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Abstract

Deep neural network approaches show promise in solving partial differential equations.
However, unlike traditional numerical methods, they face challenges in enforcing essen-
tial boundary conditions. The widely adopted penalty-type methods, for example, offer a
straightforward implementation but introduces additional complexity due to the need for
hyper-parameter tuning; moreover, the use of a large penalty parameter can lead to artificial
extra stiffness, complicating the optimization process. In this paper, we propose a novel,
intrinsic approach to impose essential boundary conditions through a framework inspired by
intrinsic structures. We demonstrate the effectiveness of this approach using the deep Ritz
method applied to Poisson problems, with the potential for extension to more general equa-
tions and other deep learning techniques. Numerical results are provided to substantiate the
efficiency and robustness of the proposed method.

Keywords: deep neural network, essential boundary value problem, deep Ritz method,
penalty free, interfacial value problem

1. Introduction

In recent years, there has been a rapidly growing interest in using deep neural networks
(DNNs) to solve partial differential equations (PDEs). Early attempts to apply neural net-
works to differential equations date back over three decades, with Hopfield neural networks
[11] being employed to represent discretized solutions [17]. Soon after, methodologies were
developed to construct closed-form numerical solutions using neural networks [39]. Since
then, extensive research has focused on solving differential equations with various types of
neural networks, including feedforward neural networks [15, 27, 16, 26], radial basis net-
works [25], and wavelet networks [20]. With the advancement of deep learning techniques
[10, 14, 9], neural networks with substantially more hidden layers have become powerful
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tools. Innovations such as rectified linear unit (ReLU) functions [6], generative adversar-
ial networks (GANs) [7], and residual networks (ResNets) [9] exemplify these advances,
showcasing the strong representational capabilities of DNNs [30, 18, 19, 37, 8, 33]. These
developments have spurred the creation of numerous DNN-based methods for PDEs, includ-
ing the deep Galerkin method (DGM) [35], deep Ritz method (DRM) [5], physics-informed
neural networks (PINNs) [31], finite neuron method (FNM) [40], weak adversarial networks
(WANs) [42], and mixed residual methods (MIM) [24]. These methods have been widely
adopted across various applications, successfully addressing complex problems modeled by
differential equations [5, 21, 32, 2, 22, 13, 41, 3].

In the design and implementation of neural network-based methods, the imposition of
boundary conditions is a critical challenge. Notably, this issue is also encountered in cer-
tain classical numerical methods, such as finite element methods, where handling boundary
conditions can be complex enough to require techniques like Nitsche’s method [28], later
refined by Stenberg [36]. However, the challenges differ significantly in neural network-
based approaches. Unlike classical numerical methods, which leverage basis functions or
discretization stencils with compact supports or sparse structures, neural network methods
utilize DNNs as trial functions, which are globally defined. Consequently, enforcing bound-
ary conditions, even for problems that are straightforward in classical methods, becomes
nontrivial due to the global structure of DNNs. For the natural boundary conditions, the
deep Ritz method reformulates the original problem into a variational form, which can re-
duce the smoothness requirements and potentially lower the training cost by allowing natural
boundary conditions to be imposed without additional operations. However, because the trial
functions within the approximation sets are generally non-interpolatory, imposing essential
boundary conditions remains a challenging task.

To date, three primary approaches have been developed for addressing essential boundary
conditions in deep learning-based numerical methods. The first approach is the conforming
method, which aims to construct neural network functions that exactly satisfy the essential
boundary conditions [34, 2, 24]. Generally, the network function uNN(x) is represented as the
combination of two parts: uNN(x) = ub(x)+dΓ(x)u0

NN(x), one reflecting the essential boundary
condition, and the other vanishing on the boundary Γ by the aid of a “distance function” or a
“geometry-aware” function dΓ(x). Both test and trial functions can be constructed this way.
However, when the domain has a complicated boundary (or even not that complicated), it is
not easy to construct a distance function to preserve the asymptotic equivalence.

