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SELF-INTERACTING CBO: EXISTENCE, UNIQUENESS, AND

LONG-TIME CONVERGENCE

HUI HUANG AND HICHAM KOUHKOUH

Abstract. A self-interacting dynamics that mimics the standard Consensus-Based Opti-
mization (CBO) model is introduced. This single-particle dynamics is shown to converge
to a unique invariant measure that approximates the global minimum of a given function.
As an application, its connection to CBO with Personal Best introduced by C. Totzeck and
M.-T. Wolfram (Math. Biosci. Eng., 2020) has been established.

1. Introduction

Let (Ω,F,Ft,P) be a complete filtered probability space, and let (Bt)t≥0 be a standard
d-dimensional Brownian motion defined therein. We consider a McKean-Vlasov process X·

on R
d whose dynamics is the one of the consensus-based optimization (CBO) model [17],

and is governed by the following equation

(1) dXt = −λ(Xt −mα(Lt[X ])) dt+ σD(Xt −mα(Lt[X ])) dBt ,

where Lt[X ] := Law(Xt), and σ > 0 is a real constant. Here, we employ anisotropic diffusion
in the sense that D(X) := diag(|x1|, . . . , |xd|) for any X = (x1, . . . , xd) ∈ R

d, which has
been proven to handle high-dimensional problems more effectively [2, 7]. The current global
consensus point mα(Lt[X ]) is defined by

(2) mα(Lt[X ]) =

∫
Rd xω

f
α(x) Lt[X ](dx)

∫
Rd ω

f
α(x) Lt[X ](dx)

,

and the weight function is chosen to be ωf
α(x) := exp(−αf(x)). This choice of weight

function is motivated by the well-known Laplace’s principle [3, 16]. The CBO method is
proposed to solve the optimization problem:

Find x∗ ∈ argmin
x∈Rd

f(x),

where f can be a non-convex non-smooth objective function that one wishes to minimize.

Under certain assumptions on the well-prepared initial data and parameters, it can be
proved as in [1] that, for any fixed α > 0 , ρt converges to a Dirac measure. If moreover α
is chosen large enough, it can also be shown that the latter Dirac measure can be supported
on a point close to x∗, a global minimizer of f .
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A common way to run the CBO dynamics (1) is through the large particle limit (or mean-
field limit). Namely, one considers the following N interacting particle system {X i

· }
N
i=1

satisfying

(3) dX i
t = −λ(X

i
t −mα(ρ

N
t ))dt+ σD(X i

t −mα(ρ
N
t ))dB

i
t , i = 1, . . . , N ,

where ρNt = 1
N

∑N

i=1 δXi
t
is the empirical measure associated to the particle system, and

{Bi
.}

N
i=1 are N independent d-dimensional Brownian motions. The convergence from the

particle system (3) to the McKean-Vlasov process (1) [6,10,13] is called the mean-field limit,
hence the name mean-field interaction.

In the long-time limit and for well-chosen parameters (in particular for α≫ 1), this system
of (finitely many) particles would converge to a single point which is the global minimizer of
f , and it coincides with the support of the long-time limit of Lt[X ], the law of the McKean-
Vlasov process defined above. In other words, this suggests that a Dirac measure supported
on the global minimizer is an invariant measure for (1). By definition, a probability measure
µ is invariant forX· if and only if it is a fixed point for the adjoint of its (nonlinear) transition
semigroup {Tt}t≥0, that is T

∗
t µ = µ for all t > 0. The adjoint operator T ∗

t is defined on the
space of probability measures as T ∗

t ν := Lt[X ] when ν = L0[X ]. Using the generator A
of the semigroup Tt we have the characterization: a probability measure µ is invariant for
{Tt}t≥0 if and only if

∫

Rd

Aϕ(x) dµ(x) = 0 ∀ϕ in the domain of A.

This is the distributional definition of µ being a solution to the Kolmogorov-Fokker-Planck
equation A∗µ = 0, where A∗ is the adjoint operator of the generator A. For a McKean-Vlasov
process, A is a nonlinear operator.

For the process (1), it can be easily verified that any Dirac measure (not necessarily
supported on the global minimizer) is invariant. This non-uniqueness is mainly due to two
reasons: in the drift, the term −X is not strong enough with respect to the mean-field term
mα(·), and the diffusion degenerates. With these features, it becomes difficult to study the
dynamical properties of (1), in particular its long-time behavior. To remedy to this situation,
we propose a modification of (1) which addresses exactly these two mentioned issues. Hence,
we consider a rescaled CBO given by

(4) dXt = −λ(Xt − κmα(Lt[X ]))dt+ σ

(
1

α
Id +D(Xt − κmα(Lt[X ]))

)
dBt

complemented with a deterministic initial condition X0 = x ∈ R
d, where Id is the d-

dimensional identity matrix, 0 < κ < 1 is a small positive constant, and α is the same
as in the consensus point1. As we shall later see, E[Xt=∞] ≈ κ x∗ for sufficiently large α≫ 1.
Clearly, the approximation using a system of N interacting particles is still valid for (4), and
it is of the form

(5) dX i
t = −λ

(
(X i

t − κmα(ρ
N
t )
)
dt + σ

(
1

α
Id +D(X i

t − κmα(ρ
N
t )

)
dBi

t, i = 1, . . . , N .

The dynamics (5) has recently also been used in [11], although in a different context.

1In fact we could have chosen any positive constant δ > 0, and write the diffusion matrix as δ Id+σD(Xt−
κmα(Lt[X ])).
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Our main contribution is the approximation of the invariant measure of (4) using only
one self-interacting particle, rather than the conventional N -particle system (5). We will
also show that the invariant measure exists and is moreover unique. A polynomial rate of
convergence towards it is also proven.

