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Abstract

In this survey, we explore the connections between two areas of probability: percolation
theory and population genetic models. Our first goal is to highlight a construction on Galton-
Watson trees, which has been described in two different ways: Bernoulli bond percolation
and neutral mutations. Next, we introduce a novel connection between the Divide-and-Color
percolation model and a particular multi-type Galton-Watson tree. We provide a gentle
introduction to these topics while presenting an overview of the results that connect them.
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1 Introduction

Percolation and branching processes are two flourishing areas within probability theory that have
received increased attention in recent years. Both fields present rich mathematical problems that
have fostered dynamic research communities. This survey explores connections between these
areas. We begin with a brief introduction to the models involved.

A percolation model is associated with dispersion in porous media, where the physical phe-
nomenon of percolation can occur. This phenomenon refers to the passage of a fluid from the
surface to the center of a material. One of the simplest yet most intriguing percolation models is
Bernoulli bond percolation, defined by Broadbent and Hammersley in the 1950s [13].

In Bernoulli bond percolation, a graph G represents the underlying space. A random subgraph
of G is generated by randomly deleting edges of G according to a percolation parameter p ∈ [0, 1].
The remaining edges are considered to be open (a precise construction is given in Subsection 4.1).
Referring to the initial description of percolation phenomena, a liquid can advance through an
open edge.

Roughly speaking, the percolation event occurs when there is an open connected component of
size comparable to the underlying graph G. We refer to an open connected component as a cluster.

∗Department of Statistics, ITAM, Mexico. Email: airam.blancas@itam.mx
†Facultad de Ciencias, UNAM, Mexico. Email: mcfittipaldi@ciencias.unam.mx
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When G is an infinite graph, the percolation event corresponds to the existence of an infinite open
cluster. In particular, we may look at the open cluster connected to origin 0. We denote this
cluster by C0 and corresponds to the subset of vertices connected to 0 by open edges. In the terms
described above, if a liquid advances through open edges, these are the vertices reachable from
the origin.

Bernoulli percolation exhibits a phase transition between a subcritical phase and a supercritical
phase, depending on the density of the porosity. In the subcritical phase, the density is low enough
that the percolation event will not occur with probability one. However, as the density increases,
there is a sudden shift, and the percolation event occurs with probability one.

Since the introduction of the model, some of the most important questions for the percolation
research community have been closely related to conjectures about the system’s behavior at the
critical parameter, often originating from physics. For instance, questions about universality and
conformal invariance at criticality were initially proposed in the physics literature. We discuss
these questions and achievements in this area in Subsection 4.1.3.

This survey, however, takes a different direction. Its motivation is to explore and interpret
percolation models in ways that relate to branching processes and population dynamics.

The study of branching processes began in the 1845 with Bienaymé [11] and was advanced
in the 1873 by Galton and Watson [52]. We refer to [32] for an accout of the origins of this
model. Branching processes model the random behavior of a population’s genealogy as successive
generations reproduce over time. The main model in this field is the Bienaymé-Galton-Watson
process, valued for its simplicity, wide-ranging applications, and flexibility in incorporating varia-
tions to account for more realistic scenarios. For example, to represent populations with multiple
types of individuals, one can employ the multi-type Bienaymé-Galton-Watson process (detailed
in Subsection 3.2).

Another approach to incorporating evolutionary dynamics into a branching process is through
the Bienaymé-Galton-Watson process with neutral mutations (discussed in Subsection 3.3). Bertoin
introduced and analyzed this model in [8, 7]. In this model, mutations change the genotype of
individuals without affecting their reproductive laws, which follow a standard Bienaymé-Galton-
Watson process. Since mutations occur in ancestral lineages, offspring may not inherit the genetic
type of their mothers (referred to as an allele in biological terms). Additionally, we assume the
population has an infinite number of alleles, meaning each mutation event produces a different
allele for a mutant, which is an individual with a new allele. This dynamic is known as neutral
evolution, where reproductive fitness remains unaffected by evolutionary changes, as proposed in
Kimura’s model of infinite alleles [34].

The assumption of infinite alleles is prevalent in mutation models, though it may not always
be the most suitable assumption. In particular, some works in the biological literature emphasize
the importance of working with models that consider a finite number of alleles [37, 47, 54].

Finite allele models are particularly suitable for DNA evolution due to the inherent chemistry
of DNA, which allows for a finite number of combinations of the nitrogenous bases. Some examples
of this were given by Jukes and Cantor [31] and Kimura [35, 36], among others. A well-known
model with these assumptions is the parent-independent mutation (P.I.M.) model, an extension
of these models in which the type of a mutant does not depend on the type of its mother. In
Subsection 3.4, we introduce a version of the P.I.M. model along a Bienaymé-Galton-Watson tree.

Initially, it may appear that the percolation theory and population genetics are unrelated.
However, previous work has revealed deep relations through branching processes. These connec-

2



tions go both ways: they unveil large-scale properties of percolation on graphs and properties of
mutations along genealogies.

The work of Bertoin is seminal in the applications of Bernoulli percolation to population genet-
ics. In [7], he considers a (sub-)critical Bienaymé-Galton-Watson process with neutral mutations
(infinite alleles model), and decompose the entire population into clusters of individuals carrying
the same allele. The author studied the law of this allelic partition in terms of the distribution
of the number of clone-children, and the number of mutant-children of a typical individual. In
a follow-up work [8], Bertoin focused in the situation where the initial population is large and
the mutation rate small. He proves that, for an appropriate regime, the process of the sizes of
the allelic sub-families converges in distribution to a certain continuous-state branching process
in discrete time. This last work was extended in two directions by Blancas and Rivero [12]. In
the critical case, they construct the version of Bertoin’s model conditioned not to be extinct.
Additionally, they establish a version of the limit theorems presented in [8] when the reproduction
law has an infinite variance and it is in the domain of attraction of an α-stable distribution, both
for the unconditioned process and for the process conditioned to non-extinction.

On the other hand, interpreting Bernoulli percolation on a random tree as neutral mutations
along the genealogical tree has proven to be a successful strategy. For instance, Berzunza [10]
studied Bernoulli percolation on trees associated with the genealogy of Crump-Mode-Jagers pro-
cesses, which model populations where individuals may give birth at different points in time
during their lives. The main result in [10] is the existence of a giant percolation cluster for large
Crump-Mode-Jagers trees. In [9], Bertoin and Uribe Bravo considered supercritical Bernoulli bond
percolation on large scale-free trees, closely related to Yule processes. With the neutral mutations
interpretation, the authors in [9] obtained a weak limit theorem for the sizes of the clusters.

In this survey, we focus on the connections between percolation theory and the two extensions
of BGW processes presented above: the multi-type Bienaymé-Galton-Watson process and the
Bienaymé-Galton-Watson process with neutral mutations.

