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Abstract

Comparing the mean vectors across different groups is a cornerstone in the realm of mul-
tivariate statistics, with quadratic forms commonly serving as test statistics. However, when
the overall hypothesis is rejected, identifying specific vector components or determining the
groups among which differences exist requires additional investigations. Conversely, em-
ploying multiple contrast tests (MCT) allows conclusions about which components or groups
contribute to these differences. However, they come with a trade-off, as MCT lose some bene-
fits inherent to quadratic forms. In this paper, we combine both approaches to get a quadratic
form based multiple contrast test that leverages the advantages of both. To understand its the-
oretical properties, we investigate its asymptotic distribution in a semiparametric model. We
thereby focus on two common quadratic forms — the Wald-type statistic and the Anova-type
statistic — although our findings are applicable to any quadratic form.

Furthermore, we employ Monte-Carlo and resampling techniques to enhance the test’s
performance in small sample scenarios. Through an extensive simulation study, we assess
the performance of our proposed tests against existing alternatives, highlighting their advan-
tages.

Keywords: Bootstrap, MANOVA, Monte Carlo techniques, Multiple Testing, Resampling.
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1 Motivation and introduction

In multivariate analysis, comparing the mean vectors of two or more groups is one of the
most common null hypothesis, also known as one-way MANOVA. As traditional methods like
Hotelling’s T 2 or Wilk’s Lambda tests [Johnson et al., 2002, e.g.] rely on (too) restrictive assump-
tions like normality and covariance equality, the last two decades have seen the development
of alternative approaches to address these limitations. For example, Krishnamoorthy and Xia
[2006] or Smaga [2017] proposed methods for the two sample case while Konietschke et al.
[2015], Roy et al. [2015], Smaga [2015], Hu et al. [2017], Friedrich and Pauly [2018] or Sattler and Pauly
[2018] studied one-way and more general hypotheses in complex MANOVA designs.
An appropriate way to investigate hypotheses regarding vector-valued parameters, like expec-
tation vectors, are quadratic forms. This already holds for the common Hotelling’s T 2 and
Wilk’s Lambda tests but also applies for most of the generalizations mentioned above as well as
other multivariate hypotheses, e.g. in completely nonparametric settings Brunner et al. [2017,
2019], Dobler et al. [2020], Rubarth et al. [2022]. In these papers, only one or a few specific
quadratic forms are examined. More recently, Sattler [2021] and Baumeister et al. [2024] also
allow for a broader range of general quadratic forms.
One of the key strengths of quadratic forms as test statistics is that they yield a univariate
value out of multivariate input, but this also introduces a significant limitation: When the
hypothesis of equal mean vectors is rejected, this univariate test statistic does not indicate
where the differences in expectation vectors lie. As a result, this often necessitates further
pairwise comparisons with multiplicity adjustments, a process that can be notably inefficient.
In contrast, so-called multiple contrast tests (MCT) offer a compelling approach by not only
detecting differences in parameters but, at the same time, draw conclusions where the differ-
ences occur. MCT usually use a maximum of univariate t-type statistics as test statistics and
equicoordinate quantiles from multivariate normal, t- or resampling distributions as critical
values, see, e.g., Hasler and Hothorn [2008], Konietschke et al. [2012], Konietschke et al. [2013],
Gunawardana and Konietschke [2019], Umlauft et al. [2019], Noguchi et al. [2020] for some ex-
amples. However, for multivariate settings, the component-wise dependence is only taken into
account through the estimated correlation of these t-test statistics, and not within the test statis-
tics themselves. Thus, it would be beneficial to integrate quadratic forms with MCT as this
combination could yield a test procedure that leverages the advantages of both.
The aim of the present paper is to propose such quadratic form based MCT. Thereby, the pro-
cedures will allow general quadratic forms and specifically address the question where differ-
ences occur should the global hypothesis be rejected. For ease of presentation, we will initially
focus on the one-way hypothesis of equal group expectation vectors with subsequent identifi-
cation of responsible components. However, we later explain how the method can be extended
to more general settings and hypotheses. We examine the large sample properties of all proce-
dures by means of asymptotic theory. Here, it turns out that the commonly used equicoordi-
nate quantiles for MCT with t-type statistics will not lead to appropriate critical values for MCT
based on quadratic forms, making adoptions of other approaches necessary Bühlmann [1998],
Munko et al. [2023a,b]. The small sample performance of the resulting tests will be investigated
in Monte Carlo simulations.
The paper is organized as follows: In the subsequent section, the statistical model will be intro-
duced, together with the underlying assumptions. Afterwards, focusing on the equality of ex-
pectation vectors, the basic concept of multiple contrast tests and the test statistics are proposed,
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and the asymptotic distributions are derived (Section 3). Subsequently, this is generalized for
general partitions of global hypotheses without concentrating on the responsible components
for rejection. In Section 5, a resampling strategy is used to generate quantiles with the aim
to improve our tests’ small sample behaviour. This is demonstrated in Section 6, which con-
tains simulation results on type-I-error control and power for different alternatives, followed
by an illustrative application for a real EEG-data set (Section 7). In Section 8 we finally draw
conclusions and mention potential future applications. All proofs are deferred to a technical
supplement, where additional details and simulations can be found.

2 Model

We consider a general semiparametric model to achieve a broad applicability by independent
d-dimensional random vectors

Xik = µi + ǫik.

Here, the index k = 1, . . . , ni represents the subject on which d-variate observations are mea-
sured while the index i = 1, . . . , a refers to the respective group. Moreover, µi denotes the
expectation vector in group i while ǫik = (ǫikj)

d
j=1 is the corresponding random error of subject

k in that group. Thereby we consider a ≥ 2 groups and assume that for fixed i ∈ {1, ..., a} and
j ∈ {1, ..., d} the random variables ǫikj are identical distributed with E(ǫikj) = 0. It is important
to note that by splitting up the indices, this setting implies factorial designs inside a group as in
Konietschke et al. [2015].
We allow unbalanced sample sizes n1, ..., na and denote with N =

∑a
i=1 ni the total sample

size. For our asymptotic investigations, we employ two additional assumptions:

(A1) ni

N → κi ∈ (0, 1], i = 1, ..., a

(A2) Σi = Var(ǫik) ≥ 0, i = 1, ..., a.

Here, (A1) is the common converging group size assumption that ensures that no group is neg-
ligible, while assumption (A2) guarantees the existence of second moments.

To test hypotheses about mean vectors, we use different kinds of pooled mean vectors, a group-

wise mean vectorX i· =
1
ni

∑ni

k=1 Xik with corresponding X = (X
⊤
1·, ...,X

⊤
a·)

⊤ and a component-
wise mean vector

X
(j)

=

(
1

n1

n1∑

k=1

X1kj , ...,
1

na

na∑

k=1

Xakj

)⊤

.

Assumptions (A1) and (A2) guarantee that the normalized version of the latter
√
N X

(j)
pos-

sess the asymptotic block-diagonal covariance matrix Σ
(j) := diag(κ−1

1 (Σ1)jj , ..., κ
−1
a (Σa)jj) =

lim
N→∞

Var(
√
NX

(j)
) ≥ 0 for each j = 1, . . . , d.

In the following, we use P→ to denote convergence in probability and D→ for convergence in
distribution, both as N → ∞.
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3 Equality of mean vectors

We first consider the one-way MANOVA hypothesis

H0 : (µ1j)
d
j=1 = · · · = (µaj)

d
j=1.

We refer to it as global hypothesis since it is the intersection of the local hypotheses H(j)
0 : µ1j =

· · · = µaj . With the Kronecker-product and the centering matrix P a = Ia − 1a1
⊤
a /a, this hy-

potheses can be formulated using the hypothesis matrix C = P a ⊗ Id and µ = (µ⊤
1 , ...,µ

⊤
a )

⊤

through Cµ = 0ad. Thereby, Ia denotes the a× a identity matrix, 1a is an a-dimensional vector
of 1s and the superscript ⊤ indicates a transposed matrix or vector.
The mean vector is a consistent estimator for the expectation vector and with (A1) and (A2) it

follows from the multivariate central limit theorem that T :=
√
N (X −µ)

D→ Z ∼ Nad(0ad,Σ)

with Σ :=
⊕a

i=1 κ
−1
i Σi while

⊕
denotes the direct sum (i.e. it defines the block diagonal ma-

trix consisting of the entries). Therefore, under the null hypothesis H0 it holds that
√
NCX

D→
CZ ∼ Nad(0ad,CΣC⊤) allowing to consider test statistics in quadratic forms. Common exam-
ples cover the Wald-Type-Statistic

WTS(Σ) := N · (CX)⊤(CΣC⊤)+(CX)

using a Moore-Penrose inverse (denoted by the superscript +) and the Anova-Type-Statistic

ATS(Σ) := N · (CX)⊤(CX)/ tr(CΣC⊤)

as well as their empirical counterparts, where the unknown covariance matrix is substituted
by a consistent estimator Σ̃. Since in our setting, the empirical covariance matrices for the i-th
group, Σ̂i are consistent estimators for Σi, Σ̂ = N ·⊕a

i=1 n
−1
i Σ̂i is a suitable choice. Then, we

obtain asymptotic correct level α tests for the global hypothesis by using, for example, Monte-
Carlo-based quantiles for these statistics. However, in case of a rejection, it would often be nec-
essary to conduct further investigations to find the responsible components. A solution could be
given through multiple contrast tests, where we will outline the general idea for Σ > 0 and use
the hypothesis matrix C = [c⊤1 , ..., c

⊤
L ]

⊤. Here, C can be for example the Tukey-type-contrast
matrix for parameter a · d, see e.g. Munko et al. [2023b], as in the simulations in Section 6,
where each row of Dad compares two components of µ and builds one of ad local hypotheses.