Another one is the penalty method, which is a very general concept and belongs to the so-
called nonconforming method [5, 31, 35, 43, 42, 12]. For this method, an additional surface
term is introduced into the variational formulation to enforce the boundary conditions. Take
the Poisson equation with Dirichlet boundary condition (1.1) as example:{

−∆u = f inΩ,
u = g onΓ = ∂Ω. (1.1)
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The deep Ritz method [5] minimize the following objective

LDRM(u) =
[∑

x j∈D

1
2
|∇u(x j)|2 − f (x j)u(x j)

]
+ β

∑
x j∈DΓ

(
u(x j) − ub(x j)

)2
, (1.2)

whereD andDΓ define the training data set in the domain and on the boundary, respectively.
PINN method is a least square method for the strong form of the PDE, but the the handling
of the essential boundary condition is similar to deep Ritz method:

LPINN(u) =
[∑

x j∈D

|∆u(x j) + f (x j)|2
]
+ β

∑
x j∈DΓ

(
u(x j) − ub(x j)

)2
. (1.3)

Careful balancing of terms within the functional framework is essential to ensure the well-
posedness and accuracy of the scheme. Addressing this issue, the deep Nitsche method, as
proposed in [21], applies Nitsche’s variational formula to second-order elliptic problems to
avoid the use of a large penalty parameter. Nevertheless, some degree of tuning remains nec-
essary for the penalty parameter, and a theoretical basis for determining an optimal penalty
value is still absent.

In contrast to the penalty method, the Lagrange multiplier method addresses essential
boundary conditions by treating them as constraints within the minimization process. This
method has been effectively used to impose essential boundary conditions in finite element
methods [1] and wavelet methods [4]. When the approximation function spaces are appro-
priately chosen satisfying the so-called inf-sup condition, this method can achieve optimal
convergence rates [1, 4]. While the Lagrange multiplier method can also enforce boundary
conditions in neural network-based methods, its effectiveness depends on the stable con-
struction and efficient resolution of the extra constrained optimization problem.

In this paper, we introduce a novel neural network-based method for solving essential
boundary value problems. Our approach involves transforming the original problem into a
sequence of natural boundary value problems, which are then solved sequentially or con-
currently using the deep Ritz method. Unlike the previously mentioned approaches, this
technique constructs a new framework for imposing essential boundary conditions. We refer
to this method as the natural deep Ritz method. This approach simplifies the training pro-
cess and avoids introducing additional errors associated with boundary condition enforce-
ment. To validate our method, we examine essential boundary and interface value problems
for second-order divergence-form equations with constant, variable, or discontinuous coeffi-
cients, providing numerical examples that demonstrate the effectiveness.

Evidently, a primary ingredient of the proposed method lies in its adjoint approach to han-
dling essential boundary conditions. This approach is grounded in the mathematical frame-
work of the de Rham complex and its dual complex, which serve as foundational structures.
By leveraging these complexes, which connect kernel spaces to specific range spaces, we
can represent the difference between the solutions of natural and essential boundary value
problems as the solution to another natural boundary value problem. This formulation allows
us to construct a purely natural approach equivalent to the original problem.
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While we do not delve extensively into the formal structure of the de Rham and dual
complexes, it is important to highlight that our method diverges from the traditional mixed
formulations common in classical numerical methods. Notably, we do not introduce the
gradient of the unknown function as an auxiliary variable. Moreover, unlike classical mixed
formulations, our approach avoids the need for constructing a saddle point problem, which
would typically require rigorous continuous and discrete inf-sup conditions for stability and
accuracy. In our framework, the solution is reduced to solving three elliptic subproblems
using a standard machine learning algorithm. This approach eliminates the need for training
an additional network to capture the boundary representation, tuning penalty parameters, or
ensuring inf-sup conditions for a boundary Lagrangian multiplier. The conciseness of the
present method is among its most significant advantages, both in theory and implementation.