Our starting point is the key observation in [7]: a Bienaymé-Galton-Watson process with
neutral mutations and an infinite number of alleles is equivalent to Bernoulli percolation on a
Galton-Watson tree. This type of representation serves as the main bridge between the two topics
in this survey, and this note aims to explain it carefully.

As we explained above, in some situations a finite number of alleles is a more appropriate model.
The corresponding bridge between a Bienaymé-Galton-Watson process with neutral mutations and
a finite number of alleles requires a variation of Bernoulli percolation, known as Divide-and-Color
percolation, introduced by Häggström in [28].

Divide-and-Color percolation is a simple and natural model for coloring the vertices of a graph.
Its construction is detailed in Subsection 4.3. In this survey, we propose an novel interpretation
of Divide-and-Color percolation as a model for neutral mutations along a genealogy when the
number of alleles is finite.

The remainder of the survey is structured as follows. In Section 2, we provide essential defi-
nitions on trees both as a graph and as a genealogical structure. Section 3 introduces the Bien-
aymé-Galton-Watson (BGW) process and its variations, including the multi-type BGW process,
BGW process with neutral mutations and infinite alleles, and the BGW process with neutral
mutations and finite alleles. For additional background on branching processes, we recommend
classical works such as Athreya and Ney [5], as well as more recent notes by Lambert [38]. In Sec-
tion 4 we introduce Bernoulli percolation on finite and infinite graphs, as well as Divide-and-Color
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percolation. The classical reference on Bernoulli percolation is Grimmett [26]. For the theory of
percolation on trees, we also refer to [46]. Finally, in Section 5, we discuss the connections between
the models introduced in the previous two sections.

2 Trees

In this section, we look at trees as mathematical objects from two perspectives. From a combi-
natorial viewpoint, we first define a tree as a graph, following the standard notation presented
in Lyons and Peres [46]. Afterwards, we consider a tree as a genealogical structure. For further
details on this latter perspective, we refer to Abraham and Delmas [3] and Duquesne and Le
Gall [20].

2.1 Trees as graphs

A graph is a pair G = (V,E), where V is the set of vertices and E is a subset of V × V called
the edge set. We consider the edges of E to be unoriented, and accordingly, we use the notation
{x, y} for an element of E. If {x, y} ∈ E, then we call x and y adjacent or neighbors, and we write
x ∼ y. The degree of a vertex is the number of its neighbors. Whenever we have more than one
graph under consideration, we shall distinguish the vertex and edge sets of G by writing V (G)
and E(G). A graph G is finite if the cardinality |V | < ∞; otherwise, we say that G is an infinite
graph. An infinite graph is locally finite is every vertex has finite degree. From now on, we assume
that all infinite graphs are locally finite as well.

A subgraph G′ of G is a graph whose vertex set is a subset of V (G) and whose edge set is a
subset of E(G). If G′ satisfies that its vertex subset is V , we refer to G′ as a spanning subgraph.

A graph isomorphism between G = (V,E) and G′ = (V ′, E ′) is a bijection φ : V → V ′ for
which φ(x) ∼ φ(v) if and only if x ∼ v. An isomorphism between a graph G and itself is called an
automorphism. A graph is transitive if for any u, v ∈ V there exists an automorphism φu,v such
that φu,v(u) = v.

A path in a graph is a sequence of vertices [v0, v1, . . . , ] where each successive pair of vertices
forms an edge in the graph. A finite path connects its first and last vertices. When a path does
not pass through any vertex (resp., edge) more than once, we will call it simple. The length of
a finite path [v0, v1, . . . , vn] is equal the number of edges connecting each pair of vertices, so we
write length([v0, v1, . . . , vn]) = n.

A finite path with at least one edge and whose first and last vertices are the same is called a
cycle. A cycle is called simple if no pair of vertices are the same except for its first and last ones.
A graph is connected if, for each pair x ̸= y of its vertices, there is a path connecting x to y.

Let G = (V,E) be a finite, or locally finite, connected graph. The graph metric dG : V × V →
[0,∞) is defined by

dG(x, y) := inf{length(p) : p is a simple path between x and y}. (1)

The closed ball of radius r > 0 with center at x is the set of vertices

BG(x, r) := {y ∈ V : dG(x, y) ≤ r}.

If G is a transitive graph, any two closed balls or radius r > 0 are isomorphic as graphs.
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A graph with no cycles is called a forest, and a connected forest is a tree. We will work with
rooted trees, meaning that some vertex is designated as the root, denoted by ∅. Once we set a
root, we can label the tree using different partial order for its vertices. We are interested in a
labeling that convey genealogical data, which we introduce in the next subsection.

2.2 Trees as genealogical structures

In this note, we will work in the following setting. We imagine that the tree is growing away from
its root, and its growth specifies a population genealogy: the root has edges leading to its children,
then these vertices branch out to their own children, and we advance in this way throughout the
generations. The ancestry of an individual in the tree determines its label in the Ulam-Harris
notation, which we introduce below.

Let us define the set of finite sequences of positive integers as

U =
⋃
n≥0

Nn,

following the convention N0 = {∅}. For n ≥ 1 and v = (v1 . . . vn) ∈ U , we denote by ∥v∥ = n
the length of v, where the root satisfies ∥∅∥ = 0. Let u, v ∈ U . We say that v is an ancestor of
the vertex u, and write v ≺ u, if there exists w ∈ U , w ̸= ∅, such that we can write u = wv,
the concatenation of the two sequences. In this case, the element w is called the most recent
common ancestor of {v, u}. Observe that u ⪯ u for any u ∈ U . This ancestry relation defines
a lexicographic order on U , which we will use to set the index of each vertex on a given tree,
starting from the root. Within this framework, a genealogical tree t is a subset of U satisfying the
following conditions:

1. ∅ ∈ t.

2. If u ∈ t, then Au := {v ∈ U : v ≺ u} ⊂ t.

3. For every u ∈ t, there exists ku(t) ∈ N0 ∪ {+∞} such that for every i ∈ N, ui ∈ t if and
only if 1 ≤ i ≤ ku(t).

The set Au corresponds to the set of ancestors of u, and the integer ku(t) indicates the number
of offspring of the vertex u ∈ t. See Figure 1 for an example.

For any u ∈ t, we define the sub-tree tu of t with root u as:

tu := {v ∈ U : uv ∈ t}.

Then, the tree tu corresponds to the genealogical tree of the individual u and its descendants.
We denote by T the set of trees without vertices of infinite degree (also known as locally finite

trees):
T = {t : ku(t) < +∞ ∀u ∈ t}.