With T̃ ℓ = cℓT /
√
cℓΣc⊤ℓ , a standardized version of cℓT , the ℓ-th local hypothesis is rejected

if |T̃ ℓ| > qα, where qα is so called equicoordinate quantile depending on the covariance ma-
trix CΣC⊤. The global hypothesis is rejected if and only if at least one local hypothesis is
rejected. Here, standardization of T is necessary to justify the usage of the same quantile for
all components, which allows formulating the global test through 1{max(|T̃ 1|, ..., |T̃ ad|) > qα}.
The Tukey-type matrix with its local hypotheses would here allow deducting between which
groups differences can be verified and in which components.
For situations where the test statistic can not be standardized or the standardization is not suf-
ficient to have the same distribution in each component, there also exists a generalization of an
MCT, see Munko et al. [2023a] and Munko et al. [2023b], which are based on an approach from
Bretz et al. [2001].
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Based on this concept, we want to construct a test for the global hypothesis using general
quadratic forms (see e.g. Sattler et al. [2022]). To this aim, based on a matrix-value function
M̃ ∈ R

a×a with two arguments we define for our j-th local hypothesis from Section 2

Q̃Nj = N · [P aX
(j)

]⊤M̃(P a, Σ̃
(j)

)[P aX
(j)

]√
2 tr([P⊤

a M̃(P a, Σ̃
(j)

)P aΣ̃
(j)

]2)

· 11
(
tr

(
[P⊤

a M̃ (P a, Σ̃
(j)

)P aΣ̃
(j)

]2
)
> 0

)

with 0/0 := 1.

Necessary conditions are M̃
⊤
= M̃ , M̃ ≥ 0 and M̃(P a, Σ̃

(j)
)

P→ M̃ (P a,Σ
(j)) for an estimator

Σ̃
(j) P→ Σ

(j), where a possible choice would be Σ̂
(j)

= N ·diag(n−1
1 (Σ̂1)jj , ..., n

−1
a (Σ̂a)jj). Com-

mon functions are M̃(P a,Σ
(j)) := (P aΣ

(j)P⊤
a )

+ for the WTS, or M̃(P a,Σ
(j)) := Ia/ tr(P aΣ

(j)P⊤
a )

for the ATS but also many other quadratic forms like the modified Anova-Type-statistic (MATS)
from Friedrich and Pauly [2017] or different ATS versions [Brunner et al., 2019].

Lemma 3.1:
Let ṽjj = 2 tr([P⊤

a M̃ (P a,Σ
(j))P aΣ

(j)]2) > 0. Then, under the jth local hypothesis, the following

convergence in distribution holds

Q̃Nj
D→ Q̃j

D
=

1√
ṽjj

a∑

i=1

λiΥi

with Υ1, ...,Υa
i.i.d.∼ χ2

1 and λ1, ..., λa ∈ eigen
(
Σ

(j)1/2P⊤
a M̃(P a,Σ

(j))P aΣ
(j)1/2

)
.

In addition, we have for Z = (Z11, Z12, ..., Z1d, Z21, ..., Zad)
⊤ ∼ Nad(0ad,Σ) under the global null

hypothesis H0 convergence in distribution

Q̃N = (Q̃N1, ..., Q̃Nd)
⊤ D→ Q̃ = (Q̃1, ..., Q̃d)

⊤ :=
(
ṽ
−1/2
jj · [P aZ

(j)]⊤M̃ (P a,Σ
(j))P aZ

(j)
)
j∈{1,...,d}

with Z(j) := (Z1j , ..., Zaj)
⊤. Moreover, if T ⊂ {1, . . . , d} denote the indices of true local hypotheses,

we have (Q̃Nj)j∈T
D→ (Q̃j)j∈T .

From Mathai and Provost [1992] it follows Var(Q̃j) = 1 if ṽjj > 0 which we in the following
assume for j = 1, ..., d. This is for example given if P⊤

a M̃(P a,Σ
(j))P a 6= 0a×a and Var(Xij1) >

0 for each i = 1, ...a resulting in Σ
(j) > 0.

However, since different components from the same group are allowed to depend on each other,
the covariance matrix of this vector, called R, is not necessarily diagonal, while you find the
concrete form in the supplement.

Remark 3.2:
In the case of a WTS, the distribution of the components is quite simple through Q̃j ∼ χ2

a−1. But in
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Dickhaus and Royen [2015], it was shown with simple and reasonable examples, that quite different dis-
tributions can lead to this kind of marginal distribution even with the same dependence structure R.

The appropriate distribution of the vector Q̃, called multivariate chi-square distribution of generalized

Wishart-type, is also given therein, together with the fact that it is not possible to calculate the corre-
sponding quantiles in general.

Nevertheless, it is reasonable to use the standardized vector Q̃, and it is important to mention
that here the marginal distributions are known, but usually the distribution of Q̃ is not.

Remark 3.3:
In contrast to the multivariate normal distribution of T̃ although Q̃ is standardized, and therefore all

components have the same variance, this does not mean that all components follow the same distribution.
As shown, the distribution, in general, depends on a matrix’s eigenvalues, while the variance only de-

pends on the trace of the square of this matrix. For this reason, it is essential to use the approach from

Munko et al. [2023a] to get adequate quantiles. Using equicoordinate quantiles also leads to asymptotic
correct tests, but this can affect the ability to detect derivations from the null hypothesis, and therefore its

power.

Using empirical quantiles based on a Monte-Carlo technique is a convenient approach to get
the required quantiles of the limit distribution. A detailed procedure description can be found
in the appendix, but we sketch it shortly. First ZMC

1 ∼ Nad(0ad, Σ̂) is generated, and since Q̃

can be seen as a function of such random vectors (see appendix for more details) we calculate

a Q̃
MC,1

based on ZMC
1 /

√
N . If we repeat this frequently (e.g. B=10, 000 times) we receive

Q̃
MC

= (Q̃
MC,1

, ..., Q̃
MC,B

) which allows us to calculate the needed quantiles.

Lemma 3.4:
For α ∈ (0, 1), let q̃MC

1,B , ..., q̃MC
d,B be the corresponding quantiles of Q̃

MC
according to Munko et al.

[2023a]. Then

ϕMC
Q̃

(N,B) := max
j=1,...,d

11

{(
Q̃Nj

q̃MC
j,B

)
> 1

}

is an asymptotic correct level α test for the global hypothesis H0 : µ1 = ... = µa, i.e., for all sequences

BN → ∞ as N → ∞, we have

lim
N→∞

E

[
ϕMC
Q̃

(N,BN )
]
= α

under the global null hypothesis. Moreover, the test controls the family-wise error rate asymptotically in
the strong sense, which means

lim
N→∞

E

[
max
j∈T

11

{(
Q̃Nj

q̃MC
j,BN

)
> 1

}]
≤ α

for all index subsets T ⊂ {1, . . . , d} of true local hypotheses.
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We define 0/0:=1, and from the fact which Q̃Nj/q̃
MC
j,B are larger than 1, it follows which local

hypotheses are rejected and thus, in which components the groups differ.
Also, resampling techniques can be used to calculate appropriate quantiles and, therefore, re-
ceive corresponding tests. This will be handled in Section 5.

Remark 3.5:
Especially in the context of resampling approaches, large dimensions or large number of groups the com-
puting effort of an approach becomes more relevant. Here, the quadratic form based multiple contrast test

(QFMCT) is often preferable over classical MCT or quadratic forms, while it of course, depends on the

chosen quadratic form. For the simplest quadratic form, the ATS without standardization through the

trace and using M̃(P a,Σ
(j)) = Ia it is easy to calculate and compare the computational complexity. In

the case of the classical multiple contrast tests with a Tukey-type matrix, it is O(a3d3) and for this ATS,

even O(a3d3 + a2d2). For the quadratic forms based multiple contrast test, of course, d quadratic forms
are calculated, but each of them with a substantially smaller vector. This leads to a computational com-

plexity of O(da3+da2+d2), which is considerably smaller. With the results from Sattler and Rosenbaum
[2025], this can further be reduced.

For the standardized ATS or the WTS, the quadratic forms based multiple contrast test is even more

preferable, since for the required covariance matrix estimation and matrix multiplications, the complexity
is growing exponentially with the dimension. This makes this approach attractive from a computational

perspective.

In this section, we focus on the question in which component the difference occurs, which is
one common interrogation, especially since the number of groups is usually much smaller than
the respective dimension. This would be similar possible for the hypothesis H0 : µ = ζ, ζ ∈
R

ad. Moreover, it is possible to adapt our approach to find the groups that differ instead of the
components. Thereto, for each of the

(
a
2

)
pairwise comparisons between two groups, a quadratic

form would be defined based on the group mean vectors and P 2 ⊗ Id. Now, we generalize the
considered hypotheses essentially, such that all mentioned hypotheses are special cases.

4 General Hypotheses

In this section, we consider the general linear hypothesis

H0 : Cµ = β

for a hypothesis matrix C ∈ R
r×ad and corresponding vector β ∈ R

r for r ∈ N. The local

hypotheses can be obtained by partitioning the hypothesis matrix C =
(
C⊤

1 , . . . ,C
⊤
L

)⊤
into

L ∈ N block matrices C1 ∈ R
r1×ad, . . . ,CL ∈ R

rL×ad and the vector β = (β⊤
1 , . . . ,β

⊤
L )

⊤ into L
vectors β1, . . . ,βL with corresponding number of rows rℓ as

H(ℓ)
0 : Cℓµ = βℓ, ℓ ∈ {1, . . . , L}.

Of course, this contains equality of expectation vectors with a focus on components, as was
treated in the previous section, but also with other partitions allowing to determine the respon-
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sible groups for a rejection. Now, we want to formulate the analogous tests for this general
hypotheses. This leads to quadratic forms for the ℓ-th local hypothesis through

QNℓ = N · [CℓX − βℓ]
⊤M(Cℓ, Σ̃)[CℓX − βℓ]√

2 tr([C⊤
ℓ M (Cℓ, Σ̃)CℓΣ̃]2)

· 11
(
tr
(
[C⊤

ℓ M(Cℓ, Σ̃)CℓΣ̃]2
)
> 0
)
.

In contrast to M̃ , the dimension of the second argument of M changes, while all other require-
ments on the function are still needed.

Lemma 4.1:
Let vℓℓ = 2 tr([C⊤

ℓ M(Cℓ,Σ)CℓΣ]2) > 0. Then under the ℓ-th local hypothesis, we get

QNℓ
D→ Qℓ

D
=

1√
vℓℓ

rℓ∑

i=1

λiΥi

with Υ1, ...,Υrℓ
i.i.d.∼ χ2

1 and λ1, ..., λrℓ ∈ eigen
(
Σ

1/2C⊤
ℓ M(P a,Σ)CℓΣ

1/2
)

. In addition, with

Z ∼ Nad(0ad,Σ) under the global null hypothesis H0 also

QN = (QN1, ..., QNL)
⊤ D→ Q = (Q1, ..., QL)

⊤ :=
(
v
−1/2
ℓℓ · [CℓZ]⊤M(Cℓ,Σ)CℓZ

)
ℓ∈{1,...,L}

.