2. The model of self-interacting CBO

We introduce the following self-interacting CBO model with respect to the rescaled CBO
(4)

(6) dYt = −λ
(
Yt − κmα(Et[Y ])

)
dt+ σ

(
1

α
Id +D(Yt − κmα(Et[Y ]))

)
dBt ,

complemented with the deterministic2 initial condition Y0 = x ∈ R
d, and where

Et[Y ] :=
1

t

∫ t

0

δYr
dr =

∫ 1

0

δYts
ds, t > 0

is usually referred to as the occupation measure. Indeed, given an open set O ⊂ R
d, we have

Et[X ](O) = 1
t
|{r ∈ [0, t] : Xr ∈ O}|, where |I| denotes Lebesgue measure of an interval I.

So Et[X ](O) measures the average of the time during which the process X occupies an open
set O up to time t.
With the definition of the current consensus point (2), we now have

mα(Et[Y ]) =

∫ t

0
Yr exp(−αf(Yr))dr∫ t

0
exp(−αf(Yr))dr

=

∫ 1

0
Yst exp(−αf(Yst))ds∫ 1

0
exp(−αf(Yst))ds

.

The above term mα(Et[Y ]) has been used in [18, Equation (2.4)], albeit with a different
motivation. There, it is referred to as the “Personal Best” term, which approximates the
best location along the entire trajectory of the particle Y up to time t when α is sufficiently
large. Comparing (6) to our rescaled CBO model

(7) dXt = −λ
(
Xt − κmα(Lt[X ])

)
dt+ σ

(
1

α
Id +D(Xt − κmα(Lt[X ]))

)
dBt ,

the difference is in mα(·): in the first it is evaluated in Et[Y ], while in the second we have
Lt[X ] = Law(Xt).

Remarkably, from a practical standpoint, simulating the occupation measure of the self-
interacting process (6) requires only one single particle. This feature distinctly sets it apart
from the conventional N -particle approximation (5), where its global convergence usually
requires an additional condition that the number of particles N goes to infinity [8,9]. More-
over, a uniform-in-time mean-field limit for particle system (5) has recently been established
in [12], whereas for the particle system (3), this remains an open problem. On the other
hand, such self-interacting process has recently demonstrated its applicability in training
two-layer neural networks [5], and used in games and control [15].

2One particle only substitutes for the the N -interacting particles. So we do not need a randomly dis-
tributed initial condition.
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Assumption 2.1. We assume the following properties for the objective function.

(1) f : R
d → R is bounded from below by f = min f , and there exist Lf > 0, s ≥ 0

constants such that

|f(x)− f(y)| ≤ Lf (1 + |x|+ |y|)
s|x− y| ∀x, y ∈ R

d .

(2) There exist constants c1, c2 > 0 and ℓ > 0 such that

c1(|x|
ℓ − 1) ≤ f − f ≤ c2(|x|

ℓ + 1) ∀x ∈ R
d.

Lemma 2.2. Let f satisfy Assumption 2.1, then both the dynamics (6) and (7) have strong
solutions.

Proof. The well-posedness of the SDE (6) follows the same arguments presented in [18, Theo-
rem 2], demonstrating that both the drift and diffusion terms in (6) satisfy the local Lipschitz
and linear growth conditions. The well-posedness of the SDE (7) can be verified similarly as
in [1, Theorem 3.2] or [10, Theorem 2.4] using Leray-Schauder fixed point theorem. �

In what follows, ‖ · ‖ denotes the Frobenius norm of a matrix and | · | is the standard
Euclidean norm in R

d; P(Rd) denotes the space of probability measures on R
d, and Pp(R

d)
with p ≥ 1 contains all µ ∈P(Rd) such that µ(|·|p) :=

∫
Rd |x|

pµ(dx) <∞; it is equipped with

p-Wasserstein distance Wp(·, ·). Lastly, we define Pp,R(R
d) := {µ ∈Pp(R

d) : µ(| · |p) ≤ R}
where R > 0 is a constant.

One can further generalize Et[·] and Lt[·] to their weighted forms

(8)
Eπt [Y ] :=

∫ 1

0

δYst
πt(ds) and L̟

t [X ] :=

∫ 1

0

Lst[X ]̟t(ds)

for π,̟ ∈ Π := {π = (πt)t≥0 : πt ∈P([0, 1])} ,

where P([0, 1]) is the space of probability measures on [0, 1]. Then we have the generalized
self-interacting CBO for some π ∈ Π

(9) dYt = −λ(Yt − κmα(E
π
t [Y ]))dt+ σ

(
1

α
Id +D(Yt − κmα(E

π
t [Y ]))

)
dBt , Y0 = x ∈ R

d

and the generalized rescaled mean-field CBO for some ̟ ∈ Π
(10)

dXt = −λ(Xt − κmα(L
̟
t [X ]))dt+ σ

(
1

α
Id +D(Xt − κmα(L

̟
t [X ]))

)
dBt , X0 = x ∈ R

d.

In the latter two cases, we have

mα(L
̟
t [X ])) =

∫ 1

0

∫
Rd xω

f
α(x)Lst[X ](dx)̟(ds)

∫ 1

0

∫
Rd ω

f
α(x)Lst[X ](dx)̟(ds)

, and mα(E
π
t [Y ])) =

∫ 1

0

∫
Rd xω

f
α(x)δYst

(dx)πt(ds)∫ 1

0

∫
Rd ω

f
α(x)δYst

(dx)πt(ds)
.