For t ∈ T, we denote by |t| = Card t the cardinality of its vertex set. Let T0 be the set of finite
trees:

T0 = {t ∈ T : |t| < +∞}.
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3 Genealogical structures for branching processes

3.1 Bienaymé-Galton-Watson process

Consider a population evolving in discrete time, where each time step denotes a generation. At
each given time, every individual dies and gives birth to a random number ξ of children in the next
generation, according to an offspring distribution µ = (µ(k), k ∈ N0), so that P(ξ = k) = µ(k).

For each j ∈ N and n ∈ N0, we write ξn+1,j for the number of children alive in the (n + 1)-th
generation, of the j-th individual in generation n. The random variables ((ξn+1,j; j ∈ N), n ∈ N)
are independent and identically distributed with common distribution µ. In order to avoid trivial
cases, we assume throughout that µ(0) + µ(1) < 1 and µ(k) ̸= 1 for any k. A Bienaymé-Galton-
Watson (BGW) process with offspring distribution µ is a discrete-time Markov chain (Xn, n ∈ N0)
defined as X0 = 1 and

Xn+1 =
Xn∑
j=1

ξn+1,j, ∀n ∈ N0,

so that Xn is the size of the population at generation n. The law of a BGW process starts from
x individuals (i.e X0 = x) is denoted by Px.

Let (Xn(x), n ∈ N0) be a BGW process starting from x individuals. One of the key properties
of a BGW process is the branching property. It establishes that

X(x+ y)
d
= X̄(x) + X̃(y),

where X̄ and X̃ are independent copies of X starting from x and y individuals, respectively. In
other terms, for each x, y ∈ N0, the probability measure Px+y is equal to the convolution of Px

and Py .
A BGW tree, denoted as T , is the genealogical tree resulting from the BGW process originating

from a single individual. Therefore, T is a T-valued random variable, with a root denoted by ∅
to signify the initial individual, and edges establishing connections between parents and their
children. For each vertex v within T , kv(T ) denotes the number of offspring it has, following a
distribution µ.

We follow the Ulam-Harris notation to label the genealogical tree T . According to this nota-
tion, an individual indexed by u = (u1 . . . unun+1) in the (n+ 1)-th generation is identified as the
un+1-th child of the individual (u1 . . . un) in the n-th generation. This labeling allows us to trace
backward in time along the genealogy until reaching the u1-th individual in the first generation,
who is a child of the root denoted by ∅.

As a consequence of the definition of the BGW process, the subtree T u, rooted in u ∈ T , is a
BGW tree with the same distribution as T . It is worth noting that T u represents the genealogical
tree associated with a BGW process (X̃n, n ≥ 0) starting from the individual u.

By the branching property, conditioned on the event {k∅(T ) = n}, the sub-trees (T (1), . . . , T (n))
are independent and follow the distribution of the original tree T .

3.2 Multi-type BGW processes

We now aim to describe a branching population with d types of individuals; these types are indexed
by the set [d] := {1, 2 . . . , d}. For every i ∈ [d], individuals of type i will produce offspring of
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∅

1

11

111 112 113

12

121

2

21

211 212

Figure 1: This figure shows an example of a BGW tree with Ulam-Harris labeling. In this instance,
the offspring distribution is defined as µ(k) = 1

3
1{1,2,3}(k).

possibly each type, independently of each other. In order to avoid trivial cases, we assume that
the event that all the children of an individual inherit its type occurs with probability less than
one. Formally, let ξ(i) = (ξ(i,j))j∈[d] denote the random vector where the j-th entry is the number
of children that an individual of type i gives birth. Its distribution is µi, that is

µi(v) = P(ξ(i,1) = v1, ξ
(i,2) = v2, . . . , ξ

(i,d) = vd), v ∈ Nd
0. (2)

We set ξ
(i)
(n+1,k) = (ξ

(i,1)
n+1,k, ξ

(i,2)
n+1,k, . . . , ξ

(i,d)
n+1,k) for the number of children in the (n+1)-th generation

beget by the k-th individual of type i in generation n. Let us assume that, for each i ∈ [d],

((ξ
(i)
n+1,k, k ∈ N), n ∈ N0) are independent random vectors with common distribution µi. In other

words, µi(v) is the probability that such individual gives birth |v| =
∑d

j=1 vj children, of which
vj are of type j.

Let Y
(i)
n denote the number of individuals of type i in the n-th generation. Without loss of

generality, we assume that the population starts with one individual of type i. Thus, (Yn =

(Y
(1)
n , . . . , Y

(d)
n ), n ∈ N0), with law P, is a discrete-time Markov chain recursively defined as Y0 =

ei, where ei denotes the canonical vector of Nd
0, and

Y
(j)
n+1 =

d∑
i=1

Y
(i)
n∑

k=1

ξ
(i,j)
n+1,k, i ∈ [d], n ∈ N0. (3)

The process (Yn, n ∈ N0) is known as a multi-type BGW with offspring distribution µ =
(µ1, . . . , µd). It is clear that when d = 1 the process coincides with the BGW process.

As in the one-dimensional case, the multitype BGW process Y satisfies the branching prop-
erty, i.e.

Y(u+ v)
d
= Ȳ(u) + Ỹ(v),

where Ȳ and Ỹ are independent copies of Y, starting from u = (u1, . . . , ud) and v = (v1, . . . , vd)
individuals respectively. As before, this implies that the probability measure Pu+v is equal to the
convolution of Pu and Pu for any u,v ∈ Nd

0.
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A multitype BGW tree T i is the genealogical tree associated with the multitype BGW process
(Yn, n ∈ N) starting from an individual of type i. To include the individual type information,
we label T i according to a generalization of the Ulam-Harris notation. We identify every vertex
with a pair (i, u), so that the first coordinate i ∈ [d] indicates the type and u ∈ U as before. We
point out that the multitype BGW tree hold the branching property in a similar manner as in the
BGW with one type.

∅

1

11

111 112 113

12 13

131 132 133

2

21

212

22 23

231 232 233

Figure 2: Example of a genealogical tree of our multi-type process. In this case we label the tree
using the usual Ulam-Harris notation, but we include a node shape that represent the type of each
individual, let’s say cyan for type 1, blue for type 2 and green for type 3.