The remaining parts of the paper are organized as follows. In Section 2, we present the
equivalent natural boundary value problem formulation of the respective essential boundary
value problems. In Section 3, the deep Ritz method based on the natural formulation, namely
the natural deep Ritz methods, is given. Numerical experiments are presented in Section 4 to
verify the proposed method. We end the paper with some concluding remarks in Section 5

2. A natural formulation of the essential boundary value problems

In this section, we derive natural formulations for the second-order problems of diver-
gence form with constant, variable, and discontinuous coefficients, respectively; i.e., we
rewrite the essential boundary value problems and interface value problems to a series of
natural boundary value problems and interface value problems to solve. We are focused on
Laplace problems on two-dimensional domains here, and the method can be generated to
higher dimensions, as well as to other self-adjoint problems.

In this paper, Ω ⊂ R2 stands for a simply connected domain with a boundary Γ, and we
use L2(Ω), H1(Ω), H1

0(Ω), H−1(Ω), H1/2(Γ) and H−1/2(Γ) for the standard Sobolev spaces.

2.1. Poisson equations of Dirichlet type
We first consider the model problem with constant coefficients: (1.1). Its variational

formulation is to find u ∈ H1
g(Ω) :=

{
w ∈ H1(Ω) : w|Γ = g

}
, such that

(∇u,∇v) = ⟨ f , v⟩H−1(Ω)×H1
0 (Ω), ∀ v ∈ H1

0(Ω). (2.1)

Here, ⟨·, ·⟩H−1(Ω)×H1
0 (Ω) stands for the duality between H−1(Ω) and H1

0(Ω). In the sequel, we
use ⟨·, ·⟩ to denote dualities of different kinds, while the subscripts may be dropped when no
ambiguity is introduced.

Theorem 2.1. Let u be the solution of (2.1), and u∗ be obtained by the four steps below:
1. Find ũ ∈ H1

Γ
(Ω) := {w ∈ H1(Ω) :

∫
Γ

w = 0}, such that

(∇ũ,∇v) = ⟨ f̃ , v⟩(H1
Γ
(Ω))′×H1

Γ
(Ω), ∀ v ∈ H1

Γ(Ω), (2.2)

where f̃ is any extension of f onto (H1
Γ
(Ω))′ such that ⟨ f̃ , v⟩ = ⟨ f , v⟩ for v ∈ H1

0(Ω).
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2. Find a φ ∈ H1(Ω), such that

(curlφ, curlψ) = ⟨∂t(g − ũ|Γ), ψ⟩Γ, ∀ψ ∈ H1(Ω); (2.3)

Here, the scalar curl operator is defined as curl w(x, y) := (∂yw,−∂xw), and ⟨·, ·⟩Γ is a
duality between H−1/2(Γ) and H1/2(Γ), which evaluates as the L2 inner product on Γ
for sufficiently smooth functions.

3. Find a uc ∈ H1(Ω), such that

(∇uc,∇v) = (∇ũ−curlφ,∇v), ∀ v ∈ H1(Ω). (2.4)

4. Set u∗ = uc −C, with C = 1
|γ|

∫
γ
(uc − g) for any γ ⊂ Γ such that |γ| , 0.

Then u∗ = u.

Proof. By (2.1) and (2.2), (∇u−∇ũ,∇v) = 0, ∀ v ∈ H1
0(Ω) and it follows that∇u−∇ũ = curlφ

for some φ ∈ H1(Ω). Further, rot curlφ = 0. Therefore, for any ψ ∈ H1(Ω), we have
(curlφ, curlψ) = (rotcurlφ, ψ)+ ⟨curlφ · t, ψ⟩Γ = ⟨(∇u−∇ũ) · t, ψ⟩Γ = ⟨∂t(g− ũ|Γ), ψ⟩Γ, namely
φ satisfied (2.3). Now we obtain by (2.4) that ∇uc = ∇u. Then uc − u is a constant which can
be corrected by Step (4) and finally, we are lead to that u∗ = u. The proof is completed.

Remark 2.2. 1. The solutions of the second and third steps are not unique up to constant,
though, these solutions will give the same correct solution at the end of the algorithm.

