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Abstract: This paper proposes a neural network hybrid modeling framework for dynamics
learning to promote an interpretable, computationally efficient way of dynamics learning and
system identification. First, a low-level model will be trained to learn the system dynamics,
which utilizes multiple simple neural networks to approximate the local dynamics generated
from data-driven partitions. Then, based on the low-level model, a high-level model will be
trained to abstract the low-level neural hybrid system model into a transition system that allows
Computational Tree Logic Verification to promote the model’s ability with human interaction
and verification efficiency.
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1. INTRODUCTION

In recent years, the development of neural networks has
received particular attention in various fields, including
natural language processing Wang et al. (2023b), computer
vision Stefenon et al. (2022), etc. The applications of
neural networks in system identification hold significant
promise for they provide a precise approximation of the
dynamics while requiring no prior knowledge of the sys-
tem’s mechanism. Neural networks serve as a predominant
approach in machine learning, renowned for their excep-
tional ability to model complex phenomena with limited
prior knowledge. Their proficiency in capturing intricate
patterns in data offers valuable insights for dynamical
system modeling, verification, and control.

However, neural networks are opaque, limiting our ability
to validate them solely from an input-output perspective.
This opacity also renders neural network models vulnera-
ble to perturbations Zhang et al. (2021),Yang et al. (2022).
When it comes to applications in safety-critical scenarios,
it requires time-consuming reachability analysis of the
specific trajectories for verification, which poses challenges
to real-time applications. According to Brix et al. (2023),
the computational efficiency is highly related to the scale
of the neural network model.

This paper aims to promote the interpretability and com-
putational efficiency of neural networks in dynamical sys-
tem modeling by introducing a novel dual-level modeling
framework. Specifically, our proposed approach will divide
dynamical system modeling into two essential levels: the
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low-level neural hybrid system model and its high-level
transition system abstraction. The low-level model is em-
ployed to precisely capture the system’s local behavior
and enhance the computational efficiency with a parallel
set of shallow neural networks aimed at approximating
the local dynamics. Then the high-level transition model,
which is an abstraction based on neural hybrid systems,
can be obtained based on reachability analysis designed
to capture relationships and transition patterns among
system subspaces.

The contributions of this paper are summarized as follows.

• Maximum Entropy partitioning is applied to partition
the system state space into multiple local subspaces,
which allows analysis of the dynamics within local
subspaces.

• A concept of neural hybrid systems is proposed for
distributed training and verification of a set of shallow
neural networks, thereby enhancing computational
efficiency.

• A novel transition system abstraction method is pro-
posed to investigate the transition relationships be-
tween local partitions, which will further enhance
model interpretability.

This paper is organized as follows: Preliminaries and
problem formulations are given in Section II. The main
result, the dual-level modeling framework, is given in
Section III. In Section IV, modeling of the LASA data
sets is given to illustrate the effectiveness of our proposed
framework 1 . Conclusions are given in Section V.

1 The developed modeling tool and code for experiments
are publicly available online at: https://github.com/aicpslab/

Dual-Level-Dynamic-System-Modeling.
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Notations. In the rest of the paper, N denotes the
natural number sets, where N≤n indicates {1, 2, · · · , n},
R is the field of real numbers, B is the set of the Boolean
variables, Rn stands for the vector space of n-tuples of real
numbers, and X and X are the lower bound and upper
bound of an interval X, respectively.

2. PRELIMINARIES AND PROBLEM
FORMULATION

In this paper, the modeling problems for the discrete-time
system will be discussed, i.e., we aim to model the system
in the form of

x(k + 1) = f(x(k), u(k)), (1)

in which x ∈ Rnx is the system state, u ∈ Rnu is the
external input, and f : Rnx+nu → Rnx is the ideal
mapping that precisely describes the system patterns.
Due to dimensions and nonlinearity, obtaining f could be
challenging, therefore we aim to approximate f with neural
network Φ : Rnx+nu → Rnx in

x(k + 1) = Φ(x(k), u(k)). (2)

In the training of Φ, approximating f means adjusting the
weight and bias of Φ in order to minimize the error between
its output and the given data set. In this paper, the given
data set consisting of input-output pairs is in the form of

D = {(z(i), y(i)) | z(i) ∈ Rnx+nu , y(i) ∈ Rnx}. (3)

However, neural networks face challenges as they typically
require extensive data for training and often lack an intu-
itive understanding of the system’s behavior. To unveil the
black-box model usually requires a reachability analysis of
the neural network dynamical system.