3.3 BGW processes with neutral mutations and infinite alleles

As a further extension of the BGW model, Bertoin [7, 8], studied the Galton-Watson process with
neutral mutations, that we will call BGW process with infinite neutral mutations. This model
emerges assuming that the mutations modify the genotype of individuals but not the dynamic
of the population, which evolves as the BGW described in Section 3.1. Since mutations appear
in the ancestral lines of the population, each individual begets children that do not necessarily
inherit its genetic type. From the biological point of view, a genetic type corresponds to an allele.
In addition, we suppose that the population has infinite alleles, that is, each mutation event
originates a different type. Following the terminology of [8], the children of individuals sharing
the same type as its mother will be called clones, whereas the children who are of a different type
than their mother will be called mutants. Additionally, ξ(c) and ξ(m) are non-negative integer-
valued random variables, not necessarily independent of each other, which describe respectively
the number of clones and the number of mutants of a given individual with distribution µ(c) and
µ(m), respectively. Hence, any individual (no matter if is a mutant or not) has a random number
ξ(+) := ξ(c) + ξ(m) of children, independently of all the others individuals, with distribution µ. In
particular, we are interested in the case where mutations affect each child according to a fixed
probability r and independently of its other siblings. More precisely, the conditional distribution
of ξ(m) given {ξ(+) = v1 + v2} is Binomial with parameter (v1 + v2, r), i.e.

P(ξ(c) = v1, ξ
(m) = v2) =

(
v1 + v2

v1

)
(1− r)v1rv2 . (4)
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It is possible to view the BGW with infinite neutral mutations as a multitype BGW process
with countably many types. To be precise, consider a population with types given by N0, so that
every time that individuals of type i reproduces gives birth to individuals either of type i (clones)
or type i+ j , for some j ∈ N in a way that the type i+ j has never been seen in the population
(mutants). Let [dn] be the set of types observed up to generation n. Hence, if Y

(i)
n denotes the

number of type i individual in the n-generation, we have that
Y

(i)
n+1 =

∑Y
(i)
n

h=1 ξ
(c)
n+1,h for any i ∈ [dn],

Y
(dn+i(h))
n+1 = ξ

(m)
n+1,h h = 1, . . . ,

∑dn
i=0 Y

(i)
n if ξ

(m)
n+1,h ̸= 0,

where {(ξ(c)n+1,h, h ∈ N), n ∈ N} are independent copies of ξ(c) and i(h) =
∑h

k=1 1{ξ(m)
n+1,k ̸=0}.

∅

1

11

111

X

112 113

12

121

X

2

21

211 212

X

X

Figure 3: An example of a BGW tree with infinite allele type mutation. This tree corresponds
to the tree in Figure 1 with r = 0.5. Note that after a new mutation, appears a new type of
individual (never seen before).

3.4 BGW processes with neutral mutations and finite alleles

We are also interested in studying BGW processes with neutral mutation in the case of finitely-
many alleles. In this framework, we propose two models of multi-allelic neutral mutation for a
BGW process. First, we propose a mother-dependent model, where a mutant cannot be of the
same type of its mother. We drop this assumption in the second model.

3.4.1 Mother-dependent mutation model

In the same framework of [8], we consider neutral mutations in a BGW process with probability
r but assuming that the population has finitely-many alleles. Formally, we can view this model
as a multitype BGW process, introduced in Section 3.2. In particular, we have the discrete-time
Markov chain (Yt, t ≥ 0) as in (3) where for i ∈ [d], the offspring distribution µi defined in (2) is
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multinomial, that is

µi(v) = µ(|v|)
(

|v|
v1, . . . , vd

)
(1− r)vi

∏
j ̸=i

(
r

d− 1

)vj

= µ(|v|)
(
|v|
vi

)
(1− r)vir|v|−vi

(
|v|

v1, . . . , vi−1, vi+1, . . . , vd

)(
1

d− 1

)|v|−vi

,

(5)

where r ∈ [0, 1], |v| =
d∑

j=1

vj. Here µ is the probability measure in N0 associated with

ξ(+) d
= ξ(+,i) =

d∑
j=1

ξ(i,j), (6)

the total number of children of any individual, independently of its type.
Hence, the above described evolution correspond to the following mechanism: at each genera-

tion, every individual reproduces with probability (µ(k), k ∈ N0), independently of others. Each
child will be a copy of its mother with probability 1 − r, independently of their siblings. If it is
not, its new type will be chosen uniformly from among the d− 1 remaining types.

∅

1

11

111

X

112 113

12

121

X

2

21

211 212

X

X

Figure 4: An example of a BGW tree with mother-dependent finite allele mutation. This tree
correspond to the tree in Figure 1 with r = 0.5 and three types (circle, square and pentagon).
Note that in this case, each mutation event produces an individual that chooses its type uniformly
among all types, but different from its mother’s.

3.4.2 Mother-independent mutation model

In this case, we allow mutant children to have the same type of its mother. Similarly to the
mother-dependent mutation (M.D.M.) model, we have the discrete-time Markov chain (Zt, t ≥ 0)
as in (3) where for i ∈ [d], the offspring distribution µi defined in (2) is multinomial, that is

µi(v) = µ(|v|)
vi∑

k=1

(
|v|
k

)
(1− r)kr|v|−k

(
|v| − k

v1, . . . , vi − k, . . . , vd

)(
1

d

)|v|−k

. (7)
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Here, the first terms corresponds to offspring distribution in (6). The index k corresponds to
the number of clones of type i. The last two factors correspond to our coloring, where vi − k
individuals are mutant children that randomly chose the same type of its mother.

∅

1

X

2 3

X

4

X

5

Figure 5: An illustration of a branching event for the mother-independent mutation (M.I.M.)
model in the case where we have three types (circle, square and pentagon). For this model, each
mutant child chooses its type uniformly from the set of all possible types.

3.5 Phase Transition for branching processes

3.5.1 Extinction for BGW processes

Given a BGW process (Xn, n ∈ N0), extinction occurs if Xn = 0 for some generation n. Note that
if Xn = 0, then Xn+k = 0 for every k ∈ N. We denote this event by {Ext}, and thus,

{Ext} = { there exist n ∈ N : Xn = 0} =
⋃
n∈N

{Xn = 0} = lim
n→+∞

{Xn = 0},

as ({Xn = 0})n∈N are increasing events. We point out that the extinction event in the BGW
process corresponds to the event that T is a finite tree, i.e. {Ext} = {T ∈ T0}.

The generating function of ξ, is given by

f(s) =
∑
k∈N0

skµ(k), s ∈ [0, 1]

and its mean is E(ξ) = m. It is well-known that the fixed point equation f(s) = s has at most two
solutions in [0, 1], and the extinction probability q := P(Ext) is the smallest root of this equation.
In fact, BGW processes display a phase transition, from almost surely extinction (q = 1) if m < 1
to positive probability of survival (q < 1) if m > 1. We say then that a BGW process (Xn, n ∈ N0)
(resp. a BGW tree T ) is sub-critical, critical or super-critical depending on m < 1, m = 1 or
m > 1, respectively.

The extinction conditions for a multi-type BGW are written in terms of the matrix recording
the expected number of type j offspring of a single type i individual in one generation. The precise
condition is in [5, Theorem 2, Chapter V].

