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Long-range one-dimensional

internal diffusion-limited aggregation

Conrado da Costa∗† Debleena Thacker∗‡ Andrew Wade∗§
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Abstract

We study internal diffusion limited aggregation on Z, where a cluster is grown
by sequentially adding the first site outside the cluster visited by each random walk
dispatched from the origin. We assume that the increment distribution X of the
driving random walks has EX = 0, but may be neither simple nor symmetric, and
can have E(X2) = ∞, for example. For the case where E(X2) < ∞, we prove
that after m walks have been dispatched, all but o(m) sites in the cluster form
an approximately symmetric contiguous block around the origin. This extends
known results for simple random walk. On the other hand, if X is in the domain
of attraction of a symmetric α-stable law, 1 < α < 2, we prove that the cluster
contains a contiguous block of δm + o(m) sites, where 0 < δ < 1, but, unlike the
finite-variance case, one may not take δ = 1.
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1 Introduction and main results

1.1 Diffusion-generated growth

Internal diffusion-limited aggregation (IDLA) is a discrete-time stochastic growth model
on an infinite graph driven by a sequence of random walks, dispatched one after another
from a common site (the germ of the aggregate), with each walker expanding the aggregate
by the addition of the first site the walker visits outside the current aggregate. The model
was introduced by Diaconis & Fulton [16] in the case where the driving random walk is
simple symmetric random walk (SSRW) on Z

d.
Lawler, Bramson & Griffeath [34] proved that the long-time shape of the aggregate

generated by SSRW on Z
d converges to a sphere. More recently, a rich picture concerning

fluctuations around the limit shape for d ≥ 2 has been revealed [6,7,26–28] (it was already
observed in [16, pp. 107–8] and [34, p. 2118] that in d = 1 the fluctuations of the process
can be described via Friedman’s urn).

The terminology “internal” refers to the fact that the successive walkers are dispatched
from inside the current cluster, in contrast to classical DLA [44], in which they are
dispatched “from infinity”. We refer the readers to [42] for a survey and comparison of
the two different DLA models. One major difference between these two models is that the
IDLA models exhibit regularity in their asymptotic behaviour, for example in Z

d, d ≥ 2
the limit shape is a Euclidean ball; whereas the shapes generated by classical DLA models
appear to be highly irregular and display fractal structure, although mathematical results
are scarce (see [32,42,44]). Long-range classical DLA models have been studied in [2–4,8],
driven by random walks that are allowed jumps beyond nearest-neighbours.

The vast majority of work on IDLA has been concerned with SSRW as the driving
random walk; drifted simple random walk was studied by [38], while the case of walkers
starting uniformly in the present cluster, rather than from a fixed origin, was studied
in [10]. Similar models on regular trees have been studied in [8] and are related to digital
search trees that have received considerable attention in computer science, see [19]. A
continuous-time version of IDLA was introduced in [11], driven by an oriented simple
random walk on the upper half plane of Z2, and admitting a coupling with some first-
passage percolation models. Further connections of IDLA driven by simple random walks
on Z

2 and random forests have been investigated in [15].
Our interest here is long-range IDLA, in which the underlying walker is not SSRW,

and to investigate the degree to which the regularity exhibited by classical (SSRW-driven)
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IDLA is preserved. We will consider random walks whose increments have mean zero,
and either finite variance, or are in the domain of normal attraction of a symmetric α-
stable distribution with characteristic function eβ|t|

α

for 1 < α < 2. Our main results are
in two parts, and are presented in detail in Section 1.3 below, after we have introduced
necessary notation in Section 1.2). First, we show that the long time behavior observed
for SSRW-driven IDLA extends to the mean-zero, finite-variance case (Theorem 1.3).
Second, we show that the regular behaviour begins to degrade in the infinite-variance
case (Theorem 1.6), demonstrating a phase transition in the model.

The complementary work [9] introduced an IDLA model on Z where the initial semi-
infinite aggregate consists of sites {0,−1,−2, . . .} (say) and each walker comes from −∞
(as opposed to our model where the walker start from the origin), and steps on the renewal
points of a bi-infinite renewal chain (therefore, long-range walk) and settles at the first
vacant site it encounters. The main object of interest in [9] is the recurrence/transience
properties of the occupied sites, and also to show that in case of geometric jumps, there
is a connection to ASEP blocking measures.

1.2 Model and notation

Consider a probability space (Ω,F ,P) which supports an array of i.i.d. Z-valued random

variables X and X
(m)
i , m ∈ N, i ∈ N. Consider S(1), S(2), . . . a sequence of independent

random walks, started from the origin, defined via S
(m)
0 := 0 and

S(m)
n :=

n∑

i=1

X
(m)
i , for n ∈ N.

For convenience, we also consider a random walk whose increment distribution is the same
as that ofX above, but with an arbitrary starting point; to this end we introduce (for each
x ∈ Z) a probability space (Ω′,F ′,Px) which supports a random walk S = (S0, S1, S2, . . .)
such that Px(S0 = x) = 1, and Sn+1 − Sn are i.i.d. with Px(Sn+1 − Sn = y) = P(X = y)
for all x, y ∈ Z. We write E,Ex for expectation corresponding to P,Px, respectively.

Throughout this paper we assume the following irreducibility hypothesis, which en-
sures that the random walk can visit all of Z:

(I) Suppose that for every x, y ∈ Z, there is n ∈ N such that

Px(Sn = y) > 0. (1.1)

Remark 1.1. An elementary sufficient condition for (I), which holds for simple symmetric
random walk and many other examples, is that (i) X is not constant and has EX = 0
(zero mean drift), and (ii) for no h > 1 does it hold that P(X ∈ hZ) = 1; this last
condition is no real loss of generality, as if P(X ∈ hZ) = 1 for h > 1, then one can
work instead with increment X/h. To see the sufficiency, note that if (i) holds, then the
support of X contains at least one positive value x+ ∈ N and at least one negative value
−x− for x− ∈ N, while if (ii) holds, x+, x− can be chosen to have gcd(x+, x−) = 1.

Define C0 := {0} (the germ) and then, recursively, for m ∈ N let

τm := inf
{
n ∈ Z+ : S(m)

n /∈ Cm−1

}
, and Cm := Cm−1 ∪ {S(m)

τm }. (1.2)

Hypothesis (I) implies that lim supn→∞ |S
(m)
n | = ∞, P-a.s., and hence τm <∞, P-a.s., for

every m ∈ N. Consequently, the number of sites in Cm is #Cm = m+ 1.
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We make two comments on the notation. First, we use n for the internal clock for
each walker, and keep m for indexing the walkers. Second, while S(m) denotes the mth
random walker to be released in our IDLA process, we use S and Px to make statements
generically about the random walk with increments distributed as X .

We call Cm the IDLA cluster generated by the first m walkers. By construction,
Cm ⊂ Cm+1 are (strictly) increasing; denote the limit by C∞ := ∪m∈Z+Cm, the collection
of sites eventually contained in the cluster. The limit set C∞ is an infinite subset of Z;
the following elementary result, whose proof is in Appendix A, says that it is, in fact, the
whole of Z, with no gaps.

Proposition 1.2. Suppose that (I) holds. Then P(C∞ = Z) = 1.

To describe our main results define, for m ∈ Z+,

rm := max{r ∈ Z+ : Z ∩ [−r, r] ⊆ Cm}, (1.3)

the radius of the maximal centred interval contained in Cm. An easy consequence of the
fact that #Cm = m+ 1 is that

rm ≤ m/2, for all m ∈ Z+. (1.4)

1.3 Main results

It follows from Proposition 1.2 that limm→∞ rm = ∞, a.s. We are interested in quantifying
the growth rate of rm. Loosely speaking, our first result, Theorem 1.3, says that when
E(X2) < ∞ and EX = 0, the inner radius rm grows at the maximal rate permitted
by (1.4). Here is the precise statement.

Theorem 1.3. Suppose that (I) holds, E(X2) <∞, and EX = 0. Then, a.s.,

lim
m→∞

rm
m

=
1

2
. (1.5)

Remark 1.4. For SSRW, when P(X = +1) = P(X = −1) = 1/2, it is well known that
limm→∞ rm/m = 1/2, a.s. Indeed, in this case Cm is always a contiguous interval, and
the equivalence of the model to (Bernard) Friedman’s urn, as described at [16, pp. 107–
8] and [34, p. 2118], yields limm→∞ rm/m = 1/2, a.s., via (David) Freedman’s strong
law [22]. As far as the authors are aware, the other cases of Theorem 1.3 are new.

We are also interested in the case where E(X2) = ∞. We will explore this case under
the following stable-domain hypothesis for 1 < α < 2.

(Sα) Suppose that X ∈ Z has a symmetric distribution (i.e., X
d
= −X), and its charac-

teristic function φ(t) := E(eitX) satisfies

lim
t→0

(
|t|−α(1− φ(t))

)
= β ∈ (0,∞). (1.6)

Remarks 1.5. (i) The hypothesis (1.6) is equivalent to the assumption that X is in the
domain of normal attraction of ζα, the symmetric α-stable distribution with characteristic
function eβ|t|

α

: see Theorem 2.6.7 [24, pp. 92–3]. Recall that being in the domain of normal
attraction ζα means that n−1/αSn converges in distribution to ζα, i.e., the slowly-varying
component of the scaling sequence is constant.
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(ii) For α ∈ (1, 2), assumption (Sα) implies that E |X| < ∞ (in fact E(|X|γ) < ∞ for
every γ < α), with EX = 0 (due to symmetry), but E(X2) = ∞ [24, p. 93].

Loosely speaking, our second main result says that, under hypothesis (Sα) with α ∈
(1, 2), it still holds that rm grows at linear rate with m (in lim inf and lim sup sense), but
this rate is now strictly less than the maximal rate 1/2 permitted by (1.4).

Theorem 1.6. Suppose that (I) holds, and that (Sα) holds with α ∈ (1, 2). Then, there
exist constants cα, c

′
α with 0 < cα ≤ c′α < 1/2, such that,

cα ≤ lim inf
m→∞

rm
m

≤ lim sup
m→∞

rm
m

≤ c′α, a.s. (1.7)

Moreover, one may take for the constant cα in (1.7) the expression

cα =
(α− 1)(2− α)2−α

(4− α)(3− α)3
. (1.8)

Remark 1.7. The value of cα in (1.8) is not the best that can be extracted from our
method (see Section 3.5), but was chosen for its relatively simple formula, together with its
property that cα ↑ 1/2 as α ↑ 2, which demonstrates some continuity between Theorem 1.6
and Theorem 1.3. We do not give here an explicit expression for c′α; though an explicit
but not very informative bound could be extracted using our methods.

1.4 Overview and discussion

The bulk of the rest of the paper provides the proofs of Theorems 1.3 and 1.6. Section 2
presents preparatory results concerning properties of the underlying random walk; these
bring together known results from random walk and renewal theory (Section 2.1), with
some important hitting and exit estimates for integer-valued random walks (Section 2.2),
due to Kesten [30, 31]. The proofs of the main results are separated into proofs of lower
bounds on the growth rate of rm/m (Section 3) and upper bounds on the growth rate of
rm/m in the infinite variance case (Section 3.5). The strategy of Section 3 adapts, in part,
the approach of [34], combined with the results of Kesten mentioned above; an outline
of the argument is presented in Section 3.1. Section 3.5 uses further results of Kesten, in
the neighbourhood of the Dynkin–Lamperti renewal theorem (see Section 2.1). The proof
of Theorem 1.3 is accomplished in Section 3.3, while the proof of Theorem 1.6 combines
a lower bound from Section 3.4 with upper bound from Section 3.5, and is concluded
in the latter section. Finally, to avoid disrupting the flow of the paper, we defer to the
appendix the proofs of some auxiliary results. In particular, Appendix A gives the short
proof of the eventual filling statement in Proposition 1.2, and Appendix B some technical
elements about certain families of probability functions that are introduced in Section 2.2.