It is obvious that Et[·] can be represented as Eπt [·] with πt being the Lebesgue measure, while
Lt[·] corresponds to choosing ̟ ≡ δ1, a Dirac measure, in L̟

t [·].
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3. Equivalence proof

Our main goal in the sequel is to establish a level of equivalence between mean-field
interacting model (7) and self-interacting model (6), in the sense that they both evolve
eventually towards the same equilibrium state. This allows us to run CBO algorithm of (6)
instead, and as an alternative to the N -interacting particles (5).

First, let us recall some estimates on mα(µ) from [10, Corollary 3.3, Proposition A.3].

Lemma 3.1. Suppose that f satisfies Assumption 2.1. Then for all R > 0, there exists some
constant Lm > 0 depending on R such that

(11) |mα(µ)−mα(ν)| ≤ LmW2(µ, ν) ∀(µ, ν) ∈P2,R(R
d)×P2(R

d) .

Moreover for all q ≥ 1, there exists constant C1 > 0 depending on q, c1, c2, ℓ such that

(12) |mα(ν)| ≤ C1

(∫

Rd

|x|qν(dx)

) 1
q

∀ν ∈Pq(R
d) .

Let us introduce the following notation for (x, µ) ∈ R
d ×P(Rd)

b(x, µ) := −λ(x− κmα(µ)), and σ(x, µ) :=

(
1

α
Id + σD(x− κmα(µ))

)
,

where λ, σ, κ, α are positive constants. Then it is easy to check that the following estimates
hold (see the supplementary material A.1 in the appendix).

Lemma 3.2. For all x, y ∈ R
d and (µ, ν) ∈P2,R(R

d)×P2(R
d) it holds that

(13) 2〈b(x, µ)− b(y, ν), x− y〉+ ‖σ(x, µ)− σ(y, ν)‖2 ≤ −a|x− y|2 + bW 2
2 (µ, ν) .

Also, there exists K > 0 such that for all x ∈ R
d, ν ∈P2(R

d), δ > 0, it holds that

2〈b(x, ν), x〉 + (1 + δ)‖σ(x, ν)‖2 ≤ −c|x|2 +K(1 + δ + ν(| · |2)) .(14)

When λ > 8σ2, δ = 1, and for 0 < κ≪ 1, the above inequalities are satisfied with a > 2b ≥ 0,
and c > 0.

Remark 3.3. In Lemma 3.2, the constants of the first inequality are a = 2λ−λκ− 2σ2 and
b = (λ+2 σ2 κ) κL2

m, and in the second inequality, we have for any δ > 0, the constants c =
(2λ− λκ)− 2σ2(1 + δ)(1 + κ), and K = max

{
2σ2d/α2,

[
λκC2

1 + 2 σ2(1 + δ)(1 + κ) κC2
1

]}
.

See the supplementary material A.1 in the appendix.

Observe that the assumption of having at least one of the measures chosen within P2,R(R
d)

is used to guarantee the validity of the estimates in Lemma 3.1.

Here and in what follows, we shall call the data of the problem the parameters λ, σ, κ, α,
together with the constants in Assumption 2.1, in Lemma 3.1, and in Lemma 3.2.

Proposition 3.4. The dynamics (7) has an invariant measure µ∗
α in P2,R(R

d), and R only
depends on the data of the problem.

Proof. Using Lemma 3.1 and Lemma 3.2, the existence of an invariant measure becomes a
consequence of [20, Theorem 2.2] where R is defined in the latter’s proof. More details are
given in the supplementary material A.2 in the appendix. �
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With the invariant measure µα
∗ of (7) in hand, we can write a formal global convergence

result. Indeed, let µα
∗ = L∞[X ], then the following holds

(15) 0 =
dE[X∞]

dt
= −λ(E[X∞]− κmα(L∞[X ])) ⇒ E[X∞] = κmα(µ

∗
α) = κ

∫

Rd

x η∗α(dx) ,

where η∗α(dx) :=
ω
f
α(x)µ

∗

α(dx)∫
Rd

ω
f
α(x)µ∗

α(dx)
. If additionally we assume for any ǫ > 0, there exists Cǫ > 0 a

constant independent of α such that µ∗
α(Aǫ) ≥ Cǫ with Aǫ :=

{
x ∈ R

d : e−f(x) > e−f(x∗) − ǫ
}

where x∗ is a global minimizer, then according to [14, Lemma A.3] it holds that

(16) lim
α→∞

(
−
1

α
log

(∫

Rd

ωf
α(x)µ

∗
α(dx)

))
= f(x∗) .

Denoting integration by 〈 ·, · 〉, the latter means that for the indicator function I{x∗}(·), it
holds

lim
α→∞
〈

ωf
α(x)µ

∗
α(dx)∫

Rd ω
f
α(x)µ∗

α(dx)
, I{x∗}〉 = lim

α→∞
〈η∗α(dx), I{x∗}〉 = 1 .

Thus η∗α approximates the Dirac distribution δx∗ for large α ≫ 1. See some additional
comments in the supplementary material A.3 in the end of appendix. Consequently, mα(µ

∗
α)

provides a good estimate of x∗, which (recalling (15)) leads to the fact that E[X∞] ≈ κ x∗

for sufficiently large α≫ 1. To rigorously prove the convergence, it is necessary to verify the
assumption that for any ǫ > 0, there exists a constant Cǫ > 0 independent of α such that
µ∗
α(Aǫ) ≥ Cǫ. This is an undergoing work.