Analogous to the one dimensional case, the extinction conditions for a multi-type BGW are
given in terms of a parameter ρ, which is the maximum eigenvalue of the mean matrix M =
(mij)i,j∈[d], given by mij = E(ξ(i,j)). Given M, a strictly positive matrix, if ρ ≤ 1 then P(Y (i)

t =

0 for some t) = 1 for all i ∈ [d]. If ρ > 1 then P(Y (i)
t = 0 for some t) < 1 for all i ∈ [d]. The

precise results (for the discrete-time case) can be found in [5, Chapter V.3].
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3.5.2 Phase transition for BGW process with neutral mutation

For the BGW process with neutral mutations, the process of the total number of individuals per
generation depends on the law of the underlying branching process, independently if the model
has finitely-many or infinite alleles. In fact, the underlying BGW tree T will be finite almost
surely if m ≤ 1, where

m = E
[
ξ+

]
, (8)

where ξ+ is given by (6). If m > 1, T has positive probability to be infinite. In this case, the
relevant question is whether there exist an infinite subtree of individuals of the same type, and if
such a subtree includes the root. We will address these matters later, in Subsection 5.2.

4 A glance at Bernoulli percolation

In this section, we will present a quick overview of Bernoulli percolation.
Let us recall our graph notations introduced in Section 2.1 and let G = (V,E) be a finite

graph. In the sequel, it will be helpful to consider an spanning subgraph G′ of G as an element
of S := {0, 1}E = {s : E → {0, 1}}. Observe that each s ∈ S is uniquely identified by its subset
of edges Es := {e ∈ E : s(e) = 1}. We will refer to the edges on Es as open on the configuration
defined by s. Hence s is in one-to-one correspondence with the subgraph (V,Es). With this
correspondence in mind, it is convenient to refer to subgraphs as elements of S. We will describe
a random spanning subgraph as a probability distribution over the measureable space (S,P(S)),
where P(S) is the power set of S.

4.1 Bernoulli percolation

Bernoulli bond percolation on G = (V,E) with parameter p ∈ [0, 1] is defined by the probability
measure PG

p on the measurable space (S,P(S)) given by

PG
p (s) =

∏
e∈E

ps(e)(1− p)1−s(e), s ∈ S. (9)

By the correspondence established above between S and spanning subgraphs of G, we can define
a random spanning subgraph O so that its edge set is Es with probability PG

p (s). In words, the
subgraph O is given by the following rule for each edge e ∈ E:

the edge e is open with probability p and

the edge e is closed with probability 1− p,

independently from other edges. We thus have that Es = {e ∈ E : e is open}. See Figure 6.
One may think that, for each edge e ∈ E the marginal of the measure PG

p follows a Bernoulli
distribution with parameter p.

From the perspective of percolation theory, we are interested in the geometry of the random
spanning subgraph O. On a discrete setting, questions about the geometry of a subgraph first
concern connectivity properties, including the number of connected components and their size
(i.e. their number of vertices). A subgraph G′ = (V ′, E ′) is connected if for any x, y ∈ V ′ there
exists a path of vertices in G′ between x and y. Given a percolation configuration O, a (random)
connected subgraph C of open edges is called a cluster. See Figure 6.
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Figure 6: On the left-hand side we have a finite connected graph G. The right-hand side figure
illustrates a realization of a Bernoulli percolation with parameter p. The red edges corresponds to
the set of open edges Es. The clusters of Es are {a, b, e}, {c, d, g, i}, {f} and {h, j}. The closed
edges of G were deleted.

4.1.1 Phase transition for Bernoulli percolation on finite graphs

A remarkable property of Bernoulli percolation on a graph G is that it undergoes a phase tran-
sition of the size of the largest cluster, as the parameter p varies. A cluster is called giant if it
contains a positive proportion of the vertices in G. The supercritical phase of Bernoulli percolation
corresponds to the existence of a giant cluster with probability greater than a given constant. We
give a quantitative definition below.

Fix r ∈ (0, 1) and ε > 0. A cluster K of O is r-giant if

|K| ≥ r|V |,

where | · | denotes the cardinality of the vertex set of K.
Let (Kn)n≥1 be the clusters of O ranked in decreasing size order, so that K1 be the largest

cluster. With this in mind, for each ε > 0, the percolation parameter p is ε-supercritical for G if
|V | ≥ 2ε−3 and

PG
(1−ε)p (|K1(G)| ≥ nε) ≥ ε.

For an asymptotic definition of the phase transition in percolation on finite graphs, let us
consider a sequence of finite graphs (Gn)n≥1 = ((Vn, En))n≥1 such that |Vn| → ∞. The sequence
of parameters (pn)n≥1 is supercritical if there exists ε > 0 and N < ∞ such that

PGn

(1−ε)pn
(K(Gn) ≥ ε|Vn|) ≥ ε for every n ≥ N.

This means that, on the supercritical regime we have a giant component asymptotically almost
surely.

4.1.2 Bernoulli percolation on infinite graphs

The theory of phase transitions in Bernoulli percolation was originally formulated and developed
for infinite graphs. Here, we briefly review this setting and refer to [26] for a detailed account of
the subject.
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Let G = (V,E) be a infinite, connected and locally finite graph, and consider its space of sub-
graphs S = {0, 1}E. In this space, a cylinder event B is defined by a finite set F = {e1, . . . , ej} ⊂ E
and values a1, . . . , aj ∈ {0, 1} such that

B = {(se)e∈E ∈ S : (se1 , . . . , sej) = (a1, . . . , aj)}.

We endow S with the product σ-algebra F , generated by cylinder events. The Bernoulli bond
percolation measure with parameter p ∈ [0, 1] on G is defined by

PG
p (B) =

j∏
i=1

pai(1− p)1−ai , (10)

for any cylinder event B as above.
For a transitive, connected, infinite graph G, we define the phase transition by the existence

of an infinite open cluster. The percolation density θ : [0, 1] → [0, 1] is the function defined by the
probability that Cρ, the cluster containing a fixed vertex ρ, is infinite:

θ(p) = PG
p (|Cρ| = ∞) , p ∈ [0, 1],

where PG
p is the Bernoulli percolation measure on G with parameter p. The percolation critical

parameter on G is defined by

pGc = inf{p ∈ [0, 1] : θ(p) > 0}.

4.1.3 Critical phenomena, universality, and locality

In this subsection, we overview two fundamental concepts driving research on Bernoulli percola-
tion: universality and locality. This part of the survey is independent of the rest of the work and
provides perspective on the research landscape in this area.

