤ C for some C > 0. Then
p(k) < 0 for all positive integers k > 2(n− 1)C/δ.

Proof. For k ≥ 1 we have

p(k) ≤

(
−δ +

(n− 1)C

k

)
kn−1

and the statement follows.

Proof of Theorem 5.1. We divide the proof into cases according to the sign of ı.
The case ı < 0 follows from the obvious inequality:

par-degPk
(V∗) ≤ degPk

(V)

(see Remark 4.21) together with Lemma 5.13.
Therefore, we can assume that ı ≥ 0. By Lemmas 5.14 and 5.15, it is enough to

show that
c := ı−

∑

H|H⋔V

aH (5.18)

is < 0. Since index of the distribution V ⊂ TCPn is equal to ı ≥ 0, by Proposition
5.10 we get that c = −δ for some δ > 0 that depends only on (H, a). This concludes
the proof of Theorem 5.1 .

Remark 5.16. Tracing back the arguments in the proof of Theorem 5.1, we showed
that we can take k0 = C/δ, where C only depends onH and the polarization coefficients
bL, and δ is as in Proposition 5.10 .
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5.4 Proof of Theorem 1.1

Let E∗ be the parabolic bundle on (X,D) as defined in Section 4.2 and let Pk be
the polarization on X as given by Lemma 3.38 . Consider the top product of the
polarization Pk with par-ch2(E∗) given by

p(k) = c1(Pk)
n−2 · par-ch2(E∗) . (5.19)

The expression p(k) defines a polynomial in k of degree n − 2 with real coefficients.
The coefficients of p(k) depend only on the weighted arrangement (H, a) and the fixed
integers bL involved in the choice of polarization Pk. More precisely, if we write

c1(Pk) = k · π∗h− e

with e =
∑

L∈L◦

irr

bL · γL, then

p(k) = Cn−2k
n−2 + Cn−1k

n−1 + . . .+ C0 , (5.20)

where the coefficients Cj are given by

Cj =

(
n− 2

j

)
· (π∗h)j · (−e)n−2−j · par-ch2(E∗) . (5.21)

Lemma 5.17. The coefficient Cn−2 in Equation (5.20) is given by

Cn−2 =
∑

L∈Ln−2

irr

a2L −
1

2

∑

H∈H

BH · a2H −
n+ 1

2
, (5.22)

where BH + 1 is the number of codimension 2 irreducible subspaces contained in H.

Proof. By Equation (5.21) the coefficient Cn−2 is equal to

Cn−2 = (π∗h)n−2 · par-ch2(E∗). (5.23)

Equation (4.33) expresses par-ch2(E∗) as a sum of 3 terms:

par-ch2(E∗) = −
n + 1

2
· (π∗h)2

+
1

2

∑

L∈Lirr

a2L · codimL · γ2
L +

∑

L(M

aLaM · codimM · γL · γM .

Taking the corresponding products of the above 3 terms with (π∗h)n−2 we have

Cn−2 = A+ B+ C (5.24)

where A, B, and C are given as follows
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• A is the easiest and is equal to

A = −
n + 1

2
· (π∗h)n = −

n+ 1

2
. (5.25)

• B is the middle term involving self-intersections. We use Corollary 3.32 (ii)
together with Equations (3.14) and (3.18) to obtain correspondingly:

(π∗h)n−2 · γ2
L =






0 if codimL > 2 ,

−1 if codimL = 2 ,

−BH if L = H ∈ H .

We conclude that

B =
1

2

∑

L∈Lirr

a2L · codimL ·
(
(π∗h)n−2 · γ2

L

)

= −
∑

L∈Ln−2

irr

a2L −
1

2

∑

H∈H

BH · a2H .
(5.26)

• C involves mixed intersections for pairs L ( M . It follows from Lemma 3.31 that
if codimL > 2 then

(π∗h)n−2 · γL · γM = 0.

On the other hand, if codimL = 2 and M = H is a hyperplane that contains L
then by Lemma 3.35 we get

(π∗h)n−2 · γL · γH = 1.

We conclude that

C =
∑

L(M

aLaM · codimM ·
(
(π∗h)n−2 · γL · γM

)

=
∑

L∈Ln−2

irr

aL ·




∑

H|L⊂H

aH





= 2
∑

L∈Ln−2

irr

a2L .

(5.27)

The result follows from Equations (5.25), (5.26), and (5.27).

Remark 5.18. Note that Cn−2 is independent of the integers bL involved in the choice
of polarization, unlike the other coefficients Cj.
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Proof of Theorem 1.1. Let (H, a) be klt and CY. By Theorem 5.1, the parabolic bun-
dle E∗ on (X,D) is slope stable with respect to the polarization Pk for all k ≫ 1.
By Theorem 4.29 the parabolic bundle E∗ is locally abelian, therefore we can apply
Theorem 4.24 . By the Bogomolov-Gieseker inequality (4.13), for all k ≫ 1 we have

p(k) = c1(Pk)
n−2 · par-ch2(E∗) ≤ 0 . (5.28)

In particular, the coefficient Cn−2 of the highest order term of p(k) in Equation (5.20)
must be non-positive, i.e.,

Cn−2 ≤ 0 . (5.29)

Equation (1.3) follows from Equation (5.29) together with Lemma 5.17 .

6 The quadratic form and the stable cone

In Section 6.1 , we define the quadratic form Q : RH → R associated to H by extending
the left hand side of Equation (1.3) from the affine hyperplane {

∑
H aH = n+1} ⊂ RH

to the whole space RH as a homogeneous degree 2 polynomial.

In Section 6.2 , we introduce the concept of stable weighted arrangements and the stable
cone C◦ ⊂ RH of the arrangement H.

In Section 6.3 , we introduce the semistable cone C, the matroid polytope, and show
that the quadratic form Q is ≤ 0 on C (Theorem 6.29).

In Section 6.4 , we provide links to GIT and stability of pairs.

6.1 The quadratic form of an arrangement

Let H ⊂ CPn be a hyperplane arrangement. Let s be the linear function on RH that
takes a vector a ∈ RH and sends it to the sum of its components,

s =
∑

H∈H

aH . (6.1)

Recall that if L ∈ Ln−2
irr is an irreducible subspace of codimension 2 then the weight aL

at L is given by

aL =
1

2

∑

H|L⊂H

aH . (6.2)

Thus, we can think of aL as a linear function on RH as well.

Definition 6.1. The quadratic form Q = Q(a) of H is the homogeneous polynomial
of degree 2 on RH given by

Q(a) = 4(n+ 1) ·
∑

L∈Ln−2

irr

a2L − 2(n+ 1) ·
∑

H∈H

BH · a2H − 2 · s2 , (6.3)
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where BH + 1 is the number of irreducible codimension 2 subspaces contained in H .

Taking common factor 4(n+ 1), we have

Q(a) = 4(n+ 1) ·




∑

L∈Ln−2

irr

a2L −
1

2
·
∑

H∈H

BH · a2H −
s2

2(n+ 1)


 . (6.4)

Up to the constant dimensional factor 4(n+ 1) , the quadratic form Q agrees with the
left hand side of Equation (1.3) on the affine hyperplane {s = n+1} ⊂ RH. We record
this fact as a lemma.

Lemma 6.2. If s(a) = n+ 1, then

Q(a) = 4(n+ 1)




∑

L∈Ln−2

irr

a2L −
1

2
·
∑

H∈H

BH · a2H −
n+ 1

2



 .

We can write down the symmetric matrix associated with the quadratic form Q.
To do this, label the hyperplanes, say

H = {H1, . . . , HN} ,

and let ai = aHi
be the weight at the hyperplane Hi. Then, we can write

Q(a) =
∑

i

Qii · a
2
i +

∑

i<j

Qij · 2aiaj .

The coefficients Qij can be easily calculated from Equation (6.3). Let σi be the number
of irreducible codimension 2 subspaces contained in Hi, i.e., σi = BHi

+ 1. Then

Qij =





−(n + 1)σi + 2n if i = j ,

−2 if i 6= j and Hi ∩Hj is reducible ,

n− 1 if i 6= j and Hi ∩Hj is irreducible .

(6.5)

By slight abuse of notation, we shall also write Q for the symmetric matrix (Qij).

Remark 6.3. If n = 2 then Qij = −Aij where Aij are the entries of symmetric matrix
defined by Hirzebruch [Hir85, Equation (3)] regarding Höfer’s formula for the ‘propor-
tionality’ 3c2−c21 of coverings of the projective plane branched along line arrangements.

For the record, we note the following property of the quadratic form:

Lemma 6.4. The sum of the i-th column (or i-th row) of the matrix (Qij) is given by

N∑

j=1

Qij = (n− 1) ·N − (n+ 1) · (ti − 1) , (6.6)

where ti is the number of codimension 2 subspaces L ∈ L contained in Hi.
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Proof. Let R and I be the set of all reducible and irreducible codimension 2 subspaces
contained in Hi and let T = R∪I. We write τi = |R| and σi = |I|, so that ti = τi+σi.
It follows from Equation (6.5) that

n∑

j=1

Qij = 2n− (n + 1) · σi − 2τi + (n− 1) ·
∑

L∈I

(mL − 1)

= 2n− (n + 1) · ti + (n− 1) · τi + (n− 1) ·
∑

L∈I

(mL − 1)

= 2n− (n + 1) · ti + (n− 1) ·
∑

L∈T

(mL − 1)

Since for every j 6= i the intersection Hi ∩ Hj is a codimension 2 subspace contained
in Hi ∑

L∈T

(mL − 1) = N − 1 .

Therefore,
n∑

j=1

Qij = 2n− (n+ 1) · ti + (n− 1) · (N − 1)

which implies (6.6).

Remark 6.5. It follows from Lemma 6.4 that the vector 1 with all components equal
to 1 is an eigenvector of Q if and only if every hyperplane H ∈ H intersects the other
hyperplanes of the arrangement along the same number of codimension 2 subspaces.

The next example shows that, for most arrangements, the quadratic form Q is
non-degenerate and indefinite.

Example 6.6. Let H = {H1, . . . , HN} be an arrangement in CPn which is generic,
in the sense that no 3 distinct hyperplanes are linearly dependent. Suppose that the
number of hyperplanes N is > n + 1. The generic assumption implies that σi = 0 for
all i. Equation (6.5) gives us

Q = 2 ·




n −1 · · · −1
−1 n · · · −1
· · · · · · · · · · · ·
−1 −1 · · · n


 .

Let 1 ∈ RN be the vector with all entries equal to 1. Then 1 is an eigenvector with

Q · 1 = 2(n+ 1−N) · 1 .

The assumption that N > n+1 implies that the eigenvalue is < 0. On the other hand,
if a = (a1, . . . , aN) is a vector with

∑
i ai = 0, i.e., a is orthogonal to 1, then

Q · a = 2(n + 1) · a .
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This shows that the orthogonal complement 1⊥ is an eigenspace of Q with positive
eigenvalue. Thus, the quadratic form Q is non-degenerate of signature (N − 1, 1).

Next, we provide an example for which the quadratic formQ is negative semidefinite
and has non trivial kernel.

Example 6.7. Let H ⊂ CPn be the braid (or An+1) arrangement consisting of the(
n+2
2

)
hyperplanes Hij = {xi = xj} for 1 ≤ i < j ≤ n+ 2 in

CPn = P
(
Cn+2

/
{x1 = x2 = . . . = xn+2}

)
.

The elements L ∈ Ln−2
irr are of the form L = {xi = xj = xk} for a triplet of distinct

indices i, j, k. The number of codimension 2 irreducible subspaces contained in Hij is
equal to n = |[n+2] \ {i, j}|. Therefore, BH = n− 1 for all H . Equation (6.3) gives us

Q = (n+ 1)
∑

i<j<k

(aij + aik + ajk)
2 − (n2 − 1) ·

∑

i<j

a2ij − 2 ·

(
∑

i<j

aij

)2

, (6.7)

where aij is the weight at Hij. This quadratic form is negative semidefinite and has
non trivial kernel, as shown by the next.

Lemma 6.8. The quadratic form (6.7) is negative semidefinite on RH with kernel the
linear subspace of K ⊂ RH parametrized by aij = ai + aj with (a1, . . . , an+2) ∈ Rn+2.

Proof. Identify RH with RN where N =
(
n+2
2

)
with coordinates (aij)i<j and basis

vectors eij . If Q is the symmetric matrix of the quadratic form, then we can write

Q · a =
∑

i<j

〈a,qij〉 · eij , (6.8)

where 〈·, ·〉 is the Euclidean product on RN and the vectors qij are the rows of the
matrix Q given by Equation (6.5)

(qij)kl =





n(1− n) if {k, l} = {i, j} ,

−2 if {k, l} ∩ {i, j} = ∅ ,

n− 1 if |{k, l} ∩ {i, j}| = 1 .

(6.9)

Let vi be the vector with components

(vi)kl =

{
1 if i ∈ {k, l}

0 if i /∈ {k, l}

so that v1, . . . ,vn+2 make a basis of the linear subspace K. By Equation (6.9),

qij = (n+ 1) · (vi + vj)− n(n+ 1)eij − 2 · 1 , (6.10)
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where 1 is the vector with all entries equal to 1. By Equations (6.8) and (6.10), together
with

〈vi, 1〉 = n + 1 , 〈vi,vj〉 =

{
n+ 1 if i = j ,

1 if i 6= j ,
and 1 ∈ K ,

we deduce that Q · vi = 0 for all i and Q · a = −n(n+ 1) · a for all a ∈ K⊥. Thus, the
quadratic form Q is negative semidefinite with kernel K.

Remark 6.9. For n = 2, [Hir85, §5] asserts that for all reflection line arrangements
listed in Section 3 of that paper, the quadratic form Q is negative semidefinite. In
Theorem 7.29 , we provide an extension to higher dimensions. The calculation of the
kernel of Q for reflection arrangements is also related to the classification of Dunkl
connections in [CHL05, §2.6].

Example 6.10. Let H = H1 ×H2 be a product arrangement in CPn (Definition 2.5)
with H1 ⊂ CPn1 and H2 ⊂ CPn2 . Then, in an obvious notation,

Q

n + 1
=

Q1

n1 + 1
+

Q2

n2 + 1
+

2s21
n1 + 1

+
2s22

n2 + 1
−

2s2

n+ 1
.

In particular,
Q

n + 1
=

Q1

n1 + 1
+

Q2

n2 + 1

on the intersection {s1 = n1 + 1} ∩ {s2 = n2 + 1}.

6.2 The stable cone

Let H ⊂ CPn be a hyperplane arrangement and let a ∈ RH be a weight vector with
positive weights aH > 0 for all H ∈ H. Let a′ be the rescaled vector

a′ = λ · a with λ =
n + 1

s
, (6.11)

where s is the total sum of the weights as in Equation (6.1).

Definition 6.11. The weighted arrangement (H, a) is stable if the rescaled weighted
arrangement (H, a′) is klt.

We have the following restatement of Theorem 1.1.

Theorem 6.12. If (H, a) is a stable weighted arrangement, then Q(a) ≤ 0.

Proof. Since Q is homogeneous, it suffices to show that Q(a′) ≤ 0. The choice of
rescaling factor λ given by Equation (6.11) ensures that the weighted arrangement
(H, a′) is CY. On the other hand, the stability assumption requires that (H, a′) is klt.
By Lemma 6.2 and Theorem 1.1 , Q(a′) ≤ 0.
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Remark 6.13. If n = 1 and (H, a) is stable then H must have at least 3 points. In
this case, we take the convention that L−1

irr = {∅}. Since ∅ is contained in all H ∈ H,
we have that a∅ = s/2 and BH = 1− 1 = 0 for all H . Therefore, Q = s2/4− s2/4 = 0
and the statement of Theorem 6.12 is trivial.

We provide 3 slightly different but equivalent systems of linear inequalities that
characterize the weights for which the arrangement H is stable. For an arbitrary non-
empty and proper linear subspace L ⊂ CPn, consider the equation

∑

H|L⊂H

aH <
codimL

n + 1
·
∑

H∈H

aH . (6.12)

Lemma 6.14. A weighted arrangement (H, a) with positive weights aH > 0 is stable
if and only if any of the following equivalent conditions is satisfied:

(i) Equation (6.12) holds for every L ∈ Lirr ;

(ii) Equation (6.12) holds for every L ∈ L;

(iii) Equation (6.12) holds for every non-empty and proper linear subspace L ⊂ CPn.

Proof. The weighted arrangement (H, a) is stable if the rescaled CY weighted arrange-
ment (H, a′) is klt. Corollary 2.26 implies that (i), (ii), and (iii) are equivalent.

Definition 6.15. The stable cone C◦ of H is the set of all weights a ∈ RH
>0 such that

the weighted arrangement (H, a) is stable. Equivalently, C◦ is the cone over the set of
weights a ∈ RH

>0 for which the weighted arrangement (H, a) is klt and CY.

By Lemma 6.14 , the stable cone C◦ is an open convex polyhedral cone; it is the
subset of the positive octant defined by the linear inequalities (6.12). Next, we give
two explicit examples of stable cones.