We finish this section with some remarks and open problems. Theorem 1.6 poses some
obvious questions. Firstly:

Problem 1.8. Suppose that (I) holds, and that (Sα) holds with α ∈ (1, 2). Does it hold
that lim infm→∞ rm/m = ℓα, a.s., for some constant ℓα, a.s.? If so, what is its value?

Of course, if it exists, ℓα must satisfy cα ≤ ℓα ≤ c′α, by (1.7), and (see Remark 1.7) it
must hold that ℓα → 1/2 as α ↑ 2. One might hope to be able to apply a zero–one law
to obtain existence of ℓα, but we have not been able to do so. Two further questions in
this regime are the following.
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Problem 1.9. Suppose that (I) holds, and that (Sα) holds with α ∈ (1, 2). Does
limm→∞ rm/m exist in this case, as it does in Theorem 1.3?

Further questions arise in the case with E |X| = ∞.

Problem 1.10. Suppose that (Sα) holds with α ∈ (0, 1), or α = 1. What is the behaviour
of rm now?

The underlying random walks are of very different character in the case α ∈ (0, 1]:
for example, when α ∈ (0, 1) the walks are (oscillatory) transient; this does not obviously
indicate a more disperse aggregate, however, as the walks will typically aggregate after
fewer steps. The boundary case α = 1 is likely to be delicate, and there are some technical
obstructions: for example, the results of Kesten [30,31] that we use below often omit the
case α = 1, although comparable results for stable diffusions are known [14]. Lastly:

Problem 1.11. Consider random walks in Z
d, d ≥ 2.

For simple symmetric random walk, the seminal work [34] deals with general d, so
one aspect of Problem 1.11 would be to try to extend that work to walks with sufficiently
many moments. For stable walks of index α ∈ (1, 2), we know of no multidimensional ana-
logues of Kesten’s results, although for symmetric stable processes some Green’s function
estimates are known [14].

2 Ingredients from random walks and renewal theory

2.1 Ladder processes and overshoots

Recall that on probability space (Ω′,F ′,Px), x ∈ Z, we have a random walk S = (Sn)n∈Z+

started from S0 = x whose increment distribution is that of the Z-valued random vari-
able X underlying our IDLA model. We introduce some additional notation to enable us
to discuss classical fluctuation theory for this random walk. Define the strict ascending
ladder times λ0 := 0 and

λk := inf{n ≥ λk−1 : Sn > Sλk−1
}, for k ∈ N; (2.1)

as usual, inf ∅ := ∞.
We suppose that E |X| < ∞ and EX = 0. By a result of Chung and Fuchs, this

implies that the random walk Sn is recurrent [21, p. 615], so, for every x ∈ Z,

Px

(
lim sup
n→∞

Sn = ∞
)
= Px

(
lim inf
n→∞

Sn = −∞
)
= 1. (2.2)

In particular, Px(λk < ∞) = 1 for every k ∈ Z+, and Sλk
= max0≤n≤λk

Sn are strictly
increasing in k.

Define Ln := Sλn
for n ∈ Z+; then x = L0 < L1 < L2 < · · · is the (strict, ascending)

ladder height process associated with S. By the strong Markov property and spatial
homogeneity, the increments Yn := Ln − Ln−1, n ∈ N, are i.i.d., N-valued, and Ln =
x +

∑n
i=1 Yi represents the ladder height process as a renewal process with increment

distribution Y := Y1. By translation invariance, the distribution of the ladder times λk
and ladder increments Yn are the same for every Px, regardless of the starting point x ∈ Z
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of the random walk. In such cases where the starting point is unimportant, we will abuse
notation slightly and write simply P, E on occasion.

Suppose next that S0 = x ≡ 0. For y ∈ Z+, define the renewal counting process

Ny := inf{n ∈ N : Ln > y} = #{n ∈ Z+ : Ln ≤ y}.

Note LN0 = L1 = Y1, Ny ∈ N, and LNy−1 ≤ y < LNy
, P0-a.s. for every y ∈ Z+. Define

the residual life-time process associated with the ladder-height renewal process by

Zy := LNy
− y, for all y ∈ Z+, (2.3)

which satisfies Zy ∈ N; see [5, pp. 140–1] or [21, §XI.4] for background on the terminology
and renewal-theoretic context. A fundamental observation [5, p. 9] is that Z0, Z1, Z2, . . .
forms an irreducible Markov chain on a subset of N with transitions given by

Zy+1 =

{
Zy − 1 if Zy ≥ 2,

YNy+1 if Zy = 1.
(2.4)

Furthermore, the Markov chain (Zn)n∈Z+ is aperiodic, i.e. gcd{n ∈ Z+ : Zn = 1} = 1.
Indeed (see Remark 1.1) in this case the support of X contains some x+ and −x−, with
x+, x− ∈ N and gcd(x+, x−) = 1. Hence we can find k, ℓ ∈ N with kx+ − ℓx− = 1, and
with positive probability the random walk S can take ℓ steps of value x− followed by k
steps of value x+, meaning that the ladder variable has P(Y = 1) > 0.

Returning to the random walk, we denote the first passage time of S above level
y ∈ Z+ by

ρy := inf{n ∈ Z+ : Sn > y}, (2.5)

and we call Sρy − y the first (right) overshoot of level y by the random walk S. Since ρy
is necessarily a ladder time, it holds that

Sρy − y = LNy
− y = Zy, P0 -a.s., for every y ∈ Z+; (2.6)

thus overshoots of the random walk are equivalent to residual life-times of the associated
ladder-height renewal process.

Remark 2.1. We state all the results in this section for right overshoots and increasing
ladder variables, but, evidently, by working with the increment distribution −X , we can
translate everything to left overshoots and decreasing ladder variables.

For most of the rest of this section, we assume additionally that the increments have
finite variance:

(M) Suppose that σ2 := E(X2) ∈ (0,∞) and EX = 0.

The following result presents some key properties of overshoots.

Proposition 2.2. Suppose that (I) and (M) hold. Then µ := EY satisfies 1 ≤ µ < ∞,
and

µ = exp

{
∞∑

n=1

1

n

[
1

2
−P(Sn > 0)

]}
. (2.7)

Moreover, define the probability distributions (πk)k∈N and (ψk)k∈N by

πk :=
P(Y ≥ k)

µ
, ψk :=

kP(Y = k)

µ
, for k ∈ N. (2.8)
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(i) Let Z∞, L∞ denote independent random variables with distributions given by π, ψ
from (2.8), respectively, and set U∞ := max(Z∞, L∞). Then

sup
y∈Z+

P0(Zy ≥ k) ≤ P0(U∞ ≥ k), for all k ∈ Z+.

(ii) It holds that, for every x ∈ Z and every k ∈ N,

lim
y→∞

Px(Zy = k) = πk. (2.9)

(iii) Suppose, additionally, that E(|X|p) <∞, for some p > 2. Then,

sup
y∈Z+

Ex

[
Zp−2

y

]
<∞. (2.10)

In particular, Proposition 2.2(ii) says that if E(X2) < ∞, the overshoots are tight.
This is in abrupt contrast to the case where E(X2) = ∞, where, under appropriate con-
ditions, the following consequence of the Dynkin–Lamperti theorem (see Proposition 2.3)
says that the overshoot over level y lives on scale y, asymptotically. Note that the result
is valid for all α ∈ (0, 2), although we will later use only the case α ∈ (1, 2).

Proposition 2.3. Suppose that (I) holds, and that (Sα) holds with α ∈ (0, 2). Then, for
every x ∈ Z and every u ≥ 0,

lim
y→∞

Px

(
Sρy − y

y
> u

)
=

∫ ∞

u

fα(v)dv,

where

fα(v) :=
sin(πα/2)

π

1

vα/2(1 + v)
, for v > 0.

Propositions 2.2 and 2.3 are well known: Kesten’s Lemma 6 [30, p. 255] provides
Proposition 2.3 explicitly, and gives Proposition 2.2(ii) under an additional symmetry
assumption. Another route to Proposition 2.3 is to combine the Dynkin–Lamperti renewal
theorem [12, p. 361] with the result that under hypothesis (Sα), the ladder variable Y is
in the domain of attraction of a positive α/2-stable law (see Theorem 9 of Rogozin [41,
p. 592]); a corresponding local limit theorem is given in [18]. We give below a proof
of Proposition 2.2 without Kesten’s additional hypothesis, but the proof involves little
more than indicating appropriate results in the literature. First, we give some intuition
behind the important “loss of moments” phenomenon which the above results exhibit.
For example, Proposition 2.2 says that in order for the overshoot to have a uniformly
bounded mean, we need to assume E(|X|3) <∞.

Theorem 3.4 of Spitzer [43, p. 158] shows that the hypothesis (M) (finite variance)
implies integrability of the ladder height, 1 ≤ EY <∞, and gives the formula (2.7). We
“lose moments” in passing from the walk to its ladder heights (this cannot be avoided,
as explained in Remark 2.4 below). The fact that we “lose another moment” in passing
from the ladder heights to the (stationary) overshoots is due to the observation that, if
Z is a random variable distributed as P(Z = k) = πk from (2.8), then

E(Zq) =
∑

k∈N

kqπk =
1

EY

∑

k∈N

kq P(Y ≥ k), (2.11)

which is finite if and only if E(Y q+1) <∞. This is a “size-biasing” effect; in the stationary
renewal process associated with Y , the intervals that straddle a particular value are more
likely to be long.
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Remark 2.4. Suppose that (I) and (M) hold. Since Y ≥ 1 we have Ln ≥ n and hence
Ny ≤ y + 1, a.s., and LNy

− y ≤ Ly+1 − y. Hence, for every y ∈ Z+, it holds that

E(Zq
y) <∞, whenever E(Y q) <∞. (2.12)

The purpose of this remark is to explain that we cannot claim that (2.12) holds uniformly
in y. Let Z denote a random variable whose distribution is given by P(Z = k) = πk as
given by (2.8); Proposition 2.2(ii) shows that Zy converges to Z in distribution as y → ∞.
Suppose that supy E(Z

q
y) <∞. Then uniform integrability shows that,

for every q′ ∈ (0, q), E(Zq′) = lim
y→∞

E(Zq′

y ) <∞. (2.13)

In the special case where X is symmetric, Corollary 2 of Doney [17, p. 250] states that,

for p > 2, E(|X|p) <∞ if and only if E(Y p−1) <∞. (2.14)

In particular, if for some q > 1 one has E(|X|q+1) <∞ but E(|X|q+(3/2)) = ∞, say, then
Doney’s result (2.14) says E(Y q) <∞ but E(Y q+(1/2)) = ∞, and so E(Zq−(1/2)) = ∞, by
the discussion around (2.11). This is a contradiction with (2.13). Hence we cannot, in
general, insert a supremum over y into (2.12).