Universality refers to the shared behavior of various physical systems at and near critical.
When two systems share this behaviour, we say that they belong to the same universality class.
One instance where this behavior appears is in the decay of certain quantities associated with the
system, where systems in the same universality class exhibit common exponents for the power-law
decay of these quantities as they approach a critical point. For example, in the case of Bernoulli
bond percolation on an transitive, connected, infinite graph G with critical parameter pc, it is
expected that

θ(p) = (p− pc)
β+o(1), as p ↓ pc. (11)

The exponent β, common to all systems in the same universality class, is referred to as a universal
critical exponent. It is believed that the critical exponent β for Bernoulli percolation depends only
on the spatial dimension of the underlying graph.

On transitive graphs, the concept of dimension is defined through the volume growth rate,
determined by the asymptotic behavior of the volume of closed balls in the graph metric (defined
above in (1)) as their radius r → ∞. For instance, in the lattice graph Zd, there exist constants
c, C > 0 such that

cnd ≤ |BZd(0, r)| ≤ Cnd, for all n ≥ 1.

Thus, Zd has a polynomial growth rate, with volume growth dimension d.
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In the 1970s, critical phenomena was enlightened in physics through Wilson’s work on the
renormalization group, for which he received the 1982 Nobel Prize in Physics [53]. One conse-
quence of this formalism is the conformal invariance in the scaling limit of critical two-dimensional
statistical models such as Bernoulli percolation [1, 2].

A deeper understanding of conformally invariant processes in the complex plane emerged with
Schramm’s introduction of the Schramm-Loewner evolution (SLE), a family of stochastic processes
on the plane indexed by a parameter κ > 0 [49]. In particular, SLE with parameter κ = 6 describes
the scaling limit of two-dimensional critical Bernoulli percolation. With this tool, Lawler, Werner
and Schramm had a fruitful collaboration on the properties of SLE and its application as a tool
to understand critical phenomena, as well as the fractal geometry of two-dimensional Brownian
motion [39, 40, 41, 42, 43, 44]. For these results, Werner received the Fields Medal in 2006 [48].

A rigorous proof of the conformal invariance of the scaling limit of two-dimensional critical
Bernoulli percolation was achieved by Smirnov, who proved the conjectured conformal invariance
for the triangular lattice [50]. This landmark work also led to Smirnov’s receipt of a Fields
Medal in 2010 [33]. A summary of the results by Lawler, Werner, Schramm, and Smirnov, along
with Kesten’s scaling relations, appears in [51]. In this work, Smirnov and Werner establish the
existence and values of universal critical exponents for Bernoulli percolation on the triangular
lattice, confirming β = 5/36, as predicted in the physics literature.

Recently, percolation theory has extended the techniques of Bernoulli percolation to a larger
class of percolation models, allowing for dependencies. One significant model in this class is
the random-cluster model (also called FK percolation), introduced by Fortuin and Kasteleyn in
the 1970s [24, 22, 23]. It generalizes Bernoulli percolation and provides a unifying framework for
models such as the Ising and Potts models, as well as Bernoulli percolation itself. Taking limits on
the parameters, the random-cluster model includes the uniform spanning tree and the β-arboreal
gas models [30]. For a comprehensive treatment, see [27].

Duminil-Copin and collaborators have achieved significant progress in understanding the phase
transitions and the critical and near-critical behavior of the random-cluster model [4, 6, 14, 16,
17, 18]. This work has also led to new insights into Bernoulli percolation, simplifying the proofs of
key results, such as a proof for the sharpness of the phase transition [19]. Duminil-Copin’s work
earned him a Fields Medal in 2022 [29].

In Bernoulli percolation, several questions remain open. One of the biggest challenges is to
understand the phase transition and critical behavior in three dimensions, such as on Z3. Another
rich area of research explores Bernoulli percolation on graphs beyond Zd, where this model has
generated deep connections with other mathematical fields, including geometric group theory.

Studying Bernoulli percolation on diverse graphs has highlighted different properties of the
model. Since the early days of percolation theory, numerical analysis showed that pGc is not
universal; rather, it depends on the graph G. In fact, for pc < 1, the value depends on the graph’s
local geometry. It is a remarkable phenomenon, since locality is a opposite concept to universality.

The local geometry of a graph is measured by the local topology (also known as the Benjamini-
Schramm topology). Let (Gn)n≥1 be a sequence of connected infinite transitive graphs converging
to a connected infinite transitive graph G in the local topology. This means that, for each r > 0,
the closed balls of radius r in Gn are isomorphic to those in G for all sufficiently large n.

In the space of connected infinite transitive graphs, let (Gn)n≥1 be a sequence converging to
a graph G in the local topology as n → ∞. If supn≥1 pc(Gn) < 1, Schramm conjectured that
pc(Gn) → pc(G) as n → ∞.
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A key step towards understanding this conjecture was achieved in [15], where the authors
showed that the condition pc(Gn) = 1 is equivalent to Gn being one-dimensional, meaning that
its volume growth satisfies |BGn(v, r)| = O(r) as r → ∞.

Given [15], it is sufficient to assume that each element in the sequence (Gn)n≥1 has a super-
linear growth rate. Schramm’s locality conjecture was recently settled in a breakthrough work
by Hutchcroft and Easo. They proved that, given a sequence of connected infinite transitive
graphs (Gn)n≥1 with superlinear volume growth, if Gn → G as n → ∞ in the local topology, then
pc(Gn) → pc(G) as n → ∞ [21].

4.2 Bernoulli percolation on trees

We now turn to a specific class of graphs and begin with a brief account of Bernoulli percolation
on infinite trees.

Proposition 4.1. Let Td be a d-ary tree with d ≥ 2 and consider Bernoulli percolation of pa-
rameter p ∈ [0, 1] on Td. If T∅ is the open cluster of the root then T∅ follows the distribution of a
BGW tree with progeny distribution Bin(d, p).

A direct consequence of Proposition 4.1 and the phase transition on the survival of a BGW
tree (as explained in Subsection 3.5.1) we have the following.

Proposition 4.2. Let Td be a d-ary tree with d ≥ 2. Then the critical percolation parameter is
pc(Td) = 1/d.

A generalization of the previous theorem to general trees involves de definition of the branching
number. On a infinite tree, the branching number corresponds to the average number of branches
per vertex. The definition of branching number arises from the work of Furstenberg on the
Hausdorff dimension of a tree [25]. Its precise definition goes beyond the scope of this survey, and
we refer the reader to [45] or [46, Section 1.2]. However, we want to point out that the branching
number of a d-regular tree is d. In this sense, the following theorem extends Proposition 4.2.

Theorem 4.3 ([45]). Let T be a infinite tree with branching number b. Then the critical perco-
lation parameter is pc(T ) = 1/b.

