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Abstract

Resting-state EEG data in neuroscience research serve as reliable markers for user
identification and reveal individual-specific traits. Despite this, the use of resting-
state data in EEG classification models is limited. In this work, we propose a fea-
ture concatenation approach to enhance decoding models’ generalization by inte-
grating resting-state EEG, aiming to improve motor imagery BCI performance and
develop a user-generalized model. Using feature concatenation, we combine the
EEGNet model—a standard convolutional neural network for EEG signal classifi-
cation with functional connectivity measures derived from resting-state EEG data.
The findings suggest that although grounded in neuroscience with data-driven
learning, the concatenation approach has limited benefits for generalizing models
in within-user and across-user scenarios. While an improvement in mean accuracy
for within-user scenarios is observed on two datasets, concatenation doesn’t ben-
efit across-user scenarios when compared with random data concatenation. The
findings indicate the necessity of further investigation on the model interpretability
and the effect of random data concatenation on model robustness.

1 Introduction

Data-driven approaches in Brain-Computer Interfaces (BCIs) are bringing neurotechnology closer
to real-world applications[15]. These interfaces have a broad range of applications, from restoring
motor functions in individuals with severe motor impairments to providing new modes of interaction
for able-bodied users in virtual environments. The core functionality of BCIs relies on decoding
neural activity, often recorded via electroencephalography (EEG), to infer user intent and translate it
into actionable commands. Motor Imagery (MI), a paradigm in which users control external devices
by imagining specific motor movements, such as moving a hand or foot is one of the most researched
paradigm for BCIs with availability of large and multiple public datasets [14]. MI-BCIs leverage
the ability of individuals to modulate their brain activity voluntarily, typically in the sensorimotor
cortex, without executing actual movements. This allows for the control of assistive technologies
through thought alone, making MI-BCIs particularly valuable for patients with conditions such as
amyotrophic lateral sclerosis (ALS) or spinal cord injuries. However, the practical deployment
of MI-BCIs is often challenged by the significant variability in EEG signals across sessions and
subjects, driven by factors such as differences in electrode placement, neurophysiological conditions,
and external noise.

Recent data-driven approaches with deep learning models trained on datasets from large number of
participants show a promising approach for generalisability, requiring lesser or no calibration for
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new users [21, 9]. The complex deep learning architectures at the same time are a hurdle to interpret
the computations and decision making behind the model predictions [14]. This necessitates the
incorporation of neurophysiological principles into model design and training to ensure that the
models can generalize effectively beyond the specific conditions under which they were trained.

Recent efforts towards generalisation has focused on learning disentangled representations with com-
plex encoder and decoder architectures [7, 2] to separate the signals from noise and user-specific
signals. Another approach is towards the alignment of the covariance matrix that generalises the
common spatial patterns for user-agnostic motor imagery decoding [8, 13].

Our research introduces an innovative approach to achieve generalization across sessions and users
by utilizing resting-state EEG data. Prior studies have demonstrated the effectiveness of resting-
state EEG as a distinctive biometric for individual identification [12, 4, 20], due to its reflection of
spontaneous brain activity when no specific tasks are being performed. This brain activity captures
the brain’s inherent functional organization and has been associated with individual differences in
cognitive and behavioral characteristics. Moreover, the correlated predictors of BCI performance,
are also based on extracted features from resting state EEG data. [19, 17, 1]. Therefore, integrat-
ing resting-state EEG features with task-related features from motor imagery (MI) may represent
a potential pathway to enhance the generalization capabilities of decoding models. This approach
is designed with a foundation in neurophysiology, requiring minimal modifications to the existing
standard architecture.

The key contributions of this paper are as follows:

• We introduce a novel approach that combines resting-state EEG features with task-related
EEG features extracted from the decoding models across sessions and subjects in MI-BCI
applications.

• We investigate the effectiveness of this approach and perform ablation studies with feature
concatenation; to multiple datasets comprising multiple subjects and sessions.

The rest of the paper is organized as follows. Section II details the dataset and preprocessing meth-
ods. Section III describes the model architecture and training procedures. Section IV presents the
results and discusses the implications of our findings. Finally, Section V concludes with a summary
of our contributions and future directions for research.