Proof of Proposition 2.2. Suppose, without loss of generality, that S0 = 0, and consider
Zy = Sρy − y for some y ∈ Z+. As mentioned above, the fact that µ < ∞ satisfies (2.7)
is due to Spitzer [43]. Part (i) is an inequality in the vein of Lorden [36], obtained by
Chang [13], using a coupling argument.

The most elegant (and probabilistic) argument for part (ii) proceeds from the Markov
chain representation (2.4). Indeed, Z0 = 1 and Z1 = YN1 = Y1. If we set τ := inf{n ∈ N :
Zn = 1}, then τ = Y1, a.s., and the usual excursion-occupation construction shows that
an invariant measure (µ(y), y ∈ N) for the Markov chain is given by

µ(y) =
1

E τ
E

τ∑

n=1

1{Zn = y} =
1

E Y1
E

Y1∑

n=1

1{Zn = y} =
1

EY
E1{Y ≥ y},

which is exactly π given by (2.8). As remarked after (2.4), the Markov chain is irreducible
and aperiodic under the hypotheses of the proposition, and so the convergence in (2.9)
follows from the Markov chain convergence theorem. Part (ii) can be found as Theorem
6.10.3 of [23, pp. 103–4](ii), and may also be derived from the classical renewal theorem
for aperiodic lattice random variables [21, p. 363].

Part (iii) follows from part (i), and indeed from Theorem 3 of Lorden [36] (see also
Theorem 3.1 of [25]), once one knows that E(Y p−1) < ∞ whenever E(|X|p) < ∞. This
fact (the p > 2 analogue of Spitzer’s result for p = 2 that we already used) is provided
by results of Doney [18] and Lai [33].

2.2 Estimates from Kesten on hitting before exit

In this section we present some estimates on hitting and exit of Z-valued random walks,
derived more-or-less directly from fine results of Kesten [30,31]. To state the results, for
t ∈ Z and A ⊂ Z, define

Tt := inf{n ∈ Z+ : Sn = t}, and ηA := inf{n ∈ Z+ : Sn /∈ A}, (2.15)
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respectively the first hitting time of t and the first exit time from A for the random walk S.
First, we describe informally the results that we will use. Throughout this discussion, we
assume that (I) holds and that EX = 0.

• An easy, but important, consequence of recurrence and irreducibility is a local hitting
estimate saying that there is high probability of visiting a nearby site before going
far away: see Lemma 2.5 below.

• Kesten provides general gambler’s ruin estimates on the probability of exiting a
large interval on one side rather than the other: see Lemma 2.6 below.

• The local hitting and gambler’s ruin estimates show no essential distinction between
the finite- and infinite-variance cases. Where the distinction arises is in what the
walk does when it exits an interval, i.e., the behaviour of overshoots, as we have seen
with the contrast between Propositions 2.2 (tight overshoots) and 2.3 (large-scale
overshoots).

• Kesten combines ingeniously the above elements to obtain precise asymptotics
for the probability of hitting a particular point before exit from a large interval.
Roughly speaking, in the finite-variance case, the tight overshoots and local hitting
estimates show that the gambler’s ruin probabilities capture the essential behaviour,
while in the infinite-variance case there may be many overshoots of the target point
before it is successfully hit. Lemmas 2.8 and 2.11 below present the main estimates
we will need of this type.

We now give precise statements of the results described loosely above. We start with
the following local hitting property, which is a consequence of recurrence and irreducib-
ility: see equation (2.4) of [30, p. 247].

Lemma 2.5. Suppose that (I) holds and that EX = 0. Then limN→∞P0(Tk < η[−N,N ]) =
1 for every fixed k ∈ Z.

Next we present Kesten’s general gambler’s ruin estimates. The finite-variance part,
Lemma 2.6(i), is contained in Theorem 2 of [30, p. 256], while the infinite-variance part,
Lemma 2.6(ii), is contained in Corollary 1 of [31, p. 273]. We remark that the strength of
part (i) is that no more than finite second moments is assumed, but asymptotic lower and
upper bounds match; compare e.g. Theorem 5.1.7 of [35, p. 127], which does not provide
matching bounds, or Theorem 5 of [37], which requires the hypothesis E(|X|3) <∞.

Lemma 2.6 (Kesten 1961 [30, 31]). Suppose that (I) holds.

(i) Suppose that E(X2) <∞ and EX = 0. Then, for every c ∈ R+,

lim
N→∞

P0

(
Sη[−cN,N]

> N
)
=

c

1 + c
. (2.16)

(ii) Suppose that (Sα) holds with α ∈ (1, 2). Then, for every c ∈ R+,

lim
N→∞

P0

(
Sη[−cN,N]

> N
)
=

Γ(α)

Γ(α/2)2

∫ 1

(1+c)−1

u
α
2
−1(1− u)

α
2
−1du. (2.17)
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Remarks 2.7. (i) A change of variable followed by the symmetric beta-integral for-
mula [1, p. 258] shows that, for every α > 0,

2

∫ 1

1/2

u
α
2
−1(1− u)

α
2
−1du =

∫ 1

0

u
α
2
−1(1− u)

α
2
−1du =

Γ(α/2)2

Γ(α)
. (2.18)

Consequently, for exit from a symmetric interval (c = 1), both (2.16) and (2.17) yield the
asymptotically-fair ruin estimate limN→∞P0

(
Sη[−N,N]

> N
)
= 1/2.

(ii) Corollary 1 in Kesten [31, p. 273] is stated slightly differently from (2.17), in terms
of limN→∞P0

(
Sη[−cN,N]

< −cN
)
. However, one easily deduces (2.17) using (2.18), since

lim
N→∞

P0

(
Sη[−cN,N]

> N
)
= 1− lim

N→∞
P0

(
Sη[−cN,N]

< −cN
)

=
Γ(α)

Γ(α/2)2

[∫ 1

0

u
α
2
−1(1− u)

α
2
−1du−

∫ (1+c)−1

0

u
α
2
−1(1− u)

α
2
−1du

]

=
Γ(α)

Γ(α/2)2

∫ 1

(1+c)−1

u
α
2
−1(1− u)

α
2
−1du.

We turn to the most delicate results, which are estimates for the probability that a
particular site in an interval is visited before exit from the interval. Borrowing notations
from Kesten [31], let us define for N ∈ Z+, c > 0, and k ∈ {0, 1, . . . , N},

qα,N

( k
N
; c
)
:= Pk

(
T0 < η[−cN,N ]

)
, (2.19)

where α = 2 if E(X2) < ∞ and α ∈ (1, 2) if (Sα) is satisfied. Also define qα,N (y; c) over
all y ∈ [0, 1] by linear interpolation, i.e.,

qα,N(y; c) := (k + 1−Ny)qα,N

( k
N
; c
)
+ (Ny − k)qα,N

(k + 1

N
; c
)
, if

k

N
< y <

k + 1

N
.

For c′ ≥ c > 0, we have η[−cN,N ] ≤ η[−c′N,N ], a.s.; this shows the following monotonicity
property

qα,N (y; c) ≤ qα,N (y; c
′), whenever 0 < c ≤ c′. (2.20)

The main result that of this subsection is the following. The result is essentially due
to Kesten [30, 31], but part (i) is not given explicitly by Kesten, so we give a proof later
in this subsection.

Lemma 2.8 (Kesten 1961 [30, 31]). Suppose that (I) holds. Fix 0 ≤ y < 1 and c > 0.

(i) Suppose that E(X2) <∞ and EX = 0. Then there exists the limit

lim
N→∞

q2,N(y; c) = q2(y; c) := 1− y. (2.21)

(ii) Suppose that (Sα) holds with α ∈ (1, 2). Then there exists the limit

lim
N→∞

qα,N(y; c) = qα(y; c), (2.22)

where

qα(y; c) := (α− 1) c1−
α
2 (1 + c)α−1 (y + c)

α
2 yα−1

∫ 1

y

(y + cv)−α (1− v)
α
2
−1 dv. (2.23)
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Remark 2.9. Formula (2.23) defines qα(y; c) when y > 0, and when y = 0 the definition
is to be understood as the limit qα(0; c) := limy→0 qα(y; c) = 1 (as can be verified by
calculus). Moreover, there is continuity as α ↑ 2 in the sense that limα→2 qα(y, c) = 1− y
to match with (2.21). See Lemma 2.11 below for proofs of these properties.

We defer the proof of Lemma 2.8 until the end of this section. First, we need some
technical results on the equicontinuity of the qα,N(y; c) appearing in Lemma 2.8, as well
as the corresponding quantities that appear in Lemma 2.6. In the latter case, we need
a little more notation. Similarly to qα,N(y; c), we can define for every y ∈ [0, 1], the exit
probabilities

pα,N

( k
N

)
:= Pk

(
Sη[0,N]

< 0
)
, for k ∈ {1, 2, . . . , N}.

For general k
N
< y < k+1

N
, we define pα,N(y) via linear interpolation, similarly to qα,N (y; c).

The equicontinuity results that we need are as follows.

Lemma 2.10 (Kesten 1961 [31]). Suppose that (I) holds. For 1 < α ≤ 2, suppose in
addition that (if α = 2) E(X2) <∞ and EX = 0, or (if 1 < α < 2) that (Sα) holds. Fix
0 ≤ λ < 1 and c > 0. The following hold.

(i) The family of functions (pα,N(y))N∈N of y ∈ [0, λ] is uniformly equicontinuous.

(ii) The family of functions (qα,N(y; c))N∈N of y ∈ [0, λ] is uniformly equicontinuous.

Part (ii) is available explicitly in Kesten [30, 31]; we give a proof of part (i), using
similar ideas, in Appendix B. To exemplify the usefulness of Lemma 2.10, we state two
of its consequences which extend the convergence stated in Lemma 2.8.

First, suppose that yN ∈ [0, 1) is a sequence such that limN→∞ yN = y ∈ [0, 1). Take
λ ∈ (y, 1). Then uniform equicontinuity means that for every ε > 0 there exists δ > 0
such that |qα,N(y; c)−qα,N(y

′; c)| ≤ ε whenever y, y′ ∈ [0, λ] and |y′−y| ≤ δ. In particular,
for all N large enough, we have |y − yN | ≤ δ. Consequently, equicontinuity extends the
convergence in (2.21) and (2.22) to

lim
N→∞

qα,N(yN ; c) = qα(y; c), (2.24)

whenever yN → y ∈ [0, 1) and the relevant hypotheses from Lemma 2.8 hold.
Here is a second consequence. For fixed α, c, the family (qα,N (y; c))N∈N is uniformly

equicontinuous, as functions of y ∈ A for any compact A ⊂ [0, 1). Hence, by (2.22),
qα,N(y; c) converges uniformly as N → ∞ to qα(y; c), as functions of y ∈ A. In particular,
for every compact A ⊂ [0, 1),

lim
N→∞

inf
y∈A

qα,N(y; c) = inf
y∈A

qα(y; c). (2.25)

We state (2.24) and (2.25) for qα,N ; analogous statements for pα,N are deduced in the
same way.

We will need the following bounds on qα(y; c); in the proof we make a first use of the
equicontinuity from Lemma 2.10.

