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Abstract— We study the problem of resilient leader-
follower consensus of multi-agent systems (MASs) in the
presence of adversarial agents, where agents’ communica-
tion is modeled by time-varying topologies. The objective is
to develop distributed algorithms for the nonfaulty/normal
follower agents to track an arbitrary reference value prop-
agated by a set of leaders while they are in interaction
with the unknown adversarial agents. Our approaches are
based on the weighted mean subsequence reduced (W-
MSR) algorithms with agents being capable to communi-
cate with multi-hop neighbors. The proposed algorithms
solve our resilient leader-follower consensus problem with
agents possessing first-order and second-order dynamics.
Moreover, we characterize tight necessary and sufficient
graph conditions for the proposed algorithms to succeed in
terms of the novel notion of jointly robust following graphs.
Our graph condition is tighter than the sufficient graph
conditions in the literature when agents use only one-hop
communication (without relays). Using multi-hop relays, we
are able to enhance robustness of leader-follower networks
without increasing physical communication links and ob-
tain further relaxed graph requirements for our algorithms
to succeed. Numerical examples are given to verify the
efficacy of the proposed algorithms.

Index Terms— Cyber security, leader-follower network,
resilient algorithms, time-varying topology.

I. INTRODUCTION

OVER the past few decades, distributed consensus has
emerged as a cornerstone of research in the fields of

multi-agent systems (MASs) and distributed algorithms [1]–
[3]. In such a problem, agents connected over a network
try to reach consensus on a common value while interacting
with only neighboring agents. Stemming from this concept,
extensive applications and algorithms have been devised to
overcome various industrial challenges [4]–[7]. Concurrently,
growing concerns over cyber security within MASs have
amplified the significance of consensus protocols, especially in
scenarios where adversarial agents induce failures or launch at-
tacks, e.g., [8]–[11]. Under this topic, the problems of resilient
consensus have drawn much attention in areas of systems
control, distributed computing, and cooperative robotics [12]–
[16], where the nonfaulty, normal agents aim to reach consen-
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sus despite the possible misbehaviors of adversarial agents. A
common goal in this setting is that normal agents arrive at
the same value located within the convex hull of their initial
states. However, for applications such as formation control and
reliable broadcast, it is desirable that agents together track a
specific value which is externally given and may be outside
such a convex hull. Thus, it motivates us to extend resilient
consensus algorithms for such objectives.

A related problem in prior literature is the leader-follower
consensus problem, where the goal is for normally behaving
agents to come to an agreement on the reference value of a
leader or a set of leaders [17], [18]. However, these works
considered MASs without any adversarial agents, potentially
rendering them vulnerable to random failures or deliberate
attacks. Within the domain of distributed computing, con-
siderable efforts have been dedicated to ensuring reliable
broadcast [19] as well as the certified propagation algorithm
(CPA) [20], [21]. In these works, the objective is for a secure
leader to broadcast a reference value to all nodes in the
network in the presence of adversarial agents. Additionally,
there is a body of research addressing the problem known
as resilient distributed estimation. For instance, the work [22]
studied resilient parameter estimation, where certain reliable
agents drive the errors of the remaining normal agents to the
static reference value of zero. Moreover, the authors of [23]
investigated a problem where the observation information of
the system is resiliently transmitted from a group of source
nodes to other nodes that cannot directly observe the system.

In this paper, we develop distributed algorithms to tackle
resilient leader-follower consensus in time-varying networks.
In the literature, many efforts have been devoted to resilient
consensus using the so-called mean subsequence reduced
(MSR) algorithms [12], [13], [24]–[26]. In such algorithms,
each normal agent disregards the most deviated states of neigh-
bors to avoid being affected by possible faulty values from
adversarial neighbors. Tight graph conditions on static (i.e.,
time-invariant) network structures guaranteeing the success of
MSR algorithms have been derived for the class of malicious
agents [13], [14], [27] as well as the class of Byzantine agents
[12], [28]. Notably, [13] demonstrated that static networks
utilizing MSR algorithms must adhere to a specific structural
criterion, called graph robustness, to attain resilient consensus.
However, the majority of these studies have been confined to
static networks, i.e., communication topologies are fixed across
iterations. However, in numerous applications of MASs with
physical motions, e.g., formation control of drones and vehicle
platoons, the underlying communication network may be time-
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varying due to limited communication ranges and temporal
variations of communication channels [3], [29], [30]. Thus,
there is a significant demand for investigating resilient leader-
follower consensus in time-varying networks. For instance,
the work [31] proved a sufficient condition for the sliding
weighted-MSR (SW-MSR) algorithm from [32] to achieve
resilient leader-follower consensus to arbitrary static reference
values. It reduced the stringent connectivity requirements of
MSR algorithms at each iteration. Later, [33] studied resilient
leader-follower consensus in static networks with the leader in
each network having a dynamic reference value.

Meanwhile, several works relaxed the graph connectivity
requirements for resilient consensus in static networks through
multi-hop communication [15], [28], [34], which enables
messages sent by an agent to reach beyond its direct neighbors
through relays by middle agents [1], [35]. It can improve
network resilience against adversaries without changing the
original topology as shown in [15], [34], [36]. Motivated by
these works, we are interested to investigate whether multi-hop
relays could further help us to acquire a more relaxed condition
for leader-follower consensus in time-varying networks.

We summarize the contributions of this paper as follows.
First, we characterize a necessary and sufficient graph condi-
tion for the Multi-hop Weighted-MSR (MW-MSR) algorithm
to achieve resilient leader-follower consensus in time-varying
networks. Consequently, the normal follower agents are able
to track the reference value propagated by a set of leaders
in the presence of Byzantine agents, which may also include
adversarial leaders. Our graph condition is denoted by a
novel notion of jointly robust following graphs with multi-hop
communication. Compared to the SW-MSR algorithm [31],
[32] storing neighbors’ values for the last certain time steps at
each iteration, our approach utilizes neighbors’ values of only
the current time step at each iteration. It is notable that even
with one-hop communication, our graph condition is tighter
than the ones in the resilient leader-follower consensus works
with static reference values [31] as well as dynamic reference
values [33]. Moreover, by increasing the number of relaying
hops, our method can increase the graph robustness against
adversaries without changing the network topology. Hence,
our approach can tolerate more adversarial nodes compared
to the one-hop MSR algorithms [11], [13], [29], [33] as well
as the CPA-based methods [20], [21]. Moreover, numerical
examples show that our method can achieve resilient leader-
follower consensus in sparse time-varying networks where the
algorithms in [31], [33] have difficulties. As a side result,
we present that the tight graph condition for resilient leader-
follower consensus under the malicious model is the same as
the one for the Byzantine model, even though malicious agents
are less adversarial.

Second, we also deal with resilient leader-follower consen-
sus in time-varying networks for agents with second-order
dynamics and propose a multi-hop double-integrator position-
based MSR (MDP-MSR) algorithm. This extension is vital
since double-integrator dynamics are often used to characterize
more accurate motions of agents in robotics; see, e.g., [37].
To the best of our knowledge, such a problem has not
been investigated in the literature. Furthermore, we derive a

necessary and sufficient graph condition for the MDP-MSR
algorithm to handle this case. The condition is the same as
the one for the MW-MSR algorithm. Moreover, we provide
necessary properties for verifying whether network topologies
meet our conditions or not. Both theoretical results and numer-
ical examples verify that the proposed algorithm with multi-
hop relays can improve the robustness against adversaries in
static as well as time-varying networks for agents with second-
order dynamics. Lastly, we apply the algorithm for achieving
formation control in the leader-follower configuration in the
presence of adversaries, which could serve as a basis for
applications of, e.g., multi-robot manufacturing in complex
industrial sectors.

The rest of this paper is organized as follows. In Section II,
we outline the problem settings. In Section III, we define
the novel notion of joint robust following graphs with multi-
hop communication. In Section IV, we derive a tight graph
condition under which the MW-MSR algorithm guarantees
resilient leader-follower consensus. In Section V, we intro-
duce the MDP-MSR algorithm for MASs with second-order
dynamics and provide tight graph conditions for the algorithm
to achieve resilient leader-follower consensus in static and
time-varying networks. In Section VI, we present numerical
examples to verify the efficacy of our algorithms in sparse
time-varying networks. Finally, we conclude the paper in
Section VII. Compared to the preliminary version of this work
[38], the current paper contains additional results for time-
varying networks, the results for the secure leader, the results
for second-order MASs, and extensive numerical examples.

II. PRELIMINARIES AND PROBLEM SETTINGS

A. Graph Notions

Consider a time-varying directed graph G[k] = (V, E [k])
consisting of the node set V = {1, ..., n} and the time-varying
edge set E [k]. The edge (j, i) ∈ E [k] indicates that node i can
get information from node j at time k ∈ Z≥0. The union of
the graphs G[k] = (V, E [k]) across the time interval [k1, kt] is
denoted by G = (V, E), where E =

⋃t
j=1 E [kj ]. The subgraph

of G[k] = (V, E [k]) induced by the node set H ⊂ V is the
subgraph GH[k] = (V(H), E(H)[k]), where V(H) = H and
E(H)[k] = {(i, j) ∈ E [k] : i, j ∈ H}.