Moreover, if T ⊂ {1, . . . , L} denote the indices of true local hypotheses, we have (QNℓ)ℓ∈T
D→ (Qℓ)ℓ∈T .

Furthermore, to fulfill the condition of this Lemma, an additional assumption

(A3) for each ℓ ∈ {1, . . . , L}, there is a nonzero eigenvalue of C⊤
ℓ M(Cℓ,Σ)CℓΣ

is required. A sufficient condition for (A3) is that Σ is positive definite and C⊤
ℓ M (Cℓ,Σ)Cℓ 6=

0ad×ad for all ℓ. However, this condition is not necessary, as we have seen in Section 3, and the
restrictiveness of this condition strongly depends on the chosen M .
The previous Lemma allows, in a similar way as earlier, to construct Monte-Carlo realizations
QMC = (QMC,1, ...,QMC,B) of Q and based on this an asymptotic correct test.

Lemma 4.2:
For α ∈ (0, 1), let qMC

1,B , ..., qMC
L,B be the corresponding quantiles of QMC according to Munko et al.

[2023a]. Then

ϕMC
Q (N,B) := max

ℓ=1,...,L
11

{(
QNℓ

qMC
ℓ,B

)
> 1

}

is an asymptotic correct level α test for the global hypothesis H0 : Cµ = β. Moreover, the test controls

the family-wise error rate asymptotically in the strong sense.
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5 Resampling Procedures

In the context of multiple contrast tests and as well as quadratic forms, bootstrap techniques
lead in many situations to preferable tests, regarding type-I error and power. This holds espe-
cially for small sample sizes see, for example, Sattler [2021], Segbehoe et al. [2022] and Baumeister et al.
[2024]. For this reason, we introduce two bootstrap approaches, focusing on the parametric
bootstrap and handling the wild bootstrap only in the supplement to increase readability.

First, based on the empirical covariance matrix Σ̂i random vectors X⋆
i1, ...,X

⋆
ini

i.i.d.∼ Nd(0d, Σ̂i)

which are independent of the realizations are generated for each group i = 1, ..., a.
Note that we still do not postulate a parametric model on our data, although we use the para-
metric bootstrap, since drawing the bootstrap observations from a normal distribution is moti-
vated by the asymptotic behaviour of T, cf. Section 4.

Furthermore, let X
⋆

denote the parametric bootstrap counterpart of the mean vector and Σ̂
⋆
=

N ·⊕a
i=1 n

−1
i Σ̂

⋆

i , where Σ̂
⋆

i denotes the empirical covariance matrix of the ith parametric boot-
strap sample. Then, the parametric bootstrap quadratic forms are given by

Q⋆
Nℓ = N · [CℓX

⋆
]⊤M(Cℓ, Σ̂

⋆
)[CℓX

⋆
]√

2 tr([C⊤
ℓ M(Cℓ, Σ̂

⋆
)CℓΣ̂

⋆
]2)

· 11
(
tr
(
[C⊤

ℓ M (Cℓ, Σ̂
⋆
)CℓΣ̂

⋆
]2
)
> 0
)

for ℓ ∈ {1, . . . , L}.

Example 5.1:
In the situation of Section 3, the parametric bootstrap quadratic forms are

Q̃⋆
Nj = N · [P aX

(j)⋆

]⊤M̃(P a, Σ̂
(j)⋆

)[P aX
(j)⋆

]√
2 tr([P⊤

a M̃(P a, Σ̂
(j)⋆

)P aΣ̂
(j)⋆

]2)

· 11
(
tr

(
[P⊤

a M̃(P a, Σ̂
(j)⋆

)P aΣ̂
(j)⋆

]2
)
> 0

)

with sample covariances Σ̂
(j)⋆

and component-wise mean vectors

X
(j)⋆

=

(
1

n1

n1∑

k=1

X⋆
1kj , ...,

1

na

na∑

k=1

X⋆
akj

)
.

Theorem 5.1:
If Assumptions (A1) and (A2) are fulfilled, it holds: Given the data, the conditional distribution of

(a)
√
N X

⋆
converges weakly to Nad (0ad,Σ) in probability.

(b) Q̃
⋆

N = (Q̃⋆
N1, ..., Q̃

⋆
Nd)

⊤ converges weakly to Q̃ in probability.

(c) Q⋆
N = (Q⋆

N1, ..., Q
⋆
NL)

⊤ converges weakly to Q in probability, if also (A3) is fullfilled.

Moreover, we have Σ̂
⋆ P→ Σ and the unknown covariance matrix can be estimated through the parametric

bootstrap estimator.
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A large number of repetitions (B) leads to a corresponding number of realizations Q⋆,1
N , ...,Q⋆,B

N

of Q⋆
N and the possibility to calculate bootstrap quantiles.

Lemma 5.2:
Forα ∈ (0, 1), let q⋆1,B, ..., q

⋆
L,B be the corresponding quantiles ofQ⋆,1

N , ...,Q⋆,B
N according to Munko et al.

[2023a]. Then

ϕ⋆
Q(N,B) := 11

{
max

ℓ=1,...,L

(
QNℓ

q⋆ℓ,B

)
> 1

}

is an asymptotic correct level α test for the global hypothesis H0 : Cµ = β that controls the family-wise

error rate asymptotically in the strong sense.

Remark 5.3:
Since the vectorQN is standardized, it is unnecessary and inefficient to calculate the standardized version
of the ATS, instead of the version using M(Cℓ, Σ̃) = Irℓ . Also, other versions of the ATS, which only

differ by a kind of standardization, therefore lead to the same vector QN .

Example 5.1 (continued):
To check the hypothesis H0 : µ1 = ... = µa based on Q̃N from Section 3, the appropriate test would be

given through

ϕ⋆
Q̃
(N,B) := 11

{
max

j=1,...,d

(
Q̃Nj

q̃⋆j,B

)
> 1

}
,

where q̃⋆1,B, ..., q̃
⋆
d,B are the quantiles calculated using realisations Q̃

⋆,1

N , ..., Q̃
⋆,B

N of Q̃
⋆

N .

6 Simulations

Since it is easy to interpret and at the same time allows to construct alternatives in a simple and
uniform way, we focus here on the hypothesis of equal expectation vectors H0 : µ1 = ... = µa.
From Sattler and Zimmermann [2024], it follows in the case of only two groups, that for the ATS
and WTS using a hypothesis matrix with only one row would lead to the same values of the test
statistic. Following this, the value of the classical MCT and the QFMCT coincides. Also, this
does not influence the previous results, it makes it reasonable to focus here on a > 2, which,
for computational reasons, let us choose a = 3. Moreover, we consider unbalanced group sizes
n1 = n2 = 0.4 · N and n3 = 0.2 · N with N ∈ {25, 50, 100} since especially the performance
for small sample sizes is of great interest. We considered 5-dimensional observation vectors
generated independently according to the model Xik = µi+Σ

1/2Zik, i = 1, . . . , a, k = 1, . . . , ni

and error terms Zik = (Zik1, ..., Zik5)
⊤ based on independently generated Zikj , i = 1, . . . , a, k =

1, . . . , ni, j = 1, . . . , 5, with the following distributions:

• a standard normal distribution, i.e. Zikj ∼ N (0, 1).

• a student-t distribution with 9 degrees of freedom, i.e.
√
7/9 · Zikj ∼ t9.
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We choose Σ1 = Σ2 = diag(2, 3, 4, 5, 6) + 151
⊤
5 and (Σ3)j1j2 = 0.65|j1−j2| to have not only

heterogeneous Σi but also Σ
(j) and under the respective null hypothesis we know for the ATS,

Qj ∼ ∑d
ℓ=1 λℓBℓ, with Bℓ

i.i.d.∼ χ2
1 and λ1, ..., λd ∈ eigen(P aΣ

(j)P⊤
a ). Therefore, despite their

standardization, we have different distributions of the quadratic forms, as mentioned in Re-
mark 3.3. For this reason, usage of the same quantile for all components of Q̃ makes less sense,
and the approach of Munko et al. [2023a] is required. Besides the QFMCT with parametric
bootstrap and Monte-Carlo approach, we simulated the classical ATS with parametric boot-
strap (ψ⋆

ATS). Moreover, we considered the classical MCT using the Tukey-type matrix, with
equicoordinate quantiles and based on the parametric bootstrap (ϕ and ϕ⋆).

Since we are interested in particular in the global power of the tests, we consider a one-point-
alternative, given through µ1 = µ2 = 05 and µ3 = δ · (1, 0, 0, 0, 0)⊤. We print the type-I rate
in bold, if it is within the 95% binomial interval [0.0458, 0.0543], and in the supplement also the
results for a shift-alternative can be found.
Here, we expect the one-point alternative to be challenging since the deviation from the null
hypothesis is only in one component and, therefore, difficult to detect. We use 1,000 bootstrap
steps for our parametric bootstrap, 10,000 simulation steps for the Monte-Carlo approach and
10,000 runs for all tests to get reliable results.

N δ = 0 δ = 0.25 δ = 0.5 δ = 0.75 δ = 1.00 δ = 1.25 δ = 1.5 δ = 1.75 δ = 2.00

ϕ 25 15.29 14.79 17.86 24.58 32.73 45.19 58.62 70.16 81.71

ϕ⋆ 25 5.22 5.22 6.04 9.30 15.25 23.62 34.13 45.46 59.29

ϕMC

Q̃
(ATS) 25 9.70 9.96 12.00 17.71 25.78 38.09 52.15 66.15 79.64

ϕ⋆

Q̃
(ATS) 25 4.95 5.12 6.61 9.83 16.12 25.09 37.65 51.12 66.53

ψ⋆

ATS
25 3.95 4.22 5.01 6.03 8.91 12.60 18.18 25.59 36.74

ϕ 50 8.99 10.75 16.72 27.92 47.47 68.79 84.30 94.06 98.57

ϕ⋆ 50 4.75 5.99 10.48 18.77 36.35 57.82 76.53 89.32 96.72

ϕMC

Q̃
(ATS) 50 7.09 8.25 14.01 24.78 45.34 68.33 84.28 94.61 98.84

ϕ⋆

Q̃
(ATS) 50 4.93 5.98 10.70 19.74 38.79 62.09 79.81 92.26 97.95

ψ⋆

ATS
50 4.58 5.47 7.23 10.97 18.31 31.99 48.77 68.94 85.43

ϕ 100 6.82 10.07 22.86 50.79 78.96 95.23 99.40 99.92 100.00

ϕ⋆ 100 5.07 7.65 19.11 45.18 74.80 93.59 99.09 99.89 100.00

ϕMC

Q̃
(ATS) 100 6.14 9.28 21.90 50.66 79.76 95.67 99.61 99.94 100.00

ϕ⋆

Q̃
(ATS) 100 5.22 8.13 19.90 47.41 77.55 95.10 99.43 99.94 100.00

ψ⋆

ATS
100 4.91 6.01 10.58 22.93 45.67 74.25 92.92 99.06 99.97

Table 1: Power of different test statistics under an one-point-alternative for 3 groups with 5-
dimensional observation vectors. The error terms are based on the standard normal distribution
and have a compound symmetry covariance matrix with Σ1 = Σ2 = diag(2, 3, 4, 5, 6) + 151

⊤
5 ,

resp. a autoregressive matrix (Σ3)ℓk = 0.65|ℓ−k|, while the groups are unbalanced with n1 =
n2 = 0.4 ·N and n3 = 0.2 ·N .

