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Abstract

We study the effect of the streamline upwind/Petrov Galerkin (SUPG) stabilized finite element

method on the discretization of optimal control problems governed by linear advection-diffusion equa-

tions. We compare two approaches for the numerical solution of such optimal control problems. In

the discretize-then-optimize approach the optimal control problem is first discretized, using the SUPG

method for the discretization of the advection-diffusion equation, and then the resulting finite dimen-

sional optimization problem is solved. In the optimize-then-discretize approach one first computes the

infinite dimensional optimality system, involving the advection-diffusion equation as well as the adjoint

advection-diffusion equation, and then discretizes this optimality system using the SUPG method for

both the original and the adjoint equations. These approaches lead to different results. The main re-

sult of this paper are estimates for the error between the solution of the infinite dimensional optimal

control problem and their approximations computed using the previous approaches. For a class of prob-

lems prove that the optimize-then-discretize approach has better asymptotic convergence properties if

finite elements of order greater than one are used. For linear finite elements our theoretical convergence

results for both approaches are comparable, except in the zero diffusion limit where again the optimize-

then-discretize approach seems favorable. Numerical examples are presented to illustrate some of the

theoretical results.
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1 Introduction

This paper is concerned with the accuracy of numerical solutions of optimal control problems governed by

the advection-diffusion equation. Specifically, we are interested in the effect of the streamline upwind/Petrov
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Galerkin (SUPG) stabilized finite element method on the discretization of the optimal control problem. To

be more precise, we consider the linear quadratic optimal control problem

min
1

2

∫

Ω
(y(x)− ŷ(x))2dx+

ω

2

∫

Ω
u2(x)dx (1.1)

subject to

−ǫ∆y(x) + c(x) · ∇y(x) + r(x)y(x) = f(x) + u(x), x ∈ Ω, (1.2a)

y(x) = d(x), x ∈ Γd, (1.2b)

ǫ
∂

∂n
y(x) = g(x), x ∈ Γn, (1.2c)

where Γd ∩ Γn = ∅, Γd ∪ Γn = ∂Ω, c, d, f, g, r, ŷ are given functions, ǫ, ω > 0 are given scalars, and n

denotes the outward unit normal. Assumptions on these data that ensure the well-posedness of the problem

will be given in the next section.

For advection dominated problems the standard Galerkin finite element method applied to the state

equation (1.2) produces strongly oscillatory solutions, unless the mesh size h is chosen sufficiently small

relative to ǫ/‖c(x)‖, x ∈ Ω. To produce better approximations to the solution of (1.2) for modest mesh

sizes, various augmentations of the standard Galerkin finite element method have been proposed. For an

overview see [11, 12, 13]. In this paper we focus on the streamline upwind/Petrov Galerkin (SUPG) method

of Hughes and Brooks [2]. The SUPG method adds to the weak form of the state equation (1.2) a term with

the properties that (a) the weak form of the modification has better stability properties than the bilinear form

associated with (1.2) and (b) the added term evaluated at the exact solution of (1.2) vanishes. Because of

these properties the SUPG method is called a strongly consistent stabilization method [12].

For the numerical solution of the optimal control problem there are at least two approaches. In the first

approach, called the optimize-then-discretize approach, one first derives the optimality conditions for (1.1),

(1.2). In Section (2.1) we will see that the optimality conditions consist of the state equation (1.2), the

adjoint partial differential equation (PDE)

−ǫ∆λ(x)− c(x) · ∇λ(x) + (r(x)−∇ · c(x))λ(x) = −(y(x)− ŷ(x)), x ∈ Ω, (1.3a)

λ(x) = 0, x ∈ Γd, (1.3b)

ǫ
∂

∂n
λ(x) + c(x) · n(x) λ(x) = 0, x ∈ Γn (1.3c)

and the gradient equation

λ(x) = ωu(x) x ∈ Ω. (1.4)

Then one discretizes each equation (1.2), (1.3) and (1.4), using possibly different discretization schemes

for each one. Since the adjoint equation (1.3) is also an advection-diffusion equation, but with advection

−c, we discretize it using the SUPG method. If we proceed this way, the optimize-then-discretize approach

leads to a discretization of the optimality system (1.2), (1.3), (1.4) that is strongly consistent. However,

this discretization of the optimality system (1.2), (1.3), (1.4) leads to a nonsymmetric linear system, which

implies that there is no finite dimensional optimization problem for which this discretization of (1.2), (1.3),
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(1.4) is the optimality system. The details of the optimize-then-discretize approach will be discussed in Sec-

tion 2.4. In the other approach for the numerical solution of (1.1), (1.2) called the discretize-then-optimize

approach, one first discretizes the state equation using SUPG and the objective function and then solves

the resulting finite dimensional optimization problem. The optimality conditions of this finite dimensional

optimization problem contain equations, which we call the discrete adjoint equation and the discrete gradi-

ent equation, that can be viewed as discretizations of (1.3) and (1.4), respectively. The SUPG stabilization

term added to the state equation (1.2) produces a contribution to the discrete adjoint equation and to the

discrete gradient equation. This contribution to the discrete adjoint equation has a stabilizing effect, but the

discrete adjoint equation is in general not a strongly consistent stabilization method for (1.3). We will give

a detailed discussion of the optimize-then-discretize approach in Section 2.3. The main goal of this paper

is to derive estimates of the error between the solution y, u, λ of the infinite dimensional optimality system

(1.2), (1.3), (1.4) and their approximations computed using both, the discretize-then-optimize as well as the

optimize-then-discretize approach. Such error estimates will be provided in Section 4. Section 5 contains a

few numerical results that illustrate our theoretical findings.

We will see that even in our simple model problem (1.1), (1.2) differences can arise between the

discretize-then-optimize and the optimize-then-discretize approach. It is important to understand and an-

alyze these to better assess the implication of numerical solution approaches to much more complicated

optimal control or optimal design problems that involve nonlinear state equations solved using stabiliza-

tion techniques. We also note that the general issues described here for the SUPG stabilization also arise

when other stabilizations are used, such as the Galerkin/Least-squares (GLS) method of Hughes, Franca and

Hulbert [6] and the stabilization method of Franca, Frey and Hughes [4].

Throughout this paper we use the following notation for norms and inner products. We define 〈f, g〉G =∫
G f(x)g(x)dx, ‖v‖0,∞,G = ess supx∈G|v(x)| or ‖v‖0,∞,G = ess supx∈G

√∑
i vi(x)

2 for vector valued

v, and

‖v‖k,G =




∑

|α|≤k

∫

G
(∂αv(x))2dx




1/2

, |v|k,G =




∑

|α|=k

∫

G
(∂αv(x))2dx




1/2

,

where G ⊂ Ω ⊂ IRd or G ⊂ ∂Ω and α ∈ INd
0 is a multi-index, |α| =

∑d
i=1 αi, and ∂α = ∂α1 . . . ∂αd . If

G = Ω we omit G and simply write 〈f, g〉, etc.

2 A Model Problem

2.1 Existence, Uniqueness and Characterization of Optimal Controls

We define the state and control space

Y =
{
y ∈ H1(Ω) : y = d on Γd

}
, U = L2(Ω) (2.1)

and space of test functions

V =
{
v ∈ H1(Ω) : v = 0 on Γd

}
. (2.2)

The weak form of the state equations (1.2) is given by

a(y, v) + b(u, v) = 〈f, v〉+ 〈g, v〉Γn
∀v ∈ V, (2.3)



4 S. S. COLLIS AND M. HEINKENSCHLOSS

where

a(y, v) =

∫

Ω
ǫ∇y(x) · ∇v(x) + c(x) · ∇y(x)v(x) + r(x)y(x)v(x)dx, (2.4)

b(u, v) = −

∫

Ω
u(x)v(x)dx, (2.5)

〈f, v〉 =

∫

Ω
f(x)v(x)dx, 〈g, v〉Γn

=

∫

Γn

g(x)v(x)dx. (2.6)

We are interested in the solution of the optimal control problem

minimize
1

2
‖y − ŷ‖20 +

ω

2
‖u‖20, (2.7a)

subject to a(y, v) + b(u, v) = 〈f, v〉+ 〈g, v〉Γn
∀v ∈ V, (2.7b)

y ∈ Y, u ∈ U.

We assume that

f, ŷ ∈ L2(Ω), c ∈
(
W 1,∞(Ω)

)2
, r ∈ L∞(Ω), d ∈ H3/2(Γd), g ∈ H1/2(Γn), ω > 0, ǫ > 0, (2.8a)

Γn ⊂ {x ∈ ∂Ω : c(x) · n(x) ≥ 0} (2.8b)

and

r(x)− 1
2∇ · c(x) ≥ r0 > 0 a.e. in Ω. (2.8c)

If Γd 6= ∅, there exists α > 0 such that |y|1 ≤ α‖y‖1 for all y ∈ V and (2.8c) can be replaced by

r(x)− 1
2∇ · c(x) ≥ r0 ≥ 0 a.e. in Ω. (2.8d)

For the well-posedness of the optimal control problem it is sufficient to impose fewer regularity requirements

on the coefficient functions than those stated in (2.8a). We assume (2.8a) to establish convergence estimates

for the SUPG finite element method.

Under the assumptions (2.8), the bilinear form a is continuous on V ×V and V -elliptic. In fact, a(y, y) ≥
ǫ‖∇y‖20 + r0‖y‖

2
0 for all y ∈ V (e.g., [12, p. 165] or [11, Sec. 2.5]). Hence the theory in [10, Sec. II.1]

guarantees the existence of a unique solution (y, u) ∈ Y × U of (2.7).

Theorem 2.1 If (2.8) are satisfied, the optimal control problem (2.7) has a unique solution (y, u) ∈ Y ×U .

The theory in [10, Sec. II.1] also provides necessary and sufficient optimality conditions, which can be

best described using the Lagrangian

L(y, u, λ) =
1

2
‖y − ŷ‖20 +

ω

2
‖u‖20 + a(y, λ) + b(u, λ)− 〈f, λ〉 − 〈g, v〉Γn

. (2.9)

The necessary and, for our model problem, sufficient optimality conditions can be obtained by setting the

partial Fréchet-derivatives of (2.9) with respect to states y, controls u and adjoints λ equal to zero. This
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gives the following system consisting of

the adjoint equation

a(ψ, λ) = −〈y − ŷ, ψ〉 ∀ψ ∈ V, (2.10a)

the gradient equation

b(w, λ) + ω〈u,w〉 = 0 ∀w ∈ U, (2.10b)

and the state equation

a(y, v) + b(u, v) = 〈f, v〉+ 〈g, v〉Γn
∀v ∈ V. (2.10c)

The gradient equation (2.10b) simply means that λ(x) = ωu(x), x ∈ Ω (cf. (1.4)) and (2.10a) is the weak

form of (1.3).