An l-hop path from source node i1 to destination node
il+1 is a sequence of distinct nodes (i1, i2, . . . , il+1), where
(ij , ij+1) ∈ E [k] for j = 1, . . . , l. Node il+1 is said to be
reachable from node i1 at time k. Let N l−

i [k] be the set of
nodes that can reach node i via paths of at most l hops at time
k. Let N l+

i [k] be the set of nodes that are reachable from node
i via paths of at most l hops at time k. Node i is included in
both sets above. The l-th power of the graph G[k], denoted by
Gl[k], is a multigraph with V and a directed edge from node j
to node i is defined by a path of length at most l from j to i in
G[k]. The adjacency matrix A[k] = [aij [k]] of Gl[k] is given
by α ≤ aij [k] < 1 if j ∈ N l−

i [k] and otherwise aij [k] = 0,
where α > 0 is fixed and

∑n
j=1,j ̸=i aij [k] ≤ 1,∀k.

Next, we describe our communication model. Node i1 can
send its own messages to an l-hop neighbor il+1 via different
paths at time k. We represent a message as a tuple m =
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TABLE I
TYPES OF LEADER AGENTS.

Known by followers Not known by followers

Secure Case 1: Proposition 1 Case 2: Theorem 1

Not secure Case 3: Theorem 1 Case 4: Theorem 1

(w,P ), where w = value(m) ∈ R is the message content and
P = path(m) indicates the path via which m is transmitted.
At time k ≥ 0, each normal node i exchanges the messages
mij [k] = (xi[k], Pij [k]) consisting of its state xi[k] ∈ R along
each path Pij [k] with its multi-hop neighbor j via the relaying
process in [36]. Denote by V(P ) the set of nodes in P .

B. System Model and Algorithm
In our leader-follower consensus problem, we consider the

time-varying MAS modeled by the graph G[k] = (V, E [k]),
where V consists of the set of leader agents L and the set
of follower agents W with L ∪ W = V and L ∩ W =
∅. Leader agents in L propagate a desired reference scalar
value to follower agents in W , and thereafter, follower agents
achieve consensus on that reference value. However, during the
propagation, if adversarial agents are in presence, they may
misbehave and try to prevent normal agents from reaching
leader-follower consensus.

To characterize our system under attacks, we denote the set
of adversarial agents by A ⊂ V and denote the set of non-
adversarial, normal agents by N = V \ A with nN = |N |.
Formal definitions of adversarial agents are given later. Then,
the sets of normal leader agents and normal follower agents
are denoted by LN = L∩N and WN = W∩N , respectively.

Before we present our system model, we introduce an
important categorization of the types of leader agents in the
literature, e.g., [31], [33]. For the leader agents, there are four
cases depending on if they are secure (i.e., no faults) or not,
and if they are known by followers or not (see Table I). In this
paper, we mainly focus on the cases where leader agents are
not secure (i.e., Cases 3 and 4). Then we will give an analysis
for the cases where leader agents are secure (i.e., Cases 1
and 2). Such an analysis is closely related to the one for the
insecure leader cases.

At each time k, each normal leader agent d ∈ LN updates
its value according to a reference function r[k] ∈ R as

xd[k + 1] = r[k], (1)

where r[k] is assumed to be constant and the same for all
normal leaders. We note that it can also be a staircase function
and asymptotic tracking can be achieved. See Section VI-A.

We define the resilient leader-follower consensus problem
of this paper, which is also studied in [31].

Problem 1: We say that the normal agents in N reach
resilient leader-follower consensus if for any possible sets and
behaviors of the adversaries in A and any state values of the
normal agents in N , the following condition is satisfied:

lim
k→∞

max
i∈WN , d∈LN

|xi[k]− xd[k]| = 0. (2)

To avoid being affected by adversarial agents, each normal
follower agent i updates its value according to the MW-MSR

Algorithm 1: MW-MSR Algorithm

Input: Node i knows xi[0], N l−
i [k], N l+

i [k].
1 for k ≥ 0 do
2 1) Exchange messages:
3 Send mij [k] = (xi[k], Pij [k]) to ∀j ∈ N l+

i [k].
4 Receive mji[k] = (xj [k], Pji[k]) from

∀j ∈ N l−
i [k] and store them in Mi[k].

5 Sort Mi[k] in an increasing order based on the
message values (i.e., xj [k] in mji[k]).

6 2) Remove extreme values:
7 (a) Define two subsets of Mi[k]:

Mi[k] = {m ∈ Mi[k] : value(m) > xi[k]},

Mi[k] = {m ∈ Mi[k] : value(m) < xi[k]}.

8 (b) Get Ri[k] from Mi[k]:

9 if
∣∣T ∗(Mi[k])

∣∣ < f then
10 Ri[k] = Mi[k];
11 else
12 Choose Ri[k] s.t. (i) ∀m ∈ Mi[k] \ Ri[k],

∀m′ ∈ Ri[k], value(m) ≤ value(m′)
and (ii)

∣∣T ∗(Ri[k])
∣∣ = f .

13 (c) Similar to (b), get Ri[k] from Mi[k],
which contains smallest message values.

14 (d) Ri[k] = Ri[k] ∪Ri[k].

15 3) Update:
16 ai[k] = 1/(|Mi[k] \ Ri[k]|),

xi[k+1] =
∑

m∈Mi[k]\Ri[k]

ai[k] value(m). (3)

Output: xi[k + 1].

algorithm from [36], which is presented in Algorithm 1. The
notion of minimum message cover (MMC) [15] is crucial in
Algorithm 1, which is defined as follows.

Definition 1: For a graph G = (V, E), let M be a set of
messages transmitted through G, and let P(M) be the set
of message paths of all the messages in M, i.e., P(M) =
{path(m) : m ∈ M}. A message cover of M is a set of nodes
T (M) ⊂ V whose removal disconnects all message paths, i.e.,
for each path P ∈ P(M), we have V(P ) ∩ T (M) ̸= ∅. In
particular, a minimum message cover of M is defined by

T ∗(M) ∈ arg min
T (M): Cover of M

|T (M)| .

In Algorithm 1, normal follower i can remove the largest
and smallest values from exactly f nodes located within l hops.
With multi-hop relays, node i might get multiple values from
the same neighbor at each step. Thus, the MMC is needed for
determining the number of extreme values to be removed. A
more detailed explanation of Algorithm 1 can be found in [36].
In Remarks 1 and 5, we discuss how the algorithm functions
differently in the consensus problems under leaderless and
leader-follower settings and the required network topologies
for the algorithm to properly function.
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C. Threat Model
We introduce our threat models extended from those studied

in [12], [13], [36].
Definition 2: (f -total/f -local set) The set of adversary

nodes A is said to be f -total if it contains at most f nodes, i.e.,
|A| ≤ f . Similarly, it is said to be f -local (in l-hop neighbors)
if any normal node i has at most f adversary nodes as its l-hop
neighbors at any time k, i.e.,

∣∣N l−
i [k] ∩ A

∣∣ ≤ f, ∀i ∈ N ,∀k.
Definition 3: (Byzantine nodes) An adversary node i ∈ A

is said to be Byzantine if it arbitrarily modifies its own value
and relayed values and sends different state values and relayed
values to its neighbors at each step.

Byzantine agents have been studied in numerous existing
works and they are usually employed to characterize possible
misbehaviors of adversarial agents in point-to-point networks
[1], [12], [13], [28]. In contrast, there is the class of malicious
agents, which are less adversarial than Byzantine agents as
they are limited to send the identical false information to
neighbors. Such agents form a suitable model for broadcast
networks [13], [14] and wireless sensor networks [7].

As commonly done in the literature [1], [15], [36], we as-
sume that normal nodes have access to the neighbors’ topology
information and the bound on the number of adversaries.

Assumption 1: Each node i ∈ N knows the value of f and
the topology information of its neighbors up to l hops at each
time k.

Moreover, to keep the problem tractable, we introduce the
following assumption [15], [36]. It is merely introduced for
ease of analysis. In fact, manipulating message paths can be
easily detected and hence does not create problems. Related
discussions can be found in [15], [36].

Assumption 2: Each node i ∈ A can manipulate its state
xi[k] and the values in messages that they send or relay, but
cannot change the path P in such messages.

III. JOINTLY ROBUST FOLLOWING GRAPHS

In this section, we introduce a novel notion of jointly robust
following graphs, which plays a key role in our resilient leader-
follower consensus problem in time-varying networks.

A. Jointly r-Reachable Followers with l Hops
To establish a tight graph condition for our problem, we

start with the definition of jointly reachable followers. Under
multi-hop communication, neighbors’ values from the outside
of the set to which each follower belongs may come from
remote nodes and are not restricted to direct neighbors.

Definition 4: (Jointly reachable followers) Consider the
time-varying graph G[k] = (V, E [k]) with l-hop communica-
tion. For r ∈ Z>0 and a nonempty set S ⊂ W , we say that a
node i ∈ S is a jointly r-reachable follower with l hops in time
interval [kt, kt+1)t∈Z≥0

if there exists a time Ki ∈ [kt, kt+1)
such that

|Ii,S [Ki]| ≥ r,

where Ii,S [Ki] is the set of independent paths1 to node i of
at most l hops originating from nodes outside S at time Ki.