2.1 Reachability Analysis for Neural Network Dynamical
System

The reachability analysis of neural networks is useful in
neural network dynamical system verification for it can
determine the range of outputs based on the interplay
between the input sets and the structure of the neural
network, and according to Tran et al. (2019); Wang et al.
(2021) and Feng et al. (2018), simple neural network
structure, i.e., Φ that contains fewer layers and neurons
will have advantages in reachable computation.

Taking a L-layer feed-forward neural network Φ : Rn0 →
RnL as an example, its inter-layer propagation can be
denoted as follows.

xi,k+1 = σ(
∑

j
wij,k+1xj,k + bi,k+1), (4)

in which xi,k+1 is the ith neuron output from k+1th layer
computed by applying the activation function σ to the
weighted sum of the activations from the previous layer,
plus a bias bi,k+1 and wij,k+1 is the ith line, jth row value
of the weight bias Wk ∈ Rnk×nk+1 .

Reachability analysis of neural networks will go through
the inter-propagation of the neural network in (4), namely,
for neural network model in (2) output reachable set
computation when given kth time step state input set
X(k) ⊂ Rnx and external input set U ⊂ Rnu can be denoted
as

X(k+1) = Φ∗(X(k),U), (5)

in which X(k+1) is the reachable set output of Φ at k+1th
time step computed by reachable set computation method
Φ∗ such as Lopez et al. (2023); Xiang et al. (2018); Vincent
and Schwager (2021), etc. Reachable sets in given Kth
time steps requires propagation of (5) in

R(K) =

K⋃
k=0

X(k), (6)

in which R(K) is the reachable sets in Ktime steps.

Due to the opacity of neural networks, the verification of
(2) usually necessitates reachability computations of dif-
ferent trajectories to verify specific properties and can be
heavily influenced by the neural network structure, posing
a computational burden that challenges its application.

2.2 Maximum Entropy Partitioning

Maximum Entropy (ME) partitioning proposed in Yang
and Xiang (2023) utilizes the Shannon Entropy to parti-
tion the state space according to the data, which can be
very useful in obtaining subspaces for distributed learning
and prediction in neural networks.

Given a set of N ∈ N subspaces P = {Pi}Ni=1, where
Pi ⊂ Rnx , the Shannon Entropy of P can be denoted by

H(P) = −
∑N

i=1
p(Pi) log p(Pi), (7)

in which p(P) denotes the probability of Pi occurrence in
Pi. In this data-driven process, p(Pi) is extrapolated by
the sample set in the form of

p(Pi) =
|Di|
|D|

, (8)

in which |D| is the number of samples of D while Di is
defined by

Di = {(z(j), y(j)) ∈ D | x ∈ Pi,∀[x⊤, u⊤]⊤ = z(i)}. (9)

The ME partitioning employs the variation in Shannon
entropy from system partitions to ascertain if the current
set of partitions maximized the system’s entropy after
a bisecting method. Explicitly, the variation of Shannon
Entropy is in the form of

∆H = H(P̂)−H(P) (10)

in which P̂ is the post-bisecting set of partitions.

By setting a threshold ϵ ≥ 0 as a stop condition, namely
the bisection process will stop if ∆H < ϵ, a proper set of
partitions can be obtained.

2.3 Problem Formulation

This paper aims to promote the efficiency of learning
and prediction of the neural network dynamical system
in solving the following problem.

Problem 1. Given the data set D in the form of (3), how
do we model the dynamical system distributively with
multiple simple neural networks?

To promote the interpretability of the learning model,
the following problem will be the main concern after a
distributed neural network model is obtained.



Problem 2. Given a neural-network-based approximation
Φ of f , how do we abstract Φ into an interpretable model
that avoids real-time reachable set computation in (5)?