In Table 1 it can be seen that the type-I error rate for the bootstrap version of the MC-test and
QFMCT is comparably good while the bootstrap ATS has a worse small sample approximation,
but overall still good values. The power under the one-point-alternative is continually higher
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for the QFMCT, which, especially for the small sample size, leads to differences of about 0.06.
In Table 2, the difference in power between bootstrap multiple contrast tests is smaller, while
again, the approach based on the ATS is favourable. Moreover, for the skew normal distribution
it has a clear better type-I error rate than the classical bootstrap.
For both distributions, it is noticeable that the classical ATS with the same bootstrap approach
has not only a worse type-I error rate under the null hypothesis but especially a substantially
smaller power than the MC-tests. For all sample sizes, it is partwise half the value of the QFMCT
with parametric bootstrap. Therefore, it is clearly worse at detecting deviation from the null
hypothesis.

N δ = 0 δ = 0.25 δ = 0.5 δ = 0.75 δ = 1.00 δ = 1.25 δ = 1.5 δ = 1.75 δ = 2.00

ϕ 25 14.69 14.29 18.29 24.31 33.35 44.86 59.28 71.07 81.07

ϕ⋆ 25 4.76 3.94 6.41 9.36 14.91 23.36 35.41 47.65 60.53

ϕMC

Q̃
(ATS) 25 9.89 9.12 12.29 17.44 25.53 36.52 52.35 65.95 77.82

ϕ⋆

Q̃
(ATS) 25 4.93 4.51 6.39 9.43 15.69 24.66 37.94 51.70 64.85

ψ⋆

ATS
25 4.27 4.02 5.12 6.26 8.15 12.18 18.79 25.39 36.62

ϕ 50 8.54 10.41 16.41 29.80 47.79 68.69 84.92 94.03 98.14

ϕ⋆ 50 4.59 5.84 10.07 20.55 36.86 58.22 76.71 89.99 96.00

ϕMC

Q̃
(ATS) 50 6.78 8.21 13.39 25.99 45.09 66.57 84.42 94.04 98.25

ϕ⋆

Q̃
(ATS) 50 4.62 5.98 10.08 20.58 38.32 60.39 79.69 91.66 97.28

ψ⋆

ATS
50 4.71 5.10 6.85 10.92 18.45 30.56 49.70 68.70 84.96

ϕ 100 6.89 9.49 22.89 50.62 79.53 95.05 99.27 99.91 100.00

ϕ⋆ 100 5.07 7.25 18.73 45.11 75.46 93.42 98.90 99.85 99.99

ϕMC

Q̃
(ATS) 100 6.30 8.57 21.72 49.82 79.90 95.50 99.38 99.97 100.00

ϕ⋆

Q̃
(ATS) 100 5.14 7.32 19.27 46.90 77.69 94.58 99.24 99.93 100.00

ψ⋆

ATS
100 5.16 6.12 10.58 22.26 46.21 74.33 92.99 99.05 99.92

Table 2: Power of different test statistics under an one-point-alternative for 3 groups with 5-
dimensional observation vectors. The error terms are based on a t9 distribution and have a
compound symmetry covariance matrix with Σ1 = Σ2 = diag(2, 3, 4, 5, 6) + 151

⊤
5 , resp. a

autoregressive matrix (Σ3)ℓk = 0.65|ℓ−k|, while the groups are unbalanced with n1 = n2 =
0.4 ·N and n3 = 0.2 ·N .

Finally, the non-bootstrap approaches in this simulation need larger sample sizes to have good
results. Here again, the QFMCT is clearly favourable. Since the algorithm to calculate the
equicoordinate quantiles is quite demanding, it is even faster, although it needs 10,000 simula-
tions runs.

7 Data Example

To illustrate the application of the method, the EEG data set from the R-package manova.rm by
Friedrich et al. [2019] is considered closer. This study from Staffen et al. [2014] was conducted
at the University Clinic of Salzburg (Department of Neurology), where from 160 patients, elec-
troencephalography (EEG) data were measured. All participants are diagnosed with different
diagnoses of impairments, namely Alzheimer’s disease (AD), mild cognitive impairment (MCI),
and subjective cognitive complaints (SCC). In Table 3, the number of patients divided by sex and
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diagnosis can be found.

Table 3: Number of observations for the different factor level combinations of sex and diagnosis.

AD MCI SCC

male 12 27 20

female 24 30 47

MANOVA-based comparisons were already made in Bathke et al. [2018]), and we now want
to complete this with our new approach. The original study also further differentiated be-
tween subjective cognitive complaints with minimal cognitive dysfunction (SCC+) and without
(SCC-). However, because of sample sizes, this was not done in the data set provided through
the package.
For each participant, three different electrode positions (frontal, temporal, and central) were
used together with two kinds of measurements (z-score for brain rate and Hjorth complexity),
resulting in observation vector’s dimension d = 6. In Sattler et al. [2022], homogeneity of co-
variance matrices between different diagnoses as well as different sexes were investigated for
this data set. Therefore, we have six groups with heterogeneous covariance matrices and un-
balanced sample sizes, making many test procedures incapable.
In Bathke et al. [2018]), equality of expectation vectors was rejected, and therefore an influence
of the diagnosis was proven. However, it was never identified where the differences occur.
Since all previous analyses of this data set could neither verify an influence of the location nor
measurement, identifying the responsible component is, here, not the main issue. Therefore, we
will focus on identifying the responsible groups and determine three local hypotheses

H(1)
0 : µAD = µMCI H(2)

0 : µAD = µSCC H(3)
0 : µMCI = µSCC

which together build the global hypothesis H0 : µAC = µMCI = µSCC . Since we have vectors
with dimension 6, each of these local hypotheses consists of 6 sub-hypotheses, one for each
component of the vector. So for the classical MCT we have 18 single hypotheses, in partitions
of 6 for each local hypothesis. The test is conducted with 5.000 bootstrap runs and for both
genders separately.

p-values of ϕ⋆ for 6 sub-hypotheses p-value of ϕ⋆

Q(ATS)

H
(1)
0 -Male 74.40 75.06 69.92 68.54 88.30 65.64 31.04

H
(2)
0 -Male 1.88 3.08 1.50 8.04 30.62 24.30 0.98

H
(3)
0 -Male 1.32 1.32 <0.01 1.14 27.78 0.30 0.04

H
(1)
0 -Female 97.96 100.00 99.38 78.38 99.96 88.46 75.54

H
(2)
0 -Female 1.46 9.42 3.34 3.12 39.28 7.88 0.38

H
(3)
0 -Female 2.72 2.92 1.82 9.62 57.52 7.02 0.38

Table 4: Adjusted p-values in percent for QFMTC with ATS and classical MCT, both based on
parametric bootstrap and investigating local hypotheses H(1)

0 : µAD = µMCI , H(2)
0 : µAD =

µSCC and H(3)
0 : µMCI = µSCC .

In Table 4, the results can be found, where it contains for each local hypothesis 6 adjusted p-
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values when considering ϕ⋆ and only one for ϕ⋆
Q(ATS). It is not surprising that for both gen-

ders, the global hypotheses can be rejected for the global level α = 5% since this was also a
result of Bathke et al. [2018]). Furthermore, all multiple contrast tests determine the differences
between AD and MCI as well as MCI and SCC. The classic MCT can also determine the com-
ponents responsible for this and reject H(3)

0 for men also to the smaller global level α = 1%. In
contrast, all 4 rejections of QFMCT hold for this level, again showing QFMCT’s advantage by
identifying even relatively small deviations from the null hypothesis.

8 Conclusion

In the presented work, we present an approach combining two useful and common meth-
ods, the multiple contrast test and quadratic forms, to get the best from both. This leads to
a quadratic form based multiple contrast test, defined for quite general quadratic forms. With
an appropriate bootstrap approach, this results in a consistent test to compare the group means.
Although the approach is introduced for equality of expectations with a focus on the compo-
nents, it is generalized for a large class of hypotheses later on. The conducted simulation shows
that although the type-I error is comparable to the bootstrap version of the classical multiple
contrast test, it is clearly better regarding the power. Since it usually also needs fewer com-
putations, it is therefore overall preferable for general linear hypotheses regarding expectation
vectors in multiple groups, in particular for large numbers of groups.

We focused here on the group expectation vectors as parameters of interest since they are im-
portant and often used. However, the technique of a quadratic form based multiple contrast
test can be used for a variety of parameter vectors like quantiles, relative effects, vectorized
covariance matrices and many more. So, in future work, we will investigate them and existing
limit theorems to develop corresponding QFMCTs.
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A Proofs

We will here only conduct the proofs for the results for Section 4 and Section 5, since the results
from Section 3 can be seen as a special case thereof. This follows since there exist a matrix

Aj ∈ R
a×ad fulfilling X

(j)
= AjX . Hence, by setting Cj = P aAj and βj = 0a, all statements

from Section 3 are direct consequences from Section 4.

Proof of Lemma 4.1: With the central limit theorem it holds
√
N(X − µ)

D→ Z ∼ Nad(0ad,Σ).
Let T ⊂ {1, . . . , L} denote the index subset of true local null hypotheses. From the consistency

of Σ̃ it follows v̂ℓℓ = 2 tr([C⊤
ℓ M(Cℓ, Σ̃)CℓΣ̃]2)

P→ vℓℓ. With continuous mapping and Slutzky’s
theorem, therefore

√
N ·
(
v̂
−1/2
ℓℓ ·CℓX − βℓ,M(Cℓ, Σ̂)(CℓX − βℓ)

)
ℓ∈T

D→
(
v
−1/2
ℓℓ ·CℓZ,M(Cℓ,Σ)CℓZ

)
ℓ∈T

=: Υ.