1Note that in these paths, only node i is common.

(a) (b) (c)

Fig. 1. The graph G[k] is not a jointly 2-robust following graph with 1
hop but is a jointly 2-robust following graph with 2 hops under the 1-local
model. The set of leader agents L is {7, 8, 9}.

(a) (b) (c)

Fig. 2. The graph G[k] is a jointly 2-robust following graph with 1 hop
under the 1-local model. The set of leader agents L is {7, 8, 9}.

Note that for node i ∈ S to satisfy |Ii,S [Ki]| ≥ r at time
Ki, there should be at least r source nodes outside S and an
independent path of length at most l hops from each of the r
source nodes to node i. Such source nodes may or may not
include leader nodes.

B. Jointly r-Robust Following Graphs with l Hops
Now, we generalize the notion of jointly reachable followers

to the entire graph and define jointly r-robust following graphs
with l hops as follows.

Definition 5: (Jointly robust following graphs) Consider the
time-varying digraph G[k] = (V, E [k]) with the set of leaders
L ⊂ V . Let F ⊂ V and denote by GH[k] the subgraph of G[k]
induced by node set H = V \ F . Graph G[k] is said to be a
jointly r-robust following graph with l hops (under the f -local
model) if for any f -local set F , the subgraph GH[k] satisfies
that there exists an infinite sequence of uniformly bounded
time intervals (ISUBTI) {[kt, kt+1)}t∈Z≥0

with kt < kt+1 and
k0 = 0 such that in each time interval, for every nonempty
subset S ⊆ H \ L, the following condition holds:

|Zr
S [kt, kt+1)| ≥ 1,where

Zr
S [kt, kt+1) = {i ∈ S : ∃Ki ∈ [kt, kt+1) s.t. |Ii,S [Ki]| ≥ r}.

We have reported in [36] that for static networks, graph
robustness guaranteeing resilient consensus increases as the
relay range l increases. We emphasize that multi-hop relays
can also improve the network robustness for our resilient
leader-follower consensus problem. We illustrate this idea
using the time-varying networks in Figs. 1–3, where the
communication topology of each network switches among the
three graphs. Here, the order of the graphs is arbitrary, but each
graph should appear at least once in each interval [kt, kt+1).
Note that when l = 1, counting independent paths is equivalent
to counting in-neighbors.
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(a)

(b)

(c)

Fig. 3. The graph G[k] is not a jointly 3-robust following graph with 1
hop but is a jointly 3-robust following graph with 3 hops under the 2-local
model. The set of leader agents L is {11, 12, 13, 14, 15}.

Example 1: Consider the graph G[k] in Fig. 1. It should
be noted that the notion of jointly r-robust following graphs
with l hops depends on the choice of set F . We claim that
this graph is not a jointly 2-robust following graph with 1 hop
under the 1-local model. For instance, after removing the node
set F = {5}, the remaining graph GH[k] does not satisfy the
condition in Definition 5. The reason is that in the follower set
S = {1, 2, 3, 6}, none of the nodes has 2 in-neighbors outside
S, i.e., Z2

S [kt, kt+1) = ∅ when l = 1. In fact, for this network
to become a jointly 2-robust following graph with 1 hop, four
more edges are needed as depicted in Fig. 2. Alternatively,
we can also increase the network robustness by increasing the
relay range. For example, when l = 2, for node sets F =
{5} and S = {1, 2, 3, 6}, node 2 has 2 independent two-hop
paths originating from nodes outside S, i.e., Z2

S [kt, kt+1) ̸= ∅.
Moreover, one can verify all the combinations of node subsets
and conclude that this graph is a jointly 2-robust following
graph with 2 hops under the 1-local model.

Example 2: Consider the larger graph in Fig. 3. It is not a
jointly 3-robust following graph with 1 hop under the 2-local

model. Observe that after removing the node set F = {7, 8},
the remaining graph GH[k] does not satisfy the condition in
Definition 5. Specifically, in the follower set S = W\F , none
of the nodes has 3 in-neighbors outside S, i.e., Z3

S [kt, kt+1) =
∅ when l = 1. However, after verifying all the combinations
of node subsets, we can conclude that this graph is a jointly
3-robust following graph with 3 hops under the 2-local model.

Then, we introduce a simpler version of Definition 5 for
static networks as follows.

Definition 6: (Robust following graphs) If a static graph G
is a jointly (f + 1)-robust following graph with l hops where
kt+1−kt = 1,∀[kt, kt+1), we simply say that G is an (f+1)-
robust following graph with l hops.

Remark 1: There is an intuitive method for achieving
leader-follower consensus using the leaderless consensus re-
sults. That is, adding sufficient number of leaders and corre-
sponding edges to a follower subgraph satisfying the condition
of strict robustness with l hops. This condition is necessary and
sufficient for achieving leaderless resilient consensus under the
Byzantine model [28]. However, we will prove in Theorem 1
that our condition of robust following graphs is necessary and
sufficient for resilient leader-follower consensus. Hence, our
new condition is tighter for the leader-follower case compared
to the one based on leaderless results. This can also be
observed from the example graph in Fig 2. Consider the union
of the graphs in Fig 2. Its subgraph of followers does not
satisfy the strict robustness condition2 since node 4 has only
one incoming edge from neighbor 5. Besides, the analysis for
resilient leader-follower consensus is very different from the
one for leaderless consensus [28], as we will see in Theorem 1
and Remark 5.

Next, we introduce the notion of normal network consisting
of only normal nodes.

Definition 7: (Normal network) For a network G[k] =
(V, E [k]), define the normal network of G[k], denoted by
GN [k], as the network induced by the normal nodes, i.e.,
GN [k] = (N , EN [k]), where EN [k] is the set of directed edges
among normal nodes at each time k.

It is worth noting that we could have a tighter graph
condition defined on the normal network for our resilient
leader-follower consensus problem. Such a condition is that
the normal network GN [k] satisfies the property presented in
Definition 5 for GH[k] there. In fact, if G[k] is a jointly r-
robust following graph with l hops under the f -local model,
then the normal network GN [k] is guaranteed to satisfy the
abovementioned property. However, the graph condition on
the normal network cannot be verified prior to the actual
deployment of the proposed algorithm. Therefore, similar to
the works [12], [15], [36], we define our condition on the
original network topology G[k].

IV. RESILIENT LEADER-FOLLOWER CONSENSUS IN
FIRST-ORDER MASS

In this section, we see how the MW-MSR algorithm guar-
antees resilient leader-follower consensus in time-varying di-
rected networks, where each normal follower utilizes the scalar

2If graph G is (f + 1)-strictly robust with l hops, then its minimum in-
degree must be no less than 2f + 1.
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values received from all of its l-hop neighbors synchronously
to update its next value.

A. Convergence Analysis

Regarding the leader-follower consensus error, we define
three variables. These are, respectively, the maximum value,
the minimum value of normal nodes in N at time k, and their
differences given by

x[k] = max
i∈WN , d∈LN

{xi[k], xd[k]},

x[k] = min
i∈WN , d∈LN

{xi[k], xd[k]},

V [k] = x[k]− x[k]. (4)

We state a lemma describing behaviors of normal followers.
Lemma 1: Consider the time-varying network G[k] =

(V, E [k]) with l-hop communication, where each normal fol-
lower node i ∈ WN updates its value according to the
MW-MSR algorithm with parameter f . Under the f -local
adversarial set A and the assumption that r[k] is constant
∀k ∈ [k1, ke), the following statements hold ∀k ∈ [k1, ke):

1) xi[k] ∈ [x[k1], x[k1]],∀i ∈ N ,
2)

[
x[k + 1], x[k + 1]

]
⊂

[
x[k], x[k]

]
.

Proof: Since ∀d ∈ LN , xd[k] = r[k] is constant ∀k ∈
[k1, ke), we have xd[k] ∈ [x[k1], x[k1]],∀d ∈ LN . Then we
consider any follower node i ∈ WN . For node i, the values
used in (3) always lie within the interval

[
x[k], x[k]

]
for k ≥

k1. This can be seen from the fact that at each time k, node i
removes the possibly manipulated values from at most f nodes
within l hops in step 2 of Algorithm 1. Hence, the update rule
(3) uses a convex combination of the values in

[
x[k], x[k]

]
and

it holds that xi[k+1] ∈
[
x[k], x[k]

]
,∀i ∈ WN ,∀k ∈ [k1, ke).

Thus, we have
[
x[k + 1], x[k + 1]

]
⊂

[
x[k], x[k]

]
⊂ · · · ⊂[

x[k1], x[k1]
]
,∀i ∈ N ,∀k ∈ [k1, ke).

The following theorem is the first main contribution of this
paper. Here, we characterize a necessary and sufficient condi-
tion for time-varying networks using the MW-MSR algorithm
to achieve resilient leader-follower consensus under the f -local
Byzantine model.

Theorem 1: Consider the time-varying network G[k] =
(V, E [k]) with l-hop communication, where each normal fol-
lower node i ∈ WN updates its value according to the
MW-MSR algorithm with parameter f . Under the f -local
adversarial set A and the assumption that r[k] is constant
∀k ∈ [k1,∞), resilient leader-follower consensus is achieved
if and only if G[k] is a jointly (f +1)-robust following graph
with l hops.