2. To obtain ũ, we may solve for ũ ∈ H1(Ω)

(∇ũ,∇v) = ⟨ f̃ , v −
?
Γ

v⟩(H1
Γ
(Ω))′×H1

Γ
(Ω), ∀ v ∈ H1(Ω);

3. The last step can be done by least square.

Remark 2.3. We can interprate formally the first three subproblems in the formulation of
natural boundary value problems as below:

1. The boundary value problem corresponding to (2.2):{
−∆ũ = f inΩ,

∂ũ
∂n = − 1

|Γ|

∫
Ω

f , on ∂Ω. (2.5)

2. The boundary value problem corresponding to (2.3):{
−∆φ = 0 inΩ,

curlφ · t = ∂tg − ∂tũ, on ∂Ω. (2.6)

3. The boundary value problem corresponding to (2.4):{
−∆uc = f inΩ,

∂uc
∂n = ∂nũ−∂tφ, on ∂Ω.

(2.7)
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2.2. Elliptic problem with varying coefficient in divergence form
LetA be a varying coefficient matrix such that

λ|ξ|2 ≤ Ai j(x)ξiξ j ≤ Λ|ξ|
2 on Ω. (2.8)

We further consider a second order problem of divergence form:{
−div(A2∇u) = f inΩ,

u = g onΓ. (2.9)

It is useful to rewrite −div ◦ (A2∇) = (−divA) ◦ (A∇). Note that, equipped with proper
spaces, the operators −divA and A∇ are adjoint operators of each other, and we write the
variational formulation to be: find u ∈ H1

g(Ω), such that

(A∇u,A∇v) = ⟨ f , v⟩, ∀ v ∈ H1
0(Ω). (2.10)

Theorem 2.4. Let u be the solution of (2.10), and u∗ be obtained by the four steps below:
1. Find ũ ∈ H1

Γ
(Ω) :=

{
w ∈ H1(Ω) :

∫
Γ

w = 0
}
, such that

(A∇ũ,A∇v) = ⟨ f̃ , v⟩H−1(Ω)×H1
0 (Ω), ∀ v ∈ H1

Γ(Ω); (2.11)

2. Find a φ ∈ H1(Ω), such that

(A−1curlφ,A−1curlψ) = ⟨∂t(g − ũ|Γ), ψ⟩Γ, ∀ψ ∈ H1(Ω); (2.12)

3. Find a uc ∈ H1(Ω), such that

(A∇uc,A∇v) = (A∇ũ −A−1curlφ,A∇v), ∀ v ∈ H1(Ω); (2.13)

4. Set u∗ = uc −C, with C = 1
|γ|

∫
γ
(uc − g) for any γ ⊂ Γ such that |γ| , 0.

Then u∗ = u.

Proof. Note that the null space of div ◦ A coincides with the range of A−1 ◦ curl equipped
with proper spaces, and the proof is the same as that of Theorem 2.1.

2.3. A simple approach for the interface problem
We now consider the case that A is discontinuous. Let Γ0 be an interface that separates

Ω = Ω1∪Ω2 with Ω̊1∩ Ω̊2 = ∅; see Figure 1 for an illustration. We use ni and ti for the outer
unit normal vector and the corresponding unit tangential vector for ∂Ωi, i = 1, 2.

AssumeA to be discontinuous across Γ0. We consider the interface problem below:
−divA2∇u = f inΩ1 ∪Ω2,

u = g onΓ,
(A2∇u)|Ω1 · n1 + (A2∇u)|Ω2 · n2 = κ2 onΓ0,

u|Ω1 − u|Ω2 = κ1 onΓ0.

(2.14)
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Figure 1: Illustration of the domain and the interface

The variational formulation is to find u ∈ H1(Ω1) × H1(Ω2) := {w ∈ L2(Ω) : w|Ωi ∈

H1(Ωi), i = 1, 2}, such that

(A2∇u,∇v)Ω1∪Ω2 = ⟨ f , v⟩H−1(Ω)×H1
0 (Ω) + ⟨κ2, v⟩Γ0 , ∀ v ∈ H1

0(Ω), (2.15)

and
u|Γ = g, and u|Ω1 − u|Ω2 = κ1 on Γ0. (2.16)

Here ⟨·, ·⟩Γ0 is a duality between H−1/2(Γ0) and H1/2(Γ0), which evaluates as the L2 inner
product on Γ0 for sufficiently smooth functions.