2 Method

2.1 Dataset and Preprocessing

The dataset used in this study consists of electroencephalogram (EEG) recordings from 87 individ-
uals who participated in motor imagery (MI) tasks and resting-state conditions [5]. The EEG data
were collected using 27 electrodes placed with a 10-20 configuration system, with each electrode
sampling at a rate of 512 Hz. The dataset consisted of 70 hours of recordings of 8-second long
runs when participants performed motor imagery, i.e. imagining left and right-hand movements
following a visual cue on the screen.

The dataset has two runs for each participant; "acquisition" runs were used for training and validation
of the model, while the rest of the four runs are termed "online" runs. Following the benchmark set
by Dreyer et al. [5], we use the two runs termed acquisition from each participant for training and
the four online runs as test sets. A band-pass filter with a frequency range of 0.5-40 Hz was used
to prepare the raw EEG data for analysis. Epochs, or time segments of EEG data, were created
by segmenting the 3 seconds of data following the event marker at the onset of the visual cue for
movement imagination. This standardized epoch length was maintained across all participants to
ensure consistent temporal analysis. The resting state data was extracted from the first two seconds
of the trial, where the participants focused on a fixation cue and were not explicitly instructed to
rest.

Another dataset, BNCI 2014 IIa Competition Dataset [3], consists of electroencephalogram (EEG)
signals from 9 individuals who participated in motor imagery (MI) tasks and resting state conditions.
The EEG data were collected using 22 electrodes, with each electrode sampling at a frequency of
250 Hz. The analysis involved two classes: right-hand and left-hand movement imagery, while feet
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and tongue movements were ignored. The paradigm used in this dataset also has a 3-second long
trial. Therefore, the epochs were extracted using the same process and were pre-processed with a
band-pass filter with the same range: 0.5-40 Hz. The resting state data was extracted from the first
two seconds of the trial, where the participants focused on a fixation cue and were not explicitly
instructed to rest.

2.2 Resting State Connectivity Analysis

The preprocessing and analysis for the resting state data on both datasets were common. To analyze
steady-state connectivity patterns from resting-state EEG data, we employed spectral connectivity
measures, including coherence (COH) and phase-locking value (PLV) [10]. These measures were
computed across three primary frequency bands of interest: theta (4–8 Hz), alpha (8–13 Hz), and
beta (13–30 Hz). The methodology consisted of several steps, including data preprocessing, fre-
quency band definition, wavelet transformation, and spectral connectivity estimation.

The preprocessing phase involved using MNE-Python [6] to process resting-state EEG data from
each epoch spanning a time window from 0 to 2 seconds relative to the trial start onset. Baseline cor-
rection was applied over the entire epoch duration to normalize the data and minimize low-frequency
drift or noise artefacts. A continuous wavelet transform (CWT) using Morlet wavelets [16] was then
applied to decompose the EEG signals into these desired frequency bands. A set of center fre-
quencies (freqs) was generated using a linear space between the minimum and maximum frequency
limits, with 4 samples per Hz to ensure sufficient frequency resolution. The number of cycles for
each frequency was set to half of the frequency value to optimize the balance between time and fre-
quency localization. This approach enabled us to capture the oscillatory dynamics at multiple scales,
which is crucial for characterizing the temporal structure of neural signals. Spectral connectivity
was estimated using Coherence (COH) and phase-locking value (PLV) as connectivity metrics to
evaluate both amplitude and phase coupling between different brain regions.

COH is a measure of the linear relationship between two signals in the frequency domain, capturing
both the amplitude and phase coupling across frequency bands.

COH(f) =
|E[Sxy(f)]|

√

E[Sxx(f)] ·E[Syy(f)]
(1)

The cross-spectrum Sxy(f) is a measure of the spectral density of the correlation between two
signals x(t) and y(t) at a specific frequency f . The auto-spectra Sxx(f) and Syy(f) are the Fourier
transforms of the autocorrelation functions of x(t) and y(t), respectively, and represent the power
spectral densities of the signals.