Proof: (Necessity) If G[k] is not a jointly (f +1)-robust
following graph with l hops, then by Definition 5, there exists
an f -local set F such that GH[k] does not satisfy the condition
there. Suppose that F is exactly the set of Byzantine agents A.
Then, in the normal network GN [k] = (N , EN [k]), there must
be a nonempty subset S ⊆ N \ L such that Zf+1

S [k̂,∞) = ∅
for some k̂ > k1. It further means that

|Ii,S [k]| ≤ f, ∀k ∈ [k̂,∞), ∀i ∈ S. (5)

Suppose that xi[k̂] = a, ∀i ∈ S , and xj [k̂] = r[k1], ∀j ∈
N \ S , where a < r[k1] is a constant. Moreover, suppose
that all Byzantine nodes send a and r[k1] to the nodes in S
and N \S , respectively. For normal node i ∈ S, (5) indicates
that the cardinality of the MMC of the values larger than its
own value (i.e., values from the normal nodes outside of S)
is at most f . These values are disregarded by the MW-MSR
algorithm. Moreover, since the Byzantine nodes send a to node
i, it will use these values. Thus, node i will keep a constant
value a after time k̂ and resilient leader-follower consensus
cannot be achieved.

(Sufficiency) Let ϵ0 = r[k1]− x[k1] and ϵ0 = x[k1]− r[k1].
Recall that α ∈ (0, 1) is the lower bound for the coefficients
in (3). Denote by K the maximum length of time intervals
{[kt, kt+1)}t∈Z≥0

. For γ = 0, 1, 2, . . . , (|WN | + 1)K, define
ϵγ and ϵγ as

ϵγ = αγϵ0, ϵγ = αγϵ0.

So we have 0 < ϵγ+1 < ϵγ ≤ ϵ0 and 0 < ϵγ+1 < ϵγ ≤ ϵ0,
for all γ.

For any time k ≥ k1 and any γ, we define the following
sets:

Z1(k, ϵγ) = {i ∈ WN : xi[k] > x[k1]− ϵγ},

Z2(k, ϵγ) = {i ∈ WN : xi[k] < x[k1] + ϵγ},

U(k, ϵγ , ϵγ) = Z1(k, ϵγ) ∪ Z2(k, ϵγ),

U(k, ϵγ , ϵγ) = WN \ U(k, ϵγ , ϵγ).

We will show in three steps that |U(k, ϵγ , ϵγ)| decreases
over an appropriate sequence of γ. Once this set is empty
after a period, V [k] will decrease. We will further prove the
consensus result when k → ∞.

Step 1:
Since G[k] is a jointly (f + 1)-robust following graph with

l hops and the adversarial set A is an f -local set, for the
normal network GN [k] = (N , EN [k]), there exists an ISUBTI
{[kt, kt+1)}t∈Z≥0

such that in each time interval, for every
nonempty subset S ⊆ N \ L, the following condition holds:

|Zf+1
S [kt, kt+1)|

= |{i ∈ S : ∃Ki ∈ [kt, kt+1) s.t. |Ii,S [Ki]| ≥ f + 1}| ≥ 1.

Hence, we can always find a nonempty subset W1 ⊆ WN =
N \ L such that ∀i1 ∈ W1, there is Ki1 ∈ [k1, k2) such that
|Ii1,WN [Ki1 ]| ≥ f+1 for the first time in [k1, k2). Therefore,
any node i1 ∈ W1 will use at least one value from normal
leaders in LN after applying the MW-MSR algorithm. This
can be seen from step 2 of Algorithm 1, where node i1 can
only remove the values from at most f nodes sharing the
same value. Notice that in (3), each ai[k] is lower bounded
by α. Moreover, from Lemma 1, xi[k] ∈ [x[k1], x[k1]],∀i ∈
N ,∀k ∈ [k1,∞), Hence, we obtain the following bound:

xi1 [Ki1 + 1] ≥ (1− α)x[k1] + αr[k1]

≥ x[k1] + αϵ0. (6)
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Extending these bounds to time k2 yields

xi1 [Ki1 + 2] ≥ (1− α)x[k1] + αxi1 [k1 + 1]

≥ (1− α)x[k1] + α(x[k1] + αϵ0)

≥ x[k1] + α2ϵ0,

xi1 [Ki1 + 3] ≥ (1− α)x[k1] + α(x[k1] + α2ϵ0)

≥ x[k1] + α3ϵ0,

...

xi1 [k2] ≥ (1− α)x[k1] + α(x[k1] + αk2−Ki1−1ϵ0)

≥ x[k1] + αk2−Ki1 ϵ0

≥ x[k1] + αk2−k1ϵ0.

Using similar arguments, we can establish the upper bounds
for node i1 as

xi1 [Ki1 + 1] ≤ (1− α)x[k1] + αr[k1],

...

xi1 [k2] ≤ (1− α)x[k1] + α(x[k1] + αk2−Ki1−1ϵ0)

≤ x[k1]− αk2−k1ϵ0.

Hence, we obtain xi1 [k2] ∈ [x[k1] + αk2−k1ϵ0, x[k1] −
αk2−k1ϵ0] = U(k2, ϵk2−k1

, ϵk2−k1
),∀i1 ∈ W1.

Step 2:
We show next that |U(k3, ϵk3−k1

, ϵk3−k1
)| < |WN |.

Observe that W1 ⊆ U(k2, ϵk2−k1
, ϵk2−k1

), and hence,
U(k2, ϵk2−k1

, ϵk2−k1
) is nonempty. Since each node in WN

always uses its own state in (3), lower bounds on the values
of any node i2 ∈ U(k2, ϵk2−k1 , ϵk2−k1

) can be established as

xi2 [k2 + 1] ≥ (1− α)x[k1] + αxi1 [k2]

≥ (1− α)x[k1] + α(x[k1] + αk2−k1ϵ0)

≥ x[k1] + αk2+1−k1ϵ0,

xi2 [k2 + 2] ≥ x[k1] + αk2+2−k1ϵ0,

...

xi2 [k3] ≥ x[k1] + αk3−k1ϵ0.

Similarly, the following upper bounds hold for node i2:

xi2 [k2 + 1] ≤ (1− α)x[k1] + αxi1 [k2]

≤ (1− α)x[k1] + α(x[k1]− αk2−k1ϵ0)

≤ x[k1]− αk2+1−k1ϵ0,

xi2 [k2 + 2] ≤ x[k1]− αk2+2−k1ϵ0,

...

xi2 [k3] ≤ x[k1]− αk3−k1ϵ0.

Hence, U(k2, ϵk2−k1
, ϵk2−k1

) ∩ U(k3, ϵk3−k1
, ϵk3−k1

) = ∅,
indicating that |U(k3, ϵk3−k1

, ϵk3−k1
)| < |WN |.

Step 3:
In the rest of the proof, we will show that ∀t ≥ 3, it holds

|U(kt,ϵkt−k1
, ϵkt−k1

)|
> |U(kt+1, ϵkt+1−k1

, ϵkt+1−k1
)|, (7)

until U(kt, ϵkt−k1
, ϵkt−k1

) becomes empty.
Since G[k] is a jointly (f + 1)-robust following graph with

l hops and the adversarial set A is an f -local set, in every
time interval [kt, kt+1), there exists a nonempty subset Xt ⊆
U(kt, ϵkt−k1

, ϵkt−k1
) so that ∀i3 ∈ Xt, it holds that ∃Ki3 ∈

[kt, kt+1) s.t. |Ii3,U(kt,ϵkt−k1
,ϵkt−k1

)[Ki3 ]| ≥ f +1 for the first
time in [kt, kt+1). Observe that ∀i3 ∈ Xt, either one of the
following holds:

xi3 [kt] > x[k1]− ϵkt−k1
,

xi3 [kt] < x[k1] + ϵkt−k1
.

Therefore, any node i3 ∈ Xt will use at least one normal
neighbor’s value from the interval [x[k1] + αkt−k1ϵ0, x[k1]−
αkt−k1ϵ0] in (3) when it applies the MW-MSR algorithm. This
can be seen from the facts that node i3 has at least f+1 normal
neighbors within l hops outside the set U(kt, ϵkt−k1 , ϵkt−k1

)
and node i3 can only remove the values from at most f nodes
having values smaller or larger than its own value. Hence, we
obtain the following bounds ∀i3 ∈ Xt:

xi3 [Ki3 + 1] ≥ (1− α)x[k1] + α(x[k1] + αkt−k1ϵ0)

≥ x[k1] + α1+kt−k1ϵ0,

xi3 [Ki3 + 2] ≥ x[k1] + α2+kt−k1ϵ0,

...

xi3 [kt+1] ≥ x[k1] + αkt+1−Ki3
+kt−k1ϵ0

≥ x[k1] + αkt+1−k1ϵ0. (8)

Similarly, the following upper bounds can be established ∀i3 ∈
Xt:

xi3 [Ki3 + 1] ≤ (1− α)x[k1] + α(x[k1]− αkt−k1ϵ0)

≤ x[k1]− α1+kt−k1ϵ0,

xi3 [Ki3 + 2] ≤ x[k1]− α2+kt−k1ϵ0,

...

xi3 [kt+1] ≤ x[k1]− αkt+1−k1ϵ0. (9)

This implies that

Xt ∩ U(kt+1, ϵkt+1−k1
, ϵkt+1−k1

) = ∅. (10)

Note that the bounds in (8) and (9) also apply to all nodes
j3 ∈ U(kt, ϵkt−k1

, ϵkt−k1
), since they have values located in

[x[k1] + αkt−k1ϵ0, x[k1] − αkt−k1ϵ0] by definition, and each
j3 does not filter out its own value. Therefore, we have

U(kt, ϵkt−k1
, ϵkt−k1

) ∩ U(kt+1, ϵkt+1−k1
, ϵkt+1−k1

) = ∅.
(11)

Hence, (10) and (11) together have proved that (7) holds for
t ≥ 3.