Solving Problem 1 will allow parallel training and verifi-
cation of multiple simple neural networks, which enhances
the efficiency of neural network modeling while providing
an accurate low-level model. Based on the low-level model,
we are able to enhance the interpretability by abstracting
the low-level model into a high-level model by solving
Problem 2.

3. DUAL-LEVEL MODELING FRAMEWORK

Before presenting the dual-level modeling framework, we
make the assumption that the system training set (3)
provides adequate information in the working zone for
dynamical learning as follows.

Assumption 1. The working zone of ideal system dynam-
ical description f in (1) is within the localized state space
x ∈ X , given the external input bound where u ∈ [u, u].

In most cases of neural network dynamical system mod-
eling, Φ in (2) will have high accuracy in approximating
the dynamics based on a sample set D. Based on D, we
assume that the learning model applies only to a working
zone with Assumption 1.

3.1 Neural Hybrid System Model and Transition System
Abstraction

To solve Problem 1, we proposed the neural hybrid system
model, which allows precise learning of the dynamical
system through multiple small-scale neural networks. The
neural hybrid system model is defined as

Definition 1. A neural hybrid system model is a tuple
H = ⟨P,Ω, δ, Φ̃⟩ where
• Ω ⊂ Rd: Working zone, with states x(k) ∈ Ω.
• P = {P1,P2, . . . ,PNp}: Finite set of non-overlapping
partitions in the working zone, where: 1) Pi ⊆ Ω; 2)⋃N

i=1 Pi = Ω; 3) Pi ∩ Pj = ∅, ∀i ̸= j.
• δ : Ω → {1, 2, . . . , Np}: Function mapping states to
partitions δ(x(k)) = i, implies x(k) ∈ Pi.

• Φ̃ = {Φ1,Φ2, . . . ,ΦNp
}: Set of neural networks, each

Φi models dynamics in Pi.

Definition 1 introduces a distributed structure of the
neural networks that allows local approximations of the
subspaces of state space called partitions. The dynamics
of low-level model H is denoted as

x(k + 1) = Φδ(x(k))(x(k), u(k)). (11)

This distributive structure will help reduce the scales
of the neural network approximation and result in the
enhancement of the computational efficiency in training
and verification.

Compared with the conventional model, the neural hybrid
system modeling will have the advantages of real-time
computation and verification. However, to gain insights
from the neural hybrid system modeling and enhance
interactivity between the learning model and human users,
we can abstract the neural hybrid system into a transition
system defined as

Definition 2. A transition system abstraction is a tuple
T ≜ ⟨Ω,Q, E ⟩ where its elements are:

• Ω ⊂ Rnx : Working zone, where this abstraction is
applying to.

• Q = {Q1, · · · ,QNq
}: The finite set of subspaces

called cells, where: 1) Qi ⊆ Ω; 2) Ω =
⋃Nq

i=1Qi; 3)
Qi

⋂
Qj = ∅. With an index function idx : Q →

N≤Nq for idx(Qi) = i.
• R : N≤Nq ×N≤Nq → B: Transition rules, if there exist

a probable transition from Qi to Qj , then R(i, j) = 1,
else R(i, j) = 0.

A transition system abstraction will unveil the intercon-
nection of subspaces with transition rules T through ab-
stracting the neural hybrid system H. In this process, the
data in the form of traces will be generated by the neural
hybrid system H by giving it randomized initial states,
and randomized or user-specified external input for the
non-autonomous dynamical systems.

3.2 Efficient Dynamics Learning via Low-Level Modeling

In this paper, we will be achieving efficient dynamics
learning via our proposed low-level model, namely, neural
hybrid system modeling. To begin with, ME-partitioning
proposed in Yang and Xiang (2023) will be applied to
bisecting the working zone Ω based on the data set D.
In this process, Ω and P will be in the form of the
interval, e.g., Pi = [p

i,1
, pi,1] × [p

i,2
× pi,2] . . . in which

Pi = {pi,1, pi,2, · · · , pi,nx
} ∈ Rnx , etc. Specifically, we will

locate the jth dimension of the ith partition to bisect via

(i, j) = argmaxi,j Di,j , (12)

in which
Di,j = pi,j − p

i,j
. (13)

We will keep bisecting the P until ∆H ≤ ϵ. After the ME
partitioning, the set of partitions P with Np partitions can
be obtained, which will subsequently define the segmented
data set {D1, . . . ,DNp

}. With the segmented data set, we
are able to train the set of neural networks once given a
neural network structure, namely, the layers, neurons, and
the activation function, etc., of neural networks.