Similarly, Phase-Locking Value (PLV) measures the consistency of the phase difference between
two signals across multiple trials, independent of their amplitude. PLV ranges from 0 to 1, where 0
indicates no phase locking (random phase differences) and 1 indicates perfect phase synchronization
(constant phase difference).

PLV =
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The resting state EEG analysis was performed on the segmented epochs, and the resulting connec-
tivity matrices were averaged across each participant trial to obtain a representation of functional
connectivity.

2.3 Model Architecture and Training

The EEGNet [11] model was employed to extract features from the EEG data using data-driven
approach across multiple paradigms. EEGNet is a specialized neural network architecture designed
to handle the unique characteristics of EEG signals. The model includes both temporal and spatial
convolutional layers, which are optimized to capture relevant patterns from the multi-channel EEG
data. Temporal convolutional layers focus on identifying patterns within the time domain of the
signals, while spatial convolutional layers extract information based on the relationships between
different EEG channels [18]. The EEGNet model was implemented using the Torcheeg framework
[22]. During the training phase, the model parameters were optimized using the Adam optimizer.
Key hyperparameters such as the learning rate and batch size were set to 0.0005 and 500 epochs,
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respectively. The model was trained to perform a binary classification task using a cross-entropy
loss function. To ensure that the model would generalize well to new data, 5-fold cross-validation
was performed.

2.4 Feature Concatenation and Classification

To concatenate the EEG resting state connectivity information, features obtained through cross-
spectral analysis were integrated with the spatial-temporal features extracted by the EEGNet model
after flattening the activations of the final convolution layer in the second block. This fused feature
set was subsequently fed into a fully connected layer, followed by a non-linear activation and a final
layer for linear classification. The modified EEGNet was then optimized to differentiate between
various task conditions by utilizing the extensive information from the resting state connectivity and
EEGNet-derived spatiotemporal features.

2.5 Performance Evaluation

The performance of the model was primarily evaluated using accuracy metrics, which measure the
proportion of correctly classified epochs out of the total number of epochs. For the Dreyer et al. 2023
dataset, all reported performance is on the validation set from the "acquisition" runs, while "online"
runs from all participants were used as the test set. The model was trained on the "acquisition" runs
from all participants. Cross-validation accuracy is the accuracy on the left-out fold during training
on "acquisition" runs. For the BCI IV IIa dataset, data is taken from all subjects and divided into
five folds; 5-fold cross-validation performance is reported.

3 Results

3.1 Impact of Feature Concatenation on Model Performance

In our study, we investigated the effect of concatenating resting-state EEG features with task-related
EEG features on the validation accuracy of the decoding models. The rationale behind this approach
is that resting-state EEG captures the inherent neurophysiological characteristics of each subject,
which are relatively stable over time and across different sessions. When these stable features are
combined with task-related features that capture the specific neural responses associated with the MI
tasks, the resulting feature set provides a more comprehensive representation of the neural activity.

This more comprehensive representation can lead to better model generalization. The model is
trained on features that encapsulate the subject’s stable neural traits and the dynamic neural re-
sponses to the tasks. As a result, the model can more accurately decode the intended motor imagery
across different sessions and subjects, leading to higher validation accuracy.

Tables 1 and 3 are the results for average training and validation accuracies for the two datasets:
Dreyer et al. 2023 [5] and BNCI 2014 IIa Competition Dataset [3] respectively. The Table 3 provides
an overview of the variation in validation accuracy before and after feature concatenation across four
distinct experimental setups:

1) Dreyer et al. 2023 (Acquisition Data): This experiment focuses on the baseline data collected
during the acquisition phase, which precedes the online experimental trials. This data was used
to train the model and validated on five folds. The accuracy with standard deviation across five
folds has been reported in the Table 3. 2) BCI Competition IV Dataset IIa: This row highlights
the application of feature concatenation on the BCI IV IIa dataset, a widely recognized benchmark
in brain-computer interface (BCI) research. The dataset, comprising multi-channel EEG record-
ings from multiple participants, was used to assess how concatenating additional features influenced
model performance. 3) Dreyer et al. 2023 (Online Data): This experiment analyzes the data col-
lected in real-time during the trials, known as the "online phase." Here, participants received real-
time feedback based on their ongoing performance. The table reports the performance of the best
model trained on acquisition data. 4) Dreyer et al. 2023 (LSO): This experiment employs the
Leave-Subjects-Out (LSO) approach, where the model is trained on a randomly selected subset of
participants and validated on the remaining participants. The LSO method ensures that the model’s
generalizability is tested across unseen participants. The performance of the model trained on 50
participants, evaluated on the last 9 participants with ID 50-59 is reported in Table 3.

4



ID Without
Concatenation (%)

With
Concatenation (%)

Random
Concatenation (%)

Average Training Accuracy 81.76 86.29 83.78
k=1 77.46 77.46 75.14
k=2 76.88 79.96 76.11
k=3 74.52 77.41 79.73
k=4 75.87 78.76 76.83
k=5 76.64 78.76 77.41

Mean Accuracy with SD 76.27 ± 0.01135 78.47 ± 0.01066 77.05 ± 0.01723

Table 1: Average Training and Validation Accuracy on BCI Competition IV Dataset IIa

ID Without
Concatenation(%)

With
Concatenation (%)

Random
Concatenation (%)

Average Training Accuracy 85.10 82.74 82.92
k=1 84.23 82.74 77.08
k=2 80.21 77.38 82.59
k=3 73.36 81.55 82.74
k=4 79.32 83.93 80.21
k=5 78.87 82.74 81.25

Mean Accuracy with SD 79.20 ± 3.89 81.67 ± 2.54 80.77 ± 2.31

Table 2: Average Training and Validation Accuracy on Dreyer et al. 2023 dataset

ID Without
Concatenation(%)

With
Concatenation (%)

Random
Concatenation (%)

Dreyer et al. 2023(Acq) 79.20 ± 03.89 81.67 ± 02.54 80.77 ± 02.31
BCI IV IIa 76.27 ± 01.13 78.47 ± 01.07 77.05 ± 01.72

Dreyer et al. 2023(Online) 85.10 82.74 82.92
Dreyer et al. 2023(LSO) 74.04 72.57 73.67

Table 3: Mean accuracy with standard deviation across five iterations of training EEGNet with
different configurations on Dreyer et al. 2023 Dataset [5] and BCI IV IIa Competition Dataset

4 Discussion and Conclusion

4.1 Interpreting the results and its impact

Even though we attempted our approach grounded in neuroscience, the results show that it is not
beneficial to concatenate resting state data. Even though the validation accuracy while concatenating
resting state data was higher than without concatenation, the difference is negligible considering the
standard deviation. The concatenation approach uses an additional non linear activation layer after
combining the resting state data with activity data. The increase in accuracy while using random
concatenation can be attributed to the patterns in random data and the fully connected layer with
non-activation layer.

4.2 Potential next steps

While the current work demonstrates the ineffectiveness of the approach using resting state data
concatenation, several areas for improvement and future exploration have been identified. One key
limitation lies in not optimally targeting the specific layer within existing architectures, such as
EEGNet, for concatenation of the resting-state data. A more refined approach could yield better
benefits, which involves retaining generic features from earlier layers and strategically concatenating
resting-state-specific information at later layers. Further, defining a meta-learning architecture that
systematically incorporates resting-state EEG information could enhance model adaptability across
different users and conditions.

Additionally, exploring conditional variational autoencoder (CVAE) architectures presents a promis-
ing direction for future research. CVAEs could offer a generative-discriminative framework for
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user-independent EEG decoding, leveraging resting-state data to improve generalizability across
subjects.

4.3 Conclusion

Overall, this study underscores the investigation and the effectiveness of combining EEG resting-
state data with advanced data-driven models to enhance MI classification performance. The find-
ings suggest that feature concatenation is not a promising approach for generalisation of models.
However, more complex approaches could leverage resting state information to impact the field
of brain-computer interfaces by providing more personalized and effective solutions for real-world
applications.
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