Lemma 2.11. Suppose that (I) holds, and that (Sα) holds with α ∈ (1, 2). Let qα(y; c)
be as defined in (2.23). Then it holds that, for every c > 0 and all 0 ≤ y < 1,

qα(y; c) ≥ (α− 1)c1−
α
2 (c+ y)

α
2
−1(1− y), (2.26)
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and, moreover, for every c > 0,
lim
y→0

qα(y; c) = 1. (2.27)

On the other hand, for every δ > 0 it holds that

sup
δ≤y≤1

qα(y; c) < 1. (2.28)

Proof. Similarly to (2.23), define

uα(y; c) := (α− 1) c1−
α
2 (1 + c)α−1 (y + c)

α
2 yα−1

∫ 1

y

(y + cv)−α dv. (2.29)

Some calculus shows that

∫ 1

y

(y + cv)−α dv =
y1−α

c(α− 1)

[
(1 + c)1−α −

(
1 +

c

y

)1−α
]
.

Hence, by (2.29), we obtain

uα(y; c) =

(
c+ y

c

)α
2

[
1−

(
1 + c

1 + (c/y)

)α−1
]
. (2.30)

Since 0 < α/2 < 1, for all v ∈ [0, 1) it holds that (1−v)(α/2)−1 ≥ 1. Comparison of (2.23)
and (2.29) then shows that qα(y; c) ≥ uα(y; c) for all y ∈ [0, 1]. Using the fact that
(1− x)α−1 ≤ 1− (α− 1)x for α ∈ [1, 2] and x ≥ 0, we have that

(
1 + c

1 + (c/y)

)α−1

=

(
1−

c(1− y)

c+ y

)α−1

≤ 1− (α− 1)

(
c(1− y)

c+ y

)
.

Combining the last bound with (2.30) yields the bound in (2.26). Moreover, since for
0 < y ≤ 1 the first factor in the expression on the right-hand side of (2.30) is at least 1,
and the second factor (in square brackets) is non-negative, it also follows that

lim inf
y→0

qα(y; c) ≥ lim inf
y→0

uα(y; c) ≥ 1− lim sup
y→0

(
1 + c

1 + (c/y)

)α−1

= 1,

for every c > 0 and α ∈ (1, 2). This yields (2.27), since 0 ≤ qα(y; c) ≤ 1.
Finally, we obtain the bound (2.28) by an application of Kesten’s gambler’s ruin

estimate (2.17). Observe that, for c ≥ 0 and k ∈ N,

Pk

(
T0 < η[−cN,N ]

)
≤ Pk

(
Sη[1,N]

< 1
)
= 1−Pk

(
Sη[1,N]

> N
)
,

since in order to visit 0 before exiting the interval [−cN,N ], the walk must exit the
(smaller) interval [1, N ] on the left. In particular, for y ∈ [0, 1) and a sequence kN ∈ N

such that limN→∞ kN/N = y, then using equicontinuity via (2.24),

qα(y; c) = lim
N→∞

PkN

(
T0 < η[−cN,N ]

)
.

Suppose y ∈ [0, 1) is rational; then we can choose the sequence kN such that kN = yN
for a subsequence of N . Hence

qα(y; c) ≤ 1− lim inf
N→∞

PyN

(
Sη[1,N]

> N
)
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= 1− lim inf
N→∞

P0

(
Sη[1−yN,(1−y)N]

> (1− y)N
)

≤ 1− lim inf
N→∞

P0

(
Sη[−c′N,N]

> N
)
,

for every c′ < cy where cy := y
1−y

∈ (0,∞). Then (1 + cy)
−1 = 1 − y for y ∈ [0, 1], and

hence, from (2.17), for every rational y ∈ [δ, 1],

qα(y; c) ≤ 1− inf
δ≤y≤1

Γ(α)

Γ(α/2)2

∫ 1

1−y

u
α
2
−1(1− u)

α
2
−1du

= 1−
Γ(α)

Γ(α/2)2

∫ 1

1−δ

u
α
2
−1(1− u)

α
2
−1du,

which yields (2.28), using continuity of y 7→ qα(y; c) over [δ, 1].

We conclude this section with a proof of Lemma 2.8. Here and subsequently, we write
Fn := σ(S0, S1, . . . , Sn) for the σ-algebra (Fn ⊆ F ′) generated by the first n steps of the
random walk.

Proof of Lemma 2.8. Part (ii) is Theorem 2 in [31, p. 277]. Part (i) is not explicitly
stated in [30, 31], but can be deduced from results therein, as we now demonstrate.

Suppose that 0 < y < 1, and set λ := inf{n ∈ Z+ : Sn < 0}, which is a stopping
time with respect to filtration Fn. Under either of the hypotheses of the lemma, we have
EX = 0 and hence Pk(λ <∞) = 1 for every k ∈ Z, by recurrence. Suppose that kN ∈ N

is a sequence such that kN/N → y as N → ∞, and consider events

E1 := E1(N) := {Sη[0,N]
< 0},

E2 := E2(A) := {Sλ ∈ [−A, 0]},

E3 := E3(N, c) := {T0 < η[−cN,N ]},

and note that both E1 and E2 are Fλ-measurable. By equicontinuity, similarly to (2.24)
but applied to p, we have that

lim
N→∞

PkN (E1) = 1− lim
N→∞

PkN

(
Sη[0,N]

> N
)
= lim

N→∞
p2,N(y).

For rational y, there is a sequence of Nm, m ∈ N, for which yNm ∈ N, and then

lim
N→∞

p2,N(y) = lim
m→∞

PyNm
(Sη[0,Nm]

< 0) = 1− lim
m→∞

P0(Sη[−yNm,(1−y)Nm]
> (1− y)Nm)

= 1− lim
N→∞

P0(Sη[−cyN,N]
> N) = 1− y,

where cy := y
1−y

and we have used Lemma 2.6(i) for the convergence. In other words,

limN→∞ p2,N (y) = 1− y for all rational y. Moreover, we have from Proposition 2.2 that,
since y > 0, for every ε > 0, there exists A < ∞ such that limN→∞PkN (E2) ≥ 1 − ε.
Started from a site in [−A, 0], the probability that the walk visits 0 before exit from
[−cN,N ] tends to 1, by Lemma 2.5, i.e., on event E2,

P(E3 | Fλ) ≥ inf
z∈[−A,0]

Pz(T0 < η[−cN,N ]) → 1,

as N → ∞. Hence, given ε > 0 we can choose A large enough and then N large enough
so that P(E3 | Fλ) ≥ 1− ε on E2, that PkN (E1) ≥ 1− y − ε, and that PkN (E2) ≥ 1− ε.
Then, by the strong Markov property at time λ,

PkN (T0 < η[−cN,N ]) ≥ EkN [P(E3 | Fλ)1E1∩E2]
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≥ (1− ε)PkN (E1)−PkN (E
c
2)

≥ (1− ε)(1− y − ε)− ε ≥ 1− y − 3ε.

Since ε > 0 was arbitrary, we deduce that lim infN→∞PkN (T0 < η[−cN,N ]) ≥ 1 − y.
Combined with a similar argument in the other direction, we verify (2.21), with the
restriction that y > 0, but this restriction is easily removed by a continuity argument, as
in Kesten [31, p. 275].

3 Proofs of the bounds on cluster growth

3.1 Lower bounds: Overview and some heuristics

Recall that rm defined at (1.3) is the maximal r ∈ Z+ such that [−r, r] ∩ Z is contained
in Cm. The purpose of this section is to study the asymptotics of rm. In Section 3.3, we
prove (1.5) of Theorem 1.3, which covers the case where increments have finite variance.
To prove (1.7) of Theorem 1.6, the infinite variance case, we prove the lower bound in
Section 3.4 and the upper bound in Section 3.5.

In view of the deterministic bound lim supm→∞ rm/m ≤ 1/2, a.s., from (1.4), to
prove (1.5) it is sufficient to prove that lim infm→∞ rm/m ≥ 1/2, a.s. It turns out to be
more convenient at this point to work with the coverage times

σx := inf{m ∈ Z+ : rm ≥ x}. (3.1)

The sequences rm and σx are related by the inversion:

It holds that rm ≥ x if and only if σx ≤ m. (3.2)

In particular, for c ∈ (0,∞), equivalent to the statement lim infm→∞(rm/m) ≥ c, a.s., is
the statement lim supx→∞(σx/x) ≤ 1/c, a.s. Hence to prove (1.5) in Theorem 1.3, it is
enough to prove the following.

Proposition 3.1. Suppose that (I) holds, E(X2) <∞, and EX = 0. Then, a.s.,

lim sup
x→∞

σx
x

≤ 2. (3.3)

In the finite-variance case, the trivial bound σx/x ≥ 2 that follows from (1.4) means
that to prove Theorem 1.3, the upper bound (3.3) is sufficient. In the infinite-variance
case, for Theorem 1.6 we need not only an upper bound, presented in Proposition 3.2 that
follows, but also non-trivial lower bounds, which are the subject of Section 3.5. Define
the constant

C ′
α := (α− 1)−1(4− α)(3− α)3(2− α)α−2. (3.4)

Proposition 3.2. Suppose that (I) holds, and that (Sα) holds with α ∈ (1, 2). Then, for
C ′

α ∈ (2,∞) given by (3.4), it holds that, a.s.,

lim sup
x→∞

σx
x

≤ C ′
α. (3.5)

The outline of the proofs of the upper bounds in both Propositions 3.1 and 3.2, has
similarities to the corresponding argument in [34, §3], with the estimates of Section 2.2
(derived from Kesten [30, 31]) providing the central probabilistic components.
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Recall from Section 1.2 that S(j) denotes the jth random walk in the IDLA process,
and that τj , defined at (1.2), is the internal time index of the walk S(j) when it first
exits the prior cluster Cj−1. In this section we develop several arguments using the
sequence of random walks S(j). We note that the IDLA process depends only on each
S(j) up to its associated time τj, but in fact the walk S(j) is defined for all time, and
several arguments make use of this, for example, to overcome certain dependence. In
arguments that emphasize the finite-walk perspective, we sometimes describe walk S(j)

as being active up until time τj , and then terminating, while in arguments that use the
full trajectory of the walk, we sometimes refer to the walk S(j) as indefinitely extended.

Let us describe, informally, how the results of Section 2.2 enable us to understand
the behaviour of σx. Consider time σx, so that the interval [−x, x] is fully occupied by
the cluster Cσx

. We fix u > 1 and study the IDLA process up to the time at which the
interval [−ux, ux] is fully occupied, in order to bound from above σux − σx. We must
argue that unoccupied sites are filled rather rapidly by subsequent walkers. The outline
of the argument is as follows.

1. The gambler’s ruin estimates of Lemma 2.6 show that any subsequent walker will
exit [−x, x] on the right or left each with probability almost 1/2, and, since [−x, x]
is fully occupied, the walker will still be active when it does so. This is the case in
both the settings of Propositions 3.1 and 3.2.

2a. Consider some site t ∈ [x, ux] ∩ Z. In the finite-variance case (Proposition 3.1) by
tightness of overshoots (Proposition 2.2(ii)) and recurrence (Lemma 2.5), a random
walk that exits [−x, x] on the right, will, with probability close to 1 (if u ≈ 1) visit t
before exiting from the interval [−x, sx], where s > u. Hence (using point 1 above)
the probability that the walk exits [−x, x] on the right and visits t before exit from
[−x, sx] is approximately q ≈ 1/2.