Since WN is finite, there must be a time step
k1 + (|WN | + 1)K such that U(k1 + (|WN | +
1)K, ϵ(|WN |+1)K , ϵ(|WN |+1)K) = ∅. This implies that
∀i ∈ WN , we have

xi[k1 + (|WN |+ 1)K] ≥ x[k1] + α(|WN |+1)Kϵ0,

xi[k1 + (|WN |+ 1)K] ≤ x[k1]− α(|WN |+1)Kϵ0. (12)
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It further indicates that

V [k1 + (|WN |+ 1)K]

= xi[k1 + (|WN |+ 1)K]− xi[k1 + (|WN |+ 1)K]

≤ x[k1]− α(|WN |+1)Kϵ0 − (x[k1] + α(|WN |+1)Kϵ0)

= V [k1]− α(|WN |+1)K(ϵ0 + ϵ0). (13)

Recall that ϵ0 = r[k1] − x[k1] and ϵ0 = x[k1] − r[k1], and
hence, ϵ0 + ϵ0 = V [k1]. Then we have

V [k1 + (|WN |+ 1)K] ≤ V [k1]− α(|WN |+1)KV [k1]

= (1− α(|WN |+1)K)V [k1]. (14)

We can repeat the above analysis and obtain for δ ∈ Z>1,

V [k1 + (|WN |+ 1)δK]

≤ (1− α(|WN |+1)K)V [k1 + (|WN |+ 1)(δ − 1)K]

≤ (1− α(|WN |+1)K)δV [k1]. (15)

When time tends to infinity, by Lemma 1, we further have

lim
k→∞

V [k] ≤ lim
δ→∞

V [k1 + (|WN |+ 1)δK]

≤ lim
δ→∞

(1− α(|WN |+1)K)δV [k1] = 0, (16)

where the last equality holds since 0 < 1− α(|WN |+1)K < 1.
This clearly indicates that all normal nodes reach consensus
as in (2). The proof is complete.

Remark 2: For the special case when there is no adversarial
node in the network G[k] (i.e., f = 0), our result in Theorem 1
implies that followers using the MW-MSR algorithm can also
achieve leader-follower consensus if and only if G[k] is a
jointly 1-robust following graph with l hops. We note that
for the fault-free case, this graph condition is equivalent to
the one in [18], which is that G[k] jointly has a spanning tree
rooted at the leader.3

Remark 3: We emphasize that our graph condition is tight
for the MW-MSR algorithm applied in time-varying leader-
follower networks. In fact, even for the one-hop case, it is
tighter than the one in [31] in terms of static networks as
indicated in Lemma 2. Specifically, the authors of [31] have
looked into the resilient leader-follower consensus with a
static reference value using the SW-MSR algorithm. They
have accordingly proposed a sufficient graph condition for
their algorithm to succeed, which is that G[k] is strongly
(Q, t0, 2f + 1)-robust w.r.t. the set L. It requires the union
of G[k] across a time interval of length Q to satisfy that any
nonempty node subset C ⊆ V \ L contains at least one node
having 2f + 1 in-neighbors outside C.

We can also apply the multi-hop relay technique in the
SW-MSR algorithm, and our sufficient condition for the new
algorithm can also be relaxed compared to the one in [31].
The proof of Lemma 2 is given in the Appendix A.

Lemma 2: If graph G[k] is strongly (Q, t0, 2f + 1)-robust
w.r.t. the set L where Q = 1, then G[k] is a jointly (f + 1)-
robust following graph with 1 hop where kt+1 − kt =
1,∀[kt, kt+1), and the converse does not hold.

3If there are multiple leaders in G[k], they can be viewed as one node.

We note that a numerical example is provided in Section VI-
A of the graph described in the proof. We apply the one-hop
MW-MSR algorithm in this network, which is equivalent to
the SW-MSR algorithm in [31] when Q = 1. The results show
that resilient leader-follower consensus is achieved and this
claim is verified from the numerical viewpoint.

Remark 4: Our result generalizes the one for the one-hop
W-MSR algorithm applied in time-varying leader-follower
networks. Besides, our graph condition is more relaxed for the
case of l ≥ 2 than that of the one-hop case since joint graph
robustness generally increases as the relay range l increases.
We will illustrate this point through numerical examples in
Section VI. Moreover, in this paper, we study the Byzantine
model, which is more adversarial than the malicious model
studied for leaderless resilient consensus in [13], [32], [36].
Similar to the works studying the Byzantine model [12], [15],
[28], our graph condition guarantees that the normal network
is sufficiently robust to fight against Byzantine agents for
tracking the correct reference value.

Remark 5: We compare the analysis in Theorem 1 with
the leaderless resilient consensus results. For convenience, we
consider static networks in this comparison, and Corollary 1
in Section V will formally state our results for such a case. In
the works [13], [36] studying leaderless resilient consensus
under the malicious model, the key graph condition of r-
robustness with l hops requires that for any two nonempty
disjoint node sets V1,V2 ⊂ V , at least one set must contain
a node having r independent paths originating from nodes
outside the set. For the Byzantine model, the condition of
strict robustness requires a similar structure [28]. In contrast,
the condition of robust following graphs is on a single arbitrary
set S ⊆ H \ L in Definition 5. This difference is due to the
nature of the two problems. In particular, leaderless resilient
consensus requires normal nodes to reach consensus on a value
which is not determined a priori. Thus, the normal nodes in V1

(or V2) either are influenced by or influence the ones outside
the set. Therefore, the robustness notion is defined on two node
sets to characterize such two possible information flows. This
also indicates that some normal nodes in V1 (or V2) may not
receive enough influences from the outside of the set and such
nodes can act as “virtual leaders” in the network and resilient
consensus can still be achieved. On the other hand, resilient
leader-follower consensus requires normal followers to reach
consensus on the leaders’ value. Hence, the followers in every
set S must be influenced by the normal nodes outside the set
through enough incoming paths.

Stemming from this important difference, we can conclude
that also for the malicious model, the graph condition in
Theorem 1 is necessary and sufficient for the MW-MSR
algorithm to guarantee resilient leader-follower consensus.
This is because for the leader-follower case, the types of
adversaries will not change the graph structure for normal
nodes in set S to be influenced by the normal ones outside S.

B. Analysis on Secure Leader Agents and Comparisons
with Related Works

In this subsection, we turn our attention to the secure
leader case with LN = L. In the literature, this case has
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been studied. Agents can be secure through additional security
measures so that they are not vulnerable to failures or attacks.
For example, the work [33] studied resilient dynamic leader-
follower consensus where the secure leader agent broadcasts
a time-varying reference value and provided a sufficient graph
condition for followers to track the leader with bounded errors.
Moreover, the authors of [21] proved a necessary and sufficient
graph condition for the CPA algorithm where a static reference
value of the secure leader is broadcast to followers in the
network.

We formulate our resilient leader-follower consensus with
secure leader agents as Problem 2 below. Here, we study the
special case when such leaders are known to the followers.
This is indeed the simplest problem setting to handle among
the four cases listed in Table I. The other case is when the
secure leaders are unknown. We however note that this case
has to be treated as in the cases of insecure leaders since
the followers have to apply the MW-MSR algorithm as well
in order to avoid being misled by the adversarial neighbors.
Thus, the approach to handle Case 2 is the same as the one
for Cases 3 and 4 in Table I.

Problem 2: Suppose that all leader agents in L are secure
and their identities are known to the direct followers, which
are out-neighbors of any leader agent. We say that the normal
agents in N reach resilient leader-follower consensus with
secure leader agents if for any possible sets and behaviors
of the adversaries in A and any state values of the normal
agents in N , (2) is satisfied.

Denote by UG [kt, kt+1) the union of the graphs G[k] across
the time interval [kt, kt+1). Moreover, let WL = {i ∈ W :
∃d ∈ L s.t. i ∈ N 1+

d } in the union graph UG [0,∞). To solve
the problem with secure leader agents, we slightly modify our
resilient algorithm as follows.

The modified MW-MSR algorithm: Each normal follower
i ∈ WL ∩ N updates its value xi[k + 1] = r[k] at each time
k. Meanwhile, the rest of the normal followers in WN \WL
still apply the MW-MSR algorithm.