To further optimize the ME partitioning and simplify the
learning model, we will merge the redundant partitions
based on the training performance of the neural network.
Merging redundant partitions will be based on the Mean
Square Error (MSE) performance of the neural network.
Given D and a trained neural network Φ, the MSE
performance of Φ is

MSE(Φ,D) = 1

|D|
∑|D|

i=1

∥∥∥Φ(z(i))− y(i)
∥∥∥ . (14)

By setting a threshold based on MSE performance γ ≥ 0,
we are able to identify the redundant partitions that are
considered to have similar performance under the same
neural network structure, namely, if

MSE(Φ,Di ∪ Dj) ≤ γ (15)

for a trained Φ, the corresponding partitions Pi and Pj

will be considered redundant partitions, and hence they
will be merged.



Merging the redundant partitions will subsequently define
the switching logic δ and the set of neural networks Φ̃ for
the neural hybrid system H. The low-level neural hybrid
system modeling can be summarized in pseudo-code given
in the Algorithm 1.

Algorithm 1 Low-Level Neural Hybrid System Modeling

▷ Maximum Entropy partitioning
1: procedure ME Partitioning(Ω,D, ϵ)

Input: Ω;D; ϵ.
Output: P; ∪{Di}.

2: Psave ← ∅; Dsave ← ∅;
3: P1 ← Ω;
4: while ∃∆Hi ≥ ϵ, ∀Pi do
5: [i, j,Distance]← max(Di,j)
6: Obtain Ptemp1 and Ptemp2 under (12)
7: Obtain Dtemp1 and Dtemp2

8: if ∆Hi ≥ entropy then ▷ Using (7)
9: Pi ← {Ptemp1, Ptemp2}

10: Di ← {Dtemp1,Dtemp2}
11: else
12: Add Pi to Psave and delete Pi

13: Add Di to Dsave and delete Di

14: end if
15: end while
16: return P ∪ Psave; D ∪Dsave.
17: end procedure

▷ Merging and dynamics learning
18: procedure Merge and Learn(P,∪{Di},Φ)

Input: P,∪{Di},Φ
Output: P, Φ̃

19: ℓ← |P|, N ← 1; ▷ Segmented partitions merge
20: while N < ℓ do
21: n← 1;
22: while n ≤ ℓ do
23: n← n+ 1;
24: ΦN,n ← Φ, DN,n ← DN ∪ Dn

25: ΦN,n ← argminΦN.n
MSE(ΦN,n,DN,n)

26: if MSE(ΦN,n,DN,n) ≤ γ then
27: PN ← {PN ∪ Pn}
28: Delete Pn

29: ℓ← ℓ− 1
30: end if
31: end while
32: N ← N + 1;
33: end while
34: ▷ Generate neural network approximations
35: i← 1;
36: while i ≤ N do
37: Φi ← argminΦi MSE(Φi,Di)
38: end while
39: return P = {P1 . . . ,PN}; Φ = {Φ1, . . . ,ΦN}
40: end procedure

The low-level neural hybrid system can model the dynam-
ical system through a distributive and computationally
efficient framework, which makes it possible for parallel
training in the Merge and Learning procedure, and dis-
tributive verification in Wang et al. (2023a). To further
exploit this distributive structure and promote the inter-
pretability of the low-level learning model, we proposed
a transition system abstraction method as the high-level
model.