The adjoint equation (1.3) is also an advection-diffusion equation, but advection is now given by −c and

the reaction term is r −∇ · c.

The convergence theory for SUPG methods requires that the solution y, u, λ is more regular than indi-

cated by Theorem 2.1. This can be guaranteed if the problem data are such that the state equation (1.2) and

adjoint equation (1.3) admit more regular solutions. This motivates our regularity assumptions (2.8a) on the

data. The following result is an application of [5, Thm. 2.4.2.5] to (1.2) and (1.3).

Theorem 2.2 Let Ω be a bounded open subset of IRn with a C1,1 boundary and Γd = ∂Ω. If the assumption

(2.8a) is satisfied and r ≥ r0 > 0 a.e., then the unique solution of the optimal control problem (2.7) and the

associated adjoint satisfy y ∈ H2(Ω), u ∈ H2(Ω), λ ∈ H2(Ω).

2.2 Discretization of the State Equations

For the discretization of the state equation we use conforming finite elements. We let {Th}h>0 be a family

of quasi-uniform triangulations of Ω [3]. To approximate the state equation we use the spaces

Yh = {yh ∈ Y : yh|T ∈ Pk(T ) for all T ∈ Th} ,
Vh = {vh ∈ V : vh|T ∈ Pk(T ) for all T ∈ Th} , k ≥ 1.

(2.11)

For advection dominated problems the standard Galerkin method applied to the state equation (2.3)

produces strongly oscillatory approximations, unless the mesh size h is chosen sufficiently small relative

to ǫ/‖c‖0,∞. To obtain approximate solutions of better quality on coarser meshes, various stabilization

techniques have been proposed. For an overview see [12, Secs. 8.3.2,8.4] or [13, Sec.3.2]. We are interested

in the streamline upwind/Petrov Galerkin (SUPG) method of Hughes and Brooks [2]. The SUPG method

computes an approximation yh ∈ Yh of the solution y of the state equation (2.7b) by solving

ash(yh, vh) + bsh(uh, vh) = 〈f, vh〉
s

h + 〈g, vh〉Γn
∀vh ∈ Vh, (2.12)

where

ash(y, vh) = a(y, vh) +
∑

Te∈Th

τe〈−ǫ∆y + c · ∇y + ry, c · ∇vh〉Te
, (2.13a)

bsh(u, vh) = −

∫

Ω
u(x)vh(x)dx −

∑

Te∈Th

τe〈u, c · ∇vh〉Te
, (2.13b)

〈f, vh〉
s

h = 〈f, vh〉+
∑

Te∈Th

τe〈f, c · ∇vh〉Te
. (2.13c)
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In (2.15b) the superscript s is used to indicate that the stabilization method is applied to the state equa-

tion, i.e., all parameters in the stabilization method are based on information from the state equation only.

The reason for the additional superscript s will become apparent in Section 2.4. The addition of the

term
∑

Te∈Th
τe〈−ǫ∆y + c · ∇y + ry, c · ∇vh〉Te

to a(y, vh) introduces additional element wise diffusion

〈c · ∇y, c · ∇vh〉Te
and enhances the stability properties of a(y, vh) (see Lemma 4.1 below). The terms in

(2.12) added to the standard Galerkin formulation are such that the exact solution y of (1.2) satisfies (2.12),

provided y ∈ H2(Te), Te ∈ Th. We will review the error estimates for the SUPG method in Section 4.1.

2.3 Discretization of the Optimization Problem

A frequently used approach for the numerical solution of an optimal control problem is to discretize the opti-

mal control problem and to solve the resulting nonlinear programming problem using a suitable optimization

algorithm. This is also called the discretize-then-optimize approach. In this scenario, the discretization of the

optimal control problem typically follows discretization techniques used for the governing state equations.

In our problem we select the spaces (2.11) for the discretization of the state and

Uh = {uh ∈ U : uh|T ∈ Pm(T ) for all T ∈ Th} , m ≥ 0, (2.14)

for the control. To discretize the state equation, we apply the SUPG method. The discretized optimal control

problem is given by

minimize
1

2
‖yh − ŷ‖20 +

ω

2
‖uh‖

2
0, (2.15a)

subject to ash(yh, vh) + bsh(uh, vh) = 〈f, vh〉
s

h + 〈g, vh〉Γn
∀vh ∈ Vh, (2.15b)

yh ∈ Yh, uh ∈ Uh,

where ash(y, vh), b
s

h(u, vh), 〈f, vh〉
s

h are defined in (2.13).

The Lagrangian for the discretized problem (2.15) is given by

Lh(yh, uh, λh) =
1

2
‖yh − ŷ‖20 +

ω

2
‖uh‖

2
0 + ash(yh, λh) + bsh(uh, λh)− 〈f, λh〉

s

h − 〈g, v〉Γn
, (2.16)

where yh ∈ Yh, uh ∈ Uh and λh ∈ Λh
def

= Vh. The necessary and sufficient optimality conditions for the

discretized problem are obtained by setting the partial derivatives of (2.16) to zero. This gives the following

system consisting of

the discrete adjoint equations

ash(ψh, λh) = −〈yh − ŷ, ψh〉 ∀ψh ∈ Vh, (2.17a)

the discrete gradient equations

bsh(wh, λh) + ω〈uh, wh〉 = 0 ∀wh ∈ Uh, (2.17b)

and the discretized state equations

ash(yh, vh) + bsh(uh, vh) = 〈f, vh〉
s

h + 〈g, v〉Γn
∀vh ∈ Vh. (2.17c)



ANALYSIS OF THE SUPG METHOD FOR THE SOLUTION OF OPTIMAL CONTROL PROBLEMS 7

We use discrete adjoint equations and discrete gradient equations to mean that these are the adjoint and gra-

dient equations for the discretized problem (2.15). We will use the phrases discretized adjoint equations and

discretized gradient equations to refer to discretizations of the adjoint equation (1.3) and gradient equation

(1.4), respectively. As we will see in the next section, there are significant differences between the discrete

adjoint equations and the discretized adjoint equations as well as between the discrete gradient equations

and the discretized gradient equations.

We notice that the discretized state equation (2.17c) is strongly consistent in the sense that (2.17c) is

satisfied if uh, yh are replaced by the optimal control u and the corresponding optimal state y. However,

strong consistency is lost in the discrete adjoint equations (2.17a) and the discrete gradient equations (2.17b).

Specifically,

ash(ψh, λh) = a(ψh, λh) +
∑

Te∈Th

τ se〈−ǫ∆ψh + c · ∇ψh + rψh, c · ∇λh〉Te
.

The amount
∑

Te∈Th
τ se〈−c · ∇ψh,−c · ∇λh〉Te

of streamline diffusion added to a(ψh, λh) in the adjoint

equation appears to be right in the sense that this amount (although possibly with a different τ se) would be

added if the SUPG method had been applied to the adjoint equation (1.3). However, (2.17a) is not satisfied

if yh, λh are replaced by the optimal state y and corresponding adjoint λ. This lack of strong consistency

is due to the fact that the discrete adjoint equation is not a method of weighted residuals for the continuous

adjoint problem. In particular, the resulting stabilization term is not a weighted residual of the continuous

adjoint equation on element interiors since the diffusion, reaction, and source terms are not accounted for.

Similarly, bsh in the gradient equation contains terms that arise from the stabilization of the state equation

and (2.17b) is not satisfied if uh, λh are replaced by the optimal control u and corresponding adjoint λ.

2.4 Discretization of the Optimality Conditions

Alternatively to the discretize-then-optimize approach discussed in the previous section, one can obtain an

approximate solution of the optimal control problem by tackling the optimality system (2.10) directly. This

leads to the optimize-then-discretize approach. Here each equation in (2.10) is discretized using a potentially

different scheme. In our case, we will use the same triangulation for all three equations and we will use the

state space (2.11) and the control space (2.14) for the discretization of states and controls, respectively, and

we will use

Λh = {vh ∈ V : vh|T ∈ Pℓ(T ) for all T ∈ Th} , ℓ ≥ 1, (2.18)

for the discretization of the adjoints. It is possible to choose ℓ 6= k. Now we take into account that the adjoint

equation (1.3) is also an advection dominated problem, but with advective term −c ·∇λ. We discretize (1.3)

using the SUPG method. This leads to the discretized adjoint equations

aah(ψh, λh) = −〈yh − ŷ, ψh〉
a

h ∀ψh ∈ Λh, (2.19a)

where

aah(ψh, λ) = a(ψh, λ) +
∑

Te∈Th

τ ae 〈−ǫ∆λ− c · ∇λ+ (r −∇ · c)λ,−c · ∇ψh〉Te
, (2.19b)

〈y − ŷ, ψh〉
a

h = 〈y − ŷ, ψh〉+
∑

Te∈Th

τ ae 〈y − ŷ,−c · ∇ψh〉Te
. (2.19c)
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Here and in the following the superscript a is used to indicate that the SUPG method is applied to the adjoint

equation, i.e., all parameters in the stabilization method applied to (1.3) are based on information from the

adjoint equation (1.3).

The gradient equation (2.10b) is discretized using

b(wh, λh) + ω〈uh, wh〉 = 0 ∀wh ∈ Uh, (2.19d)

and the discretization of the state equations is identical to the one used in the previous section, i.e.,

ash(yh, vh) + bsh(uh, vh) = 〈f, vh〉
s

h + 〈g, vh〉Γn
∀vh ∈ Vh. (2.19e)

Unlike the discrete adjoint and gradient equations, the discretized state, adjoint and gradient equations are

strongly consistent in the sense that if y, u, λ solve (2.10) and satisfy y, λ ∈ H2(Te), for all Te ∈ Th, then

y, u, λ also satisfy (2.19).

Due to the occurance of the SUPG terms in the right hand side of (2.19a) and in bsh, the discretization

(2.19) of the infinite dimensional optimality conditions leads to a nonsymmetric system for the computation

of yh, uh, λh. This implies that (2.19) cannot be a system of optimality conditions for an optimization

problem, e.g., a perturbation of (2.15).

3 Abstract Formulation

To analyze the error between the solution of the optimal control problem (2.7) and the solution of the dis-

cretized optimal control problem (2.15) we could apply the approximation theory for saddle point problems

described, e.g., in [1]. However, the optimize-then-discretize approach leads to a non-symmetric system

(2.19). Thus there is no optimization problem whose optimality system is given by (2.19) and the theory in

[1] can not be applied to this situation. We prefer to use a framework that is common in Numerical Analysis

for the estimation of the approximation error in operator equations. We give a brief review here and apply it

in the following section to our problem.