Now consider the continuous function

f : R2
∑

ℓ∈T rℓ → R
|T |, (x1,y1, ...,xd,yd) 7→ (y⊤

1 x1, ...,y
⊤
d xd)

⊤.

Together with the continuous mapping theorem, it holds

(QNℓ)ℓ∈T = N ·
(
v̂
−1/2
ℓℓ · (CℓX − βℓ)

⊤M (Cℓ, Σ̂)(CℓX − βℓ)
)
ℓ∈T

= f

(√
N ·

(
v̂
−1/2
ℓℓ · (CℓX − βℓ),M(Cℓ, Σ̂)(CℓX − βℓ)

)
ℓ∈T

)
D→ f(Υ) = (Qℓ)ℓ∈T .

The distribution of the components then follows by the representation theorem for quadratic
forms.

With
√
N(X − µ)

D→ Z ∼ Nad(0ad,Σ) it holds

(QNℓ, QNℓ2)
D→
(
[Cℓ1Z]⊤M (Cℓ1 ,Σ)[Cℓ1Z], [Cℓ2Z]⊤M(Cℓ2 ,Σ)[Cℓ2Z]

)
· (vℓ1ℓ1vℓ2ℓ2)−1/2

=
(
Z⊤C⊤

ℓ1M (Cℓ1 ,Σ)Cℓ1Z,Z
⊤C⊤

ℓ2M(Cℓ2 ,Σ)Cℓ2Z
)
· (vℓ1ℓ1vℓ2ℓ2)−1/2

if the local null hypotheses H(ℓ1)
0 and H(ℓ2)

0 are true, which fullfilles the situation from Theorem
3.2d.4 in Mathai and Provost [1992]. Therefore we know

Rℓ1,ℓ2 := Cov (Qℓ1 , Qℓ2) = (vℓ1ℓ1vℓ2ℓ2)
−1/2 · 2 tr

(
C⊤

ℓ2M (Cℓ2 ,Σ)Cℓ2ΣC⊤
ℓ2M(Cℓ2 ,Σ)Cℓ2Σ

)
.

Monte-Carlo-approach For the Monte-Carlo- approach, we proceed as follows
1. Based on your data X , calculate the empirical covariance matrix Σ̂.

2. Generate ZMC
1 ∼ Nad(0ad, Σ̂).
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3. Calculate the Monte-Carlo quadratic form QMC,1 :=




v̂
−1/2
11 · (C1Z

MC
1 )⊤M (C1, Σ̂)C1Z

MC
1

...

v̂
−1/2
LL · (CLZ

MC
1 )⊤M(CL, Σ̂)CLZ

MC
1




with v̂ℓℓ := 2 tr([C⊤
ℓ M(Cℓ, Σ̂)CℓΣ̂]2).

4. Repeat steps 2. and 3. a large number of times, e.g. B=10.000 times, to obtain QMC,1, ...,QMC,B

and determine quantiles qMC
1,B , ..., qMC

L,B .
Lemma 4.2 ensures that this method is asymptotically valid.

Proof of Theorem 5.1: First we define X
⋆

i := 1
ni

ni∑
k=1

X⋆
ik for i=1,...,a and based on this X

⋆
=

(X
⋆

1, ...,X
⋆

a)
⊤ as bootstrap pendant to Xi resp. X . Now we use the conditional Lindeberg-

Feller-theorem to show that given the data X
⋆

i
D→ Y i ∼ Na(0a,Σi). From the generation of we

know that given the data, X⋆
i1, ...,X

⋆
ini

are independent with

1.)
ni∑
k=1

E

(√
N

ni
X⋆

ik|X
)
=

ni∑
k=1

√
N

ni
E (X⋆

ik|X) = 0d

2.)
ni∑
k=1

Cov
(√

N
ni

X⋆
ik|X

)
= N

n2

i

ni∑
k=1

Σ̂i
P→ 1

κi
Σi

3.) lim
N→∞

ni∑
k=1

E

(
||
√
N

ni
X⋆

ik||2·11||√N
ni

X⋆
ik||>δ

∣∣∣X
)

= lim
N→∞

N
n2

i

ni∑
k=1

E

(
||X⋆

ik||2·11||X⋆
ik||>δ·ni/

√
N

∣∣∣X
)

≤ 1
κi

lim
N→∞

ni∑
k=1

√
E (||X⋆

ik||2|X) ·
√
E

(
11||X⋆

ik
||>δ·ni/

√
N

∣∣∣X
)

P
= 0,

where Cauchy-Bunjakowski-Schwarz inequality is used in the last line. Together with the fact
that, given the data, the observations follow a multivariate normal distribution, the first expec-
tation value is bounded. From (A1) we know ni/N → κi and therefore δ · ni/

√
N → ∞ so it

follows with the conditional Markov inequality

P (||X⋆
i1|| > δ · ni/

√
N |X) ≤

√
N

ni
· E(||X⋆

i1|| |X) ≤
√
N

ni
· ||(Σ̂i)

1/2||max · E(||Y ||)

with Y ∼ Nd(0d, Id). Using E(||Y ||) <∞ and ||(Σ̂i)
1/2||max

P→ ||(Σi)
1/2||max <∞ this together

with Slutzky’s theorem completes the Lindeberg-Feller conditions. Now, from the indepen-
dence of groups, it directly follows, that, given the data, the conditional distribution of

√
NX

⋆

converges weakly to Z ∼ Nad(0ad,Σ).

For the consistency of the covariance estimator, we use again the representation X⋆
ij = Σ̂

1/2

i Y ij

for Y 11, ...,Y ana ∼ Nd(0d, Id) i.i.d. and independent of the data. Then, we have

Σ̂
⋆

i =
1

ni − 1

ni∑

j=1

(X⋆
ij −X

⋆

i )(X
⋆
ij −X

⋆

i )
⊤ = Σ̂

1/2

i


 1

ni − 1

ni∑

j=1

(Y ij − Y i)(Y ij − Y i)
⊤


 Σ̂

1/2

i .

The term in the middle is the empirical covariance matrix of Y i1, ...,Y ini which converges

in probability to Id. Hence, it follows Σ̂
⋆

i
P→ Σi. With independence of groups it follows
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Σ̂
⋆
= N

⊕a
i=1 n

−1
i Σ̂

⋆

i
P→ Σ.

Now as continuous function of consistent estimators, 2 tr([C⊤
ℓ M(Cℓ, Σ̂

⋆
)CℓΣ̂

⋆
]2) is also a con-

sistent estimator of vℓℓ. Therefore all necessary properties are shown, and with Slutzky’s the-
orem, the result follows since Q⋆

N can be written by using the continuous function f and the
estimator Σ̂

⋆
.

For the wild bootstrap approach, i = 1, ..., a, letWik be i.i.d. with E(Wik) = 0 and Var(Wik) = 1,
while usually distributions are standard normal or Mammen (Mammen [1993]). Then the wild
bootstrap observation vectors be given through X

†
ik =Wik(X ik −Xi) and we define

X
†
=

(
1

n1

n1∑

k=1

X
†
1k

⊤
, ...,

1

na

na∑

k=1

X
†
ak

⊤
)⊤

.

Analogues to the parametric bootstrap, based on our wild bootstrap we define

Q†
Nℓ = N · [CℓX

†
]⊤M (Cℓ, Σ̂

†
)[CℓX

†
]√

2 tr

([
C⊤

ℓ M (Cℓ, Σ̂
†
)CℓΣ̂

†]2)
· 11
(
tr

([
C⊤

ℓ M(Cℓ, Σ̂
†
)CℓΣ̂

†]2)
> 0

)

for ℓ ∈ {1, . . . , L}, using the covariance estimators Σ̂
†

and Q̃†
Nj based on Σ̂

(j)†
.

Theorem A.1:
If Assumptions (A1) and (A2) are fulfilled, it holds: Given the data, the conditional distribution of

(a)
√
N X

†
converges weakly to Na (0a,Σ) in probability.

(b) Q̃
†
N = (Q̃†

N1, ..., Q̃
†
Nd)

⊤ converges weakly to Q̃ in probability.

(c) Q
†
N = (Q†

N1, ..., Q
†
NL)

⊤ converges weakly to Q in probability, if also (A3) is fulfilled.

Moreover, we have Σ̂
† P→ Σ and the unknown covariance matrix can be estimated through this estimator.

Proof: For the wild bootstrap approach, we follow the same steps as for the parametric boot-
strap.

1.)
ni∑
k=1

E

(√
N

ni
X

†
ik|X

)
=

ni∑
k=1

√
N

ni
E(Wik)(X ik −Xi) = 0d

2.)
ni∑
k=1

Cov
(√

N
ni

X
†
ik|X

)

= N
n2

i

ni∑
k=1

E((X†
ik)(X

†
ik)

⊤|X)

= N
n2

i

ni∑
k=1

E(W 2
ik) · (Xik −Xi)(X ik −Xi)

⊤

= N(ni−1)
n2

i

1
ni−1

ni∑
k=1

1 · (X ik −Xi)(X ik −Xi)
⊤

= N(ni−1)
n2

i
Σ̂i

P→ 1
κi
Σi
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3.) lim
N→∞

ni∑
k=1

E

(
||
√
N

ni
X⋆

ik||2·11||√N
ni

X⋆
ik||>δ

∣∣∣X
)

= lim
N→∞

N
n2

i

ni∑
k=1

E

(
||X†

ik||2·11||X†
ik||>δ·ni/

√
N

∣∣∣X
)

≤ 1
κi

lim
N→∞

ni∑
k=1

√
E

(
||X†

ik||2|X
)
·
√
E

(
11||X†

ik||>δ·ni/
√
N

∣∣∣X
)

P
= 0.

Since, given the data, X†
ik has fourth second moments, all remaining steps can be done ana-

logues to the proof of Theorem 5.1.

Lemma A.1:
For α ∈ (0, 1), let q†1,B, ..., q

†
L,B be the corresponding quantiles of Q†

N according to Munko et al. [2023a].