4.3 Coloring percolation clusters at random

In [28], Häggström introduced a percolation model on a graph G called the divide and color model.
This model introduces a random coloring of the vertices of G. Hereafter we will write DaC, for
short. This model arises by first performing Bernoulli bond percolation with parameter p on the
graph G (see Figure 6), and then assigning a random color, chosen according to a prescribed
probability distribution on the finite set [d], to each of the connected components, independently
for different components, see Figure 7.

In the following we introduce the model more precisely for the case of our interest, that is,
when G is a tree.

4.3.1 Coloring percolation on trees

Let t = (V,E) be an infinite tree and d ≥ 2 different colors indexed by the set [d]. Additionally to
the percolation parameters p used to defined the Bernoulli percolation, we consider a probability
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Figure 7: On the left-hand side, we have a finite connected graph, while on the right-hand side,
we see a realization of a DaC percolation. This was obtained by applying a random coloring to
the Bernoulli percolation illustrated in Figure 6.

distribution a = (a1, . . . , ad) over the set of colors [d]. The coloring is done according to the
following two-step procedure.

Step 1: We perform a Bernoulli percolation on t (as described in Subsection 4.2). As a
result, we obtain a configuration on S denoted by s. The set of clusters obtained is denoted
by C.

Step 2: For each vertex on the same cluster of C we assign the same color. This color is
chosen according to the distribution a independently for different connected components.
The resulting coloring Π is defined by a probability measure on [d]V and it will be denoted
by Pt

p,d,a.

Throughout this paper, we shall work with the DaC model with just two colors. Hence, we use
the notation Pp,2,a1 , where a1 is the probability of coloring a vertex on the graph with the color
1. Note that 1 − a1 is the probability of not to color the vertex with color 1. The development
in [28] include the study of the DaC for infinite trees and phase transition percolation results for
d = 2. The reason for the author to consider only two colors is due to the fact that the question
of whether the DaC measure Pt

p,d,a produces an infinite connected component of color i ∈ [d] with
d ≥ 2 can be answered immediately using the measure Pt

p,2,ai
, since 1− ai is the probability of not

to color the vertex with color i. We have summarized the phase transition results of [28] in the
following proposition.

Proposition 4.4 ([28, Propositions 2.7 and 2.8]). Let Π be the resulting coloring of applying the
DaC model on an infinite tree t with parameters p ∈ [0, 1], d = 2 and a = (a1, a2), we have

Pt
p,2,a1

(X contains an infinite connected component of the color of 1) > 0.

if and only if
Pt

p̃ (O contains an infinite connected component ) > 0

where p̃ = 1− (1− p)(1− a1) and Pt
p̃ is the probability measure defined in (10).

According to [28, Proof of Proposition 2.7], the idea behind the proof of the propositions
above is that the connected component of a given color containing a given vertex has the same

17



distribution as a Bernoulli percolation. However, one needs to be careful because the probability
law of DaC on t is not equivalent to Bernoulli site percolation on the vertices of t (see [28, Remark
p.227]). This can be clarified, without loss of generality, by analyzing a genealogical tree with root
∅ and its children. Note that the individuals who are children of the root have two possibilities
for inheriting the same color of its mother. Namely,

1) The children of the root belongs to the same cluster as their mother; this occurs with
probability p.

2) The children of the root belong to a different cluster from their mother, but this connected
component chooses the color of the mother. This event has probability (1− p)a∅, where a∅
is the probability of coloring a cluster with the same color of the root.

Therefore, a child of the root has the same color as its mother with probability

p+ (1− p)a∅ = 1− (1− p)(1− a∅).

Let us denote by t̃∅ the subtree where every individual has the same color as the root and have
no ancestors of other color. Thanks to the previous observation we can directly conclude the
following result.

Proposition 4.5. Consider the DaC model on an infinite tree t with parameters p ∈ [0, 1], d = 2
and a∅ denoting the probability of coloring a cluster with the same color of the root. We have
that

Pt
p,d,a∅

(
t̃∅ has infinite size

)
> 0

if and only if
Pt

p̃ (C∅ has infinite size ) > 0,

where p̃ = 1 − (1 − p)(1 − a∅) and C∅ is the cluster of the root obtained to apply a Bernoulli
percolation with parameter p̃ on t.
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Figure 8: The figure on the left shows a realization of the DaC in a finite tree, with parameter
p and d = 3. The figure on the right illustrates a realization of the correspondent Bernoulli
percolation, where the connected components are given by color.
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5 Connections between percolation models and branching

structures

This section is devoted to provide a representation of the BGW branching process with neutral
mutations, as presented in Section 3.3, in terms of Bernoulli percolation and the DaC model.

In [7], Bertoin introduced the model of neutral mutations on infinite alleles and implicitly
used a percolation in BGW trees. This connection is made explicit in [9]. In Subsection 5.1, we
generalize this relationship in two ways: from the point of view of population genetics (BGW
process with multi-allelic neutral mutations) and from the point of view of percolation theory
(DaC percolation model).

First we will discuss the relation between BGW processes with infinite allele neutral mutations
and Bernoulli percolation introduced by Bertoin [7] and studied also in [8]. Next, we will introduce
the relation between the DaC percolation and the MIM model. Finally, at the end of Subsection 5.1
we will present the restricted DaC percolation model, related to MDM model.

5.1 From Bernoulli percolation to neutral mutations and back

5.1.1 Bernoulli percolation on BGW trees

In Subsection 4.1, we define Bernoulli percolation with retention parameter p on a deterministic
graph. We can apply the same procedure to a random tree, in particular, on a BGW tree. Note
that by taking p = 1− r, where r is the mutation parameter on BGW process with infinite alleles
(neutral mutation), we obtain a unique correspondence between both models. Roughly speaking,
a mutation corresponds to closing an edge. In terms of population genetics, opening an edge can
be interpreted as the mother and child sharing the same type. Indeed, by the branching property
it is enough to analyze the root ∅ and its children. Conditioned on {ξ(+) = v} the distribution of
the number of clones is given by

P(ξ(c) = u) =

(
v

u

)
(1− r)urv−u,

i.e. conditioned on ξ(c) |{ξ(+)=v}∼Binomial(v, 1− r). Therefore, for each child we have a Bernoulli

distribution with parameter 1−r, this corresponds with the marginal of the measure PG
1−r defined

in (10).

5.1.2 Divide and color percolation on BGW trees

In Subsection 4.3, we define the DaC model on an infinite tree t with parameters p ∈ [0, 1], d ≥ 2
and a = (a1, . . . , ad). We can apply the same model to a BGW tree. As before, we can find
a correspondence with the mother-independent mutation model defined in 3.4.1. In order to do
that, we take the parameter p = 1 − r, where r is the mutation probability. We also consider
d the number of types and set ai = 1/d for all i ∈ [d], since each mutant child chooses its color
uniformly.