2b. Consider some site t ∈ [x, ux] ∩ Z. In the infinite-variance case (Proposition 3.2)
a random walk that exits [−x, x] on the right will visit t before exiting from the
interval [−x, sx], where s > u, with a probability bounded below by some strictly
positive q = qα(u, s) ∈ (0, 1/2), by Lemma 2.8 and the bounds in Lemma 2.11.

3. To obtain statements that hold with very high probability, from the walk-by-walk
probability statements in 2a and 2b, we consider the k = Ax walkers directly after
time σx and exploit binomial concentration. The number of these walkers that exit
[−x, x] on the right and then visit t ∈ [x, ux] ∩ Z before exit from the interval
[−x, sx] is binomial, and, by binomial concentration, we can, by balancing small
constants, ensure is, with very high probability, at least about Aqx.

4. There are at most (s − 1)x sites of Z in the interval [x, sx], and each can accom-
modate at most one walker adding to the aggregate, so if Aq > s− 1, then at least
one walker is active when it visits t. Hence t is contained in the cluster at time
about σx+Ax, where the optimal A is A ≈ (s−1)/q. (See Lemma 3.4 for a precise
version of this argument.)

5. The binomial concentration is sufficient to show that this occurs with high probab-
ility for all t ∈ [−ux, ux] ∩ Z, i.e., with high probability by time ≈ σx + (s− 1)x/q
we cover [−ux, ux]. This shows σux − σx ≤ (s− 1)x/q, with high probability. With
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an interpolation argument, this translates to a bound of the form

lim sup
x→∞

σx
x

≤
1

q

(
s− 1

u− 1

)
u, a.s.;

see (3.25) (for the finite variance case) and (3.32) (infinite variance) below. Choosing
constants carefully, in the case of Proposition 3.1 we can take s ≈ u ≈ 1 and q ≈ 1/2,
giving the constant 2 in the bound (3.3). In the setting of Proposition 3.2, choosing
s > u > 1 appropriately leads to the upper bound in (3.5) with the constant C ′

α

from (3.4).

3.2 Preliminaries

Analogously to the notation in (2.15), for the random walk S(j), j ∈ N, define the first

hitting time T
(j)
t of t ∈ Z by

T
(j)
t := inf{n ∈ Z+ : S(j)

n = t}, (3.6)

and the first exit time η
(j)
A from the set A ⊆ Z by

η
(j)
A := inf{n ∈ Z+ : S(j)

n /∈ A}. (3.7)

Note that, τm as defined at (1.2) has the representation τm = η
(m)
Cm−1

in the notation
at (3.7). For t ∈ Z and x ∈ N, define

N+
m,k(t; x) :=

m+k∑

j=m+1

1{S
(j)

η
(j)
[−x,x]

> x, T
(j)
t ≤ η

(j)
Cj−1

}, (3.8)

the number of the next k random walks, released after time m, that (i) exit the interval
[−x, x] on the right, and (ii) visit t before they exit the contemporary cluster. Similarly,
define

N−
m,k(t; x) :=

m+k∑

j=m+1

1{S
(j)

η
(j)
[−x,x]

< −x, T
(j)
t ≤ η

(j)
Cj−1

}. (3.9)

We will always be assuming (I), so that the random walk S is irreducible, and hence

η
(j)
[−x,x] < ∞ for every j and every x, almost surely. Note that the sum N+

m,k(t; x) +

N−
m,k(t; x) does not depend on x and hence we may define

Nm,k(t) :=
m+k∑

j=m+1

1{T
(j)
t ≤ η

(j)
Cj−1

} = N+
m,k(t; x) +N−

m,k(t; x). (3.10)

Remark 3.3. The definitions of Nm,k(t), N
±
m,k(t; x) are motivated from similar quantities

defined in [34], where the authors also make use of the property (3.11) below.

Observe that, if there exists a (smallest) j for which T
(j)
t ≤ η

(j)
Cj−1

, then t ∈ Cj. In
particular,

{t ∈ Cm+k, t /∈ Cm} = {Nm,k(t) > 0}, and P(t /∈ Cm+k \ Cm) = P(Nm,k(t) = 0). (3.11)
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It turns out to be convenient to work, instead of with the quantities defined in (3.8)–
(3.10), with some related quantities, for the indefinitely extended walks, that dispense
with the dependence on the contemporary cluster and so enjoy greater independence
structure. Define, for s > 1,

K+
m,k(t, x, s) :=

m+k∑

j=m+1

1{S
(j)

η
(j)
[−x,x]

> x, T
(j)
t < η

(j)
[−x,sx]}, (3.12)

the number of the next k random walks, released after time m, that (i) exit the interval
[−x, x] on the right and (ii) visit t before they exit [−x, sx]. The events in the indicators
in (3.12) are i.i.d., so that

K+
m,k(t, x, s) ∼ Bin

(
k, p+(t, x, s)

)
, (3.13)

where
p+(t, x, s) := P0

(
Sη[−x,x]

> x, Tt < η[−x,sx]

)
. (3.14)

Similarly, let

K−
m,k(t, x, s) :=

m+k∑

j=m+1

1{S
(j)

η
(j)
[−x,x]

< −x, T
(j)
t < η

(j)
[−sx,x]}, (3.15)

be the number of the next k random walks, released after time m, that (i) exit the interval
[−x, x] on the left and (ii) visit t before they exit [−sx, x]. The events in the indicators
in (3.15) are i.i.d., so that

K−
m,k(t, x, s) ∼ Bin

(
k, p−(t, x, s)

)
, (3.16)

where
p−(t, x, s) := P0

(
Sη[−x,x]

< −x, Tt < η[−sx,x]

)
. (3.17)

The following is our basic tool for obtaining upper bounds on σx.

Lemma 3.4. Fix s > u > 1. If, for x, k ∈ N, it holds that

min
t∈Z∩(x,ux]

min
(
K+

σx,k
(t, x, s), K−

σx,k
(−t, x, s)

)
≥ ⌈(s− 1)x⌉, (3.18)

then σux ≤ σx + k.

Proof. Consider t ∈ Z ∩ (x, ux]. If K+
σx,k

(t, x, s) ≥ ⌈(s − 1)x⌉, then at least ⌈(s − 1)x⌉
(indefinitely extended) random walks, released after time σx, visit site t before exiting
[−x, sx]. The set [−x, sx] \ [−x, x] contains no more than (s− 1)x sites of Z, and so not
all of the ⌈(s− 1)x⌉ particles can terminate before reaching t. Hence

K+
σx,k

(t, x, s) ≥ ⌈(s− 1)x⌉ implies that t ∈ Cσx+k.

Similarly, K−
σx,k

(−t, x, s) ≥ ⌈(s − 1)x⌉ implies that −t ∈ Cσx+k. It follows that (3.18)
implies that t ∈ Cσx+k for all t ∈ [−ux, ux] ∩ Z, and hence σux ≤ σx + k.
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3.3 Finite variance

To apply Lemma 3.4, we need to choose k = kx, depending on x, in such a way that the
event in (3.18) occurs with high probability. To do so, we will use binomial concentration
applied to (3.13) and (3.16), and hence we need to quantify the asymptotics of p+ and
p− defined at (3.14) and (3.17), respectively. We achieve this through results which make
the heuristic ideas in Section 3.1 formal, and will enable us to prove Proposition 3.1 and
hence Theorem 1.3.

Lemma 3.5. Suppose that (I) holds, E(X2) < ∞, and EX = 0. Then for every ε > 0,
there is a uε > 1 such that the following holds. For every u ∈ (1, uε) and every s > u,

lim
x→∞

sup
t∈Z∩[x,ux]

∣∣∣∣p
±(t, x, s)−

1

2

∣∣∣∣ < ε. (3.19)

Proof. First observe that, by the gambler’s ruin asymptotics in Lemma 2.6(i),

lim
x→∞

P0

(
Sη[−x,x]

> x
)
= 1/2. (3.20)

Consequently, for every s > 1, we have the upper bound

lim sup
x→∞

sup
t∈Z

P0

(
Sη[−x,x]

> x, Tt < η[−x,sx]

)
≤

1

2
. (3.21)

To obtain a lower bound, consider t ∈ Z ∩ [x, ux], and write, for B ∈ R+,

P0

(
Sη[−x,x]

> x, Tt < η[−x,sx]

)
≥ E0

[
P0

(
Tt < η[−x,sx]

∣∣ Fη[−x,t]

)
1{t < Sη[−x,t]

< t+B}
]
,

where, as in Section 2.2, Fn = σ(S0, S1, . . . , Sn), with respect to which η[−x,t] is a stopping
time. By Lemma 2.2(ii) (tightness of the overshoots) we have that, for every ε > 0, we
may choose B large enough so that supt∈Z P0(Sρt ≥ t + B) ≤ ε; fix ε > 0 and such a B.
By the strong Markov property, it holds that, on {t < Sη[−x,t]

< t +B},

min
t∈[x,ux]

P0

(
Tt < η[−x,sx]

∣∣ Fη[−x,t]

)
≥ min

t∈[x,ux]
min

y∈[t,t+B]∩Z
Py

(
Tt < η[−x,sx]

)

≥ min
t∈[x,ux]

min
y∈[0,B]∩Z

Py

(
T0 < η[−x−t,sx−t]

)

≥ min
y∈[0,B]∩Z

Py

(
T0 < η[−x,(s−u)x]

)
,

since η[−x,(s−u)x] ≤ η[−x−t,sx−t] for every t ∈ [x, ux]. This last bound tends to 1 as x → ∞,
provided s > u > 1, by the local hitting property, Lemma 2.5. Hence for every ε > 0,
and every s > u > 1, for all x large enough

min
t∈[x,ux]

P0

(
Sη[−x,x]

> x, Tt < η[−x,sx]

)
≥ min

t∈[x,ux]
P0

(
t < Sη[−x,t]

< t +B
)
− ε.

Recalling from (2.5) and (2.15) that ρt = η(−∞,t], we have

P0

(
t < Sη[−x,t]

< t+B
)
= P0

(
Sη[−x,t]

> t, Sρt < t +B
)

≥ P0

(
Sη[−x,t]

> t
)
−P0(Sρt ≥ t+B)

≥ P0

(
Sη[−x,t]

> t
)
− ε,
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by choice of B. Since {Sη[−x,t+1]
≥ t + 1} ⊆ {Sη[−x,t]

≥ t} for every t ∈ Z+, another
application of the gambler’s ruin asymptotics in Lemma 2.6(i) shows that, for every
ε > 0 and u > 1, for all x large enough,

min
t∈[x,ux]

P0

(
Sη[−x,t]

> t
)
≥ P0

(
Sη[−x,ux]

> ux
)
≥

1

1 + u
− ε.

Thus we conclude that for every ε > 0 and s > u > 1, for all x large enough,

min
t∈[x,ux]

P0

(
Sη[−x,x]

> x, Tt < η[−x,sx]

)
≥

1

1 + u
− ε.

In particular, we can choose u > 1 close enough to 1 so that this last probability is
arbitrarily close to 1/2, which combines with (3.21) to conclude the proof of the statement
for p+ in (3.19). The proof of the statement for p− is analogous.

The following high-probability statements are obtained from the probability bounds
in Lemma 3.5 via binomial concentration.