Then

ϕ†
Q(N,B) := 11

{
max

ℓ=1,...,L

(
QNℓ

q†ℓ,B

)
> 1

}

is an asymptotic correct level α test for the global hypothesis H0 : Cµ = β that controls the family-wise

error rate asymptotically in the strong sense.

Proof of the asymptotic correctness and family-wise error rate control of the tests In this
paragraph, we prove Lemma 4.2, Lemma 5.2, and Lemma A.1. Therefore, we aim to apply
Lemma S8 in the supplement of Munko et al. [2024] with εN := 1/BN and F : R

L → [0, 1]

being the distribution function of Q, which is continuous with strictly increasing marginal dis-
tribution functions on [0,∞) if (A3) holds. For Lemma 4.2, we choose Fn as empirical distri-
bution function of the Monte-Carlo replicates QMC,1, . . . ,QMC,BN . For the bootstrap methods,
we choose FN as empirical distribution function of the Monte-Carlo replicates Q⋆,1

N , . . . ,Q⋆,BN

N

resp. Q
†,1
N , . . . ,Q†,BN

N . Moreover, FN,ℓ, ℓ = 1, . . . , L, are chosen as the marginal distribution
functions of FN . Then, the consistency of the empirical covariance matrix, Theorem 5.1 and The-
orem A.1 ensure the condition of Lemma S7 in Munko et al. [2024], respectively, and, thus, (S10)
therein follows. Furthermore, Remark 1 in Munko et al. [2024] yields (S11). Hence, Lemma S8 in
Munko et al. [2024] is applicable and provides that the quantiles qMC

ℓ,BN
, q⋆ℓ,BN

, q†ℓ,BN
all converge

in probability to qℓ fulfilling F (q1, . . . , qL) = 1 − α. Thus, the asymptotic correctness follows.
The asymptotic control of the family-wise error rate in the strong sense follows from

E

[
max
ℓ∈T

11

{(
QNℓ

qMC
ℓ,BN

)
> 1

}]
→ E

[
max
ℓ∈T

11

{(
Qℓ

qℓ

)
> 1

}]

≤ E

[
max

ℓ∈{1,...,L}
11

{(
Qℓ

qℓ

)
> 1

}]

= 1− F (q1, . . . , qL) = α

for all index subsets T ⊂ {1, . . . , L} of true hypotheses. Analogously, the asymptotic control of
the family-wise error rate in the strong sense holds for the bootstrap methods.
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B Further simulations

Since in the main paper, only the one-point-alternative was investigated, we now additionally
consider a shift-alternative, given through µ1 = µ2 = 05 and µ3 = δ · 15. Furthermore, we con-
sider one more distribution for Z, a t-distribution with 9 degrees of freedom, which is centred
and standardized. While up to now, only the ATS was used for the QFMCT, here we addition-
ally considered it based on the WTS, as comparison. For all tests, we further consider the wild
bootstrap denoted by †.
The results can be seen in Table 5-10. First of all, we want to focus on comparing both bootstrap
approaches, parametric and wild. While for the classical MCT and the classical ATS the wild
bootstrap seems to be slightly better, for the QFMCT the parametric bootstrap performs better.
For example, over all distributions and sample size the type-I error rate of ϕ⋆

Q̃
(ATS) is in the

95% confidence interval except for N = 25 and the skew normal distribution, which is more
often the case for ϕ†

Q̃
(ATS), since it is a bit more liberal. Of course, this often leads to even

higher power compared with the other test, which allows the choice of the procedure in accor-
dance with the respective focus. Also, the QFMCT based on the WTS performs well for both
resampling techniques, in a direct comparison the ATS is slightly better overall. Moreover, the
ATS has a shorter calculation time and less restrictive conditions (for the ATS (A3) is equivalent
to Σ having no zero rows). So, the usage of the WTS instead of the ATS for QFMCT is only
reasonable if their other properties are required.
The results for the t9-distribution under the one-point-alternative are quite similar to the distri-
butions of the main part, although the type-I-error rate is a bit worse for the very small sample
size N = 25. Under the alternative, the better power of the QFMTC can be seen again.

As expected, the shift-alternative is easier to detect, leading to a higher power for all considered
tests. Nevertheless, the differences and behaviour of the different approaches remain the same,
although the power is higher for smaller δ. Together, the additional simulations support the
conclusion from the main part that the QFMCT is preferable to test the hypothesis of equal
group mean since it has the same type-I-error rate under the null hypothesis but usually has a
better power.
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N δ = 0 δ = 0.25 δ = 0.5 δ = 0.75 δ = 1.00 δ = 1.25 δ = 1.5 δ = 1.75 δ = 2.00

ϕ 25 15.29 14.79 17.86 24.58 32.73 45.19 58.62 70.16 81.71

ϕ⋆ 25 5.22 5.22 6.04 9.30 15.25 23.62 34.13 45.46 59.29

ϕ† 25 5.00 4.97 7.01 10.32 15.12 22.34 33.49 46.83 59.03

ϕMC

Q̃
(ATS) 25 9.70 9.96 12.00 17.71 25.78 38.09 52.15 66.15 79.64

ϕ⋆

Q̃
(ATS) 25 4.95 5.12 6.61 9.83 16.12 25.09 37.65 51.12 66.53

ϕ
†

Q̃
(ATS) 25 5.64 5.57 7.70 11.32 17.04 26.35 39.26 54.33 67.92

ϕ⋆

Q̃
(WTS) 25 4.87 5.23 6.51 9.69 15.78 24.32 35.40 47.02 61.18

ϕ
†

Q̃
(WTS) 25 4.96 5.19 6.93 10.50 15.49 23.64 35.01 48.07 60.13

ψ⋆

ATS
25 3.95 4.22 5.01 6.03 8.91 12.60 18.18 25.59 36.74

ψ
†
ATS

25 5.26 5.42 6.62 8.48 11.16 15.42 22.10 31.47 42.01

ϕ 50 8.99 10.75 16.72 27.92 47.47 68.79 84.30 94.06 98.57

ϕ⋆ 50 4.75 5.99 10.48 18.77 36.35 57.82 76.53 89.32 96.72

ϕ† 50 5.12 6.06 9.56 19.12 36.07 56.79 76.05 90.31 96.46

ϕMC

Q̃
(ATS) 50 7.09 8.25 14.01 24.78 45.34 68.33 84.28 94.61 98.84

ϕ⋆

Q̃
(ATS) 50 4.93 5.98 10.70 19.74 38.79 62.09 79.81 92.26 97.95

ϕ
†

Q̃
(ATS) 50 5.55 6.05 10.14 20.54 39.20 61.38 80.27 93.16 97.82

ϕ⋆

Q̃
(WTS) 50 4.67 6.04 10.48 19.25 37.39 59.29 77.36 89.81 97.04

ϕ
†

Q̃
(WTS) 50 5.10 6.01 9.50 19.61 36.85 57.77 77.25 90.62 96.68

ψ⋆

ATS
50 4.58 5.47 7.23 10.97 18.31 31.99 48.77 68.94 85.43

ψ
†
ATS

50 5.08 5.69 7.90 11.84 20.74 33.72 52.07 72.06 87.18

ϕ 100 6.82 10.07 22.86 50.79 78.96 95.23 99.40 99.92 100.00

ϕ⋆ 100 5.07 7.65 19.11 45.18 74.80 93.59 99.09 99.89 100.00

ϕ† 100 4.87 7.68 18.47 44.45 74.52 92.98 99.05 99.90 100.00

ϕMC

Q̃
(ATS) 100 6.14 9.28 21.90 50.66 79.76 95.67 99.61 99.94 100.00

ϕ⋆

Q̃
(ATS) 100 5.22 8.13 19.90 47.41 77.55 95.10 99.43 99.94 100.00

ϕ
†

Q̃
(ATS) 100 5.13 8.04 19.13 47.19 77.95 94.65 99.38 99.94 100.00

ϕ⋆

Q̃
(WTS) 100 4.97 7.78 19.38 46.36 76.31 94.06 99.28 99.91 100.00

ϕ
†

Q̃
(WTS) 100 5.05 7.50 18.65 45.43 75.75 93.60 99.13 99.93 100.00

ψ⋆

ATS
100 4.91 6.01 10.58 22.93 45.67 74.25 92.92 99.06 99.97

ψ
†
ATS

100 5.15 6.45 11.01 23.97 46.92 75.80 94.10 99.29 99.95

Table 5: Power of different test statistics under an one-point-alternative for 3 groups with 5-
dimensional observation vectors. The error terms are based on a standard normal distribution
and have a compound symmetry covariance matrix with Σ1 = Σ2 = diag(2, 3, 4, 5, 6) + 151

⊤
5 ,

resp. a autoregressive matrix (Σ3)ℓk = 0.65|ℓ−k|, while the groups are unbalanced with n1 =
n2 = 0.4 ·N and n3 = 0.2 ·N .
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N δ = 0 δ = 0.25 δ = 0.5 δ = 0.75 δ = 1.00 δ = 1.25 δ = 1.5 δ = 1.75 δ = 2.00