Example 6.16. If H is normal crossing then the only irreducible subspaces are the
hyperplanes of the arrangement, i.e., Lirr = H. By Lemma 6.14 (i), the weighted
arrangement (H, a) is stable if and only if

∀H ∈ H : 0 < aH <
s

n+ 1
. (6.13)

Example 6.17. Let H ⊂ CPn be the braid arrangement as in Example 6.7. The
irreducible subspaces LI correspond to subsets I ⊂ [n + 2] with 2 ≤ |I| ≤ n + 1 by
letting LI = {xi = xj for i, j ∈ I}. In particular, codimLI = |I| − 1. By Lemma
6.14 (i), the weighted arrangement (H, a) with weights aij > 0 is stable if and only if
for every I ⊂ [n + 2] with 2 ≤ |I| ≤ n+ 1 we have

∑

i<j | i,j∈I

aij <
|I| − 1

n+ 1
· s .
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Theorem 6.12 can be restated as follows.

Theorem 6.18. The quadratic form Q is negative semidefinite on the stable cone,

C◦ ⊂ {Q ≤ 0} . (6.14)

Remark 6.19. Of course, by continuity, Q ≤ 0 on the closure C◦.

For generic arrangements, we can check Theorem 6.18 by direct calculation, as
shown in the next example.

Example 6.20. Let H ⊂ CPn be generic with |H| > n+ 1 as in Example 6.6 . Then

Q = 2(n+ 1) ·
∑

H∈H

a2H − 2 · s2 . (6.15)

is non-degenerate and it has signature (|H| − 1, 1). By Lemma 6.14 , if a ∈ C◦ then
aH < s/(n+ 1). Therefore,

∑

H∈H

a2H <
s

n+ 1
·
∑

H∈H

aH =
s2

n+ 1
. (6.16)

It follows from Equations (6.15) and (6.16) that Q < 0 on C◦.

6.3 The matroid polytope and the semistable cone

We present a geometric description of the set of weights for which an arrangement is
stable, involving standard constructions of polytopes associated to matroids. For a
more in depth discussion and relations to toric geometry, see [Ale15] .

Let H ⊂ CPn be a hyperplane arrangement.

Definition 6.21. A basis B of H is a subset B ⊂ H with |B| = n+ 1 and

⋂

H∈B

H = ∅ .

The arrangement H has a basis if and only if H is essential. If B is a basis, then up
to a linear change of coordinates, B can be identified with the set of n+ 1 coordinate
hyperplanes in CPn.

Definition 6.22. The indicator function of a basis B ⊂ H is the vector eB ∈ RH with
components

(eB)H =

{
1 if H ∈ B ,

0 if H /∈ B .

Definition 6.23. The matroid polytope P of H is the convex hull of the vectors eB
with B ⊂ H a basis.
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The matroid polytope P is non-empty precisely when H is essential. Since for every
indicator function of a basis B ⊂ H we have s(eB) = n + 1, the matroid polytope is
contained in the affine hyperplane s = n+ 1,

P ⊂ {s = n+ 1} .

Therefore, the dimension of P is at most |H| − 1. It follows from [BGW03, Theorem
1.12.9] that, if H is an essential arrangement, then

dimP = |H| − k ,

where k is the number of factors in the decomposition of H as a product of irreducible
arrangements H ∼= H1 × . . .×Hk .

A dual description of the matroid polytope in terms of defining linear inequalities
is given by the following result of Edmonds.

Theorem 6.24 ([Sch03, Corollary 40.2d]). The matroid polytope P is the subset of the
affine hyperplane {s = n + 1} in RH defined by the following inequalities:

∀H ∈ H : aH ≥ 0 ,

∀L ∈ L :
∑

H|L⊂H

aH ≤ codimL . (6.17)

Let P ◦ be the relative interior of the matroid polytope P inside the hyperplane
{s = n + 1}. Specifically, P ◦ is the subset of {s = n + 1} of points for which the
inequalities (6.17) are strict. In particular, P ◦ is non-empty if and only if P has
dimension |H| − 1.

Corollary 6.25. The weighted arrangement (H, a) is klt and CY if and only if

a ∈ P ◦ . (6.18)

Proof. By definition, (H, a) is klt if and only if all the inequalities in (6.17) are strict.
The result follows from Theorem 6.24 .

Corollary 6.25 implies the next.

Corollary 6.26. The stable cone C◦ is the open polyhedral cone given by

C◦ = R>0 · P
◦ . (6.19)

Definition 6.27. The semistable cone C ⊂ RH is the cone over the matroid polytope,

C = R≥0 · P . (6.20)

Remark 6.28. The stable cone C◦ is the interior of the semistable cone C, as a subset
of RH. If C◦ is non-empty then C is equal to its closure, C = C◦. By Corollary B.2,
this happens precisely when H is essential and irreducible. However, if the essential
arrangement H is reducible, then C◦ is empty but C is not.
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We can now state our main result in its more general form.

Theorem 6.29. Let H ⊂ CPn be an essential arrangement. Then the quadratic form
Q of H is ≤ 0 on the semistable cone C ⊂ RH.

Proof. It suffices to show that Q ≤ 0 on the matroid polytope P of H. If H is
reducible, say H = H1 × H2, then the matroid polytope of H is the product of the
matroid polytopes of the respective factors, say P = P1 × P2. By Example 6.10 , on
the polytope P , we have

Q

n+ 1
=

Q1

n + 1
+

Q2

n2 + 1
.

Therefore, to prove the theorem, we can assume that H is irreducible.
Suppose that H is irreducible. As pointed out in Remark 6.28 , if the arrangement

H is irreducible then the semistable cone C is the closure of the stable cone C◦. By
Theorem 6.18 , the quadratic form Q of H is ≤ 0 on C◦. By continuity, Q ≤ 0 on
C.

6.4 Relation to GIT and stability of pairs

In this section we justify the name stable cone, by providing links to Geometric Invari-
ant Theory and stability of pairs.

6.4.1 Configurations of points

It is useful to work dually with configurations of points rather than hyperplane ar-
rangements. We set-up the basic definitions.

Definition 6.30. A weighted configuration of points (P, a) is a finite set

P = {p1, . . . , pm}

of points pi ∈ CPn together with a weight vector a = (a1, . . . , am) ∈ Rm
>0.

Remark 6.31. Note that we require the weights ai to be positive. Informally, we can
think of ai as the mass of the point pi .

The main concept of interest is the following.

Definition 6.32. A weighted configuration of points (P, a) is stable, if for every non-
empty and proper projective subspace W ⊂ CPn the following holds:

∑

i | pi∈W

ai <
dimW + 1

n + 1
·

m∑

i=1

ai . (6.21)

The sum poset of P is the finite set U of all proper non-empty subspaces U ⊂ CPn

spanned by points in P, equipped with the partial order given by inclusion. The next
result is dual to Lemma 6.14 , we omit its proof.
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Lemma 6.33. The weighted configuration of points (P, a) is stable if and only if

∀U ∈ U :
∑

i | pi∈U

ai <
dimU + 1

n+ 1
·

m∑

i=1

ai . (6.22)

Next, we relate stability of weighted configurations of points to our previous notion
of stable weighted arrangements.

Notation 6.34. If L ⊂ CPn is a linear subspace, we write L⊥ ⊂ (CPn)∗ for the
(projectivization) of the annihilator of L. In particular,

codimL = dimL⊥ + 1 . (6.23)

Let H ⊂ CPn be a hyperplane arrangement. For each H ∈ H, there is a unique
up to scalar multiplication linear function ℓH ∈ (Cn+1)∗ such that H = {ℓH = 0}.
The annihilator H⊥ is the uniquely defined point in (CPn)∗ = P((Cn+1)∗) given by
H⊥ = [ℓH ]. This way, the arrangement H ⊂ CPn corresponds to a configuration of
points P ⊂ (CPn)∗ with

P = H⊥ = {H⊥ |H ∈ H} .

Recall that L is the poset of non-empty and proper subspaces L ⊂ CPn obtained
by intersecting members H ∈ H, equipped with the partial order given by reverse
inclusion. Similarly, U is the poset of non-empty and proper subspaces U ⊂ (CPn)∗

obtained as sums of points p ∈ P, equipped with the partial order given by inclusion.
The correspondence

L 7→ U = L⊥

defines an isomorphism of posets between L and U .
Let a ∈ RH be a weight vector with components aH > 0 for all H ∈ H. Let m = |H|

and label the hyperplanes H = {H1, . . . , Hm}. Write P = {p1, . . . , pn} with pi = H⊥
i

and a = (a1, . . . , am) with ai = aHi
.

Lemma 6.35. The weighted arrangement (H, a) is stable (as in Definition 6.11) if
and only if the weighted configuration of points (P, a) is stable (as in Definition 6.32).

Proof. By Lemma 6.14 , the weighted arrangement (H, a) is stable if and only if, for
every L ∈ L we have gL(a) > 0, where

gL(a) =
codimL

n+ 1
·

m∑

i=1

ai −
∑

i |L⊂Hi

ai .

By Lemma 6.33, the weighted configuration (P, a) is stable if and only if, for every
U ∈ U we have fU(a) > 0, where

fU(a) =
dimU + 1

n+ 1
·

m∑

i=1

ai −
∑

i | pi∈U

ai .
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If U = L⊥ for some L ∈ L, then (6.23) asserts that dimU + 1 = codimL. On the
other hand, L ⊂ Hi if and only if pi ∈ U . Therefore,

gL(a) = fU(a) .

Using this, the lemma follows from the fact that L 7→ U = L⊥ is a bijection between
the intersection poset L of H and the sum poset U of P.

6.4.2 Geometric Invariant Theory

Given a reductive group G acting on a projective variety X together with a G-linearised
ample line bundle L, there is a standard notion of a point p ∈ X being GIT stable. In
our case of interest, X is embedded in CPk (for some k ≫ 1) via sections of L and G
acts on X through linear transformations of Ck+1. In this case, a point p ∈ X is GIT
stable if the isotropy subgroup Gp is finite and the orbit G · p̃ ⊂ Ck+1 is closed, where
p̃ ∈ Ck+1 is any point that projects down to p ∈ CPk.

To make the connection, let (P, a) be a weighted configuration of m distinct points
in CPn and assume that all the weights ai are positive integers. Let X be the product
of m-copies of CPn and let La be the polarization on X given by

La =
m⊗

j=1

pr∗j (OPn(aj)) ,

where X
prj
−→ CPn is the projection to the j-factor.

Lemma 6.36. The weighted configuration of points (P, a) is stable if and only if the
point p = (p1, . . . , pn) ∈ X is GIT stable for the diagonal action of G = SL(n + 1,C)
on X linearised by the polarization La.

Proof. This is follows from [Dol03, Theorem 11.2] and Definition 6.32 .

The link to differential geometry is provided by the Kempf-Ness theorem. To avoid
distinctions between stable and polystable points, which have continuous isotropy sub-
groups, we assume that Gp = {identity}. Equivalently, we assume that P is essential
and irreducible (see Section B). There is a standard embedding of CPn ⊂ su(n + 1)∗,
as a coadjoint orbit. Then (P, a) is stable if and only if there is F ∈ SL(n + 1,C)
such that the centre of mass of the points F (pi) with weights ai in the Euclidean space
su(n + 1)∗ is equal to zero. This interpretation of the stable condition remains valid
for arbitrary positive real weights, see [KLM09, Example 6.3].

Example 6.37. If (H, a) is a collection of points pi ∈ CP1 with weights ai > 0. Then

(H, a) is stable ⇐⇒ ai < (1/2) ·
(∑

j aj

)
for all i; equivalently:

∀i : ai <
∑

j 6=i

aj . (6.24)
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In this case, the Kemp-Ness theorem becomes the familiar statement that a collection
of 3 or more points on the unit sphere S2 ⊂ R3 with masses ai can be moved by an
element of SL(2,C) to have zero centre of mass if and only if (6.24) is satisfied.

6.4.3 Stability of pairs

A weighted arrangement (H, a) corresponds to a log pair (CPn,∆) with

∆ =
∑

H∈H

aH ·H .

From MMP, we recall the following.

Definition 6.38. The weighted arrangement (H, a) is log canonical if the following
inequalities hold:

∀H ∈ H : 0 < aH ≤ 1 ,

∀L ∈ L :
∑

H|L⊂H

aH ≤ codimL . (6.25)

Remark 6.39. Definition 6.38 is broader than klt condition, in the sense that the
strict inequalities < in (1.1) are relaxed to weak inequalities ≤ in (6.25).

Recall that we write s for the linear function on RH given by

s =
∑

H∈H

aH .

Lemma 6.40. Let (H, a) be a log canonical weighted arrangement.

(i) If s > n + 1 then (H, a) is stable.

(ii) If s < n + 1 then (H, a) is stable if and only if (CPn,∆) is K-stable.

Proof. (i) If s > n + 1 then the rescaling factor λ = (n + 1)/s in Equation (6.11) is
< 1. Therefore, the weights a′H = λ · aH of the rescaled arrangement (H, a′) satisfy
a′H < aH for all H . This implies that the weak inequalities ≤ in (6.25) become strict
inequalities <; showing that (H, a′) is klt.

(ii) This is an immediate consequence of item (2) in [Fuj21, Theorem 1.5].

A weighted arrangement (H, a) is of general type if s > n+1. It is Fano if s < n+1.

Remark 6.41. Log canonical weighted arrangements of general type are studied in
[Ale15] under the acronym ‘shas’, for ‘stable hyperplane arrangements’.

64



7 Hirzebruch arrangements and matroids

In Section 7.1 we calculate the partial derivatives ∂Q/∂aH of the quadratic form and
express them in terms of total sums of weights on induced arrangements HH .

In Section 7.2 , we analyse the symmetric case where all the weights of the arrangements
are equal. This leads us to define a class of arrangements, which we call Hirzebruch
arrangements, for which the main diagonal of RH is contained in the kernel of the
quadratic form Q.

In Section 7.3 , we show that if H ⊂ CPn is a complex reflection arrangement defined
by an irreducible unitary complex reflection group G ⊂ U(n+1), then H is Hirzebruch
(Proposition 7.27) and its quadratic form is negative semidefinite.

In Section 7.4 , we reformulate our results in the more general context of matroids.

7.1 Critical points of Q and induced arrangements

We calculate the partial derivatives of Q. Lemma 7.3 expresses ∂Q/∂aH in terms of
the sum of the induced weights on the induced arrangement HH , as defined next.

We use the notation for deletion and restriction triples as in [OT92, Definition 1.14].
Fix H ∈ H and write (H,H′,H′′) where H′ = H \ {H} and H′′ = HH is the induced
arrangement obtained by intersecting H with members of H′ as defined in Section 2.1 .

An element H ′′ ∈ H′′ is a codimension 2 subspace of CPn. In particular, we
can distinguish the elements of H′′ into two different types depending on whether
H ′′ ∈ Ln−2

irr or not. Recall that H ′′ ∈ Ln−2
irr if and only if its multiplicity mH′′ = |HH′′|

is ≥ 3, where HH′′ is the localization of H at H ′′. If H ′′ ∈ Ln−2
irr , then aH′′ is defined as

one-half of the sum of all the weights of the hyperplanes in H that contain H ′′.

Definition 7.1. The weights of the induced arrangement H′′ are defined as follows:

a′′H′′ =

{
aH′′ if H ′′ ∈ Lirr ,

aH′ if HH′′ = {H,H ′} .
(7.1)

The sum of the induced weights on H′′ is denoted by sH . More precisely,

sH =
∑

H′|H′⋔H

aH′ +
∑

L∈Ln−2

irr
|L⊂H

aL . (7.2)

Lemma 7.2. For every H ∈ H the following identity holds

BH · aH = sH − s +
∑

L∈Ln−2

irr
|L⊂H

aL . (7.3)
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Proof. Since every hyperplane H ′ ∈ H \ {H} intersects H either at L ∈ Ln−2
irr or

H ′ ⋔ H , we have

s = aH +
∑

L∈Ln−2

irr
|L⊂H

(2aL − aH) +
∑

H′|H′⋔H

aH′

= −BH · aH + sH +
∑

L∈Ln−2

irr
|L⊂H

aL .

and (7.2) follows.

Lemma 7.3. The partial derivatives of the quadratic form are given by

∂Q

∂aH
= 4n · s− 4(n+ 1) · sH . (7.4)

Proof. By Equation (6.2) we have

∂aL
∂aH

=

{
1/2 if H ⊃ L ,

0 otherwise.

Taking the partial derivative of Q with respect to aH in Equation (6.4) gives us

1

4(n+ 1)

∂Q

∂aH
=

∑

L∈Ln−2

irr
|L⊂H

aL − BH · aH −
s

n+ 1
.

Using Equation (7.3) we obtain

1

4(n+ 1)

∂Q

∂aH
=

(
1−

1

n+ 1

)
s− sH

and (7.4) follows.

A critical point a ∈ RH of Q is a point where all partial derivatives ∂Q/∂aH vanish.
The set of all critical points of Q is the kernel of the quadratic form. Equation (7.4)
gives us the following set of defining linear equations for the kernel of Q.

Corollary 7.4. A weight vector a ∈ RH is a critical point of Q if and only if

∀H ∈ H : sH =
n

n + 1
s . (7.5)

We use the above calculation of partial derivatives to give an alternative expression
for the quadratic form Q.

Notation 7.5. We denote by Ln−2
red the set of all reducible codimension 2 subspaces.

Concretely, L ∈ Ln−2
red if and only if its multiplicity is mL = 2. In this case, we write

HL = {H,H ′} with H,H ′ ∈ H and L = H ⋔ H ′.
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Corollary 7.6. The quadratic form of H is equal to

Q = 2n · s2 − 4(n+ 1) ·
∑

L∈Ln−2

red

aH · aH′ − 4(n+ 1) ·
∑

L∈Ln−2

irr

a2L , (7.6)

where the second sum runs over all L ∈ Ln−2
red with L = H ⋔ H ′.