Although formal, these computations can already exhibit some advantages of our model
regarding the standard CBO model. Indeed, as we have mentioned in the introduction, any
Dirac measure is invariant for the standard CBO model. Whereas in our case, the use of the
parameter κ in the dynamics makes all Dirac measures not invariant. This makes possible
the use of the Laplace principle in (16). Intuitively, this creates a disconnection between the
limit in the time variable (t→ +∞), and the limit α→ +∞, hence allowing to easily handle
the convergence of the dynamics towards the (to-be) global minimum.
Shortly after, we will show that this invariant measure µα

∗ is in fact unique, which consolidates
this intuition.

We shall use the classes of weight families introduced in [4]. Recalling the set Π in (8) of
flows of probabilities in [0, 1], we define:

Π1(ε) =

{
π ∈ Π : lim sup

t→+∞

∫ 1

0

s−ε πt(ds) <
a

b

}
, where a, b are in (13) (see also Remark 3.3)

Π2(ε) =

{
π ∈ Π : lim sup

t→+∞

∫ 1

0

tε ∧ s−ε πt(ds) <∞,

∫ 1

0

∫ 1

0

tε ∧ |s1 − s2|
−ε πt(ds1)πt(ds2) <∞

}
.

These weight classes arise in numerous applications; see [4, Example 2.1] or A.4 in appendix.

Theorem 3.5. Let X· be the process in (10) with ̟ ∈ Π1(ε1), and Y· be the process in (9)
with π ∈ Π1(ε1) ∩Π2(ε2), where ε1, ε2 ∈ (0, 1]. Let ϑ ∈ Π2(ε2). Assume that µ∗

α ∈P2,R(R
d)

is an invariant measure of (7). Further assume that λ > 8σ2 and 0 < κ ≪ 1. Then there
exists a constant C independent of t such that

(17) E
[
W 2

2 (E
ϑ
t [Y ], µ∗

α)
]
+ E

[
W 2

2 (E
ϑ
t [X ], µ∗

α)
]
≤ C t−ε , where ε = ε1 ∧

1

3(d+ 2)
ε2.
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Remark 3.6. Example of weights π,̟, ϑ in Theorem 3.5 are: π, ϑ are Lebesgue and ̟ = δ1
is Dirac. Then X·, Y· in the theorem become (7) and (6) respectively, Eϑt [·] in (17) becomes
Et[·], and ε1 < 1 − b/a and ε2 < 1. This situation corresponds to the CBO with Personal
Best in [18, Equation (2.4)].

To prove the theorem, let us first consider the following Markovian SDE

dŶt = −λ(Ŷt − κmα(µ
∗
α))dt + σ

(
1

α
Id +D(Ŷt − κmα(µ

∗
α))

)
dBt.(18)

The following estimate will be useful and is a direct application of [4, Proposition 3.1]. We
recall δ > 0 is the one in (14), and is chosen to be equal to 1 in Theorem 3.5.

Proposition 3.7. Let ϑ ∈ Π2(ε2) with ε2 ∈ (0, 1), and assume Ŷ· satisfy (18). Then it holds

(19) E

[
W 2

2 (E
ϑ
t [Ŷ ], µ∗

α)
]
≤ Ct−γ ε2 , where γ =

δ

(d+ 2)(δ + 2)

Proof of Theorem 3.5. Let Ŷ be as in (18). Given the result in Proposition 3.7, it is then

sufficient to estimate E

[
W 2

2 (E
ϑ
t [Y ], Eϑt [Ŷ ])

]
and E

[
W 2

2 (E
ϑ
t [X ], Eϑt [Ŷ ])

]
.

Let Y and Ŷ be solutions to (9) and (18) respectively with the same deterministic initial

data. Let us first estimate E[|Yt − Ŷt|
2] by using Ito’s formula and Lemma 3.2. Indeed it is

easy to get

d

dt
E[|Yt − Ŷt|

2] ≤ −aE[|Yt − Ŷt|
2] + bE

[
W 2

2 (E
π
t [Y ], µ∗

α)
]

≤ −aE[|Yt − Ŷt|
2] + 2bE

[
W 2

2 (E
π
t [Y ], Eπt [Ŷ ])

]
+ 2bE

[
W 2

2 (E
π
t [Ŷ ], µ∗

α)
]

≤ −aE[|Yt − Ŷt|
2] + 2b

∫ 1

0

E

[
|Yts − Ŷts|

2
]
πt(ds) + 2bE[W 2

2 (E
π
t [Ŷ ], µ∗

α)] ,

where 2b < a. Since π ∈ Π2(ε2), Proposition 3.7 (with π instead of ϑ) implies E[W 2
2 (E

π
t [Ŷ ], µ∗

α)] ≤
Ct−γε2 .

Now let g(t) := E[|Yt − Ŷt|
2], then it holds

g′(t) ≤ −a g(t) + 2b

∫ 1

0

g(ts)πt(ds) + C t−γε2 .

By the Gronwall-type inequality [4, Lemma 4.1], this leads to g(t) = E[|Yt − Ŷt|
2] ≤

Ct−(ε1∧γε2) , then

E

[
W2(E

ϑ
t [Y ], Eϑt [Ŷ ])2

]
≤

∫ 1

0

E

[
|Yts − Ŷts|

2
]
ϑt(ds) ≤ C

∫ 1

0

(ts)−εϑt(ds) ,(20)

where ε = ε1 ∧ γε2. When t is sufficiently large, one has (ts)−ε = 1∧ (ts)−ε for all s ∈ (0, 1).
Since ϑ ∈ Π2(ε2), the inequality (20) implies

E

[
W2(E

ϑ
t [Y ], Eϑt [Ŷ ])2

]
≤ C t−ε

∫ 1

0

tε ∧ s−εϑt(ds) ≤ C t−ε

∫ 1

0

tε2 ∧ s−ε2ϑt(ds) ≤ C t−ε .