ϕ 25 14.69 14.29 18.29 24.31 33.35 44.86 59.28 71.07 81.07

ϕ⋆ 25 4.76 3.94 6.41 9.36 14.91 23.36 35.41 47.65 60.53

ϕ† 25 4.50 5.47 6.92 10.23 15.45 25.41 35.75 49.25 62.79

ϕMC

Q̃
(ATS) 25 9.89 9.12 12.29 17.44 25.53 36.52 52.35 65.95 77.82

ϕ⋆

Q̃
(ATS) 25 4.93 4.51 6.39 9.43 15.69 24.66 37.94 51.70 64.85

ϕ
†

Q̃
(ATS) 25 5.08 5.72 7.33 10.71 17.38 27.87 40.41 55.22 69.18

ϕ⋆

Q̃
(WTS) 25 4.78 4.14 6.70 9.66 15.56 24.37 37.14 49.66 61.71

ϕ
†

Q̃
(WTS) 25 4.49 5.42 7.00 10.39 16.49 26.39 37.16 50.32 63.76

ψ⋆

ATS
25 4.27 4.02 5.12 6.26 8.15 12.18 18.79 25.39 36.62

ψ
†
ATS

25 5.47 5.28 6.76 7.81 11.10 16.06 22.29 31.38 41.90

ϕ 50 8.54 10.41 16.41 29.80 47.79 68.69 84.92 94.03 98.14

ϕ⋆ 50 4.59 5.84 10.07 20.55 36.86 58.22 76.71 89.99 96.00

ϕ† 50 4.81 5.76 10.27 20.01 38.44 59.18 77.13 89.64 96.58

ϕMC

Q̃
(ATS) 50 6.78 8.21 13.39 25.99 45.09 66.57 84.42 94.04 98.25

ϕ⋆

Q̃
(ATS) 50 4.62 5.98 10.08 20.58 38.32 60.39 79.69 91.66 97.28

ϕ
†

Q̃
(ATS) 50 4.92 6.42 10.66 21.05 40.72 62.72 80.66 92.06 97.81

ϕ⋆

Q̃
(WTS) 50 4.63 5.68 10.32 20.97 37.95 59.58 78.12 90.50 96.09

ϕ
†

Q̃
(WTS) 50 4.66 5.74 10.69 20.99 39.50 60.66 78.21 90.26 96.71

ψ⋆

ATS
50 4.71 5.10 6.85 10.92 18.45 30.56 49.70 68.70 84.96

ψ
†
ATS

50 5.13 5.74 7.81 12.22 20.49 34.07 51.88 71.87 87.13

ϕ 100 6.89 9.49 22.89 50.62 79.53 95.05 99.27 99.91 100.00

ϕ⋆ 100 5.07 7.25 18.73 45.11 75.46 93.42 98.90 99.85 99.99

ϕ† 100 5.23 7.45 18.32 45.81 75.28 93.08 99.09 99.93 99.99

ϕMC

Q̃
(ATS) 100 6.30 8.57 21.72 49.82 79.90 95.50 99.38 99.97 100.00

ϕ⋆

Q̃
(ATS) 100 5.14 7.32 19.27 46.90 77.69 94.58 99.24 99.93 100.00

ϕ
†

Q̃
(ATS) 100 5.28 7.77 19.40 47.54 77.68 94.59 99.37 99.98 100.00

ϕ⋆

Q̃
(WTS) 100 4.79 7.22 19.12 46.47 76.54 94.05 98.93 99.87 99.98

ϕ
†

Q̃
(WTS) 100 5.02 7.54 18.86 46.70 76.59 93.75 99.16 99.95 99.99

ψ⋆

ATS
100 5.16 6.12 10.58 22.26 46.21 74.33 92.99 99.05 99.92

ψ
†
ATS

100 5.08 6.19 10.45 23.00 46.70 75.30 94.00 99.13 99.97

Table 6: Power of different test statistics under an one-point-alternative for 3 groups with 5-
dimensional observation vectors. The error terms are based on a t9 distribution and have a
compound symmetry covariance matrix with Σ1 = Σ2 = diag(2, 3, 4, 5, 6) + 151

⊤
5 , resp. a

autoregressive matrix (Σ3)ℓk = 0.65|ℓ−k|, while the groups are unbalanced with n1 = n2 =
0.4 ·N and n3 = 0.2 ·N .
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N δ = 0 δ = 0.25 δ = 0.5 δ = 0.75 δ = 1.00 δ = 1.25 δ = 1.5 δ = 1.75 δ = 2.00

ϕ 25 14.40 15.60 18.02 23.88 32.73 45.02 59.45 73.73 84.51

ϕ⋆ 25 4.54 4.96 6.19 9.38 14.16 22.49 34.64 47.20 63.06

ϕ† 25 4.90 5.26 6.66 9.78 14.67 22.71 33.44 48.73 61.96

ϕMC

Q̃
(ATS) 25 9.12 9.61 11.60 16.63 24.10 35.47 50.66 65.74 79.17

ϕ⋆

Q̃
(ATS) 25 4.42 4.66 5.89 8.83 14.19 22.68 35.20 50.42 65.48

ϕ
†

Q̃
(ATS) 25 5.40 5.21 7.42 9.95 15.79 24.38 37.89 53.17 67.53

ϕ⋆

Q̃
(WTS) 25 4.82 5.39 6.34 9.61 14.36 22.43 35.13 48.21 63.77

ϕ
†

Q̃
(WTS) 25 5.17 5.37 6.98 9.67 14.79 22.51 33.72 48.62 62.60

ψ⋆

ATS
25 4.25 4.40 4.43 6.18 8.38 11.97 17.87 25.44 36.25

ψ
†
ATS

25 5.51 5.46 6.66 7.79 10.69 15.90 20.96 30.52 41.36

ϕ 50 9.31 10.52 16.09 28.51 48.44 70.50 87.36 96.05 99.31

ϕ⋆ 50 4.99 5.65 9.77 19.35 36.38 58.71 79.52 92.40 98.01

ϕ† 50 5.10 5.88 9.97 19.79 36.97 59.57 79.76 92.39 98.09

ϕMC

Q̃
(ATS) 50 7.11 7.96 13.50 24.96 44.62 66.60 84.54 95.32 98.82

ϕ⋆

Q̃
(ATS) 50 5.02 5.57 9.59 19.79 37.41 59.80 80.44 93.41 98.19

ϕ
†

Q̃
(ATS) 50 4.95 5.69 9.55 19.81 38.43 61.32 81.57 93.62 98.47

ϕ⋆

Q̃
(WTS) 50 5.40 5.77 9.83 19.49 36.70 59.34 80.85 93.44 98.52

ϕ
†

Q̃
(WTS) 50 5.18 6.20 9.91 19.40 36.58 60.18 81.00 93.36 98.57

ψ⋆

ATS
50 4.87 5.12 6.84 10.96 18.30 30.15 48.85 68.94 85.25

ψ
†
ATS

50 5.26 5.88 7.81 12.06 20.10 33.20 52.37 71.51 87.23

ϕ 100 6.86 9.56 22.52 51.64 80.86 96.13 99.71 99.97 100.00

ϕ⋆ 100 4.96 7.47 18.42 45.62 76.26 94.74 99.57 99.96 100.00

ϕ† 100 4.82 7.41 18.39 46.44 77.21 95.15 99.48 99.98 100.00

ϕMC

Q̃
(ATS) 100 6.04 8.62 20.76 49.77 79.63 95.78 99.57 99.99 100.00

ϕ⋆

Q̃
(ATS) 100 4.93 7.24 18.48 46.69 77.33 95.07 99.44 100.00 100.00

ϕ
†

Q̃
(ATS) 100 4.96 7.41 18.22 47.52 78.39 95.46 99.59 99.97 100.00

ϕ⋆

Q̃
(WTS) 100 5.26 7.45 18.02 46.48 78.19 95.89 99.69 99.98 100.00

ϕ
†

Q̃
(WTS) 100 5.04 7.35 18.26 47.07 79.14 96.15 99.62 100.00 100.00

ψ⋆

ATS
100 4.64 5.87 10.77 22.07 44.14 73.53 93.27 99.28 99.97

ψ
†
ATS

100 5.19 6.32 10.93 23.54 46.56 75.27 94.33 99.34 99.97

Table 7: Power of different test statistics under an one-point-alternative for 3 groups with 5-
dimensional observation vectors. The error terms are based on a skew normal distribution and
have a compound symmetry covariance matrix with Σ1 = Σ2 = diag(2, 3, 4, 5, 6) + 151

⊤
5 , resp.

a autoregressive matrix (Σ3)ℓk = 0.65|ℓ−k|, while the groups are unbalanced with n1 = n2 =
0.4 ·N and n3 = 0.2 ·N .
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N δ = 0 δ = 0.25 δ = 0.5 δ = 0.75 δ = 1.00 δ = 1.25 δ = 1.5 δ = 1.75 δ = 2.00

ϕ 25 15.29 17.17 28.06 43.94 61.04 75.89 88.33 94.93 98.24

ϕ⋆ 25 5.22 6.26 11.66 21.68 36.97 53.02 69.98 82.89 91.75

ϕ† 25 5.00 6.50 12.10 22.19 36.28 53.60 69.77 82.95 91.51

ϕMC

Q̃
(ATS) 25 9.70 11.87 20.61 34.92 52.55 70.10 84.53 93.29 97.79

ϕ⋆

Q̃
(ATS) 25 4.95 6.47 11.64 22.48 38.24 55.74 73.92 86.06 94.45

ϕ
†

Q̃
(ATS) 25 5.64 6.94 13.50 24.32 40.05 58.87 75.82 88.31 95.02

ϕ⋆

Q̃
(WTS) 25 4.87 6.40 11.87 22.42 38.53 54.64 71.40 83.71 92.23

ϕ
†

Q̃
(WTS) 25 4.96 6.68 12.44 22.70 37.28 54.56 70.89 83.79 91.94

ψ⋆

ATS
25 3.95 5.98 13.01 27.04 45.51 65.28 82.81 92.43 97.83

ψ
†
ATS

25 5.26 7.65 15.32 29.26 49.54 70.14 84.85 94.47 98.16

ϕ 50 8.99 14.73 31.72 57.69 81.82 94.55 98.89 99.86 100.00

ϕ⋆ 50 4.75 9.20 22.11 46.05 72.10 89.84 97.44 99.59 99.97

ϕ† 50 5.12 8.96 21.59 45.53 71.97 89.38 97.12 99.68 99.95

ϕMC

Q̃
(ATS) 50 7.09 12.40 28.02 54.12 79.52 93.94 98.78 99.87 100.00

ϕ⋆

Q̃
(ATS) 50 4.93 9.21 22.99 47.08 74.18 91.42 98.09 99.77 100.00

ϕ
†

Q̃
(ATS) 50 5.55 8.65 22.68 47.43 74.81 91.30 98.12 99.84 100.00

ϕ⋆

Q̃
(WTS) 50 4.67 9.27 22.82 46.51 72.75 90.34 97.63 99.67 99.97

ϕ
†

Q̃
(WTS) 50 5.10 8.78 21.97 46.20 72.60 89.61 97.39 99.68 99.96

ψ⋆

ATS
50 4.58 9.81 26.68 56.21 82.39 95.66 99.30 99.94 99.99

ψ
†
ATS

50 5.08 10.00 28.52 57.64 83.01 96.03 99.47 99.97 100.00

ϕ 100 6.82 16.97 48.73 84.42 98.06 99.86 100.00 100.00 100.00

ϕ⋆ 100 5.07 13.70 43.27 80.11 97.05 99.75 100.00 100.00 100.00

ϕ† 100 4.87 13.76 42.45 80.18 96.92 99.83 100.00 100.00 100.00

ϕMC

Q̃
(ATS) 100 6.14 15.82 47.35 83.48 98.08 99.90 100.00 100.00 100.00

ϕ⋆

Q̃
(ATS) 100 5.22 14.16 44.35 81.38 97.33 99.85 100.00 100.00 100.00

ϕ
†

Q̃
(ATS) 100 5.13 14.13 43.97 81.60 97.63 99.92 100.00 100.00 100.00

ϕ⋆

Q̃
(WTS) 100 4.97 13.82 43.57 80.68 97.17 99.80 100.00 100.00 100.00

ϕ
†

Q̃
(WTS) 100 5.05 13.67 42.88 80.96 97.20 99.86 100.00 100.00 100.00

ψ⋆

ATS
100 4.91 15.90 52.51 88.92 99.05 100.00 100.00 100.00 100.00

ψ
†
ATS

100 5.15 16.66 53.34 89.26 99.02 99.98 100.00 100.00 100.00

Table 8: Power of different test statistics under a shift-alternative for 3 groups with 5-
dimensional observation vectors. The error terms are based on a standard normal distribution
and have a compound symmetry covariance matrix with Σ1 = Σ2 = diag(2, 3, 4, 5, 6) + 151

⊤
5 ,

resp. a autoregressive matrix (Σ3)ℓk = 0.65|ℓ−k|, while the groups are unbalanced with
n1 = n2 = 0.4 ·N and n3 = 0.2 ·N .

