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Abstract

We study the allocation of deceased-donor lungs to patients in need of a transplant.

Patients make sequential decisions in an order dictated by a priority policy. Using

data from a prominent Organ Procurement Organization in the United States, we

provide reduced-form evidence of social learning: because patients accept or reject

organs in sequence, their decisions exhibit herding behavior, often rejecting an or-

gan that would otherwise be accepted. We develop and estimate a structural model

to quantify the impact of various policy proposals and informational regimes. Our

results show that blinding patients to their position in the sequence—thereby elim-

inating social learning—boosts organ allocation but reduces average utility per pa-

tient. In contrast, prioritizing patients by their likelihood of acceptance exacerbates

social learning, leading to fewer organ allocations. Nevertheless, it raises utility per

accepted organ and expedites the allocation process.

Keywords: market design; organ allocation; social learning.
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1 Introduction

We study the allocation of deceased-donor lungs to patients in need of a transplant.

An organ is offered sequentially to a list of patients according to a priority order.

Within a small window of time, each patient, in consultation with their clinical co-

ordinators and medical doctors, needs to assess both the organ’s quality and their

compatibility with it to decide whether to accept the offer.1 Deciding whether to

accept an organ offer is one of the most important decisions made by a patient,

and one that is marred with uncertainty. Rejecting a high-priority offer increases

the likelihood that the patient will leave the system unmatched, prolonging their

compromised quality of life. Conversely, accepting a low-priority offer with poten-

tially poor match quality can reduce the patient’s chances of survival post-transplant

(Gilroy et al., 2019).

To facilitate decision-making, patients are provided with information about donor

characteristics, often including their own position in the order of offers for the or-

gan. In particular, when a lung is offered to a patient, the patient is informed of

their sequence number in the match run—which indicates their priority, with smaller

numbers representing higher priority—as well as the reasons for any previous offer

rejections (Harhay et al., 2019). Simply put, patients with a smaller sequence num-

ber receive an offer before patients with a larger sequence number. Recently, the

United Network for Organ Sharing (UNOS) has ensured that information about the

sequence number of the patient is readily and systematically available for all types

of organs, including lungs.2

At the same time, rejections early in the match run often lead to further rejections

later in the sequence (Gilroy et al., 2019), motivating policy proposals to hide match

run positions from patients (Cohen et al., 2018a; Benvenuto and Aversa, 2019). This

1A patient’s medical team usually makes the final decision in consultation with the patient. As
is standard in the literature, we assume the medical team has the best interests of the patient in
mind when making this decision. For simplicity, we refer to this collective decision-making unit as
the patient.

2See https://unos.org/news/match-summary-view-now-available-in-donornet-desktop/.
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is because, when an organ is rejected early in the match run, patients later in the

sequence may infer that the organ is of lower quality. Since organ quality is the

most frequently cited reason for rejecting an organ offer, receiving an offer at a lower

priority may indicate a harder-to-place organ (Goldberg et al., 2016). Therefore,

while providing information about early rejections could facilitate decision-making,

it may also be detrimental to organ placement if this information crowds out the

patient’s independent assessment of the organ.

In this paper, we use data from a large organ procurement organization to assess

how the availability of information on sequence numbers affects organ acceptance

rates, and patient welfare, in the allocation of deceased-donor lungs. We make two

contributions. First, we provide reduced-form evidence of social learning : having

a lower priority in the match run alone—regardless of the factors that determine

this priority—makes patients more likely to reject the organ compared to those with

higher priority. This is consistent with “herding,” the main predictions of social

learning models. Past rejections by higher-priority patients lead lower-priority pa-

tients to infer that the organ is of low quality, irrespective of their own assessment