From the modified algorithm and the assumption on the
secure leader agents, we can see that each follower in WL
need not have other connections except at least one incoming
edge from the secure leader agents. Therefore, they can be
viewed as the “not secure leaders” for the rest of the followers.
Hence, we denote the reduced subgraph of G[k] by GS [k],
where S = V \ L. Moreover, denote the set of such virtual
leaders in GS [k] by L′ = WL.

We are ready to state a result for the modified MW-MSR
algorithm to achieve resilient leader-follower consensus with
secure leader agents. Since it can be proved using an analysis
similar to that in the proof of Theorem 1, we omit its proof.
Moreover, we note that the results for secure leader agents in
Proposition 1 also hold for the MDP-MSR algorithm to be
introduced in Section V studying second-order MASs.

Proposition 1: Consider the time-varying network G[k] =
(V, E [k]) with l-hop communication, where each normal fol-
lower node i ∈ WN updates its value according to the
modified MW-MSR algorithm with parameter f . Under the f -
local adversarial set A and the assumption that r[k] is constant
∀k ∈ [k1,∞), resilient leader-follower consensus with secure

leader agents is achieved if and only if the subgraph GS [k] is
a jointly (f + 1)-robust following graph with l hops.

Remark 6: We emphasize that our graph condition for static
networks (i.e., the subgraph GS is an (f +1)-robust following
graph with 1 hop) in Proposition 1 is tighter than the sufficient
condition in [33] studying resilient dynamic leader-follower
consensus in static networks. We first claim that the condition
for static networks in [31] is equivalent to the one in [33]
with the secure leader removed. We can easily see this from
definitions of the two conditions. The condition in [33] is that
G is a (2f + 1)-robust leader-follower graph, which requires
that |WL| ≥ 2f + 1 and any nonempty set S ⊆ W \ WL
contains at least one node having 2f +1 in-neighbors outside
S. Meanwhile, the condition for static networks in [31] is that
G[k] is strongly (Q, t0, 2f + 1)-robust w.r.t. the set L where
Q = 1; this requires that |L| ≥ 2f + 1 and any nonempty
set S ⊆ V \ L contains at least one node having 2f + 1 in-
neighbors outside S. Invoking Lemma 2, we conclude that our
graph condition for static networks in Proposition 1 is tighter
than the one in [33].

From Remark 6, one can see that the leader-follower graph
structure for static references [31] and that for dynamic
references [33] are the same. The reason is that the graph
structure characterizes the information flow of leader-follower
consensus. Meanwhile, agents’ dynamics may vary from track-
ing a static reference to tracking a dynamic reference.

Remark 7: We compare our results for secure leader agents
with several related works. Our graph condition for static
networks in Proposition 1 is equivalent to the necessary and
sufficient condition for the CPA algorithm in [21] to succeed.
Moreover, our necessary and sufficient condition with 1 hop
for static networks is tighter than the sufficient conditions
in [31], [33] for static networks. Besides, for the multi-hop
case, our condition with l ≥ 2 hops is even tighter than
the conditions in the literature [21], [31], [33] since the
graph robustness generally increases (and definitely does not
decrease) as the relay range l increases.

C. Properties of Jointly (f+1)-Robust Following Graphs
In the following lemma, we list several properties of jointly

(f + 1)-robust following graphs with l hops. Its proof can be
found in the Appendix B.

Lemma 3: If graph G[k] is a jointly (f+1)-robust following
graph with l hops under the f -local model, then the following
hold:

1) |L| ≥ 2f + 1.
2) ∀[kt, kt+1),∃Ki ∈ [kt, kt+1), ∃i ∈ WN s.t. |N l−

i [Ki]∩
L| ≥ 2f + 1.

3) |WL[kt, kt+1)| = |{i ∈ W : ∃d ∈ L s.t. i ∈
N 1+

d [kt, kt+1)}| ≥ 2f + 1 in graph UG [kt, kt+1).
4) ∀[kt, kt+1),∃Ki ∈ [kt, kt+1) s.t. |N 1−

i [Ki]| ≥ 2f +
1,∀i ∈ W . Moreover, the minimum number of directed
edges of UG [kt, kt+1) with minimum |L| is (2f+1)|W|.

From Lemma 3, we see that there are several necessary
graph conditions for our algorithms to achieve resilient leader-
follower consensus under the f -local adversarial model. First,
there must be at least 2f +1 leaders in L. Second, there must
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be at least one follower node having 2f + 1 leaders in its
l-hop neighbors at some time step in each [kt, kt+1). Third,
there must be at least 2f +1 follower nodes having incoming
edges directly from the leaders in each [kt, kt+1). Lastly, each
follower node must have 2f +1 incoming edges at some time
step in each [kt, kt+1).

Moreover, in the special case of the static network G, for
our algorithms to achieve leader-follower consensus, these
conditions must hold at each time instant. In particular, it must
have directed edges no less than (2f+1)|W|. This requirement
is consistent with the one reported in [33]. However, we
emphasize that our graph condition is tighter as mentioned
earlier and covers a wider range of graphs satisfying our
condition. Furthermore, we can utilize undirected edges to
relax the heavy connectivity requirement. For example, in
Fig. 3, G[k] has 28 directed/undirected edges while it needs 50
directed edges to satisfy the condition in [33] for followers.

V. RESILIENT LEADER-FOLLOWER CONSENSUS IN
SECOND-ORDER MASS

In this section, we propose a novel algorithm to deal with
agents having second-order dynamics and to solve resilient
leader-follower consensus in time-varying networks. We char-
acterize tight graph conditions for the algorithm to succeed
under the Byzantine model.

We consider a second-order MAS with time-varying com-
munication network G[k] = (V, E [k]). Each follower node
i ∈ W has a double-integrator dynamics from [14], [39],
whose discretized form is given as

x̂i[k + 1] = x̂i[k] + Tvi[k] +
T 2

2
ui[k],

vi[k + 1] = vi[k] + Tui[k], (17)

where vi[k], ui[k] ∈ R, and T are, respectively, the velocity,
the control input of node i at time k, and the sampling period.
Moreover, x̂i[k] = xi[k]− δi, where xi[k] ∈ R is the absolute
position of node i and δi ∈ R is a constant representing the
desired relative position of node i in a formation. For the sake
of simplicity, we call x̂i[k] as the agents’ positions.

Meanwhile, leaders in L have the same dynamics as (17).
However, since we consider the static reference value in this
paper, we assume that each normal leader agent d ∈ LN

updates its position according to the reference function in (1)
(i.e., vd[k] = 0, ud[k] = 0,∀k ∈ [k1,∞)) and propagates
x̂d[k] = xd[k]− δd to followers, where δd ∈ R is the desired
relative position of leader d in a formation.

At each time k, the control input ui[k] of each follower
node i ∈ W utilizes the relative positions of its neighbors and
its own velocity [39]:

ui[k] =

n∑
j=1

aij [k](x̂j [k]− x̂i[k])− βvi[k], (18)

where β is a positive constant, and aij [k] > 0 if j ∈ N l−
i [k]

and aij [k] = 0 otherwise.
When there is no attack, we can derive from the results in

[39] that if in graph G[k], all followers jointly have directed
paths originating from at least one leader across each time

Algorithm 2: MDP-MSR Algorithm

Input: Node i knows x̂i[0], N l−
i [k], N l+

i [k].
1 for k ≥ 0 do
2 1) Exchange messages:
3 Send mij [k] = (x̂i[k], Pij [k]) to ∀j ∈ N l+

i [k].
4 Receive mji[k] = (x̂j [k], Pji[k]) from

∀j ∈ N l−
i [k] and store them in Mi[k].

5 Sort Mi[k] in an increasing order based on the
message values (i.e., x̂j [k] in mji[k]).

6 2) Remove extreme values using Step 2 of
Algorithm 1

7 3) Update values using (17) with control input
ui[k] given by:

8 ai[k] = 1/(|Mi[k] \ Ri[k]|),

ui[k] =
∑

m∈Mi[k]\Ri[k]

ai[k](value(m)− x̂i[k])

− βvi[k]. (19)

Output: x̂i[k + 1], vi[k + 1].

interval [kt, kt+1) and with β and T properly chosen, then all
followers reach consensus on the reference position value in
the sense that they come to formation and stop asymptotically:

xi[k]− xd[k] → δi − δd,

vi[k] → 0 as k → ∞, ∀i ∈ W,∀d ∈ L.

In our resilient leader-follower consensus problem of the
second-order MAS (17), adversary nodes may not follow the
update rule (18) and even sends faulty values to neighbors
to prevent the normal nodes from reaching consensus. The
problem is the same as Problem 1 except that agents exchange
x̂ values with neighbors.

For this problem, we present a novel algorithm called
the Multi-hop Double-integrator Position-based MSR (MDP-
MSR) algorithm in Algorithm 2. At each time k, each follower
i ∈ WN exchanges x̂i[k] with its neighbors within l hops
and utilizes the MMC technique to filter away the extreme
values as in Algorithm 1. Finally, it updates its value using
the remaining ones.