(21)
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The latter with the estimate of E
[
W 2

2 (E
ϑ
t [Ŷ ], µ∗

α)
]
in Proposition 3.7 yield E

[
W 2

2 (E
ϑ
t [Y ], µ∗

α)
]
≤

C t−ε.

Similarly, one also has

d

dt
E[|Xt − Ŷt|

2] ≤ −aE[|Xt − Ŷt|
2] + 2b

∫ 1

0

E

[
|Xts − Ŷts|

2
]
̟t(ds) + 2bE

[
W 2

2 (L
̟
t [Ŷ ], µ∗

α)
]
.

Then by [4, Lemma 3.2] one has

E

[
W 2

2 (L
̟
t [Ŷ ], µ∗

α)
]
≤

∫ 1

0

E

[
W 2

2 (L
̟
ts[Ŷ ], µ∗

α)
]
̟t(ds) ≤ C

∫ 1

0

e−ats̟t(ds) ≤ Ct−ε1 .

This leads to E[|Xt − Ŷt|
2] ≤ Ct−ε1 , which further implies E[W 2

2 (E
ϑ
t [X ], Eϑt [Ŷ ])] ≤ Ct−ε as

in (20)-(21). Combining with Proposition 3.7, we prove that E[W 2
2 (E

ϑ
t [X ], µ∗

α)] ≤ Ct−ε.
Therefore (17) follows. �

The above theorem together with Proposition 3.4 imply that µ∗
α is the unique invariant

measure of (7).

Corollary 3.8. The process (7) has a unique invariant measure.

Proof. Assume µ∗
α and µ̃∗

α are two invariant measures for (7). Then Theorem 3.5 concludes
that
W 2

2 (µ
∗
α, µ̃

∗
α) ≤ 2E

[
W 2

2 (E
ϑ
t [Y ], µ∗

α)
]
+ 2E

[
W 2

2 (E
ϑ
t [Y ], µ̃∗

α)
]
→ 0 as t→∞ . �

Remark 3.9. In the standard CBO model (1), every Dirac measure is in fact an invariant
measure. So there cannot be any guarantees on uniqueness of its long-time limit. It is only
when α → +∞ that one reaches a global minimizer. In our situation, both (7) and its self-
interacting version (6) have the same unique invariant measure to which they converge in
their long-time limit, for any fixed (finite) α.

Remark 3.10. As a byproduct of our analysis, we showed that the process (7) is an example
of a McKean-Vlasov SDE which has a unique invariant measure although it does not satisfy
the usual dissipativity condition (also referred to as the confluence assumption). Indeed, as it
can be observed from Lemma 3.2, we do not require (13) to hold for all measures in P2(R

d)×
P2(R

d), but rather only on the subset P2,R(R
d) ×P2(R

d). We also obtain a polynomial
rate of convergence in the sense of (17). In the former case, existence, uniqueness, and
exponential convergence to the invariant measure hold true (see [4,19] and references therein).

Finally, one can also consider multi-self-interacting particles as it has been done in [4,
Theorem 2.3].

Theorem 3.11. Let π ∈ Π1(ε1) ∩ Π2(ε2) and ϑ ∈ Π(ε2) with ε1, ε2 ∈ (0, 1], and Y i
· , i =

1, . . . , N satisfy

(22)

dY i
t = −λ(Y i

t − κmα(Υ
N,π
t [Y])dt+ σ

(
1

α
Id +D(Y i

t − κmα(Υ
N,π
t [Y])

)
dBi

t ,

where ΥN,π
t [Y] :=

1

N

N∑

j=1

Eπt [Y
j], and Y· := (Y 1

· , . . . , Y
N
· ).
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Here, Bi
· are N independent Brownian motions, and Y0 = y := (y1, . . . , yN) ∈ R

d×N is the
initial condition. Then for each y, there is a constant C > 0 independent of t and N such
that

E
y

[
W 2

2 (Υ
N,ϑ
t [Y], µ∗

α)
]
≤ C t−(ε1∧γε2)N−γ + C t−(ε1∧ε2), and γ =

1

3(d+ 2)
.

Proof. It is in the same line as the proof of Theorem 3.5, where now we use [4, Lemma 5.1]
which is the multi-particle analogue of Proposition 3.7. �
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[9] M. Fornasier, L. Pareschi, H. Huang, and P. Sünnen, Consensus-based optimization on the sphere:

Convergence to global minimizers and machine learning, Journal of Machine Learning Research 22

(2021), no. 237, 1–55.
[10] N. J. Gerber, F. Hoffmann, and U. Vaes, Mean-field limits for consensus-based optimization and sam-

pling, arXiv preprint arXiv:2312.07373 (2023).
[11] M. Herty, Y. Huang, D. Kalise, and H. Kouhkouh, A multiscale Consensus-Based algorithm for multi-

level optimization, preprint arXiv:2407.09257 (2024).
[12] H. Huang and H. Kouhkouh, Uniform-in-time mean-field limit estimate for the Consensus-Based Opti-

mization, preprint arXiv:2411.03986 (2024).
[13] H. Huang and J. Qiu, On the mean-field limit for the consensus-based optimization, Mathematical

Methods in the Applied Sciences 45 (2022), no. 12, 7814–7831.
[14] H. Huang, J. Qiu, and K. Riedl, Consensus-based optimization for saddle point problems, SIAM Journal

on Control and Optimization 62 (2024), no. 2, 1093–1121.
[15] H. Kouhkouh, A one-player approach to ergodic Mean-Field Games and Mean-Field Control, (submit-

ted).
[16] P. D. Miller, Applied asymptotic analysis, Vol. 75, American Mathematical Soc., 2006.