Proof. Since Q is a homogeneous polynomial of degree 2, we have

2Q =
∑

H∈H

aH
∂Q

∂aH
. (7.7)

Replacing the values for ∂Q/∂aH given by Lemma 7.3 together with Equation (7.2) for
sH gives us

Q =
∑

H∈H

aH · (2n · s− 2(n+ 1) · sH)

= 2n · s2 − 2(n+ 1) ·
∑

H∈H

∑

H′|H′⋔H

aH · aH′

− 2(n+ 1) ·
∑

H∈H

∑

L∈Ln−2

irr
|L⊂H

aH · aL .

(7.8)

Note that ∑

H∈H

∑

H′|H′⋔H

aH · aH′ = 2 ·
∑

L∈Ln−2

red

aH · aH′ (7.9)

and ∑

H∈H

∑

L∈Ln−2

irr
|L⊂H

aH · aL = 2 ·
∑

L∈Ln−2

irr

a2L . (7.10)

Equation (7.6) follows from Equations (7.8), (7.9), and (7.10).

7.2 Hirzebruch arrangements

Let H ⊂ CPn be an arrangement with N = |H| hyperplanes. We consider the case for
where all hyperplanes have the same weight. Our main result is Theorem 7.14.

We begin with an elementary lemma that calculates the total sum of the induced
weights on the induced arrangements HH . Fix H ∈ H and let sH be, as in Definition
7.1, given by

sH =
∑

H′|H′⋔H

aH′ +
∑

L∈Ln−2

irr
|L⊂H

aL . (7.11)

Lemma 7.7. Suppose that all the weights of (H, a) are equal, say aH = a for all H.
Then, for every H ∈ H, we have

2sH =
(
|HH |+N − 1

)
· a . (7.12)
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Proof. We want to replace the values aH = a in Equation (7.11) but there is an
observation to do first. The weight aH of our fixed hyperplane H occurs only in the
irreducible terms aL but not in the reducible terms aH′. We remedy this asymmetry
by using the identity a = (a+ a)/2. Indeed, since all the weights aH are equal, we can
replace each term aH′ with (aH′ +aH)/2. Since every hyperplane in H\{H} intersects
H at a unique codimension 2 subspace (see Figure 2) we obtain

2sH = (|H| − 1) · a︸ ︷︷ ︸
contribution of H\{H}

+ |HH | · a︸ ︷︷ ︸
contribution of H

from which the statement follows.

H

H ′

L

H̃

2aH′ = aH′ + aH 2aL =
∑

H̃|L⊂H̃

aH̃

Figure 2: Reducible (red) and irreducible (green) intersections.

Recall that the multiplicity mL of an element L ∈ L is the number of hyperplanes
H ∈ H that contain L. We denote by Ln−2 the set of all codimension 2 subspaces of
CPn obtained as intersection of elements H ∈ H, so for any L ∈ Ln−2 we have mL ≥ 2
and mL ≥ 3 if and only if L is irreducible.

Lemma 7.8. The following identity holds:
∑

L∈Ln−2

m2
L = N2 −N +

∑

L∈Ln−2

mL . (7.13)

Proof. Since every pair of hyperplanes intersect at a codimension two subspace,
∑

L∈Ln−2

mL(mL − 1) = N(N − 1) . (7.14)

Equation (7.13) follows from Equation (7.14) by rearranging the terms.

Notation 7.9. Let 1 ∈ RH be the vector with all components equal to 1.

Lemma 7.10. The value of the quadratic form at 1 is given by

Q(1) = (n− 1)N2 + (n + 1)N − (n+ 1) ·
∑

L∈Ln−2

mL . (7.15)
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Proof. Since s(1) = N and 2aL = mL for all L ∈ Ln−2
irr , Equation (7.6) gives us

Q(1) = 2n ·N2 − (n+ 1) ·
∑

L∈Ln−2

m2
L .

Using Equation (7.13) for the sum of squared multiplicities gives Equation (7.15).

Lemma 7.11. The vector 1 belongs to the stable cone C◦ of H if and only if

∀L ∈ L : mL < codimL ·
N

n+ 1
. (7.16)

Proof. Immediate from item (ii) of Lemma 6.14 .

Lemma 7.12. The vector 1 belongs to the kernel of Q if and only if

∀H ∈ H : |HH | =

(
1−

2

n + 1

)
N + 1 . (7.17)

Proof. By Corollary 7.4 , the vector 1 belongs to the kernel of Q if and only if for all
H ∈ H the following equation is satisfied:

2sH(1) =
2n

n + 1
s(1) .

By Equation (7.12) (and using that s(1) = N) this condition is equivalent to

|HH |+N − 1 =
2n

n + 1
·N

which rearranges to (7.17). Alternatively, the result also follows from Lemma 6.4 .

We shall need the following elementary result, whose proof we omit.

Lemma 7.13. Let Q : RN → R be a real quadratic form. Suppose that Q ≤ 0 on an
open set U ⊂ RN and let x ∈ U . Then the following holds:

(i) Q(x) = 0 if and only if x is in the kernel of Q ;

(ii) if Q(x) = 0, then Q ≤ 0 in all of RN .

The main result of this section is the following extension of [Pan09, Corollary 7.8]
to higher dimensions.

Theorem 7.14. Let H ⊂ CPn be an arrangement with N = |H| > n+ 1 hyperplanes.
Suppose that for all L ∈ L we have

mL < codimL ·
N

n+ 1
. (7.18)
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Then ∑

L∈Ln−2

mL ≥

(
1−

2

n+ 1

)
N2 +N (7.19)

and equality holds if and only if

∀H ∈ H : |HH | =

(
1−

2

n + 1

)
N + 1 . (7.20)

Moreover, if (7.20) is satisfied, then the quadratic form Q of the arrangement H is
negative semidefinite in all of RN .

Proof. Consider the vector 1 ∈ RH. The assumption (7.18) together with Lemma 7.11
imply that 1 ∈ C◦. By Theorem 6.18 , Q(1) ≤ 0. Using Equation (7.15) to evaluate Q
at 1, we obtain

n− 1

n+ 1
·N2 + N −

∑

L∈Ln−2

mL ≤ 0 ,

which rearranges to (7.19). Equality holds in (7.19) if and only if Q(1) = 0. By Lemma
7.13 (i) this is equivalent to 1 being in the kernel of Q. By Lemma 7.12 1 is in the
kernel of Q if and only if Equation (7.20) is satisfied. By Lemma 7.13 (ii), if (7.20) is
satisfied then Q is negative semidefinite.

We note that Theorem 7.14 does not necessarily hold for arrangements defined over
fields other than C, as the next example illustrates.

Example 7.15. Let p be a prime number and let Fp be the finite field of order p. For
n ≥ 2, let H be the arrangement consisting of all hyperplanes in PG(n, p) = P(Fn+1

p ).
The number N = |H| of hyperplanes is equal to

∣∣(Fn+1
p \ {0}

) /
F∗
p

∣∣ = pn+1 − 1

p− 1
.

The next two claims show that the arrangement H violates Theorem 7.14. Con-
cretely, Claim 1 proves that (7.18) holds and Claim 2 proves that (7.19) doesn’t.

• Claim 1: the vector 1 belongs to the stable cone C◦, i.e., if L is a non-empty and
proper linear subspace, then

mL

codimL
<

N

n + 1
. (7.21)

• Claim 2: the sum of multiplicities of codimension two subspaces satisfies

∑

L∈Ln−2

mL <

(
1−

2

n+ 1

)
N2 +N . (7.22)
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Proof of Claim 1. The multiplicity mL of a linear subspace L is the number of
hyperplanes in PG(n, p) that contain it and it is given by mL = |PG(c− 1, p)| where c
is the codimension of L. Note that 1 ≤ c ≤ n, as L is proper and non-empty. Therefore,
inequality (7.21) is equivalent to

pc − 1

c
<

pn+1 − 1

n + 1
,

which follows by noticing that the ratio pc/c is strictly increasing with c.
Proof of Claim 2. By Lemma 7.10 , Equation (7.22) is equivalent to Q(1) > 0. We

prove this by showing that 1 is an eigenvector of Q with positive eigenvalue. Since
every H ∈ H intersects the other hyperplanes of PG(n, p) along the same number
t of codimension 2 subspaces, namely t = |PG(n − 1, p)|, Lemma 6.4 implies that
Q · 1 = λ · 1 with

λ = (n− 1) ·N − (n + 1) · (t− 1) .

Replacing the values for N = |PG(n, p)| and t = |PG(n− 1, p)| we have

(p− 1)λ = (n− 1) · (pn+1 − 1)− (n + 1) · (pn − p)

from which is straightforward to check that λ > 0 for all (n, p) with n ≥ 2 and p ≥ 2.

Next, we give a name for the complex arrangements that saturate the inequality
(7.19). Note that, by Corollary 2.29 , if H is as in Theorem 7.14 then H is essential and
irreducible. To include product arrangements, we relax (7.18) to a non-strict inequality.

Definition 7.16. Let H ⊂ CPn be an essential arrangement. We say that H is
Hirzebruch if the following two conditions are satisfied:

(H1) for every subspace L ∈ L we have

mL

codimL
≤

|H|

n+ 1
(7.23)

where mL is the multiplicity of L;

(H2) every hyperplane H ∈ H intersects the other hyperplanes in H \ {H} along
(
1−

2

n+ 1

)
|H|+ 1 (7.24)

codimension 2 subspaces.

Example 7.17. The arrangement of n+1 coordinate hyperplanes in CPn is Hirzebruch.

If n = 1 then any finite collection of points H ⊂ CP1 with |H| ≥ 2 is Hirzebruch.
However, if n ≥ 2 the Hirzebruch condition is much more rigid. A line arrangement
H ⊂ CP2 is Hirzebruch if and only if |H| = 3k for some positive integer k and every line
in H intersects the other lines of the arrangement at k + 1 points, all known examples
are listed in [Hir85] . In dimension 3 we have the following characterization.
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Lemma 7.18. Let H ⊂ CP3 be an essential arrangement of 2k planes with k ≥ 2 such
that every plane in H intersects the others along k + 1 lines. Then H is Hirzebruch.

Proof. We have to prove that H satisfies (H1) . This amounts to show two things: (i)
for every point x ∈ L0 we have mx ≤ (3/2)k; (ii) for every line L ∈ L1 we have mL ≤ k.

(i) Let x ∈ L0. Since H is essential, we can take a plane H0 that does not go
through x. Every pair of planes that contain x must meet H0 at different lines, hence

mx ≤ |HH0| = k + 1.

Since k ≥ 2, we have k + 1 ≤ k + (k/2) and therefore mx ≤ (3/2)k.
Let L ∈ L1 and take a plane H ∈ H that contains L. Since all the planes in HL cut

H along the same line L whereas the elements in H \ HL cut H in at most |H| −mL

lines, we have
k = |HH | − 1 ≤ |H| −mL

from which we get mL ≤ k.

Remark 7.19. In Lemma 7.18 we require that H is essential. If H ⊂ CP3 is an
arrangement of 4 = 2k planes that intersect at a common point and whose pairwise
intersection are all distinct, then every member ofH intersects the others along 3 = k+1
lines but H is not Hirzebruch.

The next example shows that the class of Hirzebruch arrangements is not closed
under restriction.

Example 7.20. Let L and L′ be two skew lines in CP3 and let H be the arrangement
of 2k planes with k intersecting along L and k intersecting along L′. Then H is a
product Hirzebruch arrangement, it is a particular case of Example 7.21.

Let H be one of the planes containing L and let x be the intersection point of H
and L′. The induced arrangement HH is the near-pencil consisting of k concurrent
lines meeting at x together with the extra line L ⊂ H . The arrangement HH is not
Hirzebruch if k ≥ 3.

Example 7.21. Suppose that H1 ⊂ CPn1 and H2 ⊂ CPn2 are Hirzebruch. Then the
product arrangement H1 ×H2 ⊂ CPn1+n2+1 is Hirzebruch if and only if

|H1|

n1 + 1
=

|H2|

n2 + 1
.

7.3 Complex reflection arrangements

We recall the basic definitions on complex reflection arrangements, we follow [OT92].
A linear map f ∈ U(n + 1) is a complex reflection if it has finite order and its fixed
point set is a hyperplane Hf ⊂ Cn+1. We call Hf the reflecting hyperplane of f .
A finite subgroup G ⊂ U(n + 1) is a complex reflection group if it is generated by
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complex reflections. The collection H ⊂ CPn of reflecting hyperplanes of G is called
the reflection arrangement of G. The group G is irreducible if the only G-invariant
subspaces are {0} and Cn+1.

For the rest of this section we let H ⊂ CPn be a complex reflection arrangement of
an irreducible complex reflection group G ⊂ U(n + 1). Let N = |H|.

Let 〈v, w〉 =
∑

i viw̄i be the usual Hermitian inner product on Cn+1. For each H ∈
H choose a unit vector eH ∈ Cn+1 orthogonal to the corresponding linear hyperplane.
Write PH⊥ for the orthogonal projection to H⊥, given by

PH⊥(v) = 〈v, eH〉 · eH .

Lemma 7.22 ([OT92, Proposition 6.93]). For every v ∈ Cn+1 we have

∑

H∈H

PH⊥(v) = a0 · v , (7.25)

where a0 = N/(n + 1) .

Proof. This is essentially a consequence of Schur’s lemma. The left hand side of Equa-
tion (7.25) defines an invariant Hermitian form for the action of G on Cn+1. The
assumption that the action is irreducible implies that

∑
H PH⊥ is a scalar multiple of

the identity. The value of a0 can be calculated by taking traces.

Let L be the set of non-empty and proper subspaces obtained as intersection mem-
bers of H. The multiplicity mL of L ∈ L is the number of hyperplanes H ∈ H that
contain L, i.e., mL = |HL| where HL is the localization of H at L. By slight abuse of
notation, we also write L for the corresponding linear subspace of Cn+1, and L⊥ ⊂ Cn+1

for its orthogonal complement. Recall that Lirr ⊂ L denotes the subset of irreducible
subspaces.

Lemma 7.23. Suppose that L ∈ Lirr. Then, for all v ∈ L⊥, we have

∑

H∈HL

PH⊥(v) = aL · v , (7.26)

where aL = mL/ codimL.

Proof. Consider the subgroup GL ⊂ G made of elements that fix L. By [OT92, Theo-
rem 6.25], the group GL generated by the reflections in G whose reflecting hyperplanes
belong to the localized arrangement HL. We identify L⊥ = Cp with p = codimL and
GL ⊂ U(p), as the group GL acts faithfully on L⊥. The reflecting hyperplanes of GL

are H ∩L⊥ for H ∈ HL. Since, by assumption, the arrangement HL is irreducible, the
action of GL on Cp is also irreducible. Equation (7.26) follows by Lemma 7.22 .
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Remark 7.24. Lemma 7.23 implies that

∑

H∈HL

PH⊥ = aL · PL⊥ ,

where PL⊥ is the orthogonal projection to L⊥. This result is well known in the context
of Dunkl connections, see [CHL05, Lemma 2.13 and Example 2.5] .

Lemma 7.25. If L ∈ L then the following inequality holds:

mL

codimL
<

N

n + 1
.

Proof. Write aL = mL/ codimL and a0 = N/(n + 1). We have to show that aL < a0.
Suppose first that L ∈ Lirr.

Let S be the common intersection of all hyperplanes in H\HL. Note that L
⊥ 6⊂ S,

otherwise L⊥ would be invariant by G. Let v ∈ L⊥ \ S with |v| = 1. Since v /∈ S,
there is at least one H ∈ H \ HL such that 〈v, eH〉 6= 0. Taking the inner product of
Equations (7.26) and (7.25) with v we obtain

aL =
∑

H∈HL

|〈v, eH〉|
2

<
∑

H∈H

|〈v, eH〉|
2 = a0 .

To finish the proof, note that if aL < a0 for L ∈ Lirr then aL < a0 for all L ∈ L, c.f.
Lemma 2.25 .

Lemma 7.26. For every H ∈ H we have

|HH | =

(
1−

2

n + 1

)
|H|+ 1 .

Proof. This is [OT92, Theorem 6.97].

Proposition 7.27. Let H ⊂ CPn be the complex reflection arrangement of an irre-
ducible reflection group G ⊂ U(n + 1). Then H is Hirzebruch.

Proof. Lemma 7.25 implies Item (H1) and Lemma 7.26 implies Item (H2).

Remark 7.28. At the moment, the only examples we know in dimension n ≥ 2 of
irreducible Hirzebruch arrangements stem from Proposition 7.27. For n = 2, it is
an old question of Hirzebruch [Hir85, §3] whether all Hirzebruch arrangements come
from complex reflection groups. It is proved in [Pan18] that all real Hirzebruch line
arrangements come from reflection groups.

Using our results one can prove the following.
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Theorem 7.29. Let H ⊂ CPn be the complex reflection arrangement of an irreducible
reflection group G ⊂ U(n + 1). Then the quadratic form Q : RH → R is negative
semidefinite.

Proof. Lemma 7.25 implies that Equation (7.18) is satisfied. By Lemma 7.26 , Equation
(7.20) holds. By Theorem 7.14 , the quadratic form Q is negative semidefinite.

Remark 7.30. It would be desirable to find a direct proof of Theorem 7.29 , for exam-
ple, using the Shephard-Todd classification of irreducible complex reflection groups.

7.4 The Hirzebruch quadratic form of a matroid

We formulate our results in combinatorial terms, using the language of matroids. We
begin with a review of basic definitions, a standard reference for this material is [Oxl11].