The necessary and sufficient optimality conditions (2.10) can be viewed as an operator equation

Kx = r (3.1)

in X ∗, where X is a Banach space, X ∗ is its dual and K ∈ L(X ,X ∗) is continuously invertible. In

the following section we describe in detail how (3.1) relates to our problem. The discretized problem is

described by the equation

Khxh = rh, (3.2)

in X ∗
h ,where Xh is a finite dimensional Banach space with norm ‖ · ‖h and Kh ∈ L(Xh,X

∗
h ) is continuously

invertible.

To derive an error estimate we let Rh : X → Xh be a restriction operator and we consider the identity

Kh(xh −Rh(x)) = rh −KhRh(x).

We immediately obtain the estimate

‖xh −Rh(x)‖h ≤ ‖K−1
h ‖h ‖rh −KhRh(x)‖h, (3.3)
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where ‖K−1
h ‖h denotes the operator norm of K−1

h induced by ‖ · ‖h. If there exists κ > 0 independent of h
such that the stability estimate

‖K−1
h ‖h ≤ κ for all h (3.4)

is valid and if we can prove a consistency result of the form

‖rh −KhRh(x)‖h = O(hp), (3.5)

then we obtain ‖xh − Rh(x)‖h = O(hp). If ‖ · ‖h can be extended to define a norm on X , and if we can

prove

‖x−Rh(x)‖h = O(hq), (3.6)

then a simple application of the triangle inequality shows

‖xh − x‖h ≤ ‖K−1
h ‖h‖rh −KhRh(x)‖h + ‖Rh(x)− x‖h = O(hmin{p,q}) (3.7)

In (3.7) the error is measured in a norm that depends on h. This is certainly not problematic if there exists

η > 0 independent of h such that ‖xh − x‖ ≤ η‖xh − x‖h for all h, which will be true in our situation.

In our applications, Xh = Yh × Uh × Λh with some finite dimensional Banach spaces Yh, Uh,Λh

equipped with norms ‖ · ‖Yh
, ‖ · ‖Uh

and ‖ · ‖Λh
, respectively. The norm ‖ · ‖h on Xh is defined as ‖xh‖h =

‖yh‖Yh
+ ‖uh‖Uh

+ ‖λh‖Λh
, where x = (yh, uh, λh). Furthermore, in our applications the operator Kh is

of the form

Kh =




Hyy
h Hyu

h Ã∗
h

Huy
h Huu

h B̃∗
h

Ah Bh 0


 . (3.8)

The operator Kh is not necessarily selfadjoint, i.e., we do not assume that A∗
h = Ã∗

h, B∗
h = B̃∗

h, (Huy
h )∗ =

Hyu
h , (Hyy

h )∗ = Hyy
h , or (Huu

h )∗ = Huu
h . We assume, however, that Ah and Ã∗

h are invertible.

To estimate ‖K−1
h ‖h we consider




Hyy
h Ã∗

h Hyu
h

Ah 0 Bh

Huy
h B̃∗

h Huu
h


 =




I 0 0
0 I 0

B̃∗
h(Ã

∗
h)

−1 (Huy
h − B̃∗

h(Ã
∗
h)

−1Hyy
h )A−1

h I







Hyy
h Ã∗

h 0
Ah 0 0

0 0 Ĥh




×




I 0 A−1
h Bh

0 I (Ã∗
h)

−1(Hyu
h −Hyy

h A−1
h Bh)

0 0 I


 , (3.9)

where

Ĥh = Huu
h − B̃∗

h(Ã
∗
h)

−1Hyu
h −Huy

h A−1
h Bh + B̃∗

h(Ã
∗
h)

−1Hyy
h A−1

h Bh (3.10)

The operator on the left hand side in (3.9) is just a symmetric permutation of Kh, which does not effect the

invertibility of Kh or the estimate for ‖K−1
h ‖h. Under the assumption that Ah and Ã∗

h are invertible, (3.9)

shows that Kh is invertible if and only if Ĥhis invertible. Using

(
Hyy

h Ã∗
h

Ah 0

)−1

=

(
0 A−1

h

(Ã∗
h)

−1 −(Ã∗
h)

−1Hyy
h A−1

h

)
(3.11)

and (3.9) we immediately obtain the following result.
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Lemma 3.1 If Ãh, Ã∗
h and Ĥh are invertible for all h and if ‖A−1

h ‖L(Y ∗

h
,Yh), ‖(Ã∗

h)
−1‖L(Λ∗

h
,Λh),

‖Ĥ−1
h ‖L(Uh,U

∗

h
), ‖A−1

h Bh‖L(Uh,Yh), ‖B̃∗
h(Ã

∗
h)

−1‖L(Y ∗

h
,U∗

h
), ‖(Huy

h − B̃∗
h(Ã

∗
h)

−1Hyy
h )A−1

h ‖L(Y ∗

h
,U∗

h
),

‖(Ã∗
h)

−1(Hyu
h −Hyy

h A−1
h Bh)‖L(Uh,Λh), and ‖(Ã∗

h)
−1Hyy

h A−1
h ‖L(Yh,Λh) are uniformly bounded, then there

exists κ > 0 such that (3.4) holds.

4 Error Estimates for the SUPG Method

In this section we derive estimates for the error between the solution of the optimal control problem and

the computed approximations using both, the discretize-then-optimize and the optimize-then-discretize ap-

proaches.

Before we apply the theory outlined in Section 3 to the optimization problem, we briefly review estimates

for the error between the solution y of (2.3) and its approximation yh by the SUPG method. Such estimates

are given in the paper [8] and the books [9, 13]. See also [12]. We sketch the main points of the error analysis

to recall some basic estimates needed in our analysis of the SUPG discretization for optimal control.

Throughout this section we assume that the Dirichlet boundary data are d = 0. This can always be

achieved by a shift of the state.

4.1 Error Estimates for the State Equation

We define

‖v‖2SD = ǫ|v|21 + r0‖v‖
2
0 +

∑

Te∈Th

τe‖c · ∇v‖
2
0,Te

. (4.1)

Recall that k ≥ 1 is the polynomial degree of the finite element spaces Yh, Vh defined in (2.11). For

y ∈ Hk+1(Ω) we let yI be its Yh-interpolant. We recall the interpolation error estimate

|y − yI |p,Te
≤ µinth

k+1−p
e |y|k+1,Te

for p = 0, 1, 2 (4.2)

and the inverse inequalities

|vh|1,Te
≤ µinvh

−1
e ‖vh‖0,Te

, ‖∆vh‖0,Te
≤ µinvh

−1
e ‖∇vh‖0,Te

, ∀vh ∈ Vh, (4.3)

see, e.g., [3, Thms. 16.2, 17.2]. Here he denotes the radius of the cicumscribed circle of Te and h =
maxTe∈Th he. The following lemma can be found, e.g., in [13, L. 3.28] or in [9, pp. 325,326].

Lemma 4.1 If

0 < τ se ≤ min

{
h2e
ǫµ2inv

,
r0

‖r‖0,∞,Te

}
, (4.4)

then

ash(vh, vh) ≥
1
2‖vh‖

2
SD ∀vh ∈ Vh. (4.5)

The following inequalities can be found in [13, p. 232] or in [9, pp. 327,328].
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Lemma 4.2 Let y ∈ Hk+1(Ω) with k ≥ 1. There exists a constant C > 0 dependent on µint, c, r, but

independent of he, τe such that

∣∣∣ǫ〈∇(yI − y),∇vh〉
∣∣∣ ≤ Cǫ1/2hk|y|k+1 ‖vh‖SD (4.6)

∣∣∣〈c · ∇(yI − y) + r(yI − y), vh〉
∣∣∣ ≤ Chk


 ∑

Te∈Th

(1 + 1/τ se)h
2
e|y|k+1,Te




1/2

‖vh‖SD (4.7)

for all vh ∈ Vh. Furthermore, if τe satisfies (4.4), then

∣∣∣
∑

Te∈Th

τe〈−ǫ∆(yI − y) + c · ∇(yI − y) + r(yI − y), c · vh〉
∣∣∣

≤ Chk


 ∑

Te∈Th

(ǫ+ τ se)|y|
2
k+1,Te




1/2

‖vh‖SD for all vh ∈ Vh. (4.8)

The stability result (4.5), the estimates (4.6)-(4.8), and the identity ah(y − yh, vh) = 0 for all vh ∈ Vh,

yield

1
2‖y

I − yh‖
2
SD ≤ ah(y

I − yh, y
I − yh) = ah(y

I − y, yI − yh)

≤ Chk


 ∑

Te∈Th

(ǫ+ τ se + h2e/τ
s

e + h2e)|y|
2
k+1,Te




1/2

‖yI − yh‖SD. (4.9)

The stabilization parameter τe is chosen to balance the terms in ǫ+ τ se + h2e/τ
s

e + h2e . In particular, if

τ se =

{
τ1

h2
e

ǫ , Pee ≤ 1,
τ2he, Pee > 1,

(4.10)

where τ1, τ2 > 0 are user specified constants and

Pee =
‖c‖0,∞,Te

he
2ǫ

(4.11)

is the mesh Péclet number, then

‖yI − yh‖SD ≤ Chk(ǫ1/2 + h1/2)|y|k+1. (4.12)

An estimate of ‖yI−y‖SD using inequalities similar to those in Lemma 4.2 and an application of the triangle

inequality leads to the error estimate stated in the following theorem, see [13, Thm. 3.30] or [9, Thm. 9.3].

Theorem 4.3 Let (2.8) be valid and let the solution y of (2.7b) satisfy y ∈ Hk+1(Ω) with k ≥ 1. If τe
satisfies (4.4) and (4.10), then the solution yh of (2.12) obeys

‖y − yh‖SD ≤ Chk(ǫ1/2 + h1/2)|y|k+1. (4.13)
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4.2 Error Estimates for the Optimal Control Problem

We apply the framework of Section 3 to our problem. In this case,

x = (y, u, λ), X = Y × U × Λ,

where Y,U are defined in (2.1) and Λ = V is specified in (2.2). Furthermore,

Xh = Yh × Uh × Λh,

where the discretized state and control spaces are given by Yh, Uh are defined in (2.11) and (2.14), respec-

tively. If we use the discretize-then-optimize approach, the discrete adjoints are in Λh = Vh, where Vh is

defined in (2.11). If we use the optimize-then-discretize approach, then Λh is defined in (2.18). The discrete

state and control spaces will be equipped with norms

‖yh‖
2
Yh

= ‖yh‖
2
SD = ǫ|yh|

2
1 + r0‖yh‖

2
0 +

∑

Te∈Th

τ se‖c · ∇yh‖
2
0,Te

.

and ‖ · ‖Uh
= ‖ · ‖0, respectively. If the discretize-then-optimize approach is used, then ‖ · ‖Λh

= ‖ · ‖Yh
=

‖ · ‖SD. If the optimize-then-discretize approach is used,

‖λh‖
2
Λh

= ‖λh‖
2
SD = ǫ|λh|

2
1 + r0‖λh‖

2
0 +

∑

Te∈Th

τ ae ‖c · ∇λh‖
2
0,Te

.