The control input in (19) can be transformed to the follow-
ing form:

ui[k] =

nN∑
j=1

aij [k](x̂j [k]− x̂i[k])− βvi[k]. (20)

where aij [k] > 0 if mji[k] ∈ Mi[k] \ Ri[k] and aij [k] = 0
otherwise. Moreover, for T and β, we assume that

1 +
T 2

2
≤ βT ≤ 2− T 2

2
. (21)

Regarding the leader-follower consensus error, define three
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variables ∀k ≥ 1:

z[k] = max
i∈WN , d∈LN

{x̂d[k], x̂d[k − 1], x̂i[k], x̂i[k − 1]},

z[k] = min
i∈WN , d∈LN

{x̂d[k], x̂d[k − 1], x̂i[k], x̂i[k − 1]},

V̂ [k] = z[k]− z[k]. (22)

In the next theorem, we provide a necessary and sufficient
graph condition for the MDP-MSR algorithm to achieve
resilient leader-follower consensus in time-varying networks.

Theorem 2: Consider the time-varying network G[k] =
(V, E [k]) with l-hop communication, where each normal fol-
lower node i ∈ WN updates its value according to the
MDP-MSR algorithm with parameter f . Under the f -local
adversarial set A and the assumption that r[k] is constant
∀k ∈ [k1,∞), resilient leader-follower consensus is achieved
if and only if G[k] is a jointly (f +1)-robust following graph
with l hops.

Proof: (Necessity) If G[k] is not a jointly (f +1)-robust
following graph with l hops, by the same reasoning as in
the necessity proof of Theorem 1, we obtain that there is a
nonempty subset S ⊆ N \ L such that (5) holds.

Suppose that x̂i[k̂] = a, ∀i ∈ S, and x̂j [k̂] = r[k1], ∀j ∈
N \S , where a < r[k1] is constant. Moreover, vi[k̂] = 0, ∀i ∈
V . Assume that the Byzantine nodes send a and r[k1] to the
nodes in S and N \ S, respectively. For any normal node
i ∈ S , it removes all the values of neighbors outside S since
the message cover of these values has cardinality equal to f or
less. According to Algorithm 2, such normal nodes will keep
their values, i.e., x̂i[k] = a, vi[k] = 0, ∀i ∈ S, ∀k ≥ k̂. Thus,
resilient leader-follower consensus is not achieved.

(Sufficiency) We first prove that
[
z[k + 1], z[k + 1]

]
⊂[

z[k], z[k]
]
,∀k ∈ [k1,∞). For k ≥ 1, plugging (20) into (17),

we obtain ∀i ∈ WN ,

x̂i[k + 1] = x̂i[k] + Tvi[k]−
T 2

2
βvi[k]

+
T 2

2

nN∑
j=1

aij [k](x̂j [k]− x̂i[k]), (23)

vi[k + 1] = vi[k]− Tβvi[k] + T

nN∑
j=1

aij [k](x̂j [k]− x̂i[k]).

(24)

From (23), we notice that

x̂i[k + 1]− (1− Tβ)x̂i[k]

= x̂i[k]− (1− Tβ)x̂i[k − 1]

+
T 2

2

( nN∑
j=1

aij [k](x̂j [k]− x̂i[k])− (1− Tβ)

×
nN∑
j=1

aij [k − 1](x̂j [k − 1]− x̂i[k − 1])
)

+ (T − T 2

2
β)

(
vi[k]− (1− Tβ)vi[k − 1]

)
. (25)

Besides, from (24), we can obtain

vi[k] = (1− Tβ)vi[k − 1]

+ T

nN∑
j=1

aij [k − 1](x̂j [k − 1]− x̂i[k − 1]). (26)

Thus, plugging (26) into (25), we further have

x̂i[k + 1] = (2− Tβ)x̂i[k] +
T 2

2

nN∑
j=1

aij [k](x̂j [k]− x̂i[k])

+
T 2

2

nN∑
j=1

aij [k − 1](x̂j [k − 1]− x̂i[k − 1])

− (1− Tβ)x̂i[k − 1]. (27)

Combining (21) and (27), we conclude that ∀i ∈ WN , x̂i[k+1]
is located in the convex combination of the positions of its
normal neighbors within l hops and itself at time k and k−1.
Notice that x̂i[k] ∈

[
z[k], z[k]

]
, x̂i[k − 1] ∈

[
z[k], z[k]

]
,∀i ∈

WN and x̂d[k] = x̂d[k − 1] = r[k],∀d ∈ LN ,∀k ∈ [k1,∞),
which is also in

[
z[k], z[k]

]
. Thus, it holds that x̂i[k + 1] ∈[

z[k], z[k]
]
, i.e.,[

z[k + 1], z[k + 1]
]
⊂

[
z[k], z[k]

]
,∀k ∈ [k1,∞).

Next, to further prove the convergence, follow an analysis as
in the proof of Theorem 1, where we replace xi[k] with x̂i[k],
and replace x[k] and x[k] with z[k] and z[k], respectively.
Moreover, define a lower bound ω such that all the coefficients
of x̂i[k] and x̂i[k − 1],∀i ∈ N in (27) are larger than ω and
further replace α with ω in the proof of Theorem 1.

Thereafter, we can similarly prove that limk→∞ V̂ [k] = 0,
and thus normal followers reach leader-follower consensus on
their position values. Furthermore, when the normal followers
reach leader-follower consensus on position values, from (23),
we obtain x̂i[k + 1] → x̂i[k]− (T − βT 2/2)vi[k] as k → ∞,
∀i ∈ WN . Under (21), it holds that vi[k] → 0 as k → ∞,
∀i ∈ WN . Therefore, resilient leader-follower consensus is
achieved.

To deal with the special case of static networks, it is not hard
to obtain the next corollary for the MW-MSR and MDP-MSR
algorithms achieving resilient leader-follower consensus.

Corollary 1: Consider the static network G = (V, E) with
l-hop communication, where all nodes ∀i ∈ WN update their
values according to the MW-MSR or MDP-MSR algorithm
with parameter f . Under the f -local adversarial set A and
the assumption that r[k] is constant ∀k ∈ [k1,∞), resilient
leader-follower consensus is achieved if and only if G is an
(f + 1)-robust following graph with l hops.

We see that the graph condition for the MDP-MSR algo-
rithm under the Byzantine model is the same as the one for
the MW-MSR algorithm. This feature shows the applicability
of the key multi-hop techniques used in our algorithms. To the
best of our knowledge, this paper is the first work studying
resilient leader-follower consensus in MASs with second-order
dynamics on agents. Besides, since our condition is defined
on the original topology of the MAS, it can be verified prior
to the deployment of our algorithm. From Theorem 2 and
Corollary 1, one can see that the graph condition for time-
varying networks is more relaxed than the one for static
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(a) The one-hop MW-MSR algorithm.
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(b) The three-hop MW-MSR algorithm.

Fig. 4. Nodes’ values in the time-varying leader-follower network in
Fig. 3 applying the MW-MSR algorithm.

networks. Moreover, by introducing multi-hop relays to the
static or time-varying MASs, we can relax the graph connec-
tivity requirement for the one-hop MSR algorithms [13], [31],
[33]. Through our approaches, the multi-hop relaying shows
promising potentials for developing other types of resilient
algorithms for enhancing security of MASs.

VI. NUMERICAL EXAMPLES

In this section, we conduct simulations for the MW-MSR
algorithm and the MDP-MSR algorithm applied in time-
varying leader-follower networks.

A. Simulation in A Time-Varying First-Order MAS
In this part, we apply the MW-MSR algorithm to the

time-varying leader-follower network in Fig. 3 under the 2-
local model, i.e., with f = 2. For the normal nodes, let
xi[0] ∈ (1, 5),∀i ∈ WN and r[k] = 1,∀d ∈ LN ,∀k ≥ 0.
This network is not a jointly 3-robust following graph with 1
hop. Hence, it is not robust enough for the one-hop W-MSR
algorithm [11], [13], [29] to succeed under the 2-local model.
However, as we discussed in Example 2, this network is a
jointly 3-robust following graph with 3 hops. Here, we set
nodes 7 and 8 to be Byzantine, and they send different values
to different neighbors. Specifically, node 7 sends an oscillating
value around the value of 4 to its neighbors. Moreover, node
8 sends an oscillating value around the value of 3.5 to out-
neighbors in the node set {1, 2, 3} and an oscillating value
around 1 to out-neighbors in {4, 5}.
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Fig. 5. Normal nodes track the time-varying reference value in the time-
varying leader-follower network in Fig. 3 using the three-hop MW-MSR
algorithm.

We first apply the one-hop MW-MSR algorithm, which
is equivalent to the W-MSR algorithm from [13], [29]. The
results are given in Fig. 4(a), and resilient leader-follower
consensus is not achieved. Note that in Fig. 4 as well as all
other figures in this section, lines in colors other than red
represent the values (or trajectories) of normal followers.

Next, we apply the three-hop MW-MSR algorithm to this
network. In this case, we assume that Byzantine nodes not
only manipulate their own values as before but also relay false
information. Specifically, when they receive a value from a
neighbor and relay it to another neighbor, they manipulate
it in the same way as they do to their own values. We
observe in Fig. 4(b) that resilient leader-follower consensus is
achieved. Besides, we note that the slow speed of convergence
is due to the sparsity of the graph at each time. We further
conducted another simulation when the reference r[k] varies
over time to show the tracking ability of our algorithm. The
result is presented in Fig. 5. Observe that normal followers
can follow the time-varying reference as long as it remains
invariant for a sufficiently long period of time. We also point
out that the reference here takes values outside the range
of adversarial values and the range of normal nodes’ initial
values. In contrast, normal nodes using leaderless resilient
consensus protocols must reach consensus on a value within
the range of their initial values.