7.4.1 Matroids: basic definitions

In a nutshell, matroids are combinatorial structures that mimic finite collections of
vectors in a vector space, including information about their linear dependencies (see
Example 7.31). Formally, a matroid is a pair M = (E,B), where E is a finite set and
B is a non-empty collection of subsets B ⊂ E which satisfy the exchange property : for
any B1, B2 ∈ B and b1 ∈ B1 \B2 there exists b2 ∈ B2 \B1 such that (B1 \ {b1})∪ {b2}
is in B. The elements of B are called basis of the matroid M . The set E is referred as
the ground set of M . Two matroids M1 = (E1,B1) and M2 = (E2,B2) are isomorphic
if there is a bijection f : E1 → E2 such that B1 ∈ B1 if and only if B2 = f(B1) ∈ B2 .

It follows from the exchange property that all bases B ∈ B have the same number
of elements |B|. The rank r of the matroid M is r = |B| for any B ∈ B. A subset of
the ground set, I ⊂ E, is independent if it is contained in a basis, i.e., if I ⊂ B for
some B ∈ B. In particular, we agree that the empty set is independent. We denote by
I the collection of all independent subsets. The rank of a subset S ⊂ E is the largest
size of an independent set contained in it,

rank(S) = max
I∈I

{|I| | I ⊂ S} .

An element x of the ground set of M is a loop if the singleton {x} is not an
independent set, equivalently rank(x) = 0. A pair of elements x, y of M are parallel if
none is a loop and rank({x, y}) = 1.

Example 7.31. Suppose that k is a field and let E = {v1, . . . , vN} be vectors of
V = kn+1 that span the whole space. Let B be the collection of all subsets B ⊂ E that
form a basis of the vector space V . Then M = (E,B) is a matroid of rank r = n + 1.
An element vi ∈ E is a loop if vi = 0. A pair of non-zero vectors vi, vj ∈ E are parallel
if one is a scalar multiple of the other.

Definition 7.32. If a matroid M is isomorphic to a matroid as in Example 7.31 , we
say that M is representable over the field k.
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A subset F of the ground set of M is a k-flat if rank(F ) = k and

rank (F ∪ {e}) > rank(F )

for any e ∈ E \ F . The set of all flats is denoted by F . The closure S of a subset
S ⊂ E is the intersection of all flats containing it,

S =
⋂

F∈F |F⊃S

F .

The intersection of flats is also a flat, so the closure S ∈ F . The set of all flats of the
matroid M equipped with the partial order given by inclusion, F1 ≤ F2 if F1 ⊂ F2,
is a poset (F ,≤). This poset is actually a lattice, meaning that any two elements
F1, F2 ∈ F have a greatest lower bound (their meet F1 ∧ F2) and a least upper bound
(their join F1 ∨ F2). These are necessarily unique and given by

F1 ∧ F2 = F1 ∩ F2, F1 ∨ F2 = F1 ∪ F2 .

The matroid M is simple if it has no loops and no pairs of parallel points. If
M is simple then the poset of flats (F ,≤) is a geometric lattice, meaning that it is
semimodular and atomic. The semimodular property is:

rank(F1) + rank(F2) ≥ rank(F1 ∨ F2) + rank(F1 ∧ F2) .

Atomic means that every flat F ∈ F is a join of singletons {x}. The elements x ∈ M
of the ground set (or the singletons {x} ∈ F) are called atoms. Conversely, every
geometric lattice is the poset of flats of a simple matroid [Sta07, Theorem 3.8].

Example 7.33. Let H = {H1, . . . , HN} be a finite collection of pairwise distinct
hyperplanes in Pn

k = P(kn+1) with empty common intersection. For each Hi choose
a defining linear equation hi ∈ (kn+1)∗. The collection of vectors E = {h1, . . . , hN}
defines, as in Example 7.31 , a matroid M = (E,B). The elements of B correspond
to (n + 1)-tuples of hyperplanes with empty common intersection. The fact that each
hi 6= 0 and that every pair of hyperplanes Hi and Hj with i 6= j satisfy Hi 6= Hj,
implies that M is simple.

The correspondence L 7→ HL (where L is a linear subspace and HL is the set of
hyperplanes in H that contain it) defines an isomorphism between the intersection
poset L of H equipped with the order by reverse inclusion and the poset of flats F
equipped with the order by inclusion. The whole space Pn

k ∈ L (corresponding to the
intersection of an empty collection of hyperplanes) is mapped to the minimal element
0̂ = ∅ of F , while ∅ ∈ L (the centre of the arrangement) corresponds to the unique
maximal flat 1̂ (the join of all hi).

Remark 7.34. If M is simple and representable over the field k, then M must be
isomorphic to a matroid as in Example 7.33 . In this case, we say that M is the
matroid associated to the hyperplane arrangement H ⊂ Pn

k .

Remark 7.35. If the matroid M is associated to the arrangement H, then H is
assumed to be essential.
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7.4.2 Quadratic form for matroids

Let M be a simple matroid of rank n + 1 on the ground set [N ] = {1, . . . , N}. Let F
be a rank two flat. We say that F is irreducible if |F | ≥ 3. Otherwise, if |F | = 2 then
F is reducible.

For i ∈ [N ] let σi be the number of irreducible rank 2 flats that contain i.

Definition 7.36. The Hirzebruch quadratic form of M is the function QM : RN → R

given by
QM (x) = xt ·Q · x ,

where Q is the real symmetric N ×N matrix with integer entries

Qij =






−(n + 1)σi + 2n if i = j ,

−2 if |i ∨ j| = 2 ,

n− 1 if |i ∨ j| ≥ 3 .

(7.27)

By slight abuse of notation, we shall also write Q for the quadratic form QM as well
as for the symmetric matrix.

Remark 7.37. If M is the matroid associated to a hyperplane arrangement H ⊂ CPn

then Equation (7.27) agrees with Equation (6.5).

Remark 7.38 (c.f. Lemma 6.4). The sum of the i-th column (or i-th row) of the
matrix Q is given by

N∑

j=1

Qij = (n− 1) ·N − (n+ 1) · (ti − 1) (7.28)

where ti is the number of rank 2 flats that contain i.

Let P ⊂ RN be the matroid polytope of M , i.e., P is the convex hull of indicator
functions of bases of M . Our results give us the following.

Theorem 7.39. Suppose that the matroid M is representable over C. Then the Hirze-
bruch quadratic form of M is non-positive on the cone over the matroid polytope, i.e.,

Q(x) ≤ 0 for all x ∈ R≥0 × P . (7.29)

Proof. This is Theorem 6.29 for the essential arrangement H ⊂ CPn associated to
M .
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7.4.3 Examples

The advantages of presenting our results within the broader context of matroids are
twofold. On the one hand, Theorem 7.39 brings in a potential obstruction for repre-
sentability of a matroid over the complex numbers. On the other hand, it rises the
question for which classes of matroids the statement of Theorem 7.39 holds true. The
next two examples illustrate this.

Example 7.40. Let p be a prime number and let Fp be the finite field of order p.
For n ≥ 2, let M be the matroid associated to the hyperplane arrangement consisting
of all hyperplanes in PG(n, p) = P(Fn+1

p ). As Example 7.15 shows, 1 ∈ R≥0 × P but
Q(1) > 0. Therefore, Theorem 7.39 does not hold for M . As a result, M is not
realizable over the complex numbers.

Example 7.41. The Non-Pappus matroid M is the matroid of rank 3 on the set of
nine elements [9] = {1, . . . , 9}. This matroid has 8 circuits (minimal dependent sets)
shown in Figure 3 as lines connecting triplets of dependant points. The number of
bases is equal to (

9

3

)
− 8 = 76 ,

as any 3 points not connected by a line form a basis.

1 2 3

7 8 9

4 5 6

Figure 3: The Non-Pappus matroid.

We see that |i∨ j| = 3 if i and j are joined by a line and |i∨ j| = 2 otherwise. Also,

σi =

{
3 if 1 ≤ i ≤ 6 ,

2 if i = 7, 8, 9 .
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Therefore, the matrix Q of the Hirzebruch quadratic form of M is




−5 1 1 −2 1 1 1 1 −2
1 −5 1 1 −2 1 1 −2 1
1 1 −5 1 1 −2 −2 1 1
−2 1 1 −5 1 1 1 1 −2
1 −2 1 1 −5 1 1 −2 1
1 1 −2 1 1 −5 −2 1 1
1 1 −2 1 1 −2 −2 −2 −2
1 −2 1 1 −2 1 −2 −2 −2
−2 1 1 −2 1 1 −2 −2 −2




.

The matroid M is not representable over any field. However, the statement of
Theorem 7.39 holds for M . Indeed, it can be checked with computer5 that the matrix
P = −Q is copositive, meaning that xt ·P ·x ≥ 0 for any vector x ∈ R9 with components
xi ≥ 0.

7.4.4 Pseudoline arrangements and symplectic BMY.

It would be very interesting to extend Theorem 7.39 to some large classes of non-
realizable matroids. In this section we speculate about one such possibility.

Recall that a pseudoline arrangement is a collection of circles smoothly embedded
into RP2 such that each circle is isotopic to a projective line, any two circles intersect
in exactly one point, and their common intersection is empty (see [BLVS+99]). Just as
with line arrangements, one can associate a matroid to any pseudoline arrangement.
Note that the non-Pappus matroid can be obtained in this manner: take a collection
of 9 straight lines in RP2 realizing the Pappus configuration and slightly perturb three
lines in the neighbourhood of a triple point.

In the spirit of Arnold’s topologocial economy principle6 [Arn99], we would like to
state the following provocative (and quite possibly over-optimistic) conjecture.

Conjecture 7.42. Let L ⊂ RP2 be an essential pseudoline arrangement and M be its
matroid. Then the Hirzebruch quadratic form Q of M is non-positive on the semistable
cone of M , and moreover, whenever Q vanishes in its interior, M is realizable over R
and the pseudoline arrangement L is stretchable.

Recall that there is a one-to-one correspondence between (equivalence classes of)
pseudoline arrangements and (reorientation classes of) simple rank 3 oriented matroids
[BLVS+99, Section 6]. There exists a complete classification of pseudoline arrangements
with up to 11 pseudolines. Moreover, in case of simplicial pseudoline arrangements

5See https://github.com/MdeBorbon/nonpappus
6This principle reads as follows: “If you have a geometrical or topological phenomenon, which you

can realize by algebraic objects, then the simplest algebraic realizations are topologically as simple as
possible”.
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(that partition RP2 into triangles), the classification exists for up to 27 pseudolines
[Cun12]. This is a promising class of arrangements for finding counter-examples to
Conjecture 7.42, as simplicial arrangements seem to be extremal for the Hirzebruch
quadratic form7.

We don’t have much evidence for Conjecture 7.42 except that it holds for usual line
arrangements and for the non-Pappus arrangement. However, we have a motivation
coming from symplectic geometry. Recall, that to every compact 4-dimensional man-
ifold (X,ω) one can associate two Chern numbers c21(X) and c2(X) = e(X). Using
Seiberg-Witten theory, one can also define the Kodaira dimension of X , which agrees
with the standard definition in the case of Kähler surfaces. There exists a folklore
conjecture (that we learned from Ivan Smith in 2010), that symplectic 4-manifolds
of general type satisfy Bogomolov-Myaoka-Yau inequality as well. In particular, no
one has been able so far to construct a symplectic 4-manifold of general type with
c1(X)2 > 3c2(X).

A counterexample to Conjecture 7.42 would be interesting, as it could be interpreted
as a failure of a logarithmic version of the symplectic BMY inequality. Indeed, any pseu-
doline arrangement L ⊂ RP2 can be extended to an arrangement of symplectic spheres
in CP2 disjoint in CP2 \RP2. Such extensions are constructed in [RS19][Theorem 1.4]
(we learned this fact from Stepan Orevkov in 2011).

Going further, following Hirzebruch, one can then consider a (symplectic) blow up
of CP2 in points of L of multiplicity ≥ 3 and then take an appropriate ramified cover
in a hope of being lucky enough to get a counter-example to symplectic BMY8. In his
seminal paper [Hir83], using Kummer covers of CP2 Hirzebruch was able to construct
three algebraic surfaces with c21 = 3c2, each associated to one complex reflection group.

7It follows from [Pan09, Pan18] that any essential real arrangement for which the Hirzebruch
quadratic form vanishes in the stable cone is simplicial.

8This is also a suggestion hinted upon in [RS19].
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A Auxiliary Results

Section A.1 provides self contained proofs on basic linear algebra related to filtrations
of vector spaces, adapted basis, and nested sets. These results are used in the proof of
the locally abelian property of our parabolic bundle, Theorem 4.29.

Sections A.2 , A.3, and A.4 contain results on exterior algebra, saturated subsheaves,
and distributions on CPn that are used in the proof of the stability Theorem 5.1.

A.1 Filtrations, adapted basis, and nested sets

The key results proved in this section are:

• Lemma A.15 , which characterizes splittings of tuples of filtrations in terms of
adapted bases;

• Corollary A.30 , which shows that nested sets have adapted bases.

A.1.1 Filtrations of vector spaces

Let V be a finite dimensional vector space.

Definition A.1. A filtration F = {Fa | a ∈ R} of V is a family of vector subspaces
Fa ⊂ V parametrized by a ∈ R satisfying the following conditions.

(i) Increasing: Fa ⊂ Fa′ if a < a′.

(ii) Semi-continuity: for every a there is ǫ > 0 such that Fa+ǫ = Fa.

(iii) Normalization: Fa = {0} for a < 0 and Fa = V for a ≥ 1.

The increasing and semi-continuity properties are equivalent to

∀a : Fa =
⋂

a′>a

Fa′ .

Given a filtration F = {Fa} of V , we write

F<a =
⋃

a′<a

Fa′ .

The increasing property implies that F<a is a vector subspace of Fa.

Definition A.2. The graded components of F are the quotient vector spaces

Gra = Fa

/
F<a .
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Definition A.3. We say that a ∈ R is a weight of F if Gra 6= 0. The set of all weights
of F is denoted by

wt(F) = {a | Gra 6= 0} .

The normalization condition, together with the fact that V is finite dimensional,
imply that wt(F) is a finite subset of [0, 1]. If we write

wt(F) = {aF0 , . . . , a
F
p } ,

then F determines a strictly increasing flag of vector subspaces

0 ( FaF
0
( FaF

1
( . . . ( FaFp

= V .

Conversely, F is determined by this flag and the weights wt(F) via

Fa =





{0} if a < aF0 ,

FaFi
if aFi ≤ a < aFi+1 ,

V if a ≥ aFp .

A.1.2 Tuples of filtrations and splittings

Suppose that F = (F1, . . . ,Fk) is a tuple of k distinct filtrations F i = {F i
a} of V .

Notation A.4. For a = (a1, . . . , ak) ∈ Rk , let Fa be the vector subspace

Fa =

k⋂

i=1

F i
ai
. (A.1)

Given a = (a1, . . . , ak) and a′ = (a′1, . . . , a
′
k) in Rk , we say that a′ ≤ a if a′i ≤ ai for

all 1 ≤ i ≤ k. This equips Rk with a partial order such that Fa′ ⊂ Fa if a′ ≤ a. We
write a′ � a if a′ ≤ a and a′ 6= a. Note that

∑

a′�a

Fa′ = F 1
<a1

∩ F 2
a2
. . . ∩ F k

ak
+ . . .+ F 1

a1
∩ F 2

a2
. . . ∩ F k

<ak
(A.2)

is a linear subspace of Fa.

Definition A.5. We say that a ∈ Rk is a weight of F , if

∑

a′�a

Fa′ ( Fa .

The set of all weights of F is denoted by wt(F).

Lemma A.6. The set wt(F) is contained in wt(F1) × . . . × wt(Fk). In particular,
wt(F) is a finite subset of [0, 1]k.
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Proof. If ai /∈ wt(F i) then F i
<ai

= F i
ai
, so

F 1
a1
∩ . . . ∩ F i

<ai
∩ . . . ∩ F k

ak
= Fa .

It follows from this, together with Equation (A.2), that if a /∈ wt(F1)× . . .×wt(Fk) ,
then

∑
a′�a

Fa′ = Fa ; hence a /∈ wt(F).

The main notion we want to introduce is that of a splitting of a tuple of filtrations.
Before doing so, we recall the following standard definition.

Definition A.7. Let Ui be linear subspaces of V indexed by i ∈ I and let U =
∑

i Ui

be their sum, i.e., U is the smallest linear subspace of V (with respect to the partial
order given by inclusion) that contains all Ui. We say that the sum U =

∑
i Ui is direct

and write U = ⊕iUi if any of the following equivalent conditions holds.

(i) Ui ∩
∑

j 6=i Uj = {0} for all i ∈ I.

(ii) For every u ∈ U there are unique vectors ui ∈ Ui such that u =
∑

i ui.

(iii) dimU =
∑

i dimUi .

(iv) There is a basis B of U such that Bi = B ∩ Ui is a basis of Ui , the sets Bi are
pairwise disjoint, and B = ∪iBi .

The main definition of this section is the next.

Definition A.8. A splitting of F is a family of linear subspaces Ua ⊂ V indexed by
a = (a1, . . . , ak) ∈ Rk satisfying the following properties.

(i) The subspaces Ua are zero except for a finite number of a ∈ Rk, and they form
a direct sum decomposition

V =
⊕

a∈Rk

Ua . (A.3)

(ii) For any a ∈ Rk, we have

Fa =
⊕

a′≤a

Ua′ . (A.4)

The filtrations F1, . . . ,Fk are compatible if F admits a splitting.