Lemma 3.6. Suppose that (I) holds, E(X2) <∞, and EX = 0. There exists ε0 ∈ (0, 1)
such that the following holds. Take ε ∈ (0, ε0), and let uε > 1 be as given in Lemma 3.5.
Then, for every u ∈ (1, uε) and every s > u, there exist c > 0 (depending on ε) and
x0 > 0 such that, for all x > x0, with kx := ⌈(2 + 7ε)(s− 1)x⌉,

max
t∈Z∩[x,ux]

P
(
K+

σx,kx
(t, x, s) < (s− 1)x

)
≤ e−c(s−1)x, (3.22)

and
max

t∈Z∩[x,ux]
P
(
K−

σx,kx
(−t, x, s) < (s− 1)x

)
≤ e−c(s−1)x. (3.23)

Proof. Standard Chernoff bounds for binomial large deviations (see e.g. [40, p. 16]) say
that if X ∼ Bin(n, p) and a ∈ (0, 1), then P(X < anp) ≤ exp(−canp), where ca >
0. Recall from (3.13) that that K+

σx,k
(t, x, s) follows a binomial distribution with mean

kp+(t, x, s). Choose kx = ⌈(2 + 7ε)(s− 1)x⌉. For u ∈ (1, uε), s > u, and x large enough,
Lemma 3.5 shows that, for all t ∈ Z ∩ [x, ux],

kxp
+(t, x, s) ≥ (2 + 7ε)(s− 1)x ·

(
1

2
− ε

)
> (1 + ε)(s− 1)x,

for all ε ∈ (0, ε0) sufficiently small. The binomial Chernoff bound stated above then
yields (3.22), where c > 0 depends only on ε. A similar argument yields (3.23).

Proof of Proposition 3.1. Let ε0 > 0 be the constant from Lemma 3.6. Take ε ∈ (0, ε0),
and let uε > 1 be as given in Lemma 3.5. It follows from Lemma 3.6 that, for every
u ∈ (1, uε) and every s > u, there exist c > 0 (depending on ε) and x0 > 0 such that, for
all x > x0, with kx = ⌈(2 + 7ε)(s− 1)x⌉,

P

(
min

t∈Z∩(x,ux]
min

(
K+

σx,kx
(t, x, s), K−

σx,kx
(−t, x, s)

)
< ⌈(s− 1)x⌉

)

≤ 2ux max
t∈Z∩(x,ux]

max
{
P
(
K+

σx,kx
(t, x, s) < (s− 1)x

)
,P

(
K−

σx,kx
(−t, x, s) < (s− 1)x

)}

≤ 2uxe−c(s−1)x.
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In particular, we obtain

∑

x∈N

P

(
min

t∈Z∩(x,ux]
min

(
K+

σx,kx
(t, x, s), K−

σx,kx
(−t, x, s)

)
< ⌈(s− 1)x⌉

)
<∞.

It follows from Lemma 3.4 and the Borel–Cantelli lemma that, almost surely, for all but
finitely many x ∈ N, (3.18) holds and thus σux ≤ σx + kx. In particular, considering the
subsequence x = um, it follows that there is a (random, a.s. finite) m0 ∈ N such that

σum+1 − σum ≤ kum ≤ 1 + (2 + 7ε)(s− 1)um, for all m ≥ m0.

Consequently, for all m ≥ m0,

σum = σum0 +

m−1∑

ℓ=m0

(σuℓ+1 − σuℓ)

≤ σum0 +m+ (2 + 7ε)(s− 1)
m−1∑

ℓ=0

uℓ

≤ σum0 +m+ (2 + 7ε)

(
s− 1

u− 1

)
um. (3.24)

For fixed u ∈ (1, uε) and every x ∈ N, there exists mx ∈ Z+ such that umx ≤ x < umx+1;
note that mx → ∞ as x → ∞. Since σx ≤ σumx+1, it follows from (3.24) that, for each
u ∈ (1, uε) and s > u,

lim sup
x→∞

σx
x

≤ lim sup
x→∞

σumx+1

umx

≤ (2 + 7ε)

(
s− 1

u− 1

)
u+ lim sup

x→∞

σum0 +mx + 1

umx

= (2 + 7ε)

(
s− 1

u− 1

)
u. (3.25)

Since, for fixed ε ∈ (0, ε0), the choices of s and u were arbitrary subject to s > u and
u ∈ (1, uε), it follows from (3.25) that lim supx→∞(σx/x) ≤ 2 + 7ε, a.s. Since ε ∈ (0, ε0)
was arbitrary, this completes the proof.

Proof of Theorem 1.3. As explained in Section 3.1, Theorem 1.3 follows from the
bound (1.4) together with the bound from Proposition 3.1 and the inversion described
by (3.2).

3.4 Infinite variance

In the infinite-variance case, the present section deals with the proof of the upper bound
given in Proposition 3.2. For Theorem 1.6 we also need a lower bound σx/x > c with
c > 2, which we establish in Section 3.5 below. This section is concerned with the upper
bound on σx/x required for Proposition 3.2.

The structure of this section parallels that of Section 3.3. The strategy is to once more
apply Lemma 3.4, but now the asymptotics of p+ and p− defined in (3.14) and (3.17),
respectively, are different. Define

q
α
(u, s) :=

(
α− 1

1 + u

)(
s− u

s

)1−α
2

. (3.26)
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Lemma 3.7. Suppose that (I) holds, and that (Sα) holds with α ∈ (1, 2). For every u > 1
and every s > u, with q

α
as defined at (3.26), it holds that

lim inf
x→∞

min
t∈Z∩[x,ux]

p±(t, x, s) ≥ q
α
(u, s). (3.27)

In what follows, as in Section 3.3, we are free to choose s and u such that s > u > 1,
and, as before, for a fixed probability lower bound on p±, the optimal choice would be to
take u ≈ 1 and s ≈ u. However, the bound in (3.27) has q

α
(u, s) → 0 as s−u→ 0, and in

fact this is inevitable in the infinite-variance case, since the overshoot is not tight. Thus
we must keep s− u strictly positive, and then (compare (3.25)) one must also keep u− 1
strictly positive. The balance is then to choose u, s so that s− u and u− 1 are positive,
but not too large. The optimal choice can be found by some calculus, but provides a
somewhat complicated formula. As our aim here is not to obtain the optimal constants,
but to provide reasonable bounds that capture important asymptotics (such as α ↑ 2
behaviour) we instead will choose u = 1 + h, s = u+ h2 = 1 + h + h2. Then

q
α
(1 + h, 1 + h + h2) =

(α− 1)

(2 + h)

h2−α

(1 + h+ h2)1−α/2
. (3.28)

The bound (3.28) has the property that it goes to 1/2 as h ↓ 0 and α ↑ 2 appropriately.

Proof of Lemma 3.7. Note that for t ∈ Z ∩ [x, ux] we have

p+(t, x, s) = P0(Tt < η[−x,sx]) = P−t(T0 < η[−x−t,sx−t]) = Pt(T0 < η[t−sx,x+t]),

by a change of sign and the symmetry hypothesis in (Sα). Hence, using the definition of
(2.19), we obtain

p+(t, x, s) = qα,x+t

(
t

x+ t
;
sx− t

x+ t

)
.

Note that for t ∈ [x, ux] ∩Z we have sx−t
x+t

≥ s−u
1+u

and thus, by the monotonicity property
(2.20) we obtain that

qα,x+t

(
t

x+ t
;
sx− t

x+ t

)
≥ qα,x+t

(
t

x+ t
;
s− u

1 + u

)
.

It follows from (2.24) and (2.25), which are consequences of Kesten’s convergence and
equicontinuity results as presented in Lemmas 2.8 and 2.10 that

lim
x→∞

min
t∈Z∩[x,ux]

qα,x+t

(
t

x+ t
;
s− u

1 + u

)
= inf

y∈[ 1
2
, u
1+u

]
qα

(
y;
s− u

1 + u

)
.

Using the lower bound from (2.26) and observing that α
2
− 1 < 0 we get

inf
y∈[ 1

2
, u
1+u

]
qα

(
y;
s− u

1 + u

)
≥ (α− 1)

(
s− u

1 + u

)1−α
2

inf
y∈[ 1

2
, u
1+u

]

[(
y +

s− u

1 + u

)α
2
−1

(1− y)

]

= (α− 1)

(
s− u

1 + u

)1−α
2
(

s

1 + u

)α
2
−1

1

1 + u
,

which is equal to q
α
(u, s) as defined at (3.26). The proof of the statement for p− is

analogous.
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The next result will substitute for Lemma 3.6 in the infinite-variance setting.

Lemma 3.8. Suppose that (I) holds and that (Sα) holds with α ∈ (1, 2). Take u, s ∈ R,
such that 1 < u < s and let q := q

α
(u, s) as given in definition (3.26). Then, there exist

ε0 ∈ (0, 1), K > 0, and x0 > 0 such that the following holds. For all x > x0, every
ε ∈ (0, ε0), with kx := ⌈(q−1 +Kε)(s− 1)x⌉, there is c > 0 for which

max
t∈Z∩[x,ux]

P
(
K+

σx,kx
(t, x, s) < (s− 1)x

)
≤ e−c(s−1)x, (3.29)

and
max

t∈Z∩[x,ux]
P
(
K−

σx,kx
(−t, x, s) < (s− 1)x

)
≤ e−c(s−1)x. (3.30)

Proof. Given u, s with 1 < u < s, take q := q
α
(u, s) > 0 where q

α
(u, s) is defined

at (3.26). Then there exist ε0 > 0 and K ∈ N (both depending on q and hence on u and
s) such that (

q−1 +Kε
)
· (q − ε) > (1 + ε), for all ε ∈ (0, ε0). (3.31)

Define kx = ⌈(q−1+Kε)(s−1)x⌉, as in the lemma, for this choice of K. Take ε ∈ (0, ε0).
By Lemma 3.7, it holds that p+(t, x, s) > q

α
(u, s) − ε for all x large enough. Then it

follows from the choice of kx, and property (3.31), that

kxp
+(t, x, s) ≥

(
q−1 +Kε

)
(s− 1)x · (q − ε) > (1 + ε)(s− 1)x.

The binomial Chernoff bound stated in the proof of Lemma 3.6 then yields (3.29), where
c > 0 depends only on ε. A similar argument yields (3.30).

Proof of Proposition 3.2. Let 1 < u < s and ε0 > 0 be the constants from Lemma 3.8.
It follows from Lemma 3.8 that for every ε ∈ (0, ε0) there exist K > 0, depending
on q = q

α
(u, s), c > 0 and x0 > 0, depending on ε, such that, for all x > x0, with

kx = ⌈(q−1 +Kε)(s− 1)x⌉,

P

(
min

t∈Z∩(x,ux]
min

{
K+

σx,kx
(t, x, s), K−

σx,kx
(−t, x, s)

}
< ⌈(s− 1)x⌉

)

≤ ux max
t∈Z∩[x,ux]

(
P
(
K+

σx,kx
(t, x, s) < (s− 1)x

)
+ P

(
K−

σx,kx
(−t, x, s) < (s− 1)x

) )

≤ 2uxe−c(s−1)x.

In particular, we obtain

∑

x∈N

P

(
min

t∈Z∩(x,ux]
min

(
K+

σx,kx
(t, x, s), K−

σx,kx
(−t, x, s)

)
< ⌈(s− 1)x⌉

)
<∞.