25



N δ = 0 δ = 0.25 δ = 0.5 δ = 0.75 δ = 1.00 δ = 1.25 δ = 1.5 δ = 1.75 δ = 2.00

ϕ 25 14.69 17.36 28.09 43.69 61.29 77.80 90.12 95.60 98.56

ϕ⋆ 25 4.76 5.33 11.99 21.71 36.45 54.82 72.00 84.79 92.59

ϕ† 25 4.50 6.47 12.96 23.49 38.43 56.91 73.35 85.73 93.26

ϕMC

Q̃
(ATS) 25 9.89 11.62 20.14 34.78 52.47 70.06 86.21 93.90 97.80

ϕ⋆

Q̃
(ATS) 25 4.93 5.76 11.37 22.27 37.71 56.48 75.07 87.41 94.45

ϕ
†

Q̃
(ATS) 25 5.08 7.42 13.18 24.12 42.05 61.01 77.45 88.90 95.61

ϕ⋆

Q̃
(WTS) 25 4.78 5.61 12.48 22.38 38.28 56.42 73.74 85.59 92.76

ϕ
†

Q̃
(WTS) 25 4.49 6.51 12.99 23.94 39.91 58.23 74.24 86.16 93.19

ψ⋆

ATS
25 4.27 6.04 13.20 25.82 44.44 65.23 82.34 92.40 97.28

ψ
†
ATS

25 5.47 7.49 15.83 29.15 49.87 69.74 85.00 94.03 97.77

ϕ 50 8.54 14.81 32.96 59.97 82.25 95.01 99.04 99.84 100.00

ϕ⋆ 50 4.59 9.09 22.88 47.39 72.88 90.45 97.82 99.60 99.97

ϕ† 50 4.81 8.87 22.86 48.14 73.87 91.09 97.81 99.63 99.95

ϕMC

Q̃
(ATS) 50 6.78 11.91 28.13 54.59 79.70 94.14 98.94 99.84 100.00

ϕ⋆

Q̃
(ATS) 50 4.62 8.98 22.79 47.21 74.24 91.49 98.27 99.67 99.99

ϕ
†

Q̃
(ATS) 50 4.92 8.88 23.67 49.39 75.35 92.22 98.31 99.77 99.99

ϕ⋆

Q̃
(WTS) 50 4.63 9.02 23.48 48.13 73.50 91.15 97.99 99.65 99.98

ϕ
†

Q̃
(WTS) 50 4.66 8.73 23.23 49.39 74.64 91.33 97.91 99.71 99.96

ψ⋆

ATS
50 4.71 9.38 26.96 56.21 82.42 95.55 99.24 99.93 99.99

ψ
†
ATS

50 5.13 10.05 28.96 57.62 83.89 96.22 99.36 99.97 99.99

ϕ 100 6.89 17.16 50.39 84.19 98.24 99.83 100.00 100.00 100.00

ϕ⋆ 100 5.07 13.58 44.59 80.13 97.15 99.74 100.00 100.00 100.00

ϕ† 100 5.23 14.41 44.32 80.60 97.09 99.77 99.99 100.00 100.00

ϕMC

Q̃
(ATS) 100 6.30 15.79 48.19 83.16 98.24 99.84 100.00 100.00 100.00

ϕ⋆

Q̃
(ATS) 100 5.14 13.92 44.86 81.31 97.63 99.80 100.00 100.00 100.00

ϕ
†

Q̃
(ATS) 100 5.28 14.87 44.65 81.94 97.64 99.82 100.00 100.00 100.00

ϕ⋆

Q̃
(WTS) 100 4.79 13.63 44.83 80.93 97.49 99.77 100.00 100.00 100.00

ϕ
†

Q̃
(WTS) 100 5.02 14.45 44.31 81.32 97.43 99.74 99.99 100.00 100.00

ψ⋆

ATS
100 5.16 15.51 53.26 88.27 98.99 99.96 100.00 100.00 100.00

ψ
†
ATS

100 5.08 16.86 53.25 89.12 99.12 99.97 100.00 100.00 100.00

Table 9: Power of different test statistics under a shift-alternative for 3 groups with 5-
dimensional observation vectors. The error terms are based on a t9-distribution and have a
compound symmetry covariance matrix with Σ1 = Σ2 = diag(2, 3, 4, 5, 6) + 151

⊤
5 , resp. a au-

toregressive matrix (Σ3)ℓk = 0.65|ℓ−k|, while the groups are unbalanced with n1 = n2 = 0.4 ·N
and n3 = 0.2 ·N .
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N δ = 0 δ = 0.25 δ = 0.5 δ = 0.75 δ = 1.00 δ = 1.25 δ = 1.5 δ = 1.75 δ = 2.00

ϕ 25 14.40 17.66 28.37 43.78 62.29 77.46 90.57 96.13 99.18

ϕ⋆ 25 4.54 6.51 12.18 22.04 36.84 53.06 71.90 85.10 93.69

ϕ† 25 4.90 6.82 12.71 22.10 37.55 54.57 71.30 85.64 93.45

ϕMC

Q̃
(ATS) 25 9.12 11.38 19.72 33.44 51.13 68.60 84.21 93.71 98.04

ϕ⋆

Q̃
(ATS) 25 4.42 5.78 11.21 20.82 35.70 52.44 71.68 86.24 94.23

ϕ
†

Q̃
(ATS) 25 5.40 6.70 13.25 22.35 38.95 57.12 75.12 88.31 95.31

ϕ⋆

Q̃
(WTS) 25 4.82 6.61 12.20 22.05 36.90 52.93 71.85 85.12 93.74

ϕ
†

Q̃
(WTS) 25 5.17 6.75 12.55 21.85 36.97 53.77 70.92 85.38 93.14

ψ⋆

ATS
25 4.25 6.03 12.29 25.36 45.04 64.57 83.24 93.44 98.01

ψ
†
ATS

25 5.51 7.45 15.52 28.60 48.99 69.86 84.95 94.93 98.52

ϕ 50 9.31 14.09 31.97 58.54 81.95 95.36 99.33 99.92 100.00

ϕ⋆ 50 4.99 8.52 22.17 46.71 72.35 90.97 98.33 99.80 99.99

ϕ† 50 5.10 8.54 22.83 46.40 73.42 90.64 98.20 99.76 99.98

ϕMC

Q̃
(ATS) 50 7.11 11.23 26.88 53.04 78.03 93.75 99.14 99.87 100.00

ϕ⋆

Q̃
(ATS) 50 5.02 8.02 21.58 45.88 72.20 91.34 98.25 99.77 100.00

ϕ
†

Q̃
(ATS) 50 4.95 8.47 22.43 45.96 73.98 91.48 98.47 99.82 99.98

ϕ⋆

Q̃
(WTS) 50 5.40 8.44 21.57 45.83 71.86 91.07 98.35 99.80 99.99

ϕ
†

Q̃
(WTS) 50 5.18 8.54 22.21 45.29 72.68 90.71 98.29 99.78 99.98

ψ⋆

ATS
50 4.87 9.76 26.71 55.99 82.13 95.94 99.55 99.98 100.00

ψ
†
ATS

50 5.26 10.46 29.11 57.54 84.36 96.25 99.47 99.96 100.00

ϕ 100 6.86 16.67 50.10 84.79 98.53 99.98 100.00 100.00 100.00

ϕ⋆ 100 4.96 13.31 43.51 80.90 97.53 99.93 100.00 100.00 100.00

ϕ† 100 4.82 13.52 42.44 80.94 97.45 99.88 100.00 100.00 100.00

ϕMC

Q̃
(ATS) 100 6.04 15.32 47.32 83.40 98.00 99.91 100.00 100.00 100.00

ϕ⋆

Q̃
(ATS) 100 4.93 13.23 43.62 81.04 97.63 99.92 100.00 100.00 100.00

ϕ
†

Q̃
(ATS) 100 4.96 13.76 42.56 81.20 97.57 99.91 100.00 100.00 100.00

ϕ⋆

Q̃
(WTS) 100 5.26 13.01 42.97 80.61 97.79 99.93 100.00 100.00 100.00

ϕ
†

Q̃
(WTS) 100 5.04 13.23 41.64 80.93 97.64 99.93 100.00 100.00 100.00

ψ⋆

ATS
100 4.64 15.96 53.29 89.11 99.23 99.99 100.00 100.00 100.00

ψ
†
ATS

100 5.19 16.20 53.29 88.93 99.11 100.00 100.00 100.00 100.00

Table 10: Power of different test statistics under a shift-alternative for 3 groups with 5-
dimensional observation vectors. The error terms are based on a skew normal distribution
and have a compound symmetry covariance matrix with Σ1 = Σ2 = diag(2, 3, 4, 5, 6) + 151

⊤
5 ,

resp. a autoregressive matrix (Σ3)ℓk = 0.65|ℓ−k|, while the groups are unbalanced with
n1 = n2 = 0.4 ·N and n3 = 0.2 ·N .

27


	Motivation and introduction
	Model
	Equality of mean vectors
	General Hypotheses
	Resampling Procedures 
	Simulations
	Data Example
	Conclusion
	Bibliography
	Proofs
	Further simulations