Remark A.9. Item (i) follows from (ii) by taking a = (1, . . . , 1). For the sake of
clarity, we keep item (i) as part of Definition A.8 .

Example A.10. If k = 1 and F = {Fa | a ∈ R}, then we can construct a splitting
of F as follows. Set Ua = {0} if a /∈ wt(F) and, for every a ∈ wt(F) choose a linear
subspace Ua ⊂ Fa such that Fa = F<a ⊕ Ua. It is then easy to verify that {Ua | a ∈ R}
satisfies (A.3) and (A.4) . Note that the subspaces Ua are isomorphic to the graded
components of Gra = Fa / F<a of F .
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Lemma A.11. Suppose that {Ua | a ∈ Rk} is a splitting of F , then the following holds.

(i) Ua is non-zero if and only if a ∈ wt(F).

(ii) For any a ∈ Rk, we have

Ua
∼=

Fa∑
a′�a

Fa′

. (A.5)

(iii) If {Ũa} is another splitting of F then there is a linear isomorphism Φ ∈ GL(V )

with Φ(F) = F such that Φ(Ua) = Ũa for all a ∈ Rk.

Proof. We begin by proving item (ii). For this, we notice that Equation (A.4) implies
∑

a′�a

Fa′ =
⊕

a′�a

Ua′ .

Therefore,

Fa =

(
∑

a′�a

Fa′

)
⊕ Ua (A.6)

and item (ii) follows. By Definition A.5 , (ii) implies (i). To show (iii), we note that

by (ii), for each a ∈ wt(F), we can choose a linear isomorphism Φa : Ua → Ũa. Since

V =
⊕

a∈wt(F)

Ua =
⊕

a∈wt(F)

Ũa ,

the maps Φa define a linear isomorphism Φ ∈ GL(V ) with Φ(Ua) = Ũa . If follows from
Equation (A.4) , that Φ preserves each of the subspaces F i

a of the filtration F i for all
i, so Φ(F) = F .

Remark A.12. For a ∈ wt(F) the sum
∑

a′�a
Fa′ is a proper linear subspace of Fa.

Therefore, for any F we can find non-zero subspaces Ua ⊂ Fa for a ∈ wt(F) such that
(A.6) holds. By construction, Fa =

∑
a′≤a

Ua′. The subspaces Ua split F if and only if
they form a direct sum. However, in general, the sum

∑
Ua will not be direct, as the

next example shows.

Example A.13. Let L1, . . . , Lk be k distinct lines in C2 through the origin with k ≥ 3.
Let λ1, . . . , λk ∈ (0, 1) and consider the filtrations F1, . . . ,Fk given by

F i
a =





{0} if a < 0 ,

Li if 0 ≤ a < λi ,

C2 if a ≥ λi .

For a = (a1, . . . , ak) ∈ Rk, the intersection Fa is zero if ai < λi and aj < λj for a pair
of distinct indices i, j. Hence, the weights of F = (F1, . . . ,Fk) are

wt(F) = {(0, λ2, . . . , λk), (λ1, 0, . . . , λk), . . . , (λ1, λ2, . . . , 0)} .
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If a ∈ wt(F) then Fa = Li, where i is the unique component of a with ai = 0, and∑
a′�a

Fa′ = 0 . Therefore, if Equation (A.6) is satisfied, we must take Ua = Li. The
subspaces Ua do not make a direct sum. Therefore, the filtrations F1, . . . ,Fk are not
compatible.

A.1.3 Adapted bases

Let B = {e1, . . . , en} be a basis of V and let L ⊂ V be a linear subspace.

Definition A.14. We say that B is adapted to L if B ∩ L is a basis of L. If S is a
collection of linear subspaces of V , we say that B is adapted to S if B is adapted to L
for every L ∈ S.

Let F = (F1, . . . ,Fk) be a tuple of filtrations F i = {F i
a} as in Section A.1.2. A

basis B of V is adapted to F , if any of the following equivalent conditions holds:

• B is adapted to F i
a for every 1 ≤ i ≤ k and a ∈ R ;

• B is adapted to Fa =
⋂k

i=1 F
i
ai

for every a = (a1, . . . , ak) ∈ Rk.

The main result that we are after is the next.

Lemma A.15. The following two conditions are equivalent.

(i) The filtrations F1, . . . ,Fk are compatible.

(ii) There is a basis B of V that is adapted to F = (F1, . . . ,Fk).

Proof. (i) =⇒ (ii). Suppose that {Ua | a ∈ Rk} is a splitting of F . For each a ∈ Rk

such that Ua is non-zero, choose a basis Ba of Ua. Then B =
⋃

a
Ba is adapted to F .

(ii) =⇒ (i). Suppose that B is a basis of V adapted to F . We want to define
subspaces Ua ⊂ V that split F . To do this, for each e ∈ B we consider the subspace
Fa with smallest a that contains e. In detail, note that if both Fa and Fa′ contain e,
then Fmin{a,a′} also does, where min{a, a′} is the vector with components min{ai, a

′
i}.

Thus, we have a map Φ : B → Rk given by

Φ(e) = min{a | e ∈ Fa} .

It is easy to see that the image of Φ is wt(F), the weights of F . The preimages Φ−1(a)
partition B into disjoint sets. We let Ua be the span of the vectors in Φ−1(a) ,

Ua = span{e ∈ B |Φ(e) = a} .

We want to show that (A.4) holds. Clearly, if Φ(e) = a′ and a′ ≤ a, then e ∈ Fa.
Conversely, if e ∈ B ∩ Fa and Φ(e) = a′, then a′ ≤ a. Since B is adapted to F ,

Fa = span{e | e ∈ B ∩ Fa}

= span{e |Φ(e) ≤ a} =
⊕

a′≤a

Ua′ .

This shows that {Ua | a ∈ Rk} splits F .
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Example A.16. If k = 2 then any two filtrations F1 and F2 on V are compatible, see
[Xu24, Lemma 3.5]. However, if k ≥ 3 then generic k-tuples of filtrations F1, . . . ,Fk

are not compatible. For example if k = 3, n = 2 and F i define 3 distinct lines in C2

then it is clear that there is no basis of C2 adapted to F1,F2,F3; c.f. Example A.13.

A.1.4 Nested sets of linear subspaces

Let V be a finite dimensional vector space of dimension n and let V ∗ be its dual. We
use the partial order on linear subspaces of V ∗ given by inclusion, i.e., U1 ≤ U2 if
U1 ⊂ U2.

Definition A.17. A ∗-nested set is a finite set N of non-zero linear subspaces N ⊂ V ∗

such that, for any collection of pairwise non comparable elements N1, . . . , Nk ∈ N (i.e.
Ni 6⊂ Nj for i 6= j), the following holds:

(i) their sum S =
∑

iNi is direct, i.e., S = ⊕iNi ;

(ii) S /∈ N .

To emphasize the ambient space, we say that N is a ∗-nested set in V ∗.

Remark A.18. One can also omit condition (ii) to get a sensible definition, but we
will need it for our purposes later on, see also Remark A.31 .

The next lemma follows immediately from Definition A.17 , we omit its proof.

Lemma A.19. If N is a ∗-nested set and N0 is a subset of N , then N0 is also a
∗-nested set. Moreover, if all elements of N0 are contained in a subspace W ⊂ V ∗,
then N0 is a ∗-nested set in W .

Recall from Definition A.14 that, if N is a collection of linear subspaces of V ∗, a
basis of V ∗ is adapted to N , if every element of N is spanned by the basis vectors
contained in it.

Lemma A.20. Every ∗-nested set has an adapted basis.

Proof. We proceed by induction on the dimension n of the ambient space V ∗. The
statement is trivially true if n = 1. Let N be a ∗-nested set in V ∗ with n = dimV ∗

and assume that the statement holds true for dimensions < n. We want to show that
there is a basis B∗ of V ∗ adapted to N .

We can assume that V ∗ /∈ N ; otherwise take N0 = N \{V ∗} and note that if a basis
of V ∗ is adapted to N0 then it is also adapted to N . Let N1, . . . , Nk be the maximal
elements of N with respect to the partial order given by inclusion. Since V ∗ /∈ N , we
have dimNi < n for all i. The sets N1, . . . , Nk are pairwise non comparable, thus they
form a direct sum

k⊕

i=1

Ni ⊂ V ∗ .
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For 1 ≤ i ≤ k, let
Ni = {N ∈ N |N ⊂ Ni} .

By construction, every N ∈ N is contained in a subspace Ni for some i. On the other
hand, if a subspace N is contained in both Ni and Nj with i 6= j, then N = {0}. But,
by Definition A.17, {0} /∈ N . Thus, we have a disjoint union

N =
k⋃

i=1

Ni .

By Lemma A.19 , each Ni is a ∗-nested set in Ni. By induction hypothesis, since
dimNi < n, we can chose a basis B∗

i of Ni adapted to Ni. Their union ∪iB
∗
i , extended

to a basis of V ∗ if necessary, is a basis B∗ of V ∗ adapted to N .

Next, we recall the notion of transversal intersection of linear subspaces.

Definition A.21. Let L1, . . . , Lk be linear subspaces of V . We say that L1, . . . , Lk

intersect transversely, or that the their common intersection

M =
k⋂

i=1

Li

is transversal, if

codimM =
k∑

i=1

codimLi . (A.7)

Example A.22. The most familiar case is when k = 2. In this case, the subspaces
L1 and L2 are transversal if and only if L1 + L2 = V . This follows from the identity
dim(L1 + L2) = dimL1 + dimL2 − dimL1 ∩ L2 together with Equation (A.7).

Notation A.23. Recall that if L ⊂ V is a linear subspace, then its annihilator L⊥

is the linear subspace of V ∗ made of all linear functions on V that vanish on L. The
map L 7→ L⊥ defines an inclusion reversing correspondence between linear subspaces
of V and V ∗, with dimL⊥ = codimL, and (L⊥)⊥ = L under the natural identification
V ∗∗ = V .

Lemma A.24. Let L1, . . . , Lk be linear subspaces of V . Then their common intersec-
tion M = ∩iLi is transversal if and only if M⊥ = ⊕iL

⊥
i .

Proof. This follows from the identity

(
k⋂

i=1

Li

)⊥

=

k∑

i=1

L⊥
i

together with Equation (A.7) and the fact that a sum of linear subspaces U =
∑

i Ui

is direct if and only if dimU =
∑

i dimUi.
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Remark A.25. Assume L1, . . . , Lk intersect transversely. Then by Lemma A.24 we
can choose a basis in M⊥ as a union of bases in L⊥

i . It follows that L1, . . . , Lk intersect
transversely if and only if there are linear coordinates x1, . . . , xn on V and pairwise
disjoint subsets Ii ⊂ [n] for 1 ≤ i ≤ k such that

Li = {xj = 0 | j ∈ Ii} .

In particular, if L1, . . . , Lk intersect transversely, then any subset of them also does.

Having recalled the necessary background on transversal intersections, we consider
the corresponding dual notion to ∗-nested sets.

Definition A.26. A nested set in V is a finite set S of proper linear subspaces L ( V
such that, for any collection L1, . . . , Lk ∈ S of pairwise non comparable elements, the
following holds:

(i) their intersection M = ∩iLi is transversal;

(ii) M /∈ S.

Next, we relate Definitions A.17 and A.26 . If S is a collection of linear subspaces
L ⊂ V , then S⊥ denotes the corresponding collection of subspaces of V ∗ which are
annihilators of elements in S,

S⊥ = {L⊥ |L ∈ S} .

With this notation, the correspondence between nested and ∗-nested sets can be stated
as follows.

Lemma A.27. S is a nested set in V if and only if S⊥ is a ∗-nested set in V ∗.

Proof. Suppose that S is a nested set in V and let N = S⊥. We want to show that
N is a ∗-nested set in V ∗. First of all, note that the elements N ∈ N are non-zero
subspaces of V ∗. Indeed, N = L⊥ with L ∈ S, since the elements of S are proper
subspaces L ( V , their annihilators L⊥ are non-zero. In order to verify Definition
A.17, let N1, . . . , Nk ∈ N be pairwise non comparable. We want to show: (i) we have
a direct sum ⊕iNi and (ii) ⊕iNi /∈ N .

(i) For each 1 ≤ i ≤ k, we can write Ni = L⊥
i with Li ∈ S. The corresponding ele-

ments L1, . . . , Lk ∈ S must also be pairwise non comparable. By item (i) of Definition
A.26 , the intersection M = ∩iLi is transversal. By Lemma A.24 , we have a direct
sum M⊥ = ⊕iNi; which proves (i).

(ii) If ⊕iNi ∈ N then M = (⊕iNi)
⊥ ∈ S. However, by item (ii) of Definition A.26 ,

M /∈ S. Therefore, ⊕iNi /∈ N ; which proves (ii).
The proof that if S⊥ is ∗-nested then S is nested is similar and we omit it.

Notation A.28. Let B = {e1, . . . , en} be a basis of V . The dual basis B∗ =
{e∗1, . . . , e

∗
n} is the basis of V ∗ defined by e∗i (ei) = 1 and e∗i (ej) = 0 for j 6= i.
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Lemma A.29. Let S be a set of linear subspaces of V . A basis B = {e1, . . . , en} of V
is adapted to S if and only if the dual basis B∗ = {e∗1, . . . , e

∗
n} is adapted to S⊥.

Proof. This follows from the fact that if L ⊂ V is the span of {ei | i ∈ I} for a subset
I ⊂ [n], then L⊥ is the span of {e∗j | j ∈ [n] \ I}.

Putting all things together, we arrive at the main result of this section.

Corollary A.30. If S if a nested set in V , then there is a basis of V adapted to S.

Proof. By Lemma A.27 , S⊥ is ∗-nested. By Lemma A.20 , there is a basis B∗ of V ∗

that is adapted to S⊥. By Lemma A.29 , the dual basis B of V is adapted to S.

Remark A.31. In this section we haven’t made any use of item (ii) in the definition
of nested and ∗-nested sets. In particular, Corollary A.30 also holds for families of
subspaces which don’t satisfy this extra condition; but we won’t need to use this.

On the other hand, using item (ii) in Definition A.26 , it is not hard to show that
if S is a nested set in V , then |S| ≤ dimV . If item (ii) is not satisfied then this is no
longer true. For example, if L1 and L2 are two distinct lines in V = C2 going through
the origin, then the set S = {{0}, L1, L2} satisfies item (i) of Definition A.26 but it
does not satisfy item (ii); and 3 = |S| > dimV = 2.

A.1.5 Nested sets of projective subspaces

Definition A.32. A nested set in CPn is a finite set S of non-empty and proper
projective subspaces L ( CPn such that, for any collection L1, . . . , Lk ∈ S of pairwise
non comparable elements (i.e. Li 6⊂ Lj for i 6= j), the following holds:

(i) their common intersection M = ∩iLi is non-empty and transversal, i.e.,

codimM =
∑

i

codimLi ;

(ii) M /∈ S.

Remark A.33. If S is a nested set in CPn, then
⋂

L∈S

L

is a non-empty subspace of CPn.

Let
π : Cn+1 \ {0} → CPn

be the quotient projection. If L ⊂ CPn is a projective subspace, then we write Lc for
the unique linear subspace of Cn+1 such that π(Lc) = L. If S is a set of projective
subspaces, then

Sc = {Lc |L ∈ S}

is the corresponding set of linear subspaces of Cn+1.
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Lemma A.34. If S is a nested set in CPn, then Sc is a nested set in Cn+1.

Proof. Immediate consequence of Definitions A.32 and A.26 .

The proof of the next lemma is straightforward and we omit it.

Lemma A.35. Let V be a vector space and let S be a nested set in V . Suppose that T
is a non-zero linear subspace of V such that T ⊂ L for every L ∈ S. Let pr : V → V/T
be the quotient projection. Then the following holds.

(i) The set S/T = {pr(L) |L ∈ S} is nested in V/T .

(ii) If B is a basis of V adapted to S such that T = span(B ∩ T ), then pr(B) =
{pr(e) | e ∈ B \ (T ∩B)} is a basis of V/T adapted to S/T .

Next, we consider frames of vectors of TCPn adapted to a nested set.

Lemma A.36. Let S be a nested set in CPn. Let M be the common intersection of
all the members of S and let p be a point in M . Then the following holds.

(i) The set
TpS := {TpL |L ∈ S}

is a nested set in TpCP
n.

(ii) There is a neighbourhood U of p in M and a holomorphic frame {e1, . . . , en} of
TCPn|M defined on U such that, for every q ∈ U the basis {e1(q), . . . , en(q)} of
TqCP

n is adapted to TqS.

Proof. (i) Let p̄ ∈ Cn+1 such that π(p̄) = p. The differential dπp̄ : Tp̄C
n+1 → TpCP

n

gives us an identification of TpS with Sc/T where T = C · p̄. The statement follows
from Lemmas A.34 and A.35 (i).

(ii) Let {e1(p), . . . , en(p)} be a basis of TpCP
n adapted to TpS. Let ē1, . . . , ēn ∈

Tp̄C
n+1 such that dπp̄(ēi) = ei(p) and extend ēi as constant vectors on Cn+1. Let e0 be

the Euler vector field in Cn+1 and let Mc be the unique linear subspace of Cn+1 such
that π(Mc) = M .