Algorithm 2 Transition Computation via H
Input: P,Q,Φ,U
Output: R

1: Np ← |P|, Nq ← |Q|
2: i← 1; j ← 1;
3: while i ≤ n do

4: Q′
i ←

⋃Np

l=1 Φ
∗
l (Qi ∩ Pl,U) ▷ Using (16)

5: j ← 1
6: while j ≤ n do
7: if Q′

i ∩Qj ̸= ∅ then
8: R(i, j)← 1
9: else

10: R(i, j)← 0
11: end if
12: j ← j + 1
13: end while
14: i← i+ 1
15: end while
16: return R

3.3 Interpretable Abstraction via High-Level Model

In high-level model abstraction, we intend to abstract
the neural hybrid system model in Definition 1 into a
transition system in Definition 2 with the help of the data
generated by H called the set of samples, defined by

Definition 3. Set of samples W = {w1, w2, · · · , wL} of
neural hybrid system (11) is a collection of sampled L
traces obtained by given H different initial condition and
randomized external input u ∈ U , where for each trace wi,
i = 1, . . . , L, is a finite sequence of time steps and data
(k0,i, d0,i), (k1,i, d1,i), · · · , (kMi,i, dMi,i) in which

• k0,i ∈ (0,∞) and kℓ+1,i = kℓ,i + 1, ∀ℓ ∈ N≤Mi , ∀i ∈
N≤L.

• zℓ,i = [x⊤
i (kℓ,i), u⊤

i (kℓ,i)]
⊤ ∈ Rnx+nu , ∀ℓ =

0, 1, . . . ,Mi, ∀i ∈ N≤L, where xi(kℓ,i), ui(kℓ,i) denote
the state and input of the system at ℓth step for ith
trace, respectively.

Remark 1. It should be noted that the abstraction of the
neural hybrid system is specific, meaning that different
transition system abstractions can be obtained based on
different control strategies. This specificity aids system
designers in implementing and validating control strategies
tailored to specific partitions.

After obtaining the set of samples, the set of cells Q will be
obtained via the ME partitioning method as in procedure
ME partitioning in Algorithm 1 based on W. Then, the
transition relationships between cells will be computed via
reachability analysis in

Q′
i =

⋃Np

j=1
Φ∗

j (Qi ∩ Pj ,U), (16)

in which Φ∗
j indicates a reachable set computation method

using the sub-neural network. Intuitively, based on Defini-
tion 2 the transition rule R(i, j) is

R(i, j) =

{
1, Q′

i ∩Qj ̸= ∅
0, Q′

i ∩Qj = ∅
(17)

The process of transition computation can be summarized
in pseudo-code given in Algorithm 2.



The proposed dual-level modeling framework can be sum-
marized as follows.

• The localized working zone of Ω, i.e., P can be
obtained based on an ME partitioning process, which
is completely data-driven and can be easily tuned by
adjusting the threshold.
• Partitions can be further optimized based on the MSE
performance of the trained neural network to simplify
the low-level model.
• The low-level model has a distributive structure con-
sisting of simple neural networks that allow parallel
training and verification, which will be computation-
ally efficient.
• The low-level model can be further abstracted into
a high-level transition system, this process can be
specifically designed and allow system designers to
develop and test control strategies that are specifi-
cally tailored for each distinct localized cell.
• The transitions can be off-line computed by reachabil-
ity analysis, and can be transferred into a transition
graph which will enhance the learning model’s inter-
pretability, and enable the feasibility of verifications
based on logical descriptions.

4. APPLICATIONS TO DYNAMICAL SYSTEM
MODELING

Regarding the modeling of complex dynamical systems
like human behaviors, learning-based methodologies have
garnered significant attention for their efficacy in Reinhart
and Steil (2011); Kanazawa et al. (2019), etc. However,
while learning-based approaches offer advantages over
mechanistic modeling, they present numerous challenges in
practical applications. For instance, typical issues include:

• The limited availability of sample data may result in
a deep neural network-based dynamical system model
that is not adequately trained, thereby hindering
its ability to capture the full spectrum of human
behavioral complexities.
• The inherent nature of human demonstrations, char-
acterized by sudden shifts, suggests that a trained
neural network-based dynamical system model might
exhibit discrepancies in its behavior, especially in
localized regions of the operational space.
• The interpretability deficit in neural network-based
dynamical system models poses a significant challenge
in real-time applications for limited, and computa-
tionally intensive verification methods.