Since stabilization parameters τ se and τ ae might be different in the discretization of state and adjoint equation,

it is not quite accurate to use ‖ · ‖SD to denote both norms ‖ · ‖Yh
and ‖ · ‖Λh

. However, we hope that its

meaning is clear from the context. The space Xh will be equipped with norm

‖xh‖h = ‖yh‖SD + ‖uh‖0 + ‖λh‖SD,

where xh = (yh, uh, λh)
T .

The equation (3.1) corresponds to the optimality conditions (2.10). Depending on whether the discretize-

then-optimize approach or the optimize-then-discretize approach is used, the discrete equation (3.2) corre-

sponds to (2.17) or (2.19), respectively.

As the restriction operator Rh : X → Xh, we choose

Rh(x) =




yI

Pu
λI


 ,

where yI , λI denote the interpolants of y, λ onto Yh,Λh and where P : U → Uh is the L2-projection defined

by

〈Pu,wh〉 = 〈u,wh〉 ∀wh ∈ Uh. (4.14)

If m ≥ 1 and if u ∈ Hm+1(Ω), then the optimality of the projection P and the interpolation estimate (4.2)

imply that

‖u− Pu‖0 ≤ ‖u− uI‖0 ≤ µinth
m+1|u|m+1, (4.15)
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where uI is the Uh-interpolant of u.

Recall that k, ℓ ≥ 1 and m ≥ 0 are the polynomial degrees of the finite element spaces Yh,Λh, Uh

defined in (2.11), (2.18) and (2.14), respectively. If the discretize-then-optimize approach is used, Λh = Vh
and we set ℓ = k.

The following lemma provides an estimate for the term ‖Rh(x) − x‖h in the abstract error estimate

(3.7).

Lemma 4.4 Let x = (y, u, λ) be the solution of (2.7). If k, ℓ,m ≥ 1 and y ∈ Hk+1(Ω), u ∈ Hm+1(Ω) and

λ ∈ Hℓ+1(Ω), then there exists a constant C depending on µint, c, r such that ‖y − yI‖SD ≤ Chk(ǫ1/2 +
h1/2)|y|k+1, ‖λ− λI‖SD ≤ Chℓ(ǫ1/2 + h1/2)|λ|ℓ+1 and ‖u− Pu‖0 ≤ Chm+1|u|m+1 for all h.

Proof: The estimates for ‖y − yI‖SD, ‖λ− λI‖SD follow from the interpolation estimate (4.2) using stan-

dard arguments, see [13, Thm. 3.30] or [9, Thm. 9.3]. The estimate for ‖u− Pu‖0 is shown in (4.15). �

Note that u ∈ Hm+1(Ω), λ ∈ Hℓ+1(Ω) and the optimality condition (1.4) imply that λ = ωu ∈
Hmin{ℓ+1,m+1}(Ω). However, in Lemma 4.4 and in the following we prefer to impose the regularity as-

sumption on λ and u seperately, to better indicate where each is used.

4.3 Discretize-Then-Optimize

In the discretize-then-optimize approach the discrete equation (3.2) corresponds to (2.17). The components

of Kh in (3.8) are given by

〈Hyy
h yh, vh〉V ∗

h
×Vh

= 〈yh, vh〉, 〈Huu
h uh, wh〉U∗

h
×Uh

= ω〈uh, wh〉, Huy
h = Hyu

h = 0

〈Ahyh, vh〉V ∗

h
×Vh

= ash(yh, vh), 〈Bhuh, vh〉V ∗

h
×Vh

= bsh(uh, vh), Ãh = Ah, B̃h = Bh.
(4.16)

In particular, Kh is selfadjoint.

The next result establishes a stability estimate for the optimal control problem.

Lemma 4.5 Let k ≥ 1 and suppose the solution x = (y, u, λ) of (2.7) satisfies y ∈ Hk+1(Ω) and λ ∈
Hk+1(Ω). If τ se satisfies (4.4) and (4.10), then there exists κ > 0 such that (3.4) holds.

Proof: We apply Lemma 3.1. By Lemma 4.1 Ah is invertible and satisfies ‖A−1
h ‖L(Y ∗

h
,Yh) ≤ 2. It is easy

to see that there exists c > 0 such that ‖Bh‖L(Uh,Y
∗

h
) ≤ c and ‖Hyy

h ‖L(Yh,Y
∗

h
) ≤ c for all h. Finally, since

B∗
h(A

∗
h)

−1Hyy
h A−1

h Bh is postive semi definite,

〈Ĥhuh, uh〉U∗

h
×Uh

≥ 〈Huu
h uh, uh〉U∗

h
×Uh

= ω‖uh‖
2
0,

which implies ‖Ĥ−1
h ‖L(U∗

h
,Uh) ≤ ω−1. �
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Now we turn to the consistency, i.e., we want to find an estimate for ‖rh −KhRh(x)‖h in our abstract

error estimate (3.7). Let zh = (ψh, wh, vh) ∈ Xh. The optimality conditions (2.17) of the discretized

problem imply that

〈rh −KhRh(x), zh〉X ∗

h
,Xh

=




ash(ψh, λ
I) + 〈yI − ŷ, ψh〉

bsh(wh, λ
I) + ω〈Pu,wh〉

ash(y
I , vh) + bsh(Pu, vh)− 〈f, vh〉

s

h − 〈g, vh〉Γn


 . (4.17)

Since the solution x = (y, u, λ) of (2.7) satisfies (2.10) and since y satisfies (1.2) on each Te ∈ Th, we find

that

a(ψh, λ) = −〈y − ŷ, ψh〉,

b(wh, λ) + ω〈u,wh〉 = 0,

ash(y, vh) + bsh(u, vh) = 〈f, vh〉
s

h + 〈g, vh〉Γn

for all ψh, vh ∈ Vh and wh ∈ Uh. With (4.14) this implies

〈rh −KhRh(x), zh〉X ∗

h
,Xh

=




∑
Te∈Th

τ se〈−ǫ∆ψh + c · ∇ψh + rψh, c · ∇λ
I〉0,Te

+ 〈yI − y, ψh〉

〈λ− λI , vh〉 −
∑

Te∈Th
τ se〈wh, c · ∇λ

I〉0,Te

ash(y
I − y, vh)−

∑
Te∈Th

τ se〈Pu− u, c · ∇vh〉0,Te


 .

(4.18)

Lemma 4.6 Let k,m ≥ 1 and suppose the solution x = (y, u, λ) of (2.7) satisfies y, λ ∈ Hk+1(Ω) and

u ∈ Hm+1(Ω). If τ se satisfies (4.4) and (4.10), then

‖rh −KhRh(x)‖X ′ ≤ C





(ǫ1/2 + h1/2)hk|y|k+1 + hm+2ǫ−1/2|u|m+1

+hǫ−1/2‖∇λI‖0 + hk+1(|y|k+1 + |λ|k+1), Pee ≤ 1,

(ǫ1/2 + h1/2)hk|y|k+1 + hm+3/2|u|m+1

+(ǫ1/2 + h1/2)‖∇λI‖0 + hk+1(|y|k+1 + |λ|k+1), Pee > 1.

(4.19)

Proof: The terms in (4.18) can be estimated as follows. Using the Hölder inequality and (4.3) gives
∣∣∣∣∣∣

∑

Te∈Th

τ se〈−ǫ∆ψh, c · ∇λ
I〉0,Te

∣∣∣∣∣∣
≤

∑

Te∈Th

τ seǫ‖∆ψh‖0,Te
‖c‖0,∞,Te

‖∇λI‖0,Te

≤ C


 ∑

Te∈Th

ǫ(τ se)
2/h2e‖∇λ

I‖20,Te




1/2 
 ∑

Te∈Th

ǫ‖∇ψh‖
2
0,Te




1/2

.(4.20)

Standard estimates give
∣∣∣∣∣∣

∑

Te∈Th

τ se〈c · ∇ψh, c · ∇λ
I〉0,Te

∣∣∣∣∣∣
≤

∑

Te∈Th

τ se‖c · ∇ψh‖0,Te
‖c‖0,∞,Te

‖∇λI‖0,Te

≤ C


 ∑

Te∈Th

τ se‖∇λ
I‖20,Te




1/2 
 ∑

Te∈Th

τ se‖c · ∇ψh‖
2
0,Te




1/2

(4.21)
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and
∣∣∣∣∣∣

∑

Te∈Th

τ se〈rψh, c · ∇λ
I〉0,Te

∣∣∣∣∣∣
≤

∑

Te∈Th

τ se‖r‖0,∞,Te
‖ψh‖0,Te

‖c‖0,∞,Te
‖∇λI‖0,Te

≤ C




∑

Te∈Th

(τ se)
2‖∇λI‖20,Te




1/2

‖ψh‖0. (4.22)

The estimate (4.2) implies

∣∣〈yI − y, ψh〉
∣∣ ≤ µinth

k+1|y|k+1‖ψh‖0. (4.23)

Combining (4.20)-(4.23) gives

∣∣∣∣∣∣

∑

Te∈Th

τ se〈−ǫ∆ψh + c · ∇ψh + rψh, c · ∇λ
I〉0,Te

+ 〈yI − y, ψh〉

∣∣∣∣∣∣

≤ C



( ∑

Te∈Th

(ǫ(τ se)
2/h2e + τ se + (τ se)

2)‖∇λI‖20,Te

)1/2
+ hk+1|y|k+1


 ‖ψh‖SD. (4.24)

Analogously to (4.22), (4.23) we obtain

∣∣∣∣∣∣

∑

Te∈Th

τ se〈wh, c · ∇λ
I〉0,Te

∣∣∣∣∣∣
+

∣∣∣〈λI − λ,wh〉
∣∣∣ ≤ C



( ∑

Te∈Th

(τ se)
2‖∇λI‖20,Te

)1/2
+ hk+1|λ|k+1


 ‖wh‖0

(4.25)

Using the esimates in Lemma 4.2 we find that

|ash(y
I − y, vh)| ≤ Chk




∑

Te∈Th

(ǫ+ τ se + h2e/τ
s

e + h2e)|y|
2
k+1,Te




1/2

‖vh‖SD. (4.26)

Finally, using standard estimates and (4.15) we obtain

∣∣∣∣∣∣

∑

Te∈Th

τ se〈Pu− u, c · ∇vh〉0,Te

∣∣∣∣∣∣
≤


 ∑

Te∈Th

τ se‖Pu− u‖20,Te




1/2 
 ∑

Te∈Th

τ se‖c · ∇vh‖
2
0,Te




1/2

≤ C(max
Te∈Th

τ se)
1/2hm+1|u|m+1‖vh‖SD. (4.27)

The desired results now follows from (4.18), the estimates (4.24)-(4.27), the fact that

ǫ+ τ se + h2e/τ
s

e + h2e ≤ C(ǫ+ he), ǫ(τ se)
2/h2e + τ se + (τ se)

2 ≤ C

{
h2e/ǫ, Pee ≤ 1,
ǫ+ he, Pee > 1,
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for τ se satisfying (4.10), and

‖rh −KhRh(x)‖X ∗

h
= sup

zh 6=0

〈rh −KhRh(x), zh〉X ∗

h
,Xh

‖zh‖Xh

. (4.28)

�

If we apply the abstract error estimate (3.7) and combine the results in Lemmas 4.4, 4.5 and 4.6 we

obtain the following error estimate.