10 HUI HUANG AND HICHAM KOUHKOUH

[17] R. Pinnau, C. Totzeck, O. Tse, and S. Martin, A consensus-based model for global optimization and its

mean-field limit, Mathematical Models and Methods in Applied Sciences 27 (2017), no. 01, 183–204.
[18] C. Totzeck and M.-T. Wolfram, Consensus-based global optimization with personal best, Mathematical

Biosciences and Engineering 17 (2020), no. 5, 6026–6044.
[19] F.-Y. Wang, Distribution dependent SDEs for Landau type equations, Stochastic Processes and their

Applications 128 (2018), no. 2, 595–621.
[20] S.-Q. Zhang, Existence and non-uniqueness of stationary distributions for distribution dependent SDEs,

Electronic Journal of Probability 28 (2023), 1–34.

Appendix A. Supplementary material

A.1. Proof of Lemma 3.2. We need to prove that ∃ a > 2b ≥ 0 such that for all x, y ∈ R
d

and (µ, ν) ∈Pp,R(R
d)×Pp(R

d) it holds that

2〈b(x, µ)− b(y, ν), x− y〉+ ‖σ(x, µ)− σ(y, ν)‖2 ≤ −a|x− y|2 + bW 2
p (µ, ν)

Let us recall the dynamics

(23) dXt = −λ(Xt − κmα(Lt[X ]))dt+ σ

(
1

α
Id +D(Xt − κmα(Lt[X ]))

)
dBt

We have

〈b(x, µ)− b(y, ν), x− y〉 = −λ|x− y|2 + λκ〈mα(µ)−mα(ν), x− y〉

≤ −λ|x− y|2 +
λκ

2
|x− y|2 +

λκ

2
|mα(µ)−mα(ν)|

2

≤ −λ
(
1−

κ

2

)
|x− y|2 +

λκ

2
L2
mW

2
p (µ, ν)

where in the second inequality we have used Lemma 3.1. On the other hand, we have

‖σ(x, µ)− σ(y, ν)‖2 = σ2 |(x− κmα(µ))− (y − κmα(ν))|
2

≤ 2σ2|x− y|2 + 2σ2κ2|mα(µ)−mα(ν)|
2

≤ 2σ2|x− y|2 + 2σ2κ2L2
mW

2
p (µ, ν).

Therefore, we have

2〈b(x, µ)− b(y, ν), x− y〉+ ‖σ(x, µ)− σ(y, ν)‖2

≤ −λ (2− κ) |x− y|2 + λκL2
mW

2
p (µ, ν)

+ 2σ2|x− y|2 + 2σ2κ2L2
mW

2
p (µ, ν)

= −(2λ− λκ− 2σ2)|x− y|2 + (λ+ 2σ2κ)κL2
m W 2

p (µ, ν)

This suggests that a = 2λ − λκ − 2σ2 and b = (λ + 2σ2κ)κL2
m. We need to check that

a > 2b ≥ 0. We always have (λ + 2σ2κ)κL2
m ≥ 0. So we check that 2λ − λκ − 2σ2 >

(λ+ 2σ2κ)κL2
m. This can be satisfied provided we have λ > σ2 and we choose 0 < κ≪ 1.

Next, we need to prove that there exist c > 0, δ > 0 and K ≥ 0 such that for all
x ∈ R

d, ν ∈P2(R
d) it holds

2〈b(x, ν), x〉 + (1 + δ)‖σ(x, ν)‖2 ≤ −c|x|2 +K[1 + δ + ν(| · |2)] .
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We have

〈b(x, ν), x〉 = −λ〈x− κmα(ν), x〉 = −λ|x|
2 + λκ 〈mα(ν), x〉

≤ −

(
λ−

λκ

2

)
|x|2 +

λκ

2
|mα(ν)|

2

≤ −

(
λ−

λκ

2

)
|x|2 +

λκ

2
C2

1 ν(| · |
2)

where in the second inequality we have used Lemma 3.1. On the other hand, we have

‖σ(x, ν)‖2 = σ2
d∑

k=1

(
1

α
+ (x− κmα(ν))k

)2

≤ 2σ2

(
d

α2
+ |x− κmα(ν)|

2

)

= 2σ2
(
|x|2 − 2κ 〈mα(ν), x〉+ κ2|mα(ν)|

2
)
+

2σ2d

α2

≤ 2σ2
(
|x|2 + κ|x|2 + κ|mα(ν)|

2 + κ2|mα(ν)|
2
)
+

2σ2d

α2

= 2σ2(1 + κ)|x|2 + 2σ2(1 + κ)κ|mα(ν)|
2 +

2σ2d

α2

≤ 2σ2(1 + κ)|x|2 + 2σ2(1 + κ)κC2
1 ν(| · |

2) +
2σ2d

α2
.

Therefore we have

2〈b(x, ν), x〉+ (1 + δ)‖σ(x, ν)‖2

≤ −(2λ− λκ)|x|2 + λκC2
1 ν(| · |

2) + (1 + δ)
2σ2d

α2

+ 2σ2(1 + δ)(1 + κ)|x|2 + 2σ2(1 + δ)(1 + κ)κC2
1 ν(| · |

2)

= −
[
(2λ− λκ)− 2σ2(1 + δ)(1 + κ)

]
|x|2

+
[
λκC2

1 + 2σ2(1 + δ)(1 + κ)κC2
1

]
ν(| · |2) + (1 + δ)

2σ2d

α2
.