Again, by the branching property it is enough to analyze the root ∅ and its children. Assume
that the type of the root is i. Following equations (6) and (7), conditioned on {ξ(+,i) = |u|},
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Figure 9: Comparison between infinite alleles model and Bernoulli percolation

the probability that the root have ξi := (ξ(i,1), ξ(i,2), . . . , ξ(i,d)) = (u1, u2, .., ud) children, with∑d
i=1 ui = |u| is given by

P(ξi = (u1, u2, .., ud)) =

ui∑
k=1

(
|u|
k

)
(1− r)kr|u|−k

(
|u| − k

u1, . . . , ui − k, . . . , ud

)(
1

d

)|u|−k

. (12)

This measure coincides with the DaC measure Pp,d,a applied to the root and its children at the
first generation (see Figure 5).
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Figure 10: Comparison between MIM model and DaC percolation.

5.1.3 Restricted divide and color percolation on BGW trees

Let us now consider the (uniform) DaC percolation model in a BGW tree but restricted to the
case when mother and child belonging to different clusters cannot have the same color. As in
4.3.1, we can describe the coloring step procedure as follows:

Step 1: We perform a Bernoulli percolation on t (as described in Subsection 4.2). As a
result, we obtain a configuration on S denoted by s. The set of clusters obtained is denoted
by C. Note that each cluster K is in a particular a subtree with a root ∅K .
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Step 2: Given an assigned color for the cluster of the initial root, we will color the other
clusters according of the lexicographical order of their roots. The color of ∅K determines the
color of all the vertex of K. Then, the color of ∅K is chosen uniformly over the set [d] \ {i}
if the color of its mother is i. The resulting coloring Π̃ is defined by a probability measure
on [d]V and it will be denoted by P̃t

p,d,unif .

Similarly to the previous subsection, we can compare this percolation model with the mother-
dependent mutation model. In this case, following equation (5), conditioned on {ξ(+,i) = |u|},
the probability that the root have ξi := (ξ(i,1), ξ(i,2), . . . , ξ(i,d)) = (u1, u2, .., ud) children, with∑d

i=1 ui = |u| is given by

P(ξi = (u1, u2, .., ud)) =

(
|u|
ui

)
(1− r)uir|u|−ui

(
|u| − ui

u1, . . . , ui−1, ui+1, . . . , ud

)(
1

d

)|u|−ui

. (13)

This coincide with the restricted uniform DaC measure P̃t
p,d,unif defined in the step-procedure

above, applied to the root and its children at the first generation.
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Figure 11: Comparison between MDM model and restricted DaC percolation.

5.2 The percolation phase transition from the point of view of neutral
mutation models

For the Bernoulli phase transition on a tree T , the classical interpretation of the percolation
supercritical regime corresponds to the existence of an infinite cluster with probability 1. From
the point of view of population genetics, for a BGW tree with mutation we can interpret the
cluster of the root as a subtree T∅ of individuals of the same type of the root ∅. Note that a
subtree is connected, so T∅ does not include individuals of the same type of ∅ but with ancestors
of a different type.

On the percolation supercritical regime, the size of T∅ has a positive probability of being of
the same order to the size of the full genealogy. If the full genealogical tree is finite, it means that
the size of T∅ is proportional to the size of T . On the other hand, if T is infinite, this means that
T∅ is infinite as well.
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In the following we will present some percolation results on BGW trees conditioned to be
infinite and we describe it in terms of the mutation models presented above. First, we recall some
results of Lyons for percolation in BGW trees and its interpretation in terms of the infinite alleles
mutation model and the MDM model. Finally, we will extend Proposition 4.4 for the BGW case,
and we describe its meaning for the MIM model.

5.2.1 Percolation phase transition for BGW trees

We now recall the generalization of Proposition 4.2 to branching trees.

Theorem 5.1 (Lyons, 1990). Let T be a BGW tree whose offspring distribution has mean m > 1.
That is, if ξ is a random variable following the offspring distribution, then m = E(ξ) > 1.
Conditioned on non-extinction, we have that pTc = 1/m almost surely.

In the case of infinite alleles model, we consider the probabilities

q∞ = P (There exists an infinite sub-tree with the same type)

q∅ = P (T∅ is infinite) ,
(14)

where T∅ correspond to the sub-tree of clones. Therefore, we interpret Theorem 5.1 as a phase
transition for the probabilities in (14). Specifically,

q∞ =

{
1 if 1− r ≤ pTc
0 if 1− r > pTc .

(15)

and

q∅

{
> 0 if 1− r ≤ pTc
= 0 if 1− r > pTc .

(16)

Similarly, for the mother-dependent mutation model, we can make a similar interpretation for
the probabilities q⋆∞ and q⋆∅. We define q⋆∞ just as q∞. The variation for q⋆∅ is that instead of T∅
we look at the subtree T ⋆

∅ of individuals of the same type of the root ∅. Then we define

q⋆∅ = P (The sub-tree T ⋆
∅ is infinite) . (17)

A phase transition holds as in (15) and (16).

5.2.2 Divide and color percolation phase transition for BGW trees

Finally, we consider DaC percolation on a BGW tree conditioned to be infinite. We will compare
this model with mother-independent mutation model introduced in 3.4.2. For this propose, we
extend below Proposition 4.4 from deterministic trees to BGW trees.

Theorem 5.2. Let T be a BGW tree whose offspring distribution has mean m > 1, as in
Theorem 5.1. We have that

p̃Tc =
1−ma∅
m(1− a∅)

a.s. given non-extinction.
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Proof. As in the deterministic case, the connected component of a given color containing a given
vertex is distributed as in Bernoulli percolation in a BGW tree with retention parameter p̃ =
1− (1− p)(1− a∅). As a consequence of this fact, we have that the Proposition 5.9 in [46, Section
5] is also valid in this case, so we have that that the cluster of the root (by color) will be finite
a.s. if mp̃ ≤ 1. From this, we deduce the critical probability for this case.

We now provide an interpretation of Theorem 5.2 for the mother-independent mutation model,
as in (15) and (16) in the previous subsection. In this case, we define the probabilities

q̃∞ = PT
p,2,1/d (There exists an infinite sub-tree of the same type of the root )

q̃∅ = PT
p,2,1/d

(
T̃∅ is infinite

)
,

(18)

where here T̃∅ correspond to the subtree of individuals that are of the same type as the root and
have no ancestors of other types.

We then interpret Theorem 5.2 as a phase transition for the probabilities in (18). Specifically,

q̃∞ =

{
1 if 1− r ≤ p̃Tc
0 if 1− r > p̃Tc ,

(19)

and

q̃∅

{
> 0 if 1− r ≤ p̃Tc
= 0 if 1− r > p̃Tc .

(20)
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