Theorem 2.5. Let u be the solution of (2.15)-(2.16), and u∗ be obtained by the four steps
below:

1. Find a ũ ∈ H1(Ω), such that

(A∇ũ,A∇v)Ω = ⟨ f̃ , v −
?
Γ

v⟩ + ⟨κ2, v −
?
Γ

v⟩Γ0 , ∀ v ∈ H1(Ω). (2.17)

2. Find a φ ∈ H1(Ω), such that

(A−1curlφ,A−1curlψ)Ω1∪Ω2 = ⟨∂t1κ1, ψ⟩Γ0 + ⟨∂t(g − ũ|Γ), ψ⟩Γ, ∀ψ ∈ H1(Ω). (2.18)
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3. Find a uc ∈ H1(Ω1) × H1(Ω2), such that

(A∇uc,A∇v)Ωi = (A∇ũ −A−1curlφ,A∇v)Ωi , ∀ v ∈ H1(Ωi), i = 1, 2. (2.19)

4. Set u∗|Ω1 = uc|Ω1 − C1, u∗|Ω2 = uc|Ω2 − C2, with C2 =
1
|γ|

∫
γ
(uc − g) for any γ ⊂ Γ such

that |γ| , 0, and C1 =
1
|γ0 |

∫
γ0

(uc|Ω1 − u∗|Ω2 − κ1) for any γ0 ⊂ Γ0 such that |γ0| , 0.
Then u∗ = u.

Proof. By the first item, (A2∇(u − ũ),∇v) = 0 for v ∈ H1
0(Ω), therefore, there exists φ ∈

H1(Ω) such thatA∇(u − ũ) = A−1curlφ. It follows that rotA−2curlφ = 0. Then

(A−1curlφ,A−1curlψ)Ωi = ⟨A
−2curlφ · ti, ψ⟩∂Ωi

= ⟨∇(u − ũ) · ti, ψ⟩∂Ωi = ⟨∂ti(u|∂Ωi − ũ|∂Ωi), ψ⟩∂Ωi ,

for any ψ ∈ H1(Ω), and further

(A−1curlφ,A−1curlψ)Ω1∪Ω2 =

2∑
i=1

⟨∂ti(u|∂Ωi − ũ|∂Ωi), ψ⟩∂Ωi

= ⟨∂t1κ1, ψ⟩Γ0 + ⟨∂t(g − ũ|Γ), ψ⟩Γ.

The assertion follows immediately.

Remark 2.6. Again, it is helpful to understand the procedure by figuring out the respective
strong forms related to equations (2.17)-(2.19).

1. By using integration by parts, we obtain the strong form of (2.17):
−∇ · (A2∇ũ) = f , inΩ1 ∪Ω2,

n1 · (A2∇ũ)|Ω1 + n2 · (A2∇ũ)|Ω2 = κ2, onΓ0,
n · (A2∂ũ) = − 1

|Γ|

(
⟨ f , 1⟩Ω + ⟨k2, 1⟩Γ0

)
, onΓ.

(2.20)

2. The boundary value problem corresponding to (2.18) is:
−rot(A−2curlφ) = 0 inΩ1 ∪Ω2,

t1 · (A−2curlφ)|Ω1 + t2 · (A−2curlφ)|Ω2 = ∂t1κ1, onΓ0,
t · (A−2curlφ) = ∂t(g − ũ), onΓ.