This suggests that we can take

c = (2λ− λκ)− 2σ2(1 + δ)(1 + κ) and K = max
{
2σ2d/α2,

[
λκC2

1 + 2σ2(1 + δ)(1 + κ)κC2
1

]}
.

It remains to check if c > 0. A sufficient condition for the latter to hold is to have λ >
4σ2(1 + δ), which can be satisfied for example by choosing δ = 1 and λ > 8σ2. Note that
this condition complies with the condition (λ > σ2) found earlier. Therefore we have K ≥ 0
and δ > 0 such that

2〈b(x, ν), x〉+ (1 + δ)‖σ(x, ν)‖2 ≤ −c|x|2 +K[1 + δ + ν(| · |2)], and c > 0.
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Simplified sufficient conditions can be obtained as follows:

c > 0⇔ (2λ− λκ)− 2σ2(1 + δ)(1 + κ) > 0

⇔ (2λ− λκ) > 2σ2(1 + δ)(1 + κ)

⇔ λ(2− κ) > 2σ2(1 + δ)(1 + κ)

k ∈ (0, 1)⇒λ(2− κ) > λ

it is sufficient to have λ > 4σ2(1 + δ) > 2σ2(1 + δ)(1 + κ)

it is sufficient to have λ > 8σ2 when δ = 1.

A.2. Proof of Proposition 3.4. Let us check that an invariant measure for (2.2) exists
and is unique. Moreover, it is in Pp,R(R

d) for some sufficiently large fixed R > 0. To do so,
we shall apply the result of S.-Q. Zhang [20, Theorem 2.2].

• Assumption [20, (H1)]
Let us choose r1 = r2 = 1 and r3 = 1 + r2 = 2. Then we have, for all ν ∈P2(R

d),

2〈b(x, ν), ν〉 + ‖σ(x, ν)‖2

≤ −(2λ− λκ)|x|2 + λκC2
1 ν(| · |

2)

+ 2σ2(1 + κ)|x|2 + 2σ2(1 + κ)κC2
1 ν(| · |

2) +
2σ2d

α2

= −
[
(2λ− λκ)− 2σ2(1 + κ)

]
|x|2 +

2σ2d

α2

+
[
λκC2

1 + 2σ2(1 + κ)κC2
1

]
ν(| · |2)

and it can be verified that C̃1 := (2λ − λκ) − σ2(1 + κ2) is a positive constant as long as
λ is chosen large enough comparing to σ2, and for 0 < κ ≪ 1. We also need to check that
C̃1 > C̃3 where C̃3 := λκC2

1 + σ2(1 + κ)κC2
1 . This can also be verified since κ can be chosen

small enough. Therefore, denoting by C̃2 = 2σ2d/α2, we have

2〈b(x, ν), ν〉 + ‖σ(x, ν)‖2 ≤ −C̃1|x|
2 + C̃2 + C̃3ν(| · |

2), and C̃1 > C̃3

• Assumption [20, (H2.i)]
For ν fixed in P2(R

d), we need to check that the drift and diffusion terms are locally
Lipschitz, that is:
For every n ∈ N and ν ∈P2(R

d), there exists Kn > 0 such that for all |x| ∨ |y| ≤ n we have

|b(x, ν)− b(y, ν)|+ ‖σ(x, ν)− σ(y, ν)‖ ≤ Kn|x− y|.

This is easily verified from the definition of b and σ (in fact, Kn = λ+ σ).

• Assumption [20, (H2.ii)]
We need to check that the drift has a polynomial growth. More precisely we want to check
that: there exists a locally bounded function h : [0,+∞)→ [0,+∞) such that

|b(x, ν)| ≤ h(ν(| · |2)) (1 + |x|), x ∈ R
d, ν ∈P2(R

d).
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This holds true, noting that

|b(x, ν)| = λ|x− κmα(ν)| ≤ λ
(
|x|+ κ|mα(µ)|

)

≤ λ|x|+ λκC1ν(| · |
2)

1
2 , using Lemma 3.1

≤ λ(1 + |x|) + λκC1(1 + |x|)ν(| · |
2)

1
2

≤ h(ν(| · |2))
(
1 + |x|

)

where we have set h(ξ) = λ+ λκC1 ξ
1
2 for every ξ ∈ [0,+∞).

• Assumption [20, (H3)]
We need the drift and diffusion coefficients to be continued on P2,R(R

d) equipped with the
Wasserstein metric. This is guaranteed thanks to Lemma 3.1.

• Assumption [20, (H4)]
We need the diffusion matrix to be non-degenerate on R

d ×P2(R
d) , that is

σ(x, ν)σ∗(x, ν) > 0, x ∈ R
d, ν ∈P2(R

d).

This is guaranteed thanks to the additional term 1
α
Id in the definition of σ, noting that D(·)

is a non-negative matrix.

• Conclusion:
The latter assumptions being satisfied, we can then apply [20, Theorem 2.2], which guaran-
tees that the distribution-dependent SDE (DDSDE)

(24) dXt = −λ(Xt − κmα(Lt[X ]))dt+ σ

(
1

α
Id +D(Xt − κmα(Lt[X ]))

)
dBt

has a stationary distribution. In fact, from the proof in [20] (see the last line in page 8, and
the lines between equation (2.22) and equation (2.23) in page 10), it appears that there exists
R0 > 0 depending only on the constants of the problem (λ, κ, σ, α, and C1 from Lemma 3.1)
such that the stationary distribution exists in P2,R(R

d), and R ≥ R0 is determined by the
initial distribution.