Claim: there is a neighbourhood Ū of p̄ in Mc such that for every q̄ ∈ Ū the vectors
B̄(q̄) = {e0(q̄), ē1, . . . , ēn} form a basis of Cn+1 adapted to Sc.

Proof of the claim: the vectors B̄(p̄) form a basis of Cn+1 adapted to Sc. By
continuity, the vectors B̄(q̄) form a basis of Cn+1 for q̄ close to p̄. To check that B̄(q̄)
is adapted to Sc, we need to show that each Lc ∈ Sc contains dimLc vectors from
B̄(q). However, the number of vectors of B̄(q) contained in Lc is independent of q for
q ∈ Mc because e0(q̄) ∈ Mc ⊂ Lc and the rest of the vectors ēi with i ≥ 1 in B̄(q) are
constant. Since, B̄(p̄) is adapted to Sc, it follows that B̄(q̄) is also adapted to Sc for
all q̄ in a neighbourhood Ū of p̄ in Mc. This finishes the proof of the claim.

Let U = π(Ū) where Ū is as in the claim. Take an affine hyperplane K ⊂ Mc that
goes through p̄ and is transversal to e0(p̄). This way, for every q ∈ U there is a unique
q̄ ∈ K ∩ Ū such that π(q̄) = q; define ei(q) to be the projection of ēi(q̄) by dπq̄. It
follows from Lemma A.35 (ii) that e1(q), . . . , en(q) is a basis of TqCP

n adapted to TqS.
This finishes the proof of (ii).
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A.2 Exterior algebra

Let V be a finite dimensional complex vector space and let ΛrV be the r-th exterior
product of V . We refer to elements v ∈ ΛrV as r-vectors or multivectors.

A.2.1 Multivectors and subspaces

Let S ⊂ V be a linear subspace. Then ΛrS is naturally embedded in ΛrV as the
subspace spanned by vectors of the form v1 ∧ . . . ∧ vr with vi ∈ S.

Definition A.37. We say that the r-vector v ∈ ΛrV is tangent to S if v belongs to
the subspace ΛrS.

Example A.38. Let v1, . . . , vn be a basis of V and let S be the subspace spanned by
v1, . . . , vs. Let v =

∑
I cIvI where I = {i1, . . . , ir} runs over all r-subsets of {1, . . . , n}

and vI = vi1 ∧ . . .∧ vir with i1 < . . . < ir are the basis vectors. Then v is tangent to S
if and only if cI = 0 for all I such that I 6⊂ {1, . . . , s}.

Remark A.39. (i) If v = 0 then the tangency condition is trivially satisfied, i.e., v is
tangent to any subspace. (ii) If v is tangent to S and S ⊂ H then v is also tangent to
H . (iii) If v ∈ ΛrV is non-zero and tangent to a subspace S then dimS ≥ r because
ΛrS is zero if dimS < r.

Definition A.40. We say that v ∈ ΛrV is decomposable if v is non-zero and tangent
to an r-dimensional subspace S ⊂ V .

Example A.41. If S ⊂ V is an r-dimensional subspace and v1, . . . , vr is basis of S
then

v = v1 ∧ . . . ∧ vr (A.8)

is non-zero and tangent to S, thus v is decomposable.
Taking different basis of S, say v′1, . . . , v

′
r, gives a scalar multiple v′ = λv where

v′ = v′1 ∧ . . . ∧ v′r and λ is the determinant of the change of basis.

The following lemma shows that all decomposable multivectors are of the form
given by Example A.41 .

Lemma A.42. Suppose that v ∈ ΛrV is decomposable and let S be an r-dimensional
subspace such that v is tangent to S.

(i) If v1, . . . , vr is a basis of S then v = λ · (v1 ∧ . . . ∧ vr) with λ ∈ C∗.

(ii) The subspace S is uniquely determined by v and it is given by

S = ker(∧v) = {u ∈ V | u ∧ v = 0}. (A.9)

(iii) If H ⊂ V is a linear subspace and v is tangent to H then S ⊂ H.
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Proof. (i) Extend v1, . . . , vr to a basis v1, . . . , vn of V and write v =
∑

I λIvI where
vI = vi1 ∧ . . .∧vir are the basis vectors of Λ

rV . Since v is tangent to S, we have λI = 0
for all I 6= {1, . . . , r} by Example A.38 .

(ii) Take a basis of V as above. It follows from item (i) that S ⊂ ker(∧v). Con-
versely, if u =

∑n

i=1 λivi is such that u ∧ v = 0 then we must have λi = 0 for all i > r,
so u ∈ S.

(iii) If v ∈ ΛrH and u /∈ H then u∧ v 6= 0. Therefore, using (ii), if u ∈ S = ker(∧v)
we must have u ∈ H .

More generally, for any non-zero v ∈ ΛrV , the dimension of ker(∧v) is ≤ r and
it is = r precisely when v is decomposable. The set of decomposable vectors in ΛrV
is the zero locus of a set of homogeneous quadratic equations, known as the Plücker
relations.

If S ⊂ V is an r-dimensional subspace then ΛrS is a complex line thorough the
origin in ΛrV whose non-zero elements are decomposable r-vectors. Conversely, a
decomposable r-vector determines a unique r-dimensional subspace S ⊂ V and if two
decomposable r-vectors v and v′ determine the same subspace then v and v′ are scalar
multiples of each other. This correspondence between r-dimensional subspaces of V
and the closed subvariety of P(ΛrV ) of decomposable vectors is known as the Plücker
embedding of the Grassmannian of r-planes in V .

A.2.2 Contraction

Definition A.43 ([Sha94, p. 42]). Let V be a vector space and let ω ∈ V ∗. The
contraction is a linear map ωy : ΛrV → Λr−1V defined by the following properties.

• If v ∈ Λ1V = V then ω y v = ω(v).

• If v1 ∈ ΛrV and v2 ∈ ΛsV then

ω y (v1 ∧ v2) = (ω y v1) ∧ v2 + (−1)rv1 ∧ (ω y v2). (A.10)

The contraction defines a bilinear a map from the direct product V ∗ × ΛrV to
Λr−1V ; or equivalently a linear map

V ∗ ⊗ ΛrV
y
−→ Λr−1V.

Lemma A.44. The contraction is a non-degenerate bilinear pairing. More precisely,
if v ∈ ΛrV is non-zero then there is ω ∈ V ∗ such that ω y v 6= 0. Conversely, if ω ∈ V ∗

is non-zero then there is v ∈ ΛrV such that ω y v 6= 0.

Proof. Let v1, . . . , vn be a basis of V and write v =
∑

I λIvI where the sum is over
multi-indices I = (i1, . . . , ir) and vI = vi1 ∧ . . .∧ vir are the basis elements of ΛrV . Let
η1, . . . , ηn be the dual basis defined by ηi(vj) = 1 if i = j and 0 otherwise. Suppose
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that v is non-zero. Fix I such that λI 6= 0 and let i ∈ I. Take ω = ηi, we claim that
ω y v 6= 0. Indeed, if I ′ = I \ {i} then

ω y v = ±λIvI′ +
∑

J 6=I′

λ̃JvJ 6= 0

where the sum runs over multi-indices J 6= I ′ with |J | = r − 1 which do not contain i
and λ̃J = ±λJ∪{i}. Conversely, if ω 6= 0 then we can assume that ω = η1 and

ω y (v1 ∧ . . . ∧ vr) 6= 0 .

This concludes the proof.

If U ⊂ V is a linear subspace then ΛrU is naturally embedded in ΛrV as the
subspace spanned by elements of the form u1 ∧ . . . ∧ ur with ui ∈ U .

Lemma A.45. Let U ⊂ V be a linear subspace and let ω ∈ V ∗. Then

ω y ΛrU ⊂ Λr−1U. (A.11)

Proof. By linearity, it suffices to consider the contraction of ω with decomposable r-
vectors u = u1 ∧ . . . ∧ ur with ui ∈ U . The fact that ω y u ∈ Λr−1U follows from
Equation (A.10) and induction on r.

Let e ∈ V be a non-zero vector. Let V ◦
r be the subspace of all v ∈ ΛrV such that

e ∧ v = 0 and let W ◦ ⊂ V ∗ be the subspace of all 1-forms ω with ω(e) = 0.

Lemma A.46. The following holds.

(i) If v ∈ ΛrV is non-zero and r ≥ 2 then there is ω ∈ W ◦ such that ω y v 6= 0.

(ii) If v ∈ V ◦
r and ω ∈ W ◦ then ω y v ∈ V ◦

r−1.

(iii) If v ∈ V ◦
r and ω(e) = 1 then v′ = ω y v satisfies v = e ∧ v′.

Proof. (i) We complete the vector e to a basis of V , say v1 = e, v2, . . . , vn. Let η1, . . . , ηn
be the dual basis of V ∗ defined by ηi(vj) = δij . The subspace W ◦ is spanned by
η2, . . . , ηn. Write v =

∑
I λIvI where vI = vi1 ∧ . . . ∧ vir are the basis elements of ΛrV

and let I be such that λI 6= 0. Since |I| = r ≥ 2, we can find an index i ∈ I with i 6= 1
and we take ω = ηi. Then ω ∈ W ◦ and the argument in the proof of Lemma A.44
shows that ω y v 6= 0.

(ii) We need to show that e ∧ (ω y v) is zero. This follows from e ∧ v = 0 and
ω(e) = 0 together with the identity

ω y (e ∧ v) = ω(e)v − e ∧ (ω y v).

(iii) Since e ∧ v = 0 and ω(e) = 1,

0 = ω y (e ∧ v) = ω(e)v − e ∧ (ω y v) = v − e ∧ v′

and the statement follows.

93



A.3 Saturated subsheaves

A.3.1 Subsheaves and subbundles

Let X be a complex manifold. For clarity, in this section A.3.1 only we distinguish
between vector bundles and locally free sheaves by writing holomorphic vector bundles
on X with straight letters E and use curly letters E to denote their corresponding
sheaves of holomorphic sections. The correspondence E 7→ E defines an equivalence
between the categories of holomorphic vector bundles on X and locally free sheaves
of OX -modules. We recall the induced bijection between morphisms on these two
categories.

Let x ∈ X . We denote by Ex the stalk of E at x and by Ex the fibre of E at x. The
two are related by

Ex = Ex/mxEx (A.12)

where mx ⊂ OX,x is the ideal of germs of functions that vanish at x. If E and F are
holomorphic vector bundles with sheaves of sections E and F then there is a natural
correspondence between homomorphisms of OX-modules

ϕ ∈ HomOX
(E ,F)

and linear holomorphic maps of vector bundles

φ ∈ H0(Hom(E, F ))

where Hom(E, F ) is the vector bundle whose fibre over x is the set of linear maps
Ex → Fx. More precisely, an element ϕ acts on stalks ϕx : Ex → Fx as a linear map
of OX,x-modules and, since ϕx(mxEx) ⊂ mxFx, it induces a linear map of C-vector
spaces φx : Ex → Fx giving the action on the fibres of φ. Conversely, an element φ acts
pointwise on sections to give an element ϕ. The constructions ϕ 7→ φ and φ 7→ ϕ are
inverses of each other.

Example A.47. It is clear that if ϕx : Ex → Fx is surjective then φx : Ex → Fx is also
surjective. However, it can happen that ϕx is injective but φx is not. For example, if
E = OX and F = OX(D) is the locally free sheaf of meromorphic functions on X with
simple poles along a divisor D ⊂ X . Then the inclusion of OX -modules E ⊂ F defines
an element of H0(Hom(E, F )), or equivalently a section of F , that vanishes along D.

We recall the following standard result.

Lemma A.48. Let f : E → F be a surjective holomorphic map of vector bundles.
Then ker(f) is a vector subbundle of E.

Definition A.49. Let E be a locally free sheaf and let V ⊂ E be a subsheaf. We say
that V is a vector subbundle of E if V is locally free and the natural map of vector
bundles V → E is injective.
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Lemma A.50. Let E be a locally free sheaf and let V ⊂ E be a subsheaf such that E/V
is locally free. Then V is a vector subbundle of E .

Proof. The quotient projection E → F := E/V corresponds to a surjective map of
vector bundles f : E → F . By Lemma A.48 ker(f) is a vector subbundle of E and by
construction V is the sheaf of sections of ker(f).

A.3.2 Saturated subsheaves and subbundles

Definition A.51. Let E be a locally free sheaf and let V ⊂ E be a coherent subsheaf.
The subsheaf V is saturated if the quotient sheaf E/V is torsion-free.

Proposition A.52 ([OSS11]). If F is a torsion-free coherent sheaf on X then there is
a closed analytic subset Z ⊂ X with codimZ ≥ 2 such that F is locally free on X \Z.

Corollary A.53. Let E be a locally free sheaf on X and suppose that V ⊂ E is a
saturated subsheaf. Then there exists a closed analytic subset Z ⊂ X with codimZ ≥ 2
such that V is a vector subbundle of E on X \ Z.

Proof. By Proposition A.52 there is a closed analytic subset Z ⊂ X with codimZ ≥ 2
such that E/V is locally free on X \Z. By Lemma A.50 , V is a vector subbundle of E
on X \ Z.

A.3.3 Determinant line bundle

Let E be a vector bundle on a complex manifold X and let V be a vector subbundle
of E defined on an open set U = X \ Z where Z ⊂ X is a closed analytic subset with
codimZ ≥ 2. Let ı : U → X be the inclusion map and let r = rankV.

Definition A.54. The determinant line bundle of V is the sheaf detV on X defined
as the double dual of the push-forward of ΛrV by the inclusion map

detV = (ı∗(Λ
rV))∗∗. (A.13)

In particular, on the open set U , the sheaf det(V) is canonically isomorphic to the
line bundle ΛrV. The sheaf det(V) provides a canonical extension of ΛrV to the whole
X with the following desirable property.

Lemma A.55. detV is a line bundle on X.

Proof. By definition, detV is a reflexive sheaf of rank 1. A reflexive sheaf of rank 1 is
a line bundle, see [Har80, Proposition 1.9].

Definition A.56. Let V be a saturated subsheaf of a locally free sheaf. The first
Chern class of V is defined as

c1(V) = c1(detV) ,

where detV is the determinant line bundle of V as in Definition A.54 .
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A.4 Distributions on CPn

A distribution on CPn is a holomorphic vector subbundle V ⊂ TCPn defined outside
a closed analytic subset Z ⊂ CPn of complex codimension ≥ 2. The rank r of the
subbundle is also called the rank of V, we assume that 1 ≤ r ≤ n− 1. The singular set
of V is the smallest of all such Z’s, the regular set is the complement U = CPn \ Z.

Definition A.57. The index of V is the unique integer ı such that there is an isomor-
phism of line bundles

detV ∼= ı · OPn(1) , (A.14)

where detV is as in Definition A.54 .

Lemma A.58. The index is less or equal than the rank, ı ≤ r.

Proof. Take a generic line P contained in the regular set of V that is not tangent to
the distribution, in the sense that TP 6⊂ V|P . Then V|P is a subbundle of OP1(2) ⊕
OP1(1)⊕(n−1) that doesn’t contain OP1(2), so ı = deg(V|P ) ≤ r.

We handle distributions using multivector fields, as detailed next.

Lemma A.59. Let V be a distribution on CPn of index ı and rank r. Then there is a
multivector field

v ∈ H0 (ΛrTCPn ⊗OPn(−ı)) ,

uniquely determined up to scalar multiplication, such that, on the regular set U of V,

V = {w ∈ TCPn | w ∧ v = 0}.

In particular, the multivector field v is nowhere zero outside a codimension 2 analytic
subset of CPn.

Proof. This is a global version of the Plücker embedding of the Grassmannian. Let
x be a point in U and let v1, . . . , vr be tangent vectors at x that make a basis of Vx.
Define

v′
x = (v1 ∧ . . . ∧ vr)⊗ ℓ (A.15)

where ℓ ∈ (detVx)
∗ is given by ℓ(v1 ∧ . . . ∧ vr) = 1. The element v′

x is independent of
the choice of basis and varying x we obtain a nowhere zero holomorphic section v′ of
ΛrTCPn ⊗ (detV)∗ defined over U . By Hartogs, v′ extends across the singular set of
V as a holomorphic section on the whole CPn.

Fixing an isomorphism F : (detV)∗ → OPn(−ı) we obtain a section v of ΛrTPn ⊗

OPn(−ı). Taking a different isomorphism F̃ produces another section ṽ. We can write

F̃ = Φ ◦ F where Φ is an automorphism of the line bundle OPn(−ı). Since CPn is
compact, Φ = λ ∈ C∗ and therefore ṽ = λv.
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Remark A.60. It is common to present distributions as kernels of differential forms,
see for example [CP08, §1.3]. To get this description, fix a nowhere zero trivializing
section Ω of ΛnT ∗CPn ⊗OPn(n+ 1). Let v be as in Lemma A.59 . The contraction of
Ω with v defines a (twisted) differential form

ω = v y Ω ∈ H0
(
Λn−rT ∗CPn ⊗OPn(n+ 1− ı)

)

such that V = kerω on the regular set of V.

Definition A.61. The degree d of V is the difference

d = r − ı. (A.16)

By Lemma A.58 , d is a non-negative integer.

Remark A.62 (Geometric interpretation of degree). If Q is a generic linear subspace
of complimentary dimension dimQ = n − r, then d is equal to the degree of the
hypersurface Y ⊂ Q made of points x ∈ Q where the subspaces Vx and TxQ have
non-zero intersection. To see this take ω as in Remark A.60 and note that the pullback
of ω to Q defines a non-zero section of OPn−r(d).