The above issues are exemplified in the LASA dataset
Khansari-Zadeh and Billard (2011) modeling, which en-
compasses a diverse range of handwriting motions demon-
strated by human users across 30 distinct shapes. This
paper will attempt to address these issues through our pro-
posed dual-level dynamical system modeling framework.
The dual-level modeling process can be summarized as
follows.

• Extreme Learning Machines (ELMs) are employed,
each comprising 20 ReLU-activated neurons. These
ELMs feature a randomized input weight matrix and
bias vector, forming the core structure of the model.
To highlight the efficacy of our modeling approach,

an ELM with a solitary hidden layer containing 200
ReLU-activated neurons is trained to serve as a single-
neural network reference model.

• A threshold of ϵ = 4×10−2 is set for ME partitioning
variation in Algorithm 1. This setting led to the
generation of the set of partitions in ME partitioning
for the low-level model of all 30 shapes some results
are given in Tab. 1 and Tab. 2, an illustration of
MutiModels2

2 is given in Fig. 1 (a).
• By setting a threshold γ = 1.5× 10−5 in Merging, we

manage to simplify the low-level model by training
fewer neural networks while maintaining accuracy.

• We obtain the abstraction data from randomly gener-
ated trajectories in the working zone Ω, where ∀Mi =
400, ∀i ∈ N≤400 under Definition 3. By applying the
threshold ϵ = 4×10−2, a set of cells is then generated,
as shown in Fig. 1 (c).

• Based on the set of cells, we employ the Algorithm 2
to compute the transition relationships of the high-
level model abstraction. The transition from Fig. 1 (c)
to Fig. 1 (d) allows for the interpretation of transition
relationships between local working zones.

• We verify the transition system abstraction via Com-
putation Tree Logic (CTL) formulae Pan et al. (2016),
in which ⋄ or 2 denote the for some or all traces, and
⃝ denotes the next step. The formulae and results
of MultiModel2 are given in Tab. 3 as examples, ϕ1

indicates the possibility of the neural hybrid system
model being in Q2, ϕ2 specifies that for every possible
next step, the system will be in Q4, and ϕ3 signifies
whether there exists a trajectory that reaches Q7 im-
mediately after passing through Q6, given the initial
condition is Q9.

Table 1. Training Time and MSE of the Low-
level Model

Shape Name Training Time (ms) MSE (10−5)

Khamesh 0.7147 0.3466
LShape 0.7784 0.3745

MultiModels1 0.5603 0.2858
MultiModels2 0.6225 0.2892

· · · · · · · · ·

Table 2. Training Time and MSE for ELM
Model

Shape Name Training Time (ms) MSE (10−5)

Khamesh 14.8098 0.0923
LShape 38.4118 0.0842

MultiModels1 20.8079 0.0551
MultiModels2 26.6117 0.0753

· · · · · · · · ·

5. CONCLUSION

In this paper, a dual-level dynamical system learning
framework is proposed to promote computational effi-
ciency and interpretability in system identification. This
framework utilizes a data-driven ME partitioning process
to bisect the working zone, which makes it possible for
parallel training and local analysis. In order to simplify
2 Complete results includes modeling for all 30 shapes
can be found on our GitHub repository on dual-level
dynamical system modeling at https://github.com/aicpslab/

Dual-Level-Dynamic-System-Modeling/tree/main/Results
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Fig. 1. Partitions, Cells, and Transition Map Abstraction
of Dual-Level Models for MultiModels2 from LASA
data set.

Table 3. Verification results of CTL formula:
TMultiModels2 with Q9 as the initial cell.

CTL formula TMultiModels2

ϕ1 = ∃ ⋄ Q2 true
ϕ2 = ∀⃝Q4 false

ϕ3 = ∃(Q6) ∧ (∃⃝Q7) true

the learning model, a process called Merging is proposed
to merge the partitions based on the training performance.
The low-level model is then able to learn the dynamics
precisely while only consisting of a set of simple neural
networks. A high-level model is proposed to promote in-
terpretability through the reachability analysis. This high-
level model will provide valuable insights into the transi-
tion relationship within the working zone with the tran-
sition map and allow user-specified verification through
CTL formulae.
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