A.3. Additional computations. In order to better see how η∗α(dx) := ω
f
α(x)µ

∗

α(dx)∫
Rd

ω
f
α(x)µ∗

α(dx)
ap-

proximates the Dirac distribution δx∗ for large α ≫ 1, we proceed with the following com-
putations. Recall Laplace’s principle

lim
α→∞

(
−
1

α
log

(∫

Rd

ωf
α(x)µ

∗
α(dx)

))
= f(x∗) .

The latter is equivalent to

lim
α→∞

(∫

Rd

ωf
α(x)µ

∗
α(dx)

) 1
α

= e−f(x∗) ,

which also means

lim
α→∞

e−f(x∗)

(∫
Rd ω

f
α(x)µ∗

α(dx)
) 1

α

= 1,
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or equivalently (by rising to power α)

lim
α→∞

e−αf(x∗)

∫
Rd ω

f
α(x)µ∗

α(dx)
= 1.

It suffices now to note that the left-hand side is the integration of the indicator function
I{x∗}(·) supported on the global minimizer x∗ with respect to η∗α(dx). Indeed, we have

e−αf(x∗)

∫
Rd ω

f
α(x)µ∗

α(dx)
= 〈η∗α(dx), I{x∗}〉

where 〈· , ·〉 denotes the integration of a function with respect to a measure. Therefore,
when α is large enough, one expects 〈η∗α(dx), I{x∗}〉 ≈ 1. Thus η∗α approximates the Dirac
distribution δx∗ for large α≫ 1.

A.4. Example of weight measures. For the sake of self-containedness of the paper, we
borrow from [4, Example 2.1] an example of a weight measure that arises in applications. In
the dynamics (9), one can choose the weight measure π̂ as defined in [4], that is

(25) π̂t(·) =
1

nt

nt−1∑

k=0

δkτ−θ
t

∨0(·) with nt =

⌈
t

τ

⌉

where τ > 0 is the sampling period and θ ≥ 0 is the delay. Let us denote by Ŷ the resulting
process that is

dŶt = −λ(Ŷt − κmα(E
π̂
t [Ŷ ]))dt+ σ

(
1

α
Id +D(Ŷt − κmα(E

π̂
t [Ŷ ]))

)
dBt , Ŷ0 = x ∈ R

d.

The latter measure π̂ = (π̂t)t≥0 belongs to Π1(1− b/a) and Π2(ε) for any ε < 1.

A practical example could be: τ = 1/T where T is the time horizon, and θ = 2 τ .

Then, at each given time t ∈ (0, T ), we shall introduce m ∈ N (depending on t) such that

mτ ≤ t < (m+ 1)τ ⇔
m

T
≤ t <

m+ 1

T
.

In the notation of (25), we have m =
⌊
t
τ

⌋
⇔ m ≤ t

τ
< m+ 1 ⇔ m = nt − 1.

In this example, the measure (25) becomes

(26)

π̂t(·) =
1

nt

nt−1∑

k=0

δkτ−θ
t

∨0(·) (with nt =

⌈
t

τ

⌉
= m+ 1, and θ = 2 τ)

=
1

m+ 1

m∑

k=0

δ (k−2)τ
t

∨0
(·) =





δ0, m = 0, 1

1
m+1

(
2 δ0(·) +

m∑
k=2

δ (k−2)τ
t

(·)

)
, m ≥ 2

=





δ0, m = 0, 1

1
m+1

(
2 δ0(·) +

m−2∑
k=0

δk τ
t
(·)

)
, m ≥ 2
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Hence, one obtains when m ≥ 2

E π̂t [Y ] :=

∫ 1

0

δYst
π̂t(ds) =

1

m+ 1

(
2δY0 +

m−2∑

k=0

δYk τ
t t

)
(here s← k

τ

t
)

=
1

m+ 1

(
2δY0 +

m−2∑

k=0

δY k
T

)
(here τ =

1

T
).

Observe that E π̂t [Y ] only depends on the observation of Y· at the time steps 0
T
, 1
T
, 2
T
, . . . , m−2

T
.

The last two time steps m−1
T

and m
T

are not included due to the chosen delay θ = 2 τ .
Moreover, we have

E π̂t [Y ] =
1

m+ 1

(
2δY0 +

m−2∑

k=0

δY k
T

)
=

1

m+ 1

(
2δY0 +

m−2∑

k=0

δYkτ

)

=
1

m+ 1

(
2δY0 +

m−2∑

k=0

δY k
mmτ

)

=

∫ 1

0

δYsmτ
π̂mτ (ds) = E

π̂
mτ [Y ]

where π̂mτ (·) is obtained using (26) with mτ instead of t therein, that is

π̂mτ (·) =
1

m+ 1

(
2 δ0(·) +

m−2∑

k=0

δ k
m
(·)

)
.

Finally in this example, the consensus point becomes

mα(E
π̂
t [Ŷ ]) =

2 Ŷ0 exp(−αf(Ŷ0)) +
m−2∑
k=0

Ŷ k
T
exp(−αf(Ŷ k

T
))

2 exp(−αf(Ŷ0)) +
m−2∑
ℓ=0

exp(−αf(Ŷ ℓ
T
))

.

When m = 1, i.e. 1
T
≤ t < 2

T
, we have E π̂t [Ŷ ] = δŶ0

, and the consensus point is

mα(E
π̂
t [Ŷ ]) =

Ŷ0 exp(−αf(Ŷ0))

exp(−αf(Ŷ0))
= Ŷ0.

Similarly, when m = 0, i.e. 0 ≤ t < 1
T
, we also have E π̂t [Ŷ ] = δŶ0

and mα(E
π̂
t [Ŷ ]) = Ŷ0.
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