A.4.1 Homogeneous multivector fields on Cn+1

We work on Cn+1 with linear coordinates x0, . . . , xn. For non-negative integers d and
r we consider the finite dimensional vector space

Vd,r = Cd[x0, . . . , xn]⊗ ΛrCn+1

where Cd[x0, . . . , xn] is the space of homogeneous polynomials of degree d. We use the
basis of ΛrCn+1 given by the multivectors

∂xI =
∂

∂xi1

∧ . . . ∧
∂

∂xir

where I = (i1, . . . , ir) is a multi-index with 0 ≤ i1 < i2 < . . . < ir ≤ n. An element
v ∈ Vd,r takes the form

v =
∑

I

aI∂xI ,

where the coefficients aI are homogeneous polynomials of degree d.

Example A.63. The Euler vector field e is the element in V1,1 given by

e =

n∑

i=0

xi

∂

∂xi

. (A.17)

More generally, the elements of V1,1 are linear vector fields in Cn+1.
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Taking wedge product with e defines a linear map Vd,r
∧ e
−→ Vd+1,r+1. We define V ◦

d,r

to be the kernel of ∧ e, that is

V ◦
d,r =

{
v ∈ Vd,r such that v ∧ e = 0

}
. (A.18)

As we shall see, elements in V ◦
d,r correspond to twisted multivector fields on CPn. We

begin with a preliminary lemma whose proof we omit.

Lemma A.64 ([Hir66, Theorem 4.1.3]). An exact sequence of vector bundles 0 → L
ı0−→

V
π
−→ W → 0 with rankL = 1 determines an exact sequence

0 → ΛrW ⊗ L
ı0−→ Λr+1V

π
−→ Λr+1W → 0,

given by π(v1 ∧ . . . ∧ vr+1) = π(v1) ∧ . . . ∧ π(vr+1) and ı0((w1 ∧ . . . ∧ wr) ⊗ ℓ) =
v1 ∧ . . . ∧ vr ∧ ı0(ℓ) where vi ∈ V are such that π(vi) = wi.

The desired correspondence between twisted multivector fields on CPn and homo-
geneous multivector fields on Cn+1 that annihilate e is given by the next.

Proposition A.65. Let r, d be non-negative integers and set ı = r − d. Then there is
a natural linear isomorphism between H0(ΛrTCPn ⊗OPn(−ı)) and V ◦

d+1,r+1.

Proof. This is essentially a consequence of Euler’s exact sequence. Let

E = OPn(1)⊗ Cn+1

be the vector bundle on CPn equal to the direct sum of (n+1)-copies of OPn(1). There
is an obvious isomorphism between V1,1 and the space of global sections H0(E) given
by

n∑

i=0

ℓi
∂

∂xi

7→ (ℓ0, . . . , ℓn) ,

where ℓi are linear functions on Cn+1. Under this isomorphism, the Euler vector field
e ∈ V1,1 corresponds to a nowhere zero section e ∈ H0(E).

Euler’s exact sequence is given by

0 → C
ı0−→ E

π
−→ TCPn → 0 , (A.19)

where ı0(λ) = λe is the inclusion of the trivial line bundle into E defined by the nowhere
zero section e ∈ H0(E) and π projects a linear vector field on Cn+1 down to CPn by
the differential of the quotient map by scalar multiplication. By Lemma A.64 taking
exterior power of (A.19) gives us an exact sequence

0 → ΛrTCPn ı0−→ Λr+1E
π
−→ Λr+1TCPn → 0 , (A.20)

where the maps ı0 and π in (A.20) act on decomposable vectors as follows:

98



• if w = w1 ∧ . . . ∧ wr ∈ ΛrTCPn take vi ∈ E such that π(vi) = wi then

ı0(w) = v1 ∧ . . . ∧ vr ∧ e ; (A.21)

• if v = v1 ∧ . . . ∧ vr+1 ∈ Λr+1E then

π(v) = π(v1) ∧ . . . ∧ π(vr+1) . (A.22)

Take the tensor product of the short exact sequence of vector bundles (A.20) with
OPn(−ı) to obtain

0 → ΛrTPn(−ı)
ı0−→ Λr+1E(−ı)

π
−→ Λr+1TPn(−ı) → 0 . (A.23)

Composing Λr+1E(−ı)
π
−→ Λr+1TCPn(−ı) with the inclusion Λr+1TCPn(−ı)

ı0−→
Λr+2E(−ı) and using that ı0 ◦ π = ∧ e we obtain an exact sequence

0 → ΛrTPn(−ı)
ı0−→ Λr+1E(−ı)

∧ e
−→ Λr+2E(−ı) ,

where exactness in the middle term follows from ker π = ker(ı0 ◦π) since ı0 is injective.
Taking global sections (which is a left exact functor) gives an exact sequence of vector
spaces

0 → H0(ΛrTPn(−ı))
ı0−→ H0(Λr+1E(−ı))

∧ e
−→ H0(Λr+2E(−ı)) . (A.24)

Finally, we note that, since ı = r − d, the space of global sections of

Λr+1E ⊗OPn(−ı) = OPn(d+ 1)⊗ Λr+1Cn+1

is naturally isomorphic to Vd+1,r+1. Then it follows from Equation (A.24) that

H0(ΛrTCPn ⊗OPn(−ı))

embeds in Vd+1,r+1 as the subspace of vectors v such that v ∧ e = 0.

Remark A.66. The case ı = r − d = 0 corresponds to genuine multivector fields on
CPn - without any twisting. In this case the induced action C∗ action on Vr+1,r+1 by
scalar multiplication is trivial.

Following next, we combine Lemma A.59 and Proposition A.65 together to associate
a homogeneous multivector field v on Cn+1 to a distribution V ⊂ TCPn. In order to
state the result we first recall the notion of pullback distribution. Let X and Y be
complex manifolds and suppose that f : X → Y is a holomorphic submersion, i.e., the
differential dfx is surjective for all x ∈ X . In this situation, given a distribution V on
Y we define its pullback f ∗(V) as a distribution on X which is equal to df−1

x (Vy) at all
points y = f(x) that belong to the regular set of V. We consider the case where

f : Cn+1 \ {0} → CPn

is the quotient map by scalar multiplication.
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Corollary A.67. Let V ⊂ TCPn be a distribution of rank r and degree d. Then V
defines a unique up to scalar multiplication homogeneous multivector field v ∈ V ◦

d+1,r+1

such that ker(∧v) is equal to the C∗-invariant distribution f ∗(V) on f−1(U), where
U ⊂ CPn is the regular set of V. In particular, v is nowhere zero and pointwise
decomposable outside a codimension 2 analytic subset of Cn+1.

Proof. Lemma A.59 and Proposition A.65 combined together give us a vector v ∈
V ◦
d+1,r+1. If y ∈ CPn belongs to the regular set of V and x ∈ Cn+1 \ {0} projects down

to y under the quotient map

f : Cn+1 \ {0} → CPn ,

then, unravelling definitions, the value of v at x is equal (up to a scalar factor) to

vx = ṽ1 ∧ . . . ∧ ṽr ∧ ex , (A.25)

where ṽi ∈ TxC
n+1 satisfy dfx(ṽi) = vi and v1, . . . , vr make a basis of Vy. It follows

from Equation (A.25) that ker(∧vx) is equal to df−1
x (Vy)

Example A.68. Let 1 ≤ r ≤ n − 1 and consider the linear subspace M of CPn of
dimension r − 1 given by the set of points [x0 : . . . : xn] such that

{xr = xr+1 = . . . = xn = 0} .

The collection of r-planes that contain M defines a distribution V of rank r and degree
d = 0. The multivector field v ∈ V ◦

1,r+1 of V is given by

v =
∂

∂x0
∧ . . . ∧

∂

∂xr−1
∧ e .

Remark A.69. Let p = n − r denote the codimension of a distribution. Then, an
analogue of Proposition A.65, shows that there is a canonical identification between
Ωp

Pn(n + 1 − ı) (as in Remark A.60) and the vector space of p-forms on Cn+1 with
homogeneous coefficients of degree d+ 1 whose contraction with the Euler vector field
is identically zero. In particular, codimension 1 distributions on CPn correspond to
homogeneous 1-forms

ω =
n∑

i=0

aidxi ,

where ai are homogeneous polynomials of degree d+1 with
∑

i xiai = 0 and such that
the common zero set of the polynomials ai has codimension ≥ 2.

A.4.2 Multivector fields tangent to hyperplanes

Definition A.70. Let X be a complex manifold and let D ⊂ X be a smooth complex
hypersurface. We say that an r-vector field v ∈ H0(ΛrTX) is tangent to D at x if vx

belongs to the linear subspace ΛrTxD ⊂ ΛrTxX . We say that v is tangent to D if v is
tangent to D at all points x ∈ D.
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Remark A.71. By continuity, if D◦ is an open dense subset of D and v is tangent to
D◦, then v is also tangent to D.

We are primarily interested in the case that X is Cn+1 and D is a complex hyper-
plane going through the origin.

Lemma A.72. Let v =
∑

I aI∂xI be an r-vector field on Cn+1 with polynomial coeffi-
cients aI ∈ C[x0, . . . , xn]. Then v is tangent to the hyperplane {xj = 0} if and only if
xj divides aI for every I such that j ∈ I.

Proof. By Example A.38, the tangency condition means that the coefficients aI vanish
along {xj = 0} for every I such that j ∈ I. On the other hand, since aI is a polynomial,
aI vanishes along {xj = 0} if and only if it is divisible by xj .

Lemma A.73. Let v ∈ Vd,r be a non-zero homogeneous multivector field on Cn+1.
Suppose that v is tangent to the k coordinate hyperplanes {xj = 0} for j ∈ I0 where
I0 ⊂ {0, . . . , n} = [n] with |I0| = k. Then

r − (n + 1) + k ≤ d. (A.26)

Proof. Write v =
∑

I aI∂xI , where the sum runs over all I ⊂ [n] with |I| = r and the
coefficients aI are homogeneous polynomials of degree d.

Fix I such that aI is non-zero. By Lemma A.72, if j ∈ I ∩ I0 then xj divides aI . In
particular,

|I ∩ I0| ≤ deg aI = d. (A.27)

On the other hand, since at worst I contains all the n + 1− k elements from [n] \ I0

|I| − (n+ 1− k) ≤ |I ∩ I0|. (A.28)

Combining inequalities (A.27) and (A.28) gives (A.26) .

Definition A.74. Let v be multivector field in Cn+1. We write Tan(v) for the set of
all linear hyperplanes H ⊂ Cn+1 such that v is tangent to H .

Proposition A.75. Let v ∈ Vd,r be a non-zero homogeneous multivector field on Cn+1.
Suppose that d < r so ı = r − d > 0. Then there is a linear subspace M ⊂ Cn+1 with
dimM ≥ ı such that M ⊂ H for all H ∈ Tan(v).

Proof. Let Hj be k linearly independent hyperplanes in Tan(v). We prove the propo-
sition by showing that

ı ≤ n+ 1− k. (A.29)

Without loss of generality, we can assume that Hj = {xj = 0} for j ∈ I0 where
I0 = {0, . . . , k − 1} ⊂ [n]. By Lemma A.73

r − (n + 1) + k ≤ d = r − ı

which is equivalent to Equation (A.29) .
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We say that a distribution V ⊂ TCPn is tangent to a hyperplane H ⊂ CPn if for
every point x ∈ H ∩ U , where U is the regular set of V, we have Vx ⊂ TxH , where
Vx ⊂ TxCP

n denotes the fibre at x of the vector subbundle V|U . We denote by Tan(V)
the collection of all hyperplanes H such that V is tangent to H . We note the following.

Lemma A.76. Let V be a distribution on CPn and let v ∈ V ◦
d+1,r+1 be its multivector

as in Corollary A.67 . Then a linear hyperplane H ⊂ Cn+1 belongs to Tan(v) if and
only if its projection P(H) ⊂ CPn belongs to Tan(V).

Proof. Let U ⊂ CPn be the regular set of V and let Ũ = f−1(U), where

f : Cn+1 \ {0} → CPn

is the quotient projection. Given a linear hyperplane H ⊂ Cn+1, we write H◦ = H∩ Ũ ,
and note that H◦ is an open dense subset of H . As pointed out in Remark A.71, v is
tangent to H if and only if vx is tangent to TxH at all points x ∈ H◦, .

On the other hand, given x ∈ H◦, the decomposable multivector vx is tangent to H
at x if and only if ker(∧vx) is contained in TxH , see Remark A.39 and Lemma A.42 .
If we let π = dfx , then ker(∧vx) is equal to π−1(Vy) where y = f(x). We get that vx

is tangent to TxH if and only if

π−1(Vy) ⊂ π−1(TyP(H)) = TxH. (A.30)

Since π is surjective, Equation (A.30) is satisfied if and only if

Vy ⊂ TyP(H). (A.31)

We conclude that H ∈ Tan(v) if an only if Equation (A.31) is satisfied at all points
y ∈ P(H) ∩ U , which by definition means that P(H) ∈ Tan(V).

Definition A.77. Let Tr be the linear subspace of Vr,r consisting of r-vector fields on
Cn+1, with homogeneous polynomial coefficients of degree r, that are tangent to the
n + 1 coordinate hyperplanes {xj = 0}. Write T ◦

r ⊂ Tr be the linear subspace of all v
such that v ∧ e = 0.

Lemma A.78. An element v ∈ Vr,r belongs to Tr if and only if v is of the form

v =
∑

I=(i1,...,ir)

cI · xi1xi2 . . . xir

∂

∂xi1

∧
∂

∂xi2

∧ . . . ∧
∂

∂xir

(A.32)

where cI ∈ C.

Proof. Write v =
∑

I aI∂xI with deg aI = r and suppose that v belongs to Tr. Let us
fix an index I = (i1, . . . , ir). By Lemma A.72 every xj with j ∈ I divides aI . Since
deg aI = r we must have that aI = cIxi1xi2 . . . xir with cI ∈ C. Conversely, if v ∈ Vr,r

is of the form given by Equation (A.32) then by Lemma A.72 v is tangent to the
coordinate hyperplanes and hence belongs to Tr.
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Example A.79. The space T1 is the set of all linear vector fields v on Cn+1 that are
tangent to the coordinate hyperplanes. These are precisely the vector fields of the form

v =
n∑

i=0

cixi

∂

∂xi

with ci ∈ C.

Let W be the (n+ 1)-dimensional vector space made of meromorphic 1-forms ω of
the form given by

ω =

n∑

i=0

λi

dxi

xi

with λi ∈ C.

Lemma A.80. If ω ∈ W and v ∈ Tr, then ω y v belongs to Tr−1.

Proof. Let j ∈ [n] and I = {i1, . . . , ir} ⊂ [n]. Write xI = xi1xi2 . . . xir . Then

dxj

xj

y xI∂xI =

{
0 if j /∈ I,

±xI′∂xI′ if j ∈ I,
(A.33)

where I ′ = I \ {j}. The statement follows from Lemma A.78 and linearity.

Consider the linear subspace T ◦
r ⊂ Tr of all v ∈ Tr such that v ∧ e = 0. Under

the isomorphism of Proposition A.65, in the case ı = 0, the vector space T ◦
r+1 is identi-

fied with the subspace of H0(ΛrTCPn) of multivector fields tangent to the coordinate
hyperplanes. Let W ◦ ⊂ W be the linear subspace of all ω such that ω(e) = 0. More ex-
plicitly, if ω =

∑n

i=1 λidxi/xi then ω ∈ W ◦ if
∑n

i=0 λi = 0. We can think of elements in
W ◦ as meromorphic 1-forms on CPn with simple poles at the coordinate hyperplanes.

Lemma A.81. The following holds:

(i) If v ∈ Tr is non-zero and r ≥ 2 then there is ω ∈ W ◦ such that ω y v 6= 0.

(ii) If v ∈ T ◦
r and ω ∈ W ◦ then ω y v ∈ T ◦

r−1.

(iii) If v ∈ T ◦
r and ω(e) = 1 then v′ = ω y v satisfies e ∧ v′ = v.

Proof. This Lemma follows from A.46 once we introduce a number of identifications.
We identify Tr

∼= ΛrCn+1 by means of the linear isomorphism

∑
cI∂xI 7→

∑
cIxI∂xI . (A.34)

Similarly, we identify W ∼= (Cn+1)∗ by

∑
λidxi 7→

∑
λidxi/xi. (A.35)
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Under these identifications, the pairing W ⊗ Tr
y
−→ Tr−1 agrees with the usual contrac-

tion (Cn+1)∗ ⊗ ΛrCn+1 y
−→ Λr−1Cn+1, as follows from Equation (A.33), and similarly

for wedge products. The subspace T ◦
r is identified with the subspace of all v ∈ ΛrCn+1

such that v ∧ e = 0 where e is the non-zero vector e = (1, . . . , 1) ∈ Cn+1 and W ◦ is the
subspace of all ω ∈ (Cn+1)∗ such that ω(e) = 0.

Recall that Tan(v) denotes the set of all linear hyperplanes H ⊂ Cn+1 such that
the multivector field v is tangent to H .

Proposition A.82. Let v be a non-zero element of T ◦
r with r ≥ 2. Then there is a

linear vector field v′ ∈ T1 such that e ∧ v′ 6= 0 and Tan(v) ⊂ Tan(v′).

Proof. By repeated applications of items (i) and (ii) of Lemma A.81, we can find 1-
forms ωi ∈ W ◦ for 1 ≤ i ≤ r − 2 such that

ṽ = ωr−2 y (ωr−3 y (. . . (ω1 y X) . . .))

is a non-zero element in T ◦
2 . If r = 2 we simply take ṽ = v.