(2.21)

3. The boundary value problem corresponding to (2.19) is:{
−∇ · (A2∇uc) = f , inΩi,

ni · (A2∇uc) − ni · (A2∇ũ) = −∂tφ, on ∂Ωi,
(2.22)

for i = 1, 2.
From these strong forms, we see clearly that ũ and ϕ are both continuous functions but with
derivative jumps on interface Γ0. This softens the jumps between uc|Ω1 and uc|Ω2 across Γ0 on
both function value and derivative jumps.
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3. Natural deep Ritz methods

3.1. Natural deep Ritz method for Poisson equations with Dirichlet boundary conditions
Note that the three equations (2.2)-(2.3)-(2.4) in weak forms correspond to three ellip-

tic equations with Neumann boundary conditions (2.5)-(2.6)-(2.7), which can be efficiently
solved using Deep Ritz method without boundary penalty. Details are given in the following
three steps. As usual, we use ΦNN(d, 1) for the set of neural network functions outputting a
1-dim vector with a d-dim input vector.

1. Find u1 ∈ ΦNN(d, 1)/R by optimizing

L1(u1) :=
[ ∑
{x j,ω j}∈D

1
2
|∇u1(x j)|2ω j − f (x j)(u1(x j) − c1)ω j

]
+ c2

1, (3.1)

where c1 =
1
|DΓ |

∑
{x j,ω j}∈DΓ

u1(x j)ω j. D and DΓ are the set of quadrature points and
weights for domainΩ and its boundary Γ. Hereby, the term c2

1 is added in the objective
function to make the solution unique.

2. Find φ ∈ ΦNN(d, 1) by optimizing

L2(φ) :=
∑

{x j,ω j} ∈D

1
2

[curlφ(x j)]2ω j +
∑

{x j,ω j}∈DΓ

[
g(x j)∂τφ(x j) + ∂τu1(x j)φ(x j)

]
ω j

+
[ ∑
{x j,ω j}∈DΓ

φ(x j)ω j

]2
. (3.2)

Again, the last term is added to make the solution unique.
3. Find the solution uc ∈ ΦNN(d, 1) by minimizing:

L3(uc) :=
∑

{x j,ω j}∈D

∣∣∣∇uc(x j) − ∇u1(x j) + curlφ(x j)
∣∣∣2ω j

+
[ ∑
{x j,ω j}∈DΓ

(uc(x j) − g(x j))ω j

]2
. (3.3)

The last term is a regularization term to make the integration of uc and g on boundary
∂Ω equal to each other. Then, uc is a proper numerical approximation of u.

One may optimize the three equation (3.1)-(3.3) one by one, or optimize L1 + L2 + L3

all in one. To make the training procedure simpler, we take the latter approach in this paper.
The variable coefficient systems (2.17)-(2.18)-(2.19) can be solved similarly by the pro-

posed natural deep Ritz method. We omit the details to save space.

3.2. Natural deep Ritz method for elliptic interface problems
For inteface problem defined in (2.17)-(2.18)-(2.19), it is more involved to design an

efficient deep Ritz method. We will use similar approach as in the Poisson equations cases to
solve (2.17)-(2.18), since both u1 and φ has no jump of function values on the interface Γ0.
We use two neural network functions to represent uc, since it contains jumps on the interface
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Γ0. We will solve (2.19) with two neural networks (or one neural network with two outputs
ΦNN(d, 2)), one for each subdomain Ωi, i = 1, 2. The details are given below.

1. Find u1 ∈ ΦNN(d, 1)/R by optimizing

L1(u1) :=
[ ∑
{x j,ω j}∈D

1
2
|∇u1(x j)|2A2(x j)ω j − f (x j)(u1(x j) − c1)ω j

]
(3.4)

−
[ ∑
{x j,ω j}∈DΓ0

κ2(x j)(u1(x j) − c1)ω j

]
+ c2

1, (3.5)

where c1 =
1
|DΓ |

∑
{x j,ω j}∈DΓ

u1(x j)ω j. D, DΓ and DΓ0 are the set of quadrature points
and weights for domain Ω, boundary Γ and interface Γ0.