It follows from Lemma 3.4 and the Borel–Cantelli lemma that, almost surely, for all but
finitely many x ∈ N, (3.18) holds and thus σux ≤ σx + kx. Proceeding as in the proof
of Proposition 3.1, but with kx given in Lemma 3.6 replaced by that in Lemma 3.8,
repeating the steps through (3.24)–(3.25), we obtain

lim sup
x→∞

σx
x

≤ (q−1 +Kε)

(
s− 1

u− 1

)
u, a.s.
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Here ε ∈ (0, ε0) was arbitrary, and K, u, s do not depend on ε, so it holds that

lim sup
x→∞

σx
x

≤
1

q
α
(u, s)

(
s− 1

u− 1

)
u, a.s. (3.32)

Then using the expression (3.28) together with (3.26), it follows from (3.32) that

lim sup
x→∞

σx
x

≤
1 + u

α− 1

(
s

s− u

)1−α
2
(
s− 1

u− 1

)
u, a.s. (3.33)

Now choose u = 1 + h and s = 1 + h + h2 for some h ∈ [0, 1]. Then using the fact that
α ∈ (1, 2) and h ∈ [0, 1], in the bound (3.33) we get, a.s.,

lim sup
x→∞

σx
x

≤ (α− 1)−1(2 + h)(1 + h)2(1 + h+ h2)1−α/2hα−2

≤ (α− 1)−1(2 + h)(1 + h)2(1 + h+ h2)1/2hα−2

≤ (α− 1)−1(2 + h)(1 + h)2(1 + 2h)1/2hα−2

≤ (α− 1)−1(2 + h)(1 + h)3hα−2.

Now we take h = 2− α, to give

lim sup
x→∞

σx
x

≤ (α− 1)−1(4− α)(3− α)3(2− α)α−2, a.s.

This completes the proof, with the value for C ′
α given at (3.4).

3.5 Upper bounds: Infinite variance

In this section we prove lower bounds σx/x > C ′
α with C ′

α > 2. In particular, by the
inversion argument relating σx and rm presented in (3.2), we will establish the upper
bound in Theorem 1.6. Define uα : (1,∞) → (0, 1) by

uα(w) := 2
α
2
−1(α− 1)

sin(πα/2)

π

∫ ∞

w−1

dv

vα/2(2 + v)α/2(1 + v)
, for w > 1. (3.34)

Proposition 3.9. Suppose that (I) holds, and that (Sα) holds with α ∈ (1, 2). With C ′
α

given by (3.4), set

C ′′
α := 2 + sup

{
(C − 2) ∧ uα((3/2)(C − 1))

C + 1
: C > C ′

α

}
.

Then it holds that, a.s.,

lim inf
x→∞

σx
x

≥ C ′′
α > 2. (3.35)

A key component in the proof of Proposition 3.9 is Lemma 3.10 below. The result
is underpinned by an extension due to Kesten [30] of the Dynkin–Lamperti theorem
(Proposition 2.3), which shows that when each walk overshoots [−x, x] there is a positive
probability it ends up at a distance at least Ax, say, for appropriately large A. The
proof of Lemma 3.10 combines the latter result with Kesten’s hitting estimates from
Lemma 2.8. To state the lemma we need some further notation.
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Let Gm := σ(S(1), . . . , S(m)), the σ-algebra generated by the firstm random walks, and
note that σx defined in (3.1) is a stopping time with respect to the filtration (Gm)m∈Z+ .
For m ∈ Z+, A > 0 set

kx(m,A) := #
(
Cσx+m \ [−Ax,Ax]

)
, (3.36)

the number of occupied sites outside [−Ax,Ax] at time σx +m. For A > 1, we think of
kx(m,A) as “lost particles” that are too far away to contribute in the near future to the
filling of the main cluster. The following result is a probability estimate that shows that
lost particles are readily generated.

Lemma 3.10. Let A > 1, B > 0. Recall the definition of uα from (3.34). Then for every
u ∈ (0, uα(A+B)) and every θ ∈ (0, B ∧ u), there is an x0 ∈ N such that, for all x ≥ x0,

P(kx(x,A) ≤ θx | Gσx
) ≤ exp(−(θ − u)2x/2), on {kx(0, A) < Bx}. (3.37)

Proof. For A > 0, x ∈ Z+, and m ∈ Z+, let ∆x(m,A) := kx(m + 1, A) − kx(m,A) and

note that ∆x(m,A) = 1{|S
(σx+m+1)
τσx+m+1 | > Ax}. The first step in the proof of (3.37) is to

obtain a lower bound on

P(∆x(m,A) = 1 | Gσx+m) = P
(∣∣S(σx+m+1)

τσx+m+1

∣∣ > Ax
∣∣ Gσx+m

)
. (3.38)

Let B > 0. For y ∈ Z, x ∈ Z+, and j > σx, define

IB(x, y, j) :=
([
y − Bx

2
, y + Bx

2

]
∩ Z

)
\ Cj, (3.39)

the sites within distance Bx/2 of y which are not occupied by the cluster at time j.

Recall, from (1.2) and (3.7), that τj = η
(j)
Cj−1

and thus Cj grows from Cj−1 by addition of

S
(j)
τj , that is, S

(j)
τj is the first site outside of Cj−1 visited by the jth random walk. Recall the

definitions (3.6)–(3.7), and define η̃
(j)
B (x, y) := inf{n > η

(j)
[−x,x] : S

(j)
n /∈ [y − Bx, y + Bx]}.

With this notation η̃
(j)
B (x, y) denotes the first time the jth random walk lands outside the

interval [y −Bx, y +Bx] after it exits the interval [−x, x]. Note that for j > σx, the jth

random walk is still active when it exits [−x, x]. If t ∈ IB(x, y, j) and T
(j)
t ≤ η̃

(j)
B (x, y),

then S
(j)
τj ∈ [y − Bx, y + Bx] and |S

(j)
τj | > Ax for any |y| > A + B. Therefore, for any

j > σx, we have

⋃

y∈Z: |y|>(A+B)x

{
S
(j)

η
(j)
[−x,x]

= y, min
t∈IB(x,y,j)

T
(j)
t < η̃

(j)
B (x, y)

}
⊆

{∣∣S(j)
τj

∣∣ > Ax
}
. (3.40)

Now, for I ⊂ Z, set

FB(x, y, I) := P0

(
Sη[−x,x]

= y, min
t∈I

Tt < η̃B(x, y)
)
.

By the strong Markov property applied at time η[−x,x], we have

FB(x, y, I) = P0

(
Sη[−x,x]

= y
)
Py

(
min
t∈I

Tt < η[y−Bx,y+Bx]

)

≥ P0

(
Sη[−x,x]

= y
)
inf
t∈I

Py

(
Tt < η[y−Bx,y+Bx]

)
.
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Combined with (3.40), it follows that, for j > σx, on {IB(x, y, j) 6= ∅},

P
(∣∣S(j+1)

τj+1

∣∣ ≥ Ax
∣∣ Gj

)

≥
∑

y∈Z: |y|>(A+B)x

FB(x, y, IB(x, y, j))

≥
∑

y∈Z: |y|>(A+B)x

P0

(
Sη[−x,x]

= y
)

inf
t∈[y−Bx

2
,y+Bx

2
]∩Z

Py

(
Tt < η[y−Bx,y+Bx]}

)
. (3.41)

Now, by the symmetry assumption of the increments contained in (Sα), we have

inf
t∈[y−Bx

2
,y+Bx

2
]∩Z

Py

(
Tt < η[y−Bx,y+Bx]}

)
= inf

t∈[y−Bx
2
,y]∩Z

Py

(
Tt < η[y−Bx,y+Bx]}

)

By translation invariance,

Py

(
Tt < η[y−Bx,y+Bx]

)
= Py−t

(
T0 < η[y−t−Bx,y−t+Bx]}

)
,

for all y and t. Therefore, we have

inf
t∈[y−Bx

2
,y]∩Z

Py

(
Tt < η[y−Bx,y+Bx]}

)
= inf

z∈[0,Bx
2

]∩Z
Pz

(
T0 < η[z−Bx,z+Bx]}

)
.

Since Pz(T0 < η[z−Bx,z+Bx]) ≥ Pz(T0 < η[−Bx
2

,Bx]) for z ∈ [0, Bx
2
] ∩ Z, it follows that

inf
z∈[0,Bx

2
]∩Z

Pz

(
T0 < η[z−Bx,z+Bx]

)
≥ inf

z∈[0,Bx
2

]∩Z
Pz

(
T0 < η[−Bx

2
,Bx]

)
.

Using the notation in (2.19) we may write

inf
z∈[0,Bx

2
]∩Z

Pz

(
T0 < η[−Bx

2
,Bx]

)
= inf

z
Bx

∈[0, 1
2
], z∈Z

qα,Bx

(
z
Bx

; 1/2
)

≥ inf
y∈[0, 1

2
]
qα,Bx

(
y; 1/2

)
.

From the equicontinuity of qα,x as at (2.25) and the lower bound from (2.26) we obtain

lim
x→∞

inf
y∈[0, 1

2
]
qα,Bx

(
y; 1/2

)
= inf

0≤y≤1/2
qα(y; 1/2) ≥ (α− 1)(1/2)2−

α
2 =: rα. (3.42)

Let ε > 0. Then, using the bound (3.42) in (3.41), we obtain, for all x ≥ x0 large
enough, on the event

⋂
y:|y|>(A+B)x{I(x, y, j) 6= ∅},

P
(∣∣S(j+1)

τj+1

∣∣ > Ax
∣∣ Gj

)
≥ (rα − ε)

∑

y∈Z: |y|>(A+B)x

P0

(
Sη[−x,x]

= y
)

= (rα − ε)P0

(∣∣Sη[−x,x]

∣∣ > (A +B)x
)
. (3.43)

Kesten [31, p. 270] considers the quantity Gα(w; x, 1) := P0(x < Sη[−x,x]
≤ (w + 1)x).

Under hypothesis (Sα), Kesten proved in [30] that limx→∞Gα(w; x, 1) = Gα(w, 1) exists,
and gives a formula for Gα(w, 1) in Theorem 1 of [31, p. 271]. Moreover, the symmetry
assumed in (Sα) shows that P0(|Sη[−x,x]

| > (w + 1)x) = 2P0(Sη[−x,x]
> (w + 1)x). In

particular, it follows from Theorem 1 of [31] that, for w > 0,

lim
x→∞

P0

(∣∣Sη[−x,x]

∣∣ > (w+1)x
)
=

2 sin(πα/2)

π

∫ ∞

w

dv

vα/2(2 + v)α/2(1 + v)
=: sα(w). (3.44)
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Combining (3.43) and (3.44), we obtain for δ ∈ (0, 1/2) that, for every ε > 0, for all
x ≥ x0 large enough, on {I(x, y, j) 6= ∅},

P
(∣∣S(j+1)

τj+1

∣∣ > Ax
∣∣ Gj

)
≥ uα(A+B)− ε, (3.45)

where uα(w) = rαsα(w − 1), with rα and sα given at (3.42) and (3.44), which gives the
expression at (3.34).

Recall from (3.36) that kx(m,A) counts the number of particles in Cσx+m \ [−Ax,Ax].
Now observe that if kx(m,A) < Bx, then at time σx+m, for every y with |y| > (A+B)x
we have at least one unoccupied site in [y − Bx

2
, y + Bx

2
], since the length of the interval

[y− Bx
2
, y+ Bx

2
] is Bx, and thus, with the notation at (3.39), we have I(x, y, σx+m) 6= ∅.