B. Simulation in A Time-Varying Second-Order MAS

Next, we present the simulation of the MDP-MSR algorithm
in the time-varying leader-follower network in Fig. 1 under
the 1-local model. We note that our methodology can be
extended to decoupled multi-dimensional dynamics of agents.
Therefore, in this simulation, each node i ∈ V is associated
with two dimensions, i.e., xi[k] and yi[k]. To be specific, each
node i ∈ V exchanges x̂i[k] and ŷi[k] with neighbors, and
we employ the MDP-MSR algorithm on each node i ∈ WN

for each axis separately. Let agents take initial values as
xi[0] ∈ (2, 5), yi[0] ∈ (2, 5),∀i ∈ WN , and r[k] = 2,∀d ∈
LN ,∀k ≥ 0 is the reference value for both axes. Let T = 0.8
and β = 1.65, which meet the condition in (21).

The objective is that normal followers track the reference
value to form a desired formation such that limk→∞ x̂i[k] =
limk→∞ ŷi[k] = r[k],∀i ∈ WN , despite any possible mis-
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(a) The one-hop MDP-MSR algorithm.
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(b) The two-hop MDP-MSR algorithm.

Fig. 6. Nodes’ positions in the time-varying leader-follower network in
Fig. 1 applying the MDP-MSR algorithm.

leading information transmitted by the Byzantine node. As
we discussed in Example 1, this graph is not a jointly 2-
robust following graph with 1 hop, and hence, is not robust
enough to tolerate one Byzantine node using the one-hop MSR
algorithms [11], [13], [31]. Here, we let node 5 be Byzantine.
It sends two different oscillating x̂ values to nodes in sets
{1, 3, 6} and {4}. Besides, it manipulates its ŷ values in the
same way.

We first apply the one-hop MDP-MSR algorithm to the
time-varying network and observe in Fig. 6(a) that resilient
leader-follower consensus on the x axis (i.e., x̂i[k], i ∈ WN )
is not achieved. For the one-hop MDP-MSR algorithm to
succeed, the network needs more connections. For example,
if we add four edges in the network as shown in Fig. 2, then
it becomes a jointly 2-robust following graph with 1 hop. We
then apply the one-hop MDP-MSR algorithm to the network
in Fig. 2 and the results in Fig. 7 show that resilient leader-
follower consensus is achieved. This example also verifies the
results in Lemma 2 and Remark 6, which separately state that
our graph condition for the one-hop case is tighter than the
ones in [31], [33]. Indeed, the union of the graphs in Fig. 2
does not meet the sufficient conditions in [31], [33] for the
case of static networks.

Alternatively, we can increase the network robustness
against adversaries by introducing multi-hop relays without
changing the original topology of the network. This time,
we apply the two-hop MDP-MSR algorithm to the network
in Fig. 1. Note that this network becomes a jointly 2-robust
following graph with 2 hops. As Theorem 2 indicated, with
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Fig. 7. Nodes’ positions in the time-varying leader-follower network in
Fig. 2 applying the one-hop MDP-MSR algorithm.

one Byzantine node, it can achieve resilient leader-follower
consensus. We should note that the Byzantine node may have
more options for attacks under two-hop communication. Thus,
we assume that node 5 not only manipulates its own values as
before but also relays false information in the same way as it
does to its own values. The results of the two-hop algorithm
are given in Fig. 6(b). Observe that resilient leader-follower
consensus on the x axis of normal agents is achieved despite
node 5 sending two faulty values to neighbors at each time.

Lastly, we present the results for formation control of our
algorithm in the network in Fig. 1. The goal for normal nodes
is to form a triangle with three leaders located at one vertex
of such a triangle. First, the trajectories of normal followers
applying the one-hop MDP-MSR algorithm are presented in
Fig. 8. Here, there are two red trajectories of node 5 since
it sends two different positions to neighbors. Besides, these
positions are oscillating along the two red trajectories in
Fig. 8. Observe in Fig. 6(a) and Fig. 8 that resilient leader-
follower consensus for formation control is not achieved in
both dimensions. Next, the two-hop MDP-MSR algorithm is
applied under the same scenario, and the nodes’ trajectories
are presented in Fig. 9. It is clear in Fig. 6(b) and Fig. 9 that
end positions of normal nodes form the desired formation.
Thus, normal nodes using the two-hop algorithm achieve
resilient leader-follower consensus on both dimensions despite
misbehaviors of node 5. Through these examples, we have
verified the efficacy of the MDP-MSR algorithm.

VII. CONCLUSION

In this paper, we have investigated the problem of re-
silient leader-follower consensus in time-varying networks
when multi-hop communication is available. Our approach is
based on the MW-MSR algorithm from our previous work
[36] studying leaderless resilient consensus. Moreover, we
have also studied agents possessing second-order dynamics
and proposed the MDP-MSR algorithm to handle resilient
leader-follower consensus in time-varying networks. Our main
results have characterized tight necessary and sufficient graph
conditions for the proposed algorithms to succeed, which are
expressed in terms of jointly robust following graphs with
l hops. Our graph condition for static networks is tighter
than the one in [31] with insecure leaders and the one in
[33] with the secure leader when l = 1. With multi-hop
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Fig. 8. Nodes’ trajectories in the time-varying leader-follower network
in Fig. 1 applying the one-hop MDP-MSR algorithm.

communication, we are able to enhance robustness of leader-
follower networks without increasing physical communication
links and obtain further relaxed graph requirements for our
algorithms to succeed. The efficacy of our algorithms has also
been verified through extensive numerical examples. In future
work, we intend to tackle resilient dynamic leader-follower
consensus using the proposed multi-hop relay techniques,
where the leaders may have time-varying reference values.

APPENDIX

A. PROOF OF LEMMA 2

Proof: If graph G[k] is strongly (Q, t0, 2f + 1)-robust
w.r.t. the set L where Q = 1, take a set F satisfying the
f -local model. Select any nonempty subset W1 ⊂ H, where
H = W \ F . Choose node i ∈ Z2f+1

W1
. Then, after removing

nodes in the set F from V , at most f follower nodes are
removed. Thus, it must hold that i ∈ Zf+1

W1
in GH. Hence,

GH satisfies the condition in Definition 5. Since this is true
for any set F , then G[k] is a jointly (f + 1)-robust following
graph with 1 hop where kt+1 − kt = 1,∀[kt, kt+1).

Yet, the converse statement does not hold. This claim can be
proved by simply noticing a counter example in Fig. 2. There,
the union of the three graphs UG[k] satisfies our condition in
Definition 5, and hence, the union graph UG[k] is a jointly
(f+1)-robust following graph with 1 hop where the length of
each interval [kt, kt+1) is 1. Apparently, UG[k] is not strongly
(Q, t0, 2f + 1)-robust w.r.t. the set L where Q = 1. We can
observe from the fact that in follower set S = {1, 2, 3}, none
of nodes has 3 in-neighbors outside S.

B. PROOF OF LEMMA 3

Proof: 1) Since G[k] is a jointly (f + 1)-robust fol-
lowing graph with l hops, in the normal network GN [k] =
(N , EN [k]), for node set S = WN = N \ L, it holds that
|Zf+1

S [kt, kt+1)| = |{i ∈ S : ∃Ki ∈ [kt, kt+1) s.t. |Ii,S [Ki]| ≥
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Fig. 9. Nodes’ trajectories in the time-varying leader-follower network
in Fig. 1 applying the two-hop MDP-MSR algorithm.

f + 1}| ≥ 1. Moreover, there could be at most f adversarial
leaders, and thus, there must be at least 2f + 1 leaders, i.e.,
|L| ≥ 2f + 1.

2) This claim is proved by contradiction. If ∃[kt, kt+1) s.t.
∀k ∈ [kt, kt+1), ∀i ∈ WN , |N l−

i [k] ∩ L| ≤ 2f , and if there
are f adversarial leaders, then in the normal network GN [k] =
(N , EN [k]), for node set WN = N \ L, it holds that ∀k ∈
[kt, kt+1), |Ii,WN [k]| ≤ f . Thus, G[k] cannot be a jointly
(f + 1)-robust following graph with l hops.

3) It is proved by contradiction. If |WL[kt, kt+1)| ≤ 2f ,
and if f nodes in WL[kt, kt+1) are adversarial, then for
node set WN \ WL[kt, kt+1), it holds that ∀k ∈ [kt, kt+1),
|Ii,WN \WL[kt,kt+1)[k]| ≤ f . This contradicts that G[k] is a
jointly (f + 1)-robust following graph with l hops.

4) We prove this claim by contradiction. If ∃[kt, kt+1)
s.t. ∀k ∈ [kt, kt+1), |N 1−

i [k]| ≤ 2f , and if f of such in-
neighbors are adversarial, then node i only has f normal in-
neighbors. Hence, the set {i} does not satisfy the condition
in Definition 5. Thus, G[k] cannot be a jointly (f + 1)-robust
following graph with l hops. Furthermore, it is now easy to
derive the second statement.
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