Theorem 4.7 Let k,m ≥ 1 and suppose the solution (y, u, λ) of (2.7) satisfies y, λ ∈ Hk+1(Ω), u ∈
Hm+1(Ω). If τ se satisfies (4.4) and (4.10) and if τ ae satisfies (4.44) and (4.10), then the error between the

solution (y, u, λ) of (2.7) and the solution (yh, uh, λh) of the discretized problem (2.15) obeys

‖yh − y‖SD + ‖uh − u‖0 + ‖λh − λ‖SD

≤ C





(ǫ1/2 + h1/2)hk|y|k+1 + hm+2ǫ−1/2|u|m+1

+hǫ−1/2‖∇λI‖0 + hk+1(|y|k+1 + |λ|k+1), Pee ≤ 1,

(ǫ1/2 + h1/2)hk|y|k+1 + hm+3/2|u|m+1

+(ǫ1/2 + h1/2)‖∇λI‖0 + hk+1(|y|k+1 + |λ|k+1), Pee > 1.

(4.29)

Theorem 4.7 gives an estimate for the states, controls and adjoints combined. Our numerical results in

Section 5 show that this error estimate is often too conservative for the states and the controls. The reason

for this is that while the error λ − λh in the ‖ · ‖SD norm behaves as in (4.29), the error λ − λh measured

in the L2-norm is often much smaller. Because of the optimality conditions (1.4) and (2.17b) this tends to

imply a smaller error ‖u− uh‖0 in the control than the one suggested by (4.29). L2 and L∞ error estimates

for the SUPG method are discussed, e.g., in [14, 15]. See also the overview in [13, Sec. 3.2.1]. However,

L2 estimates for the error λ− λh in the optimal control context and L2 estimates for the error u− uh have

not yet been established.

If the error u− uh in the control is smaller than the upper bound established in (4.29), we can obtain an

improved estimate for the error in the states. This is stated in the next theorem.

Theorem 4.8 Let k ≥ 1 and suppose the solution y of (2.10c) satisfies y ∈ Hk+1(Ω). Furthermore, let yh
solve (2.17c). If τ se satisfies (4.4) and (4.10), then there exists C > 0 such that

‖y − yh‖SD ≤ C
(
hk(ǫ1/2 + h1/2)|y|k+1 + ‖uh − u‖0

)
∀h. (4.30)

Proof: Let ỹh ∈ Yh be the solution of

ash(ỹh, vh) + bsh(u, vh) = 〈f, vh〉
s

h + 〈g, vh〉Γn
∀vh ∈ Vh. (4.31)

Theorem 4.3 implies

‖y − ỹh‖SD ≤ Chk(ǫ1/2 + h1/2)|y|k+1.
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To estimate yh − ỹh we subtract (4.31) from (2.19e),

ash(yh − ỹh, vh) + bsh(uh − u, vh) = 0 ∀vh ∈ Vh,

set vh = yh − ỹh and apply Lemma 4.4 to obtain

1
2‖yh − ỹh‖SD ≤ ash(yh − ỹh, yh − ỹh) = −bsh(uh − u, yh − ỹh) ≤ ‖uh − u‖0‖yh − ỹh‖SD.

This implies the desired estimate. �

The next result indicates that the estimate (4.29) for the error in the adjoints cannot be improved. Even

if we solve the discrete adjoint (2.17a) with yh replaced by the optimal state y, i.e., the solution of (2.7), we

obtain an error estimate comparable to (4.29).

Theorem 4.9 Let y be the optimal state, i.e., the solution of (2.7). Let k ≥ 1 and suppose the solution λ of

(2.10a) satisfies λ ∈ Hk+1(Ω). Furthermore, let λh solve

ash(ψh, λh) = −〈y − ŷ, ψh〉 ∀ψh ∈ Vh. (4.32)

If τ se satisfies (4.4) and (4.10), then

‖λ− λh‖SD ≤ C





hǫ−1/2‖∇λI‖0, Pee ≤ 1,

(ǫ1/2 + h1/2)‖∇λI‖0, Pee > 1.
(4.33)

Proof: This result follows from the stability result (4.5) and the consistency estimates (4.20)-(4.22). All

other steps in the proof of this result are analogous to those in the proof of Theorem 4.3 given, e.g., [13,

Thm. 3.30] or [9, Thm. 9.3]. �

4.4 Optimize-Then-Discretize

In the optimize-then-discretize approach the discrete equation (3.2) corresponds to (2.19). The components

of Kh in (3.8) are given by

〈Hyy
h yh, ψh〉Λ∗

h
×Λh

= 〈yh, ψh〉
a

h = 〈yh, ψh〉+
∑

Te∈Th
τ ae 〈yh,−c · ψh〉Te

,

〈Huu
h uh, wh〉U∗

h
×Uh

= ω〈uh, wh〉, Huy
h = Hyu

h = 0,

〈Ahyh, vh〉V ∗

h
×Vh

= ash(yh, vh), 〈Bhuh, vh〉V ∗

h
×Vh

= bsh(uh, vh),

〈Ãhψh, λh〉Λ∗

h
×Λh

= aah(ψh, λh), 〈B̃huh, λh〉Λ∗

h
×Λh

= bh(uh, λh).

(4.34)

As we have pointed out at the end of Section 2.4, the discretization of the optimality system leads to a

non-selfadjoint system. This makes the derivation of a stability result (3.4) more complicated than in the

discetize-then-optimize approach. On the other hand, derivation of a consistency estimate is just a simple

application of the standard SUPG consistency estimates reviewed in Section 4.1.

We first derive a stability result. The next lemma collects some preliminary results on the solution of the

state and adjoint equations as well as their approximations computed using the SUPG method.
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Lemma 4.10 i. Let u ∈ L2(Ω). Suppose that the solution z(u) ∈ V of

a(z, v) = b(u, v) ∀v ∈ V (4.35)

satisfies z(u) ∈ H2(Ω) and that there exists C > 0 independent of u such that

‖z(u)‖2 ≤ C‖u‖0. (4.36)

If zh(uh) and z̃h(uh) solve

ash(zh, vh) = bsh(u, vh) ∀vh ∈ Vh (4.37)

and

aah(z̃h, ψh) = b(u, ψh) ∀ψh ∈ Λh, (4.38)

respectively, and if τ se satisfies (4.4) and (4.10), then there exists C > 0 independent of uh such that

‖zh(u)‖SD ≤ C‖u‖0, ‖z̃h(uh)‖SD ≤ C‖u‖0, (4.39)

‖zh(u)− z(u)‖SD ≤ Ch(ǫ1/2 + h1/2)‖u‖0. (4.40)

ii. Let z ∈ L2(Ω). Suppose that the solution µ(z) ∈ V of

a(ψ, µ) = 〈z, ψ〉 ∀ψ ∈ V, (4.41)

satisfies µ(z) ∈ H2(Ω) and that there exists C > 0 independent of z such that

‖µ(z)‖2 ≤ C‖z‖0. (4.42)

If µh(z) ∈ Λh solves

aah(ψh, µh) = 〈z, ψh〉+
∑

Te∈Th

τ ae 〈z,−c · ∇ψh〉Te
∀ψh ∈ Λh (4.43)

and if τ ae satisfies

0 < τ ae ≤ min

{
h2e
ǫµ2inv

,
r0

‖r −∇ · c‖0,∞,Te

}
(4.44)

and (4.10) with τ se replaced by τ ae , then

‖µh(z)− µ(z)‖SD ≤ Ch(ǫ1/2 + h1/2)‖z‖0. (4.45)

Proof: The inequalities (4.39) follow from the SUPG stability estimate Lemma 4.1, inequalities (4.40),

(4.45) follow from the SUPG convergence theory, cf. Theorem 4.3. �

Lemma 4.11 Let the assumptions of Lemma 4.10 be satisfied. Let k, ℓ,m ≥ 1 and suppose the solution

x = (y, u, λ) of (2.7) satisfies y ∈ Hk+1(Ω), u ∈ Hm+1(Ω), λ ∈ Hℓ+1(Ω). If τ se satisfies (4.4) and (4.10)

and if τ ae satisfies (4.44) and (4.10) with τ se replaced by τ ae , then there exist h̄ > 0 and κ > 0 such that Kh

is invertible for all h ≥ h̄ and ‖K−1
h ‖h ≤ κ for all h ≥ h̄.
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Proof: We apply Lemma 3.1. By Lemma 4.1 Ah and Ãh are invertible and satisfy ‖A−1
h ‖L(Y ∗

h
,Yh) ≤ 2,

‖Ã−1
h ‖L(Λ∗

h
,Λh) ≤ 2. It is straightforward to verify that there exists c > 0 such that ‖Bh‖L(Uh,Y

∗

h
) ≤ c,

‖B̃h‖L(Uh,Λ
∗

h
) ≤ c and ‖Hyy

h ‖L(Yh,Λ
∗

h
) ≤ c for all h.

The proof of uniform boundedness of Ĥ−1
h is a little bit more involved than in Lemma 4.5 because

B̃∗
h(Ã

∗
h)

−1Hyy
h A−1

h Bh is not symmetric.