Let ω ∈ W be such that ω(e) = 1, say ω = dx0/x0, and define v′ ∈ T1 as

v′ = ω y ṽ.

By item (iii) of Lemma A.81,
e ∧ v′ = ṽ 6= 0.

We are left to show that Tan(v) ⊂ Tan(v′). Notice that, since v′ ∈ T1, the
coordinate hyperplanes are contained in Tan(v′). Now, let H be a hyperplane in
Tan(v) different from the coordinate hyperplanes and take a point x ∈ H outside the
origin. The multivector v′

x is obtained by successive contractions of vx by elements in
(TxC

n+1)∗. Since vx is tangent to H , it follows from Lemma A.45 that v′
x is tangent

to H . Therefore, H ∈ Tan(v′) and the proposition follows.

104



B Essential and irreducible configurations

A configuration of points P = {p1, . . . , pm} in CPn is essential if

m∑

i=1

pi = CPn .

Equivalently, P is essential if it contains n + 1 linearly independent points. We say
that P is reducible if there are two disjoint linear subspaces U and V such that

P ⊂ U ∪ V

with both U ∩ P and V ∩ P non-empty. We say that P is irreducible if it is not
reducible. The main result of this section is the following.

Proposition B.1. If the configuration of points P is essential and irreducible, then
there is a weight vector a ∈ Rm

>0 such that (P, a) is stable.

A hyperplane arrangement H ⊂ CPn corresponds to a configuration of points P ⊂
(CPn)∗. It is straightforward to verify that: H is essential (irreducible) if and only if
P is essential (irreducible). Proposition B.1 together with Lemma 6.35 , give us the
following.

Corollary B.2. If the hyperplane arrangement H ⊂ CPn is essential and irreducible,
then there is a weight vector a ∈ RH

>0 such that (H, a) is stable.

Remark B.3. Proposition B.1 follows from the fact that the matroid polytope (see
Section 6.3) of P has dimension |P| − 1 precisely when P is essential and irreducible.
See [BGW03, Theorem 1.12.9] and [Sch03, p. 698]. For completeness, we present a
self-contained proof.

We will use the following notion.

Definition B.4. We say that B ⊂ P is a basis if:

(i)
∑
p∈B

p = CPn ;

(ii) |B| = n+ 1 .

Remark B.5. If P is essential then it contains at least one basis.

We shall need the following elementary result, whose proof we omit.

Lemma B.6. Let P and Q be linear subspaces of CPn such that P + Q = CPn and
P ∩Q 6= ∅. Then dimP + dimQ ≥ n .

The key result we need to prove Proposition B.1 is the next.
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Lemma B.7. Suppose that P is essential and irreducible. Then, for every U in the
poset U , there is a basis B ⊂ P such that

|B ∩ U | < dimU + 1 . (B.1)

Proof. Let U ∈ U . Consider the projective subspace Q ⊂ CPn given by

Q = span { p ∈ P | p /∈ U} .

Since P is essential,
U +Q = CPn . (B.2)

In particular, since U ( CPn, the subspace Q is non-empty. Choose a linearly inde-
pendent subset

Q ⊂ { p ∈ P | p /∈ U} (B.3)

with |Q| = dimQ + 1 that spans the subspace Q. Since P is essential, we can extend
Q to a basis B ⊂ P. It follows from (B.3) that B ∩ U ⊂ B \ Q , hence

|B ∩ U | ≤ |B \ Q|

= n+ 1− |Q| = n− dimQ .
(B.4)

On the other hand,
P ⊂ U ∪Q

and both U ∩ P, Q ∩ P are non-empty. Since P is irreducible, we must have

U ∩Q 6= ∅ . (B.5)

It follows from Equations (B.2) and (B.5) together with Lemma B.6 that

n− dimQ ≤ dimU . (B.6)

It follows from Equations (B.4) and (B.6) that

|B ∩ U | ≤ dimU

which is equivalent to Equation (B.1).

The semi-stable and stable cones. Let m = |P| and label the points, say

P = {p1, . . . , pm} .

Let s be the linear function on Rm equal to the total sum of the components,

s(a) =
m∑

i=1

ai ,
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where a = (a1, . . . , am) ∈ Rm. Similarly, for an element U in the sum poset U of P, let
sU be the linear function on Rm given by

sU(a) =
∑

i | pi∈U

ai .

For U ∈ U , let fU be the linear function on Rm given by

fU(a) =
dimU + 1

n + 1
· s(a)− sU(a) . (B.7)

Definition B.8. The semi-stable cone C is the closed convex polyhedral cone in Rm

obtained as intersection of the half-spaces {fU ≥ 0} for U ∈ U together with {ai ≥ 0},

C = Rm
≥0 ∩

(
⋂

U∈U

{fU ≥ 0}

)
.

The stable cone is the interior of the semi-stable cone:

C◦ = Rm
>0 ∩

(
⋂

U∈U

{fU > 0}

)
.

Lemma B.9. The weighted configuration of points (P, a) is stable if and only if a

belongs to the stable cone.

Proof. For U ∈ U , Equation (6.22) is equivalent to fU > 0. The statement then follows
from Lemma 6.33 .

Since C is a cone defined by linear inequalities, we have the following.

Lemma B.10. If a,b ∈ C then a+ b ∈ C.

Let B ⊂ P be a basis. The indicator function of B is the vector eB ∈ Rm with
components given by

(eB)i =

{
1 if pi ∈ B ,

0 if pi /∈ B .

Lemma B.11. Let B ⊂ P be a basis and let U ∈ U . Then

fU(eB) = dimU + 1− |B ∩ U | . (B.8)

In particular, the following holds:

(i) fU(eB) > 0 if |B ∩ U | < dimU + 1 ;

(ii) fU(eB) ≥ 0 .
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(iii) eB ∈ C ;

Proof. Note that
s(eB) = |B| = n+ 1 (B.9)

and
sU(eB) = |B ∩ U | . (B.10)

Equation (B.8) follows from (B.7) together with Equations (B.9) and (B.10).
Items (i) and (ii) follow from Equation (B.8) together with the fact that, since the

elements of B are linearly independent,

|B ∩ U | ≤ dimU + 1 .

Item (iii) holds since (ii) holds for all U .

Lemma B.12. If P is essential then C ∩ Rm
>0 is non-empty.

Proof. Since P is essential, for any pi ∈ P we can find a basis Bi ⊂ P with pi ∈ Bi.
The vector

a0 =

m∑

i=1

eBi

belongs to Rm
>0. It follows from Lemma B.11 (iii) and Lemma B.10 , that a0 ∈ C.

Proof of Proposition B.1. Start with a0 ∈ C ∩Rm
>0 as given by Lemma B.12. For each

U ∈ U , let BU ⊂ P be a basis with |BU ∩ U | < dimU + 1 as provided by Lemma B.7 .
Set

a = a0 +
∑

U∈U

eBU
.

Clearly, a ∈ Rm
>0. It follows from Lemma B.11 (i) and (ii) that fU(a) > 0 for all U ∈ U .

Therefore, a ∈ C◦. By Lemma B.9 , (P, a) is stable.
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C Miyaoka-Yau and Kähler-Einstein metrics

For compact Kähler manifolds, the Miyaoka-Yau inequality follows from the existence
of Kähler-Einstein metrics together with the Chern-Weil formula

(
2(n+ 1)c2(X)− nc1(X)2

)
· [ωKE]

n−2 = λn

∫

X

| ˚Riem|2 · ωn
KE , (C.1)

where (Xn, ωKE) is a compact Kähler-Einstein manifold, ˚Riem is the trace free part of
the Riemann curvature tensor of ωKE, and λn is a positive dimensional constant. As
a consequence, if equality holds in the Miyaoka-Yau inequality, then ωKE must have
constant holomorphic sectional curvature.

The Miyaoka-Yau inequality has been extended to the setting of log pairs (X,∆);
see for instance [Lan03], [Li21], and [GT22] . However, a general version of the Miyaoka-
Yau inequality for ktl pairs that characterizes the equality case through the existence
of constant holomorphic sectional curvature metrics with conical singularities is still
missing. In this appendix we show that, under the hypothesis of Theorem 1.1 , the pairs
(CPn,∆) with ∆ =

∑
aH · H , admit weak Ricci-flat Kähler metrics with prescribed

singularities at the hyperplanes. To state this precisely, we introduce some notation.
Let (H, a) be a weighted arrangement of hyperplanes H ⊂ CPn and let (CPn)◦

be the arrangement complement. Let ωFS be the Fubini-Study metric on CPn with
ωFS ∈ 2π · c1(OPn(1)) and let | · | be the usual Hermitian metric on OPn(1) with
curvature −i · ωFS. Consider the function

f =
∏

H∈H

|ℓH|
−2aH (C.2)

where ℓH are sections of OPn(1) with H = {ℓH = 0}. The main result of this appendix
is the next.

Proposition C.1. Suppose that the weighted arrangement (H, a) is klt and CY. Then
there is a Ricci-flat Kähler metric ωRF on the arrangement complement (CPn)◦ whose
volume form is proportional to f · ωn

FS. Moreover, we can write

ωRF = ωFS + i∂∂̄ϕ ,

where ϕ extends continuously to CPn.

To prove Proposition C.1 , we need to establish some preliminary lemmas. Write
Lp = Lp(CPn) for the Lebesgue space of measurable functions u on CPn such that

∫

CPn

|u|p · ωn
FS < ∞ .

Lemma C.2. If the klt condition (1.1) is satisfied then f ∈ Lp for some p > 1.
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Proof. Let L be the collection of non-empty and proper subspaces ∅ 6= L ( CPn

obtained as intersection of members of H. Let

p∗ = min
L∈L

codimL∑
H|L⊂H

aH
.

The klt condition implies that p∗ > 1. Fix any 1 < p < p∗. We will prove that f ∈ Lp.
Consider the stratification of CPn given by the elements of L. Specifically, let

Ki =
⋃

L∈Ln−i

L

where Ln−i is the subset of L ∈ L with codimL = i. E.g. K1 is union of all hyperplanes,
K2 is the union of all codimension 2 subspaces and so on. Since every L ∈ L is contained
in another L′ ∈ L with dimL′ = dimL+ 1, we have a decreasing filtration

K1 ⊃ K2 ⊃ . . . ⊃ Kn ⊃ Kn+1 = ∅.

The complements Ωi = CPn \Ki+1 form an increasing sequence of open sets

Ω0 ⊂ Ω1 ⊂ . . . ⊂ Ωn = CPn

where Ω0 = (CPn)◦ is the arrangement complement and

Ωi \ Ωi−1 = Ki \Ki+1 =
⋃

codimL=i

L◦

where the union is taken over all L ∈ L of codimension i and

L◦ = L \
⋃

H|L 6⊂H

(L ∩H).

Claim: f ∈ Lp
loc(Ωi) for all 0 ≤ i ≤ n, where Lp

loc(Ωi) denotes the space of locally
Lp functions on Ωi. Proof of the claim: by induction on i. For i = 0 the function
f is smooth on Ω0 and the statement is obvious. Let 1 ≤ i ≤ n and assume that
f ∈ Lp

loc(Ωi). Let p ∈ Ωi \ Ωi−1. We want to show that there is an open set U that
contains p such that f ∈ Lp(U). By construction of the stratification, p ∈ L◦ for some
L ∈ L with codimL = i. We can assume that if H ∈ H intersects U then H ⊃ L.
Take linear coordinates z1, . . . , zn centred at p, so that L = {z1 = . . . = zi = 0}. Up to
multiplication by a smooth positive factor, we can assume that

f =
∏

L∈HL

|ℓH |
−2aH

where ℓH are linear functions on z1, . . . , zi and | · | is the usual absolute value on C.
By Fubini’s theorem it is enough to show that f is locally in Lp in a neighbourhood
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of the origin of the Ci factor transversal to L. At the same time, U \ L ⊂ Ωi−1 and
by induction hypothesis f ∈ Lp

loc(U \L). In particular, the integral of |f |p on a sphere
about 0 ∈ Ci is finite. Taking spherical polar coordinates on Ci and by homogeneity
of f , we see that |f |p is locally integrable around 0 ∈ Ci if and only if

∫ 1

0

r−2·p·aLr2i−1dr < ∞ (C.3)

where aL =
∑

H|L⊂H

aH . Clearly, Equation (C.3) holds if and only if

p · aL < i

which is guaranteed for our choice of p. This finishes the proof of the claim.
The claim for i = n implies that f ∈ Lp

loc(CP
n). On the other hand, since CPn is

compact, we have Lp
loc(CP

n) = Lp(CPn).

We say that two volume forms dV1 and dV2 on a manifold are proportional, if they
are equal up to a constant positive factor. We write this as dV1 ∝ dV2.

Lemma C.3. Suppose that ω is a Kähler metric on (CPn)◦ with

ωn ∝ f · ωn
FS .

If the CY condition (1.2) is satisfied then Ric(ω) = 0.

Proof. The identity i∂̄∂ log(ωn/ωn
FS) = Ric(ω)− Ric(ωFS) together with

Ric(ωFS) = (n+ 1) · ωFS

imply that
Ric(ω) = (n+ 1) · ωFS + i∂̄∂ log f . (C.4)

On the other hand, since i∂̄∂ log |ℓH|2 = ωFS on {ℓH 6= 0}, we have

i∂̄∂ log f = −

(
∑

H∈H

aH

)
· ωFS . (C.5)

Equations (C.4) and (C.5) give us

Ric(ω) =

(
n+ 1−

∑

H∈H

aH

)
· ωFS = 0,

where the second equality holds because of the CY condition.

Next, we finish the proof of Proposition C.1.
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Proof of Proposition C.1. Since f ∈ Lp for some p > 1 and Lp ⊂ L1, the integral of f
on CPn is finite. Let F = C · f where C is a positive constant such that

∫

CPn

F · ωn
FS =

∫

CPn

ωn
FS .

Consider the complex Monge-Ampère equation

(
ωFS + i∂∂̄ϕ

)n
= F · ωn

FS (C.6)

for an unknown real valued function ϕ. By [Kol98, Theorem 2.4.2 and Example 2 in
p.91] there is a continuous solution ϕ to (C.6) . On the arrangement complement, ϕ
is smooth and ωRF = ωFS + i∂∂̄ϕ is a Ricci-flat Kähler metric satisfying the required
conditions.

Remark C.4. By uniqueness of solutions to (C.6), our Conjecture 1.3 implies that if
Q(a) = 0 then the Ricci-flat metric ωRF is actually flat. Heuristically, an extension
of the Chern-Weil formula (C.1) to metrics with conical singularities, should express
the ‘energy’ or L2-norm of the Riemann curvature tensor of ωRF as a function of the
weights E(a) so that ωRF is flat precisely when E(a) = 0. However, little is known
on the behaviour of ωRF near the support of H, see [dBS23] for the case n = 2. In
particular, it is not known whether |Riem(ωRF)|2 is locally integrable.
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List of Symbols

Symbol Description

aL weight at the irreducible subspace L, Definition 4.26
BH Definition 3.36
bL polarization coefficients, Notation 3.39
C semistable cone, Definition 6.27
C◦ stable cone, Definition 6.15
γL Poincaré dual of DL, Notation 3.24
(CPn)◦ arrangement complement, Section 2.1
DL irreducible component of D = π−1(H) with π(DL) = L, Theorem 3.3
E pullback tangent bundle, Section 4.2
E∗ parabolic bundle on (X,D), Definition 4.28
F i
a filtration of E|Di

by vector subbundles, Definition 4.1
Fa intersection of a tuple of filtrations, Notation A.4 and Notation 4.11

Gria graded component, Definition 4.5

Gri,ja,b Definition 4.16

h generator of H2(CPn,Z) equal to c1(OPn(1)), Notation 3.25
H an arrangement of hyperplanes H ⊂ CPn

(H,a) weighted arrangement, Definition 2.24
HL induced arrangement, Section 2.1
HL localization of H at L, Section 2.1
H ⋔ V hyperplane transverse to a distribution, Definition 5.9
Irr(L) irreducible components of L ∈ L, Notation 2.19
Lc linear subspace in Cn+1 that projects to L ⊂ CPn, Section 2.1
L◦ complement of the induced arrangement HL , Section 2.1
L⊥ annihilator of L, Notation 6.34 and Notation A.23
L poset of non-empty and proper intersections of H, Section 2.1
Lirr non-empty and proper irreducible subspaces of H, Notation 2.17
L◦
irr non-empty irreducible subspaces of codimension ≥ 2, Notation 3.6

L1 ⋔ L2 reducible intersection of two irreducible subspaces, Notation 2.22
mL multiplicity of L, Section 2.1
N number of hyperplanes, N = |H|
O(kn−2) Notation 5.12
P matroid polytope, Definition 6.23
Pk polarization on X, Lemma 3.38
Q quadratic form of H, Definition 6.1
s sum of all weights aH , Equation (6.1)
sH sum of weights on the induced arrangement, Equation (7.2)
Tan(V) set of all hyperplanes tangent to a distribution V ⊂ CPn, Definition 5.4
X minimal De Concini-Procesi model -or resolution- of H, Definition 3.1
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and an application. Astérisque, 309:1–117, 2006.

115



[OSS11] Christian Okonek, Michael Schneider, and Heinz Spindler. Vector bundles on
complex projective spaces. Modern Birkhäuser Classics, 2011.
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