2. Find φ ∈ ΦNN(d, 1) by optimizing

L2(φ) :=
∑

{x j,ω j} ∈D

1
2

[curlφ(x j)]2A−2(x j)ω j

+
∑

{x j,ω j}∈DΓ

[
g(x j)∂τφ(x j) + ∂τu1(x j)φ(x j)

]
ω j

+
[ ∑
{x j,ω j}∈DΓ0

κ1(x j)∂τφ(x j)ω j

]
+

[ ∑
{x j,ω j}∈DΓ

φ(x j)ω j

]2
. (3.6)

Note that the last term is added to make the solution unique.
3. Find the solution (uc

1, u
c
2) ∈ ΦNN(d, 2) by minimizing:

L3(uc) :=
∑
i=1,2

∑
{x j,ω j}∈Di

∣∣∣A∇(uc
i (x j) − u1(x j)) +A−1curlφ(x j)

∣∣∣2ω j

+
[ ∑
{x j,ω j}∈DΓ

(uc
2(x j) − g(x j))ω j

]2

+
[ ∑
{x j,ω j}∈DΓ0

(uc
1(x j) − uc

2(x j) − κ1(x j))ω j

]2
. (3.7)

The last term is a regularization term to make the integration of uc and g on boundary
∂Ω are equal to each other, such that uc is a proper numerical approximation of u.

Again, we will optimize L1 +L2 +L3 all in once.

4. Numerical experiments

We take Ω = [−1, 1]2, and test following examples with given exact solutions.

• Example 1: A Poisson Dirichlet boundary value problem (1.1) with the exact solution

u(x) = x2
1 + x2

2 + sin(x + y) (4.1)
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• Example 2: An elliptic equation with smooth variable coefficients and Dirichlet bound-
ary condition (2.9). The variable coefficient matrix is taken as

A =

(
1 + x2

1, 0
0, 1

)
. (4.2)

The exact solution is given as

u(x) = ecos
(

x1+x2
2

)
. (4.3)

• Example 3: An elliptic equation with non-smooth variable coefficients and Dirichlet
boundary condition (2.9). The variable coefficient matrix is taken as

A =

(
1 + x2

1, 0
0, 1 + |x2|

)
. (4.4)

The exact solution is taken as

u(x) = ecos
(

x1+|x2 |
3
)
. (4.5)

• Example 4: An elliptic equation (2.9) with discontinuous coefficients. The coefficient
matrix is taken as

A =

(
1, 0
0, 4

3 −
2
3sgn(x2)

)
. (4.6)

The exact solution is given as

u(x) = ecos(x1+x2) +
1
2

ecos(x1+|x2 |). (4.7)

• Example 5: An interface problem (2.20)-(2.22). The domain Ω1 = [−0.5, 0.5]2, Ω2 =

Ω\Ω1. The coefficient matrices are taken as

A|Ω1 =

(
10, 0
0, 10

)
, A|Ω2 =

(
1 + x2

1, 0
0, 1

)
. (4.8)

The exact solution is given as

u(x)|Ω1 = 5e−(x2
1+x2

2), u(x)|Ω2 = 4ecos
(

x2
1/2+x2

2

)
−1. (4.9)

The implementation is conducted using PyTorch [29]. We employ ResNets with five
ResBlock layers, where each ResBlock is a shallow network comprising 20, 35, and 35
hidden units for the proposed method, the standard deep Ritz method, and the PINN method,
respectively, ensuring comparable parameter counts across these methods. We test activation
functions ReCUr, Tanh, and ReQUr, with further details on ResNet structures and RePUr

11



activations available in [9, 18, 41, 38].
For training data, we generate 10,000 inner and boundary points using composite Gaus-

sian quadrature of order 5. An additional 10,000 points on a uniform grid serve as test data.
The Adam optimizer is initially used to train the model for 100 epochs, with a batch size
of 200 and an initial learning rate of 0.005. A learning rate scheduler, CosineAnnealingLR
[23], is employed to adjust the learning rate. Following the Adam training phase, we further
refine the model using the L-BFGS optimizer for 50 steps, with a history size of 100 and 60
inner iterations per step.