Hence, from (3.38) with the j = σx +m case of (3.45),

P(∆x(m,A) = 1 | Gσx+m) ≥ uα(A+B)− ε, on {kx(m,A) < Bx}. (3.46)

Now for θ ∈ (0, B), let

λx := inf{m ∈ Z+ : kx(m,A) > θx}. (3.47)

Note that {kx(x,A) ≤ θx} = {λx > x}. For 0 < u < uα(A + B), let Mm := kx(m ∧
λx, A)− u(m ∧ λx). Recall that kx(m,A) = kx(0, A) +

∑m−1
j=0 ∆x(j, A). Since θ < B, we

can (and do) assume that x is large enough so that θx+ 1 < Bx. Then observe that, for
all x sufficiently large, it follows from (3.46) that

E (∆x(m ∧ λx, A) | Gσx+m) ≥ u, a.s.,

since for any m < λx, kx(m∧ λx, A) ≤ θx+ 1 < Bx by the definition of λx. Thus, for all
x sufficiently large, from the Doob decomposition of kx(m,A) (see e.g. Theorem 5.2.10
of [20]), it follows that (Mm)m∈Z+ is a submartingale adapted to (Gσx+m)m∈Z+ .

From (3.46) and the fact that ∆x(m,A) ∈ {0, 1} it follows that for 0 < θ < u ∧ B

P(λx > x | Gσx
) = P(kx(x,A) < θx, λx > x | Gσx

)

= P(kx(x,A)− ux < (θ − u)x, λx > x | Gσx
)

= P(Mx < (θ − u)x, λx > x | Gσx
)

≤ P(Mx < (θ − u)x | Gσx
) ≤ exp(−(θ − u)2x/2), (3.48)

where we use the Azuma–Hoeffding inequality for submartingales, Theorem 2.4.14 of [39].
This yields (3.37).

Next we prove Proposition 3.9.

Proof of Proposition 3.9. First observe that from (3.5) established in Proposition 3.2
above, for every C > C ′

α > 2 as given at (3.4), a.s., for all but finitely many x ∈ N,
it holds that σx ≤ Cx. Thus, at time Cx, there are 2x of the walks that have oc-
cupied sites in [−x, x], and at most C − 2x of the walks that are outside [−x, x].
It follows from definition of kx at (3.36) that, for every A ≥ 1, a.s., for all but fi-
nitely many x ∈ N, kx(0, A) ≤ (C − 2)x. In particular, we can choose A > 1 and
B = C − 2 > 0, to conclude that kx(0, A) ≤ Bx for all but finitely many x ∈ N.
Then from (3.37) we have that for every u ∈ (0, uα(A + B)) and every θ ∈ (0, B ∧ u),∑

x∈N P(kx(x,A) ≤ θx | Gσx
) < ∞. Hence, by Lévy’s conditional Borel–Cantelli
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lemma [29, p. 131], we conclude that kx(x,A) > θx for all but finitely many x ∈ N,
a.s.

Now choose A = (C + 1)/2. If σy ≤ Cy and ky(y, A) > θy, then σy + y ≤ (C + 1)y =
2Ay, meaning that at time 2Ay there are more than θy sites outside [−Ay,Ay]. Therefore
at time 2Ay there are at least θy empty sites in [−Ay,Ay]. Those empty sites must be
filled before time σAy and consequently, σAy ≥ 2Ay+ θy. Taking y = ⌊x/A⌋, we conclude
that, a.s.,

lim inf
x→∞

σx
x

≥ 2 +
2θ

C + 1
, (3.49)

where C > C ′
α. The inequality (3.49) holds true for any positive θ ≤ B ∧ uα(A + B),

with B = C − 2 and A > 1. Therefore, we can choose A such that A+B < (3/2)(C − 1)
to conclude from uα(A+B) ≥ uα((3/2)(C − 1)) that

lim inf
x→∞

σx
x

≥ 2 +
(C − 2) ∧ uα((3/2)(C − 1))

C + 1
, a.s.

Since C > C ′
α was arbitrary, this completes the proof.

Finally, we conclude this section with the proof of Theorem 1.6.

Proof of Theorem 1.6. First, with C ′
α ∈ (2,∞) as given at (3.4), we have from (3.5)

in Proposition 3.2 that lim supx→∞ σx/x ≤ C ′
α, a.s. Together with the inversion rela-

tion (3.1)–(3.2), it follows immediately that lim infm→∞ rm/m ≥ 1/C ′
α, a.s., which yields

the lower bound in (1.7) with cα := 1/C ′
α ∈ (0, 1/2). The formula (1.8) for cα follows

directly from formula (3.4) for C ′
α.

In the other direction, we have from (3.35) in Proposition 3.9 that lim infx→∞ σx/x ≥
C ′′

α, a.s., where C
′
α ≥ C ′′

α > 2 is as defined in Proposition 3.9. Again, inversion then yields
lim supm→∞ rm/m ≤ c′α, a.s., where c

′
α := 1/C ′′

α satisfies 0 < cα ≤ c′α < 1/2, completing
the proof of (1.7) and hence of Theorem 1.6.

A Eventual filling

This short appendix presents the proof of Proposition 1.2. As in Section 3.5, we write
Gm = σ(S(1), . . . , S(m)).

Proof of Proposition 1.2. It suffices to prove that for every A ⊆ Z finite, we have A ⊆ C∞,
a.s. Fix such an A. Let z ∈ A. Then, by the irreducibility property (1.1), there exist
pz > 0, nz ∈ Z+, and xz,1, . . . , xz,nz−1 ∈ Z \ {0, z} such that

P(S1 = xz,1, . . . , Snz−1 = xz,nz−1, Sn = z) = pz > 0.

With probability pnz
z , a sequence of nz successive random walkers will follow path

xz,1, . . . , xz,nz−1, z for their first nz steps; on this event, at least one of the walkers
will reach z before terminating, and so z ∈ C∞. Set pA :=

∏
z∈A p

nz
z > 0 and

nA :=
∑

z∈A nz < ∞. Given Cm, iterating the above argument shows that (regard-
less of the existing configuration), with probability pA, the sequence of random walkers
m+ 1, m+ 2, . . . , m+ nA executes an event such that A ⊆ Cm+nA

; that is,

P(A ⊆ C∞ | Gm) ≥ P(A ⊆ Cm+nA
| Gm) ≥ pA, a.s.
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Denoting G∞ := σ(∪m∈Z+Gn), it follows from Lévy’s zero–one law (see e.g. Theorem 5.5.8
of [20]) that

P(A ⊆ C∞ | G∞) = lim
m→∞

P(A ⊆ C∞ | Gm) ≥ pA, a.s.

But since {A ⊆ C∞} ∈ G∞, this means that 1{A ⊆ C∞} ≥ pA, a.s., for deterministic
pA > 0, from which it must hold that P(A ⊆ C∞) = 1.

B Equicontinuity

The aim of this section is to prove Lemma 2.10. The first step is the following lemma,
which is essentially provided already by Kesten. Recall that the local hitting property,
Lemma 2.5, expresses the fact that a recurrent random walk will very likely hit a point
at finite distance from its starting point before going far away; Lemma B.1 extends this
statement from points at a finite distance to points at a distance allowed to grow slowly
with the size of the interval. In this section of the appendix, we use the same notation
as Section 2.2; we recall in particular the notation Tt and ηA from (2.15).

Lemma B.1 (Kesten 1961 [31]). Suppose that (I) holds. For 1 < α ≤ 2, suppose in
addition that (if α = 2) E(X2) < ∞ and EX = 0, or (if 1 < α < 2) that (Sα) holds.
Then the following hold.

(i) For any ε > 0, there exist δ > 0 and N0s ∈ N, such that, for all N ≥ N0 and every
k ∈ Z with |k| ≤ δN ,

Pk

(
T0 < η(−∞,N ]

)
≥ 1− ε. (B.1)

(ii) For any ε > 0 and c > 0, there exist δ > 0 and N0 ∈ N, such that, for all N ≥ N0

and every k ∈ Z with |k| ≤ δN ,

Pk

(
T0 < η[−cN,N ]

)
≥ 1− ε. (B.2)

Proof. Part (i) is already available as Lemma 3 in [31] for 1 < α < 2. For α = 2, it is
available as Lemma 3 in [31] under the additional assumption of symmetric increment

distribution, i.e., X
d
= −X . If we remove this assumption, but instead assume that

EX = 0 and E(X2) < ∞, then it is easy to show that from Taylor expansion and
dominated convergence that

lim
t→0

1

t2
(
1− E

[
eitX

])
= E(X2);

observe also that EX = 0 and (I) together imply that E(X2) > 0. This observation is
the key ingredient in the proof of Lemma 3 in [31] (see equation (2.3) which leads to
(2.31) in [31]), and hence an exact verbatim proof as in Lemma 3 in [31] yields (B.1).

Part (ii) can be deduced from part (i), as is also indicated in the proof of Lemma 4
in [31]. Indeed, observe that for any c > 0, we have

{T0 < η(−∞,N ]} =
⋃

m∈N

{T0 < η[−cm,N ]},

where, for m ∈ N, the monotonicity property {T0 < η[−cm,N ]} ⊆ {T0 < η[−c(m+1),N ]} is
satisfied. Hence, by continuity of monotone limits,

lim
m→∞

Pk

(
T0 < η[−cm,N ]

)
= Pk

(
T0 < η(−∞,N ]

)
.

This, together with (B.1) completes the proof of (B.2).
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We are now ready to present the proof of Lemma 2.10.

Proof of Lemma 2.10. The proof for (ii) is already available in Lemma 4 in [31], so we
only prove part (i) here, which is also very similar.

Suppose that S0 = k, and observe that, for 0 < k < N ,

{T−1 < η(−∞,N ]} ⊆ {Sη[0,N]
< 0}. (B.3)

This shows that for any |y| < δ(ε),

pα,N(y) ≥ 1− ε. (B.4)

Therefore, for any 0 ≤ y1, y2 ≤ δ(ε), since 0 ≤ pα,N(y) ≤ 1

pα,N(y1) ≥ (1− ε) pα,N(y2), (B.5)

which proves equicontinuity for |y| < δ(ε). Hence, it is enough to show equicontinuity for
any y > δ(ε), the proof of which is similar to that of part (ii). We provide the details for
the purpose of completeness.

Let k1, k2 ≥ δ(ε)N , it follows from the Markov property and translation invariance,
that

pα,N

(k1
N

)
≥ Pk1

(
Sn = k2, for some 1 ≤ n < η

[
δ(ε)
2

N,N ]

)
pα,N

(k2
N

)
. (B.6)

It follows from translation invariance and (B.2), that for any given ε > 0, there exits
δ1(ε), such that

Pk1

(
Sn = k2, for some 1 ≤ n < η

[
δ(ε)
2

N,N ]

)
≥ 1− ε, (B.7)

whenever k1, k2 ≤ N(1− ε), and |k1 − k2| ≤ Nδ1(ε). Thus we can choose δ2(ε) > 0, such
that, for 0 ≤ y1, y2 < 1− ε and |y1 − y2| < δ2(ε), such that,

pα,N(y1) ≥ (1− ε)pα,N(y2). (B.8)

Since, y1 and y2 are arbitrary and 0 ≤ pα,N(y) ≤ 1, this proves (i).
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