By Definition 4.34 of Ah, Ãh, Bh and B̃h the vectors zh = A−1
h Bhuh and z̃h = Ã−1

h B̃huh solve (4.37)

and (4.38), respectively, with u = uh. Let z be the solution of (4.35) with u = uh. From the Definition 3.10

of Ĥh we obtain

〈Ĥhuh, uh〉U∗

h
×Uh

= 〈Huu
h uh, uh〉U∗

h
×Uh

+ 〈B̃∗
h(Ã

∗
h)

−1Hyy
h A−1

h Bhuh, uh〉U∗

h
,Uh

= 〈Huu
h uh, uh〉U∗

h
×Uh

+ 〈Hyy
h A−1

h Bhuh, Ã
−1
h B̃huh〉Λ∗

h
×Λh

= ω‖uh‖
2
0 + 〈Hyy

h z, z〉Λ∗

h
×Λh

+ 〈Hyy
h (zh − z), z̃h〉Λ∗

h
×Λh

+ 〈Hyy
h z, z̃h − z〉Λ∗

h
×Λh

. (4.46)

Applying the definition (4.34) of Hyy
h and (4.36)-(4.40), we obtain

〈Hyy
h z, z〉Λ∗

h
×Λh

= ‖z‖20 +
∑

Te∈Th

τ ae 〈z,−c · ∇z〉Te

≥ ‖z‖20 − max
Te∈Th

τ ae ‖c‖0,∞‖z‖0‖z‖1

≥ ‖z‖20 − C max
Te∈Th

τ ae ‖c‖0,∞‖uh‖
2
0 (4.47)

and

〈Hyy
h (zh − z), z̃h〉Λ∗

h
×Λh

≥ −‖zh − z‖0‖z̃h‖0 − max
Te∈Th

τ ae ‖c‖0,∞‖zh − z‖0‖z̃h‖1

≥ −Ch(ǫ1/2 + h1/2)

(
1 + ‖c‖0,∞ max

Te∈Th
τ ae

)
‖uh‖

2
0. (4.48)

To estimate the last term in (4.46) we set we set µ̃ = (A∗)−1Hyy
h z and µh = (Ã∗)−1Hyy

h z. The identity

A∗µ̃ = Hyy
h z and the definitions of A and Hyy

h imply that

a(ψ, µ̃) = 〈z, ψ〉 +
∑

Te∈Th

τ ae 〈z,−c · ∇ψ〉Te
∀ψ ∈ V.

Similarly, µh solves (4.43). If µ solves (4.41), then the Lipschitz continuity of the solution of the adjoint

equation with respect to perturbations in the right hand side implies

‖µ− µ̃‖1 ≤ C max
Te∈Th

τ ae ‖c‖1,∞‖z‖1 ≤ C max
Te∈Th

τ ae ‖c‖1,∞‖uh‖0.

(To obtain the last inequality, recall that z solves (4.35) with u = uh and that (4.36) holds with u = uh.) If

µ solves (4.41), then (4.45) and (4.36) imply

‖µ− µh‖SD ≤ Ch(ǫ1/2 + h1/2)‖z‖0 ≤ Ch(ǫ1/2 + h1/2)‖uh‖0.
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Hence

〈Hyy
h z, z̃h − z〉Λ∗

h
×Λh

= 〈(A∗)−1Hyy
h z − (Ã∗)−1Hyy

h z, B̃huh〉Λh×Λ∗

h

= 〈µ̃− µh, B̃huh〉Λh×Λ∗

h
≥ ‖µ̃− µh‖SD‖B̃huh‖Λ∗

h

≥ C
(
max
Te∈Th

τ ae + h(ǫ1/2 + h1/2)
)
‖uh‖

2
0. (4.49)

Estimates (4.46)-(4.49) imply the existence of h̄ > 0 such that 〈Ĥhuh, uh〉U∗

h
×Uh

≥ 1
2ω‖uh‖

2
0. This

implies ‖Ĥ−1
h ‖L(U∗

h
,Uh) ≤ 2ω−1. The desired result now follows from Lemma 3.1. �

Now we turn to the consistency, i.e., we want to find an estimate for ‖rh −KhRh(x)‖ in our abstract

error estimate (3.7). The discretized optimality condition (2.19) imply that

〈rh −KhRh(x), z〉X ∗

h
,Xh

=




aah(ψh, λ
I) + 〈yI − ŷ, ψh〉

a

h

b(wh, λ
I) + ω〈Pu,wh〉

ash(y
I , vh) + bsh(Pu, vh)− 〈f, vh〉

s

h − 〈g, vh〉Γn


 .

Since the solution x = (y, u, λ) of (2.7) satisfies (2.10) and that y satisfies (1.2) on each Te ∈ Th, we have

aah(ψh, λ) = −〈y − ŷ, ψh〉
a

h,

b(wh, λ) + ω〈u,wh〉 = 0,

ash(y, vh) + bsh(u, vh) = 〈f, vh〉
s

h + 〈g, vh〉Γn

for all ψh, vh ∈ Vh and wh ∈ Uh. With (4.14) this implies

〈rh −KhRh(x), z〉X ∗

h
,Xh

=




aah(ψh, λ
I − λ) + 〈yI − y, ψh〉

a

h

b(wh, λ
I − λ)

ash(y
I − y, vh)−

∑
Te∈Th

τ se〈Pu− u, c · vh〉0,Te


 .

Lemma 4.12 Let k, ℓ,m ≥ 1 and suppose the solution x = (y, u, λ) of (2.7) satisfies y ∈ Hk+1(Ω),
u ∈ Hm+1(Ω), λ ∈ Hℓ+1(Ω). If τ se satisfies (4.4) and (4.10) and if τ ae satisfies (4.44) and (4.10), then

‖rh −KhRh(x)‖X ≤ C
(
(ǫ1/2 + h1/2)(hk|y|k+1 + hℓ|λ|ℓ+1) + hm+1|u|m+1

)
. (4.50)

Proof: Using the estimates in Lemma 4.2 we find that

ash(y
I − y, vh) ≤ Chk


 ∑

Te∈Th

(ǫ+ τ se + h2e/τ
s

e + h2e)|y|
2
k+1,Te




1/2

‖vh‖SD,

aah(ψh, λ
I − λ) ≤ Chℓ


 ∑

Te∈Th

(ǫ+ τ ae + h2e/τ
a

e + h2e)|λ|
2
ℓ+1,Te




1/2

‖ψh‖SD.
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Furthermore, (4.2) implies

b(wh, λ
I − λ) ≤ µinth

ℓ+1|λ|ℓ+1‖wh‖0.

By (4.27), ∣∣∣∣∣∣

∑

Te∈Th

τ se〈Pu− u, c · vh〉0,Te

∣∣∣∣∣∣
≤ C max

Te∈Th
τ seh

m+1|u|m+1‖vh‖SD.

Finally

〈yI − y, ψh〉
a

h ≤ µinth
k+1|y|k+1‖ψh‖0 +

∑

Te∈Th

τ aeµinth
k+1
Te

|y|k+1,Te
‖c · ∇ψh‖0,Te

≤ Chk+1|y|k+1‖ψh‖SD.

The inequality (4.50) is obtained by combining the above estimates, using that (4.10) implies ǫ + τe +
h2e/τe + h2e ≤ C(ǫ+ he) and the identity (4.28). �

If we apply the abstract error estimate (3.7) and combine the results in Lemmas 4.4, 4.11 and 4.12 we

obtain the following error estimate.

Theorem 4.13 Let k, ℓ,m ≥ 1 and suppose the solution (y, u, λ) of (2.7) satisfies y ∈ Hk+1(Ω), u ∈
Hm+1(Ω), λ ∈ Hℓ+1(Ω). If τ se satisfies (4.4) and (4.10) and if τ ae satisfies (4.44) and (4.10), then the error

between the solution (y, u, λ) of (2.7) and the solution (yh, uh, λh) of the discretized optimality conditions

(2.19) obeys

‖yh − y‖SD + ‖uh − u‖0 + ‖λh − λ‖SD

≤ C
(
(ǫ1/2 + h1/2)(hk|y|k+1 + hℓ|λ|ℓ+1) + hm+1|u|m+1

)
. (4.51)

As in the case of Theorem 4.7, Theorem 4.13 also gives an estimate for the states, controls and adjoints

combined. This error estimate is sometimes too conservative for the controls for the same reasons sketched

after Theorem 4.7. As in the discretize-then-optimize case, L2 estimates for the error λ− λh in the optimal

control context and L2 estimates for the error u− uh have not yet been established.

If the error u− uh in the control is smaller than the upper bound established in (4.51), we can obtain an

improved estimate for the error in the states and in the adjoints. This is stated in the next theorem. Note that

if a better estimate for the error λ − λh can be obtained, this might also allow to further improve the error

u− uh in the control.

Theorem 4.14 Let k, ℓ ≥ 1 and suppose the solution (y, u, λ) of (2.7) satisfies y ∈ Hk+1(Ω), λ ∈
Hℓ+1(Ω). Furthermore, let yh, λh solve (2.19a) and (2.19e), respectively. If τ se satisfies (4.4) and (4.10) and

if τ ae satisfies (4.44) and (4.10), then there exists C > 0 such that

‖y − yh‖SD ≤ C
(
hk(ǫ1/2 + h1/2)|y|k+1 + ‖uh − u‖0

)
∀h, (4.52)

‖λ− λh‖SD ≤ C
(
hℓ(ǫ1/2 + h1/2)|λ|k+1 + ‖yh − y‖0

)
∀h. (4.53)
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Proof: The proof is analogous to the proof of Theorem 4.8. �

A comparison of Theorems 4.7 and 4.13 indicates that the optimize-then-discretize approach leads to

asymptotically better approximate solutions of the optimal control problem than the discretize-then-optimize

approach, because the estimate (4.51) is dominated by the term hǫ−1/2‖∇λI‖0 and (ǫ1/2 + h1/2)‖∇λI‖0,

respecively. The differences between the error bounds provided in Theorems 4.7 and 4.13 is small when

piecewise linear polynomials are used for the discretization states, adjoints and controls, i.e., if k = ℓ = m =
1. We also note that in the case of piecewise linear finite elements the contributions 〈−ǫ∆yh, c ·∇vh〉Te

and

〈−ǫ∆λh,−c · ∇ψh〉Te
of the SUPG method to the bilinear forms (2.13) and (2.19b) disappear and, hence,

one source of difference between the discretize-then-optimize approach and the optimize-then-discretize

approach is eliminated. This would not apply if reconstructions of second derivative terms had been used

[7].

The differences between the discretize-then-optimize approach and the optimize-then-discretize ap-

proach are the greater the larger k, ℓ, i.e., the higher the order of finite elements used for the states and

the adjoints. Theorem 4.9 and Theorems 4.13, 4.14 show that there is a significant difference in quality of

the adjoints computed by the discretize-then-optimize approach and the optimize-then-discretize approach.

The latter leads to better adjoint approximations. This is confirmed by our numerical results reported in

Section 5. However, our numerical results also show that this large difference in the quality of the adjoints

does not necessarily implies a large difference in the quality of the controls. Often the observed error in

the controls computed by the discretize-then-optimize approach and the optimize-then-discretize approach

is very similar, which by Theorem 4.8 and 4.14 leads to very similar errors in the computed states for both

approaches.

5 Numerical Results

5.1 Example 1

Our first example is a one dimensional control problem on Ω = (0, 1) with state equation

−ǫy′′(x) + y′(x) = f(x) + u(x) on (0, 1), y(0) = y(1) = 0. (5.1)

The functions f and ŷ are chosen so that the solution of the optimal control problem is

yex(x) = x−
exp((x− 1)/ǫ) − exp(−1/ǫ)

1− exp(−1/ǫ)
, λex(x) =

(
1− x−

exp(−x/ǫ)− exp(−1/ǫ)

1− exp(−1/ǫ)

)

and uex = ω−1λex. This example is modeled after [13, pp. 2,3]. We set ǫ = 0.0025 and ω = 1. In

our numerical tests we use equidistant grids with mesh size h. If piecewise linear functions are used, the

stabilization parameter for the state and adjoint equation is chosen to be

τe =

{
h2/(4ǫ), Pee ≤ 1,
h/2 Pee > 1.

(5.2)

For piecewise quadratic finite elements the stabilization parameter for the state and adjoint equation is given

by (5.2) with h replaced by h/2.
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Errors and estimated convergence order for the discretize-then-optimize approach as well as the optimize-

then-discretize approach using linear (k = ℓ = m = 1) and quadratic (k = ℓ = m = 2) finite elements are

given in Tables 5.1 and 5.2. In all examples we estimate the convergence order by taking the logarithm with

base two of the quotient of the error at grid size h and the error at grid size h/2. In all examples the linear

systems arising from the discretization of the discretized optimal control problem or from the discretization

of the infinite dimensional optimality conditions are solved using a sparse LU-decomposition.

For this example Pee = 1 for h = 5 · 10−3, i.e., half of the data in Tables 5.1 and 5.2 correspond to the

case Pee ≤ 1.

If linear finite elements are used, i.e., if k = m = ℓ = 1, Theorems 4.7 and 4.13 predict that the

error for states, controls and adjoints behaves like O(h) for Pee ≤ 1. This is confirmed by the results in

Table 5.1. Table 5.1 reveals few differences between the discretize-then-optimize and the optimize-then-

discretize approach. If linear finite elements are used, both produce states and adjoints that are of the same

quality. The controls computed using the discretize-then-optimize approach are slightly better than the

controls obtained from the optimize-then-discretize approach. However, we have seen examples where the

opposite is true.

The situation changes if quadratic finite elements are used, i.e., if k = m = ℓ = 2. In this case

Table 5.2 shows that convergence order for the adjoints computed using discretize-then-optimize approach

is one, whereas the convergence order for the adjoints obtained from the optimize-then-discretize approach

is two. This agrees with the theoretical results in Theorems 4.7, 4.9 and in Theorem 4.13, respectively.

However, in both cases the observed convergence order for the L2 error in the adjoints is one higher than the

convergence order for the SUPG-error. The L2 error for the controls is much smaller than the SUPG-error

in the states. In fact, the term hk(ǫ1/2 + h1/2)|y|k+1 dominates ‖uh − uex‖0 and Theorem 4.8 predicts that

in the discretize-then-optimize approach the states converge with order two, instead of the pessimistic state

error bound provided by Theorem 4.7. For the optimize-then-discretize approach Theorem 4.13 predicts that

order of convergence in the SUPG error for both the states and the adjoints is two. The observed convergence

order for the L2 error in the adjoints is one higher than the convergence order for the SUPG-error. Since

the controls are multiples of the adjoints, the observed convergence order for the L2 error in the controls is

three, one higher than the convergence order prediced by Theorem 4.13.

We have obtained qualitatively similar results when the choice (5.2) of the stabilization parameter is

replaced by τe = (|b|h/2)(coth(Pee) + 1/Pee), which applied to certain classes of state equations with

fixed control gives approximations that are nodally exact [2], [13, p. 234].
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Table 5.1: Errors and estimated convergence order. Example 1, k = ℓ = m = 1.

The discretize-then-optimize approach

‖yh − yex‖ ‖uh − uex‖ ‖λh − λex‖
h ‖ · ‖0 order ‖ · ‖SD order ‖ · ‖0 order ‖ · ‖0 order ‖ · ‖SD order

1.00e-1 1.86e-1 6.21e-1 7.76e-2 1.74e-1 6.20e-1

5.00e-2 1.24e-1 0.59 7.47e-1 -0.27 4.45e-2 0.80 1.19e-1 0.54 7.47e-1 -0.27

2.50e-2 7.69e-2 0.69 1.11e+0 -0.57 2.18e-2 1.03 7.51e-2 0.67 1.11e+0 -0.57

1.25e-2 4.65e-2 0.73 9.86e-1 0.17 1.37e-2 0.67 4.58e-2 0.71 9.87e-1 0.17

6.25e-3 2.64e-2 0.82 6.42e-1 0.62 1.03e-2 0.41 2.61e-2 0.81 6.43e-1 0.62

3.13e-3 9.58e-3 1.46 3.01e-1 1.09 5.05e-3 1.03 9.50e-3 1.46 3.01e-1 1.09

1.56e-3 2.57e-3 1.90 1.35e-1 1.16 1.55e-3 1.70 2.55e-3 1.90 1.35e-1 1.16

7.81e-4 6.54e-4 1.97 6.48e-2 1.06 4.15e-4 1.90 6.49e-4 1.97 6.48e-2 1.06

The optimize-then-discretize approach

‖yh − yex‖ ‖uh − uex‖ ‖λh − λex‖
h ‖ · ‖0 order ‖ · ‖SD order ‖ · ‖0 order ‖ · ‖0 order ‖ · ‖SD order

1.00e-1 1.85e-1 6.35e-1 1.83e-1 1.83e-1 6.76e-1

5.00e-2 1.23e-1 0.58 7.50e-1 -0.24 1.23e-1 0.58 1.23e-1 0.58 7.58e-1 -0.16

2.50e-2 7.66e-2 0.69 1.11e+0 -0.57 7.63e-2 0.69 7.63e-2 0.69 1.11e+0 -0.55

1.25e-2 4.63e-2 0.73 9.86e-1 0.17 4.61e-2 0.73 4.61e-2 0.73 9.86e-1 0.17

6.25e-3 2.63e-2 0.82 6.42e-1 0.62 2.62e-2 0.82 2.62e-2 0.82 6.41e-1 0.62

3.13e-3 9.56e-3 1.46 3.01e-1 1.09 9.52e-3 1.46 9.52e-3 1.46 3.01e-1 1.09

1.56e-3 2.56e-3 1.90 1.35e-1 1.16 2.55e-3 1.90 2.55e-3 1.90 1.35e-1 1.16

7.81e-4 6.52e-4 1.97 6.48e-2 1.06 6.50e-4 1.97 6.50e-4 1.97 6.47e-2 1.06

5.2 Example 2

The second example is a two dimensional control problem on Ω = (−1, 1) × (0, 1). We use the data

Γn = (0, 1) × {0}, Γd = ∂Ω \ Γn, c(x) =

(
2x2(1− x21)
−2x1(1− x22)

)
, r = 0,

ǫ = 10−5 and ω = 10−2. The functions f , d, g and ŷ are chosen so that the solution of the optimal control

problem (1.1), (1.2) is given by

yex(x) = 1 + tanh(1− (2(x21 + x22)
1/2 + 1)), λex(x) = (x21 − 1)x22(x2 − 1)

and uex = ω−1λex. This example is motivated by the first model problem in [11, pp. 9,10]. Our triangulation

is computed by first subdividing Ω into squares of size h×h and then dividing each square into two triangles.

If piecewise linear functions are used, the stabilization parameter for the state and adjoint equation is chosen

to be

τe =

{
h2/(4ǫ), Pee ≤ 1,
h/(2‖c‖0,∞,Te

) Pee > 1.
(5.3)
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Table 5.2: Errors and estimated convergence order. Example 1, k = ℓ = m = 2.

The discretize-then-optimize approach

‖yh − yex‖ ‖uh − uex‖ ‖λh − λex‖
h ‖ · ‖0 order ‖ · ‖SD order ‖ · ‖0 order ‖ · ‖0 order ‖ · ‖SD order

1.00e-1 1.21e-1 6.11e-1 3.89e-2 1.21e-1 5.91e-1

5.00e-2 7.61e-2 0.67 3.62e-1 0.76 2.00e-2 0.96 7.99e-2 0.60 3.55e-1 0.74

2.50e-2 3.89e-2 0.97 5.15e-1 -0.51 4.23e-3 2.24 4.70e-2 0.77 5.93e-1 -0.74

1.25e-2 1.73e-2 1.17 4.44e-1 0.21 6.53e-3 -0.63 2.92e-2 0.69 6.32e-1 -0.09

6.25e-3 3.71e-3 2.22 1.65e-1 1.43 3.83e-3 0.77 1.22e-2 1.26 3.85e-1 0.71

3.13e-3 4.23e-4 3.13 4.21e-2 1.97 1.29e-3 1.57 3.54e-3 1.78 1.92e-1 1.00

1.56e-3 4.56e-5 3.21 1.04e-2 2.02 3.62e-4 1.83 9.27e-4 1.93 9.59e-2 1.00

7.81e-4 5.33e-6 3.10 2.58e-3 2.01 9.45e-5 1.94 2.35e-4 1.98 4.79e-2 1.00

The optimize-then-discretize approach

‖yh − yex‖ ‖uh − uex‖ ‖λh − λex‖
h ‖ · ‖0 order ‖ · ‖SD order ‖ · ‖0 order ‖ · ‖0 order ‖ · ‖SD order

1.00e-1 1.21e-1 6.19e-1 1.20e-1 1.20e-1 6.40e-1

5.00e-2 7.59e-2 0.67 3.64e-1 0.77 7.56e-2 0.67 7.56e-2 0.67 3.69e-1 0.79

2.50e-2 3.88e-2 0.97 5.14e-1 -0.50 3.87e-2 0.97 3.87e-2 0.97 5.13e-1 -0.48

1.25e-2 1.72e-2 1.17 4.44e-1 0.21 1.72e-2 1.17 1.72e-2 1.17 4.44e-1 0.21

6.25e-3 3.70e-3 2.22 1.65e-1 1.43 3.70e-3 2.22 3.70e-3 2.22 1.65e-1 1.43

3.13e-3 4.23e-4 3.13 4.21e-2 1.97 4.23e-4 3.13 4.23e-4 3.13 4.21e-2 1.97

1.56e-3 4.56e-5 3.21 1.04e-2 2.02 4.56e-5 3.21 4.56e-5 3.21 1.04e-2 2.02

7.81e-4 5.33e-6 3.10 2.58e-3 2.01 5.33e-6 3.10 5.33e-6 3.10 2.58e-3 2.01

For piecewise quadratic finite elements the stabilization parameter for the state and adjoint equation is given

by (5.2) with h replaced by h/2.

Errors and estimated convergence order for the discretize-then-optimize approach as well as the optimize-

then-discretize approach using linear (k = ℓ = m = 1) and quadratic (k = ℓ = m = 2) finite elements

are given in Tables 5.3 and 5.4. All the data in Tables 5.3 and 5.4 correspond to the case Pee > 1. The

sizes of the smallest and largest systems (2.17) and (2.19) arising in our calculations are 198 × 198 and

155043 × 155043, respectively. To avoid contamination of the convergence errors by the truncation of an

iterative scheme, these systems were solved using a sparse LU-decomposition.

In this example our exact adjoints and controls are designed to be functions with small gradients. If

linear finite element approximations are used, the observed convergence order for the SUPG error in the

computed ajoints and the computed states is greater than one for both approaches. See Table 5.3. The

observed convergence order for the L2-error in the computed adoints is only one for the discretze-then-

optimize approach, while for the optimize-then-discretize approach the observed convergence order for the

L2-error in the computed adoints is one higher than the observed convergence order for the SUPG-error. In

this example the optimize-then-discretize approach produced better approximations.
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Table 5.3: Errors and estimated convergence order. Example 2, k = ℓ = m = 1.

The discretize-then-optimize approach

‖yh − yex‖ ‖uh − uex‖ ‖λh − λex‖
h ‖ · ‖0 order ‖ · ‖SD order ‖ · ‖0 order ‖ · ‖0 order ‖ · ‖SD order

2.00e-1 1.69e-1 1.12e+0 8.27e-1 1.67e-2 5.32e-2

1.00e-1 8.52e-2 0.99 6.11e-1 0.87 4.27e-1 0.95 9.18e-3 0.86 2.80e-2 0.93

5.00e-2 2.35e-2 1.86 2.58e-1 1.24 1.77e-1 1.27 4.60e-3 1.00 1.20e-2 1.22

2.50e-2 4.60e-3 2.35 9.50e-2 1.44 4.69e-2 1.92 2.21e-3 1.06 3.47e-3 1.79

1.25e-2 8.50e-4 2.44 3.35e-2 1.50 7.75e-3 2.60 1.09e-3 1.02 8.66e-4 2.00

6.25e-3 1.96e-4 2.12 1.18e-2 1.51 1.17e-3 2.73 5.48e-4 0.99 2.82e-4 1.62

The optimize-then-discretize approach

‖yh − yex‖ ‖uh − uex‖ ‖λh − λex‖
h ‖ · ‖0 order ‖ · ‖SD order ‖ · ‖0 order ‖ · ‖0 order ‖ · ‖SD order

2.00e-1 1.76e-1 1.12e+0 7.51e-1 7.51e-3 4.78e-2

1.00e-1 8.64e-2 1.03 6.12e-1 0.87 4.14e-1 0.86 4.14e-3 0.86 2.59e-2 0.88

5.00e-2 2.38e-2 1.86 2.59e-1 1.24 1.74e-1 1.25 1.74e-3 1.25 1.13e-2 1.20

2.50e-2 4.64e-3 2.36 9.50e-2 1.45 4.66e-2 1.90 4.66e-4 1.90 3.13e-3 1.85

1.25e-2 8.55e-4 2.44 3.35e-2 1.50 7.72e-3 2.59 7.72e-5 2.59 6.75e-4 2.21

6.25e-3 1.97e-4 2.12 1.18e-2 1.51 1.17e-3 2.72 1.17e-5 2.72 2.04e-4 1.73

If quadratic finite elements are used, i.e., if k = m = ℓ = 2, then the optimize-then-discretize approach

leads to superior results. See Table 5.4. For this approach, the observed convergence order for the SUPG

error in the computed ajoints and the computed states is greater than the guaranteed convergence order

of two. The observed convergence order for the L2-error in the computed adoints is one higher than the

observed convergence order for the SUPG-error, which leads to an observed convergence order greater than

three for the L2-error in the controls. This is different for discretze-then-optimize approach. Initially the

observed convergence orders for the SUPG-errors in states and adjoints as well as the L2-error in control

are comperable to those achieved by the optimize-then-discretize approach, but deteriorates subsequently.

We note that in this example the gradients of yh are almost perpendicular to c. Because of this feature,

the standard Galerkin finite element method produced good solutions to the optimal control problem.

5.3 Example 3

In our third example we use Ω = (0, 1)2 and

Γd = ∂Ω, c(x) = (cos(θ) sin(θ))T , θ = 45◦, r = 0,

ǫ = 10−2 and ω = 1. The functions f , d, g and ŷ are chosen so that the solution of the optimal control

problem (1.1), (1.2) is given by

yex(x) = η(x1)η(x2), λex(x) = µ(x1)µ(x2),
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Table 5.4: Errors and estimated convergence order. Example 2, k = ℓ = m = 2.

The discretize-then-optimize approach

‖yh − yex‖ ‖uh − uex‖ ‖λh − λex‖
h ‖ · ‖0 order ‖ · ‖SD order ‖ · ‖0 order ‖ · ‖0 order ‖ · ‖SD order

2.00e-1 5.60e-2 6.64e-1 3.22e-1 8.34e-3 2.91e-2

1.00e-1 1.43e-2 1.97 2.38e-1 1.48 9.68e-2 1.73 4.24e-3 0.98 1.07e-2 1.45

5.00e-2 1.92e-3 2.89 5.41e-2 2.14 1.62e-2 2.58 2.14e-3 0.99 2.77e-3 1.94

2.50e-2 3.52e-4 2.45 1.28e-2 2.08 2.78e-3 2.54 1.08e-3 0.98 1.33e-3 1.06

1.25e-2 1.27e-4 1.47 8.01e-3 0.67 2.75e-3 0.02 5.46e-4 0.99 1.99e-3 -0.58

The optimize-then-discretize approach

‖yh − yex‖ ‖uh − uex‖ ‖λh − λex‖
h ‖ · ‖0 order ‖ · ‖SD order ‖ · ‖0 order ‖ · ‖0 order ‖ · ‖SD order

2.00e-1 5.74e-2 6.66e-1 3.08e-1 3.08e-3 2.54e-2

1.00e-1 1.45e-2 1.99 2.39e-1 1.48 9.43e-2 1.71 9.43e-4 1.71 8.97e-3 1.50

5.00e-2 1.92e-3 2.91 5.39e-2 2.15 1.53e-2 2.62 1.53e-4 2.62 1.59e-3 2.49

2.50e-2 3.26e-4 2.56 1.12e-2 2.26 1.26e-3 3.61 1.26e-5 3.61 1.49e-4 3.41

1.25e-2 5.66e-5 2.53 2.23e-3 2.33 1.23e-4 3.35 1.23e-6 3.35 1.97e-5 2.92

where

η(z) = z −
exp((z − 1)/ǫ)− exp(−1/ǫ)

1− exp(−1/ǫ)
, µ(z) =

(
1− z −

exp(−z/ǫ)− exp(−1/ǫ)

1− exp(−1/ǫ)

)

and uex = ω−1λex. Our triangulation is computed by first subdividing Ω into squares of size h × h and

then dividing each square into two triangles. Our choice for the stabilization parameter is the same as in

Section 5.2. Errors and estimated convergence order for the discretize-then-optimize approach as well as

the optimize-then-discretize approach using linear (k = ℓ = m = 1) and quadratic (k = ℓ = m = 2)

finite elements are given in Tables 5.5 and 5.6. All but the last row in Table 5.5 and all data in Table 5.6

correspond to the case Pee > 1. The sizes of the smallest and largest systems (2.17) and (2.19) arising in

our calculations are 363× 363 and 77763× 77763, respectively. These systems were solved using a sparse

LU-decomposition.

The observations drawn from Tables 5.5 and 5.6 for this example are very similar to those of Example

1. However, when quadratic finite elements are used, we observed small node-to-node oscillations in the

adjoints and controls computed by the discretize-then optimize approach. These are not present in the

adjoints and controls computed by the optimize-then-discretize approach. See Figure 5.1. Such node-to-

node oscillations in the adjoints and controls did not develop in either approach when linear finite elements

are used as seen in Figure 5.2. For better visibility we show the results on a coarse grid, but the plots of our

results on finer grid are qualitatively comparable to those in Figures 5.1 and 5.2.

We remark that for this example the standard Galerkin method produced poor results. For smaller

diffusion ǫ even SUPG using either approach did not produce satisfactory approximations to the optimal

control, states and adjoints for coarser grids.
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Figure 5.1: Computed controls, Example 3, k = ℓ = m = 2, h = 0.1.

6 Conclusions

We have studied the effect of the SUPG finite element method on the discretization of optimal control

problems governed by the linear advection-diffusion equation. Two approaches for the computation of

approximate controls and corresponding states and adjoints were compared: The discretize-then-optimize

approach and the optimize-then-discretize approach. Theoretical and numerical studies of the error between

the exact solution of the control problem and its approximation were provided. Our theoretical results

show that the optimize-then-discretize approach leads to asymptotically better approximate solutions than

the discretize-then-optimize approach. The theoretical results also indicate that the differences in solution

quality is small when piecewise linear polynomials are used for the discretization of states, adjoints and

controls, but that they can be significant if higher-order finite elements are used for the states and the adjoints.

There is always a significant difference in quality of the adjoints computed by the discretize-then-optimize

approach and the optimize-then-discretize approach if finite element approximations with polynomial degree

greater than one are used, and the optimize-then-discretize approach leads to better adjoint approximations.

However, our numerical results have also shown that this large difference in the quality of adjoints does not

necessarily imply a large difference in the quality of the controls.

Often the observed error in the controls computed by the discretize-then-optimize approach and the

optimize-then-discretize approach is rather similar – even if the adjoints computed using both approaches

are significantly different. This seems to be related to the fact that we consider distributed controls and that

errors in the controls are measured in the L2 norm whereas errors in the adjoints are measured in the SUPG-

norm. Since the distributed controls are multiples of the adjoints, our numerical results indicate that the

L2-error in the adjoints is much smaller than the error in the SUPG-norm. Whether these good convergence

properties in the control also materialize if Neumann or Dirichlet boundary controls are used or if other

objective functionals acting on the state are given is part of future studies. Another subject of future study
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Figure 5.2: Computed controls, Example 3, k = ℓ = m = 1, h = 0.1.

is the influence of stabilization methods on the control of systems of advection diffusion equations, like

the Navier-Stokes equations, where additional inconsistencies in the discretize-then-optimize approach can

occur.

We conclude by reiterating that care is required when using the SUPG method for the solution of optimal

control problems. If the discretize-then-optimize approach with SUPG is used, the order with which the

computed solutions of the optimal control converge to the exact solution may be much lower than what

one would expect from the solution of a single advection diffusion equation using SUPG. The asymptotic

convergence behavior expected from the SUPG method applied to a single advection diffusion equation can

be maintained for the optimal control problem if the optimize-then-discretize approach is used.
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