Results from both the proposed method and the standard deep Ritz method (using a
boundary penalty constant β = 1000) for these examples are presented in the following
figures. We have several observations:

• By comparing 3 and 5, we observe that in the deep Ritz method, the boundary condi-
tion is quickly learned due to the large penalty constant β = 1000. However, while this
high penalty facilitates rapid boundary condition learning, it significantly slows the
convergence of the solution within the domain, particularly for the Tanh network. We
attribute this to the increased optimization complexity introduced by the large penalty.
In contrast, the new penalty-free method learns both boundary values and the entire
function inside the computational domain simultaneously, achieving a more accurate
numerical solution with the same number of training points and training steps.

• The results for the two variable-coefficient cases, Examples 2 and 3, are compara-
ble. The non-smoothness in the diffusion coefficients does not introduce significant
additional difficulty, as the numerical error in the non-smooth coefficient case is only
slightly higher than in the smooth coefficient case. Additionally, we observe that Re-
CUr DNNs outperform those using the other two activation functions, with RePUr
DNNs demonstrating faster feature learning than Tanh networks, particularly during
the Adam training phase.

• During training with Adam, ReQUr networks typically perform well; however, their
performance occasionally degrades during the LBFGS training steps, particularly when
compared to ReCUr, RePU4r, and Tanh networks. This may be due to the LBFGS
method’s reliance on high-order information, and the higher-order derivatives of Re-
QUr networks are less smooth than those of the other networks.

In the PINN results for Example 4 (Fig. 14), we observe that PINN performs poorly in
this case compared to the proposed natural deep Ritz method. This discrepancy arises
because the exact solution is not a strong solution, while the PINN method depends on
the strong form of the equation.

• For the interface problem in Example 5, the results in Fig. 15 and 16 indicate that the
proposed natural deep Ritz method can efficiently solve the interface problem without
requiring penalty parameter tuning for boundary conditions and interface jump condi-
tions. The relative L2 error is approximately 2.5 × 10−3, and the relative L∞ error for
this test is around 5×10−3. However, the LBFGS optimizer is less efficient in this case

12
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Figure 2: Training results : The learning rate (top-left), training loss (top-right) L2 Testing error onΩ (bottom-
left) and boundary Γ (bottom-right) for Example 1 using New method

than in previous examples. Developing more efficient training methods for interface
problems warrants further investigation.

5. Concluding remarks

In this paper, we develop a novel strategy for solving essential boundary value prob-
lems using neural networks by transforming the original problem into a series of pure nat-
ural boundary value problems, which can then be effectively solved using the deep Ritz
method. Various model problems are employed to demonstrate the advantages of this ap-
proach. While this study focuses on two-dimensional elliptic problems with essential bound-
ary conditions only, several potential extensions of the proposed method are possible:

1. Extension of the approach, readily, to other types of classical meshfree methods be-
sides neural networks;

2. Extension to other boundary conditions, e.g. mixed type condition;
3. Extension to other self-adjoint problems provided relevant complex dualities, and the

extension to non-self-adjoint problems is possible;
4. Extension, dedicatedly, to three-dimensional and higher dimensional problems.

We will present some of these extensions in future works.
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Figure 3: The exact solution and learned solution for Example 1 using New method
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Figure 7: The exact solution and learned solution using RePUr neural networks for Example 2 using New
method
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Figure 11: The exact solution and learned solution using RePUr neural networks for Example 3 using New
method
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Figure 12: Training results : The learning rate (top-left), training loss (top-right) L2 Testing error on Ω
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18



−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
exact solution u

1.5

2.0

2.5

3.0

3.5

4.0

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
pointwise error

−0.006

−0.004

−0.002

0.000

0.002

0.004

0.006

0.008

0.010

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
u1

−4

−3

−2

−1

0

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
φ

−1.0

−0.5

0.0

0.5

1.0

Figure 13: The exact solution and learned solution using RePUr neural networks for Example 4 using New
method
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Figure 15: Training results : The learning rate (top-left), training loss (top-right) L2 Testing error on Ω
(bottom-left) and boundary Γ (bottom-right) for Example 5 using New method
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Figure 16: The exact solution and learned solution using RePUr neural networks for Example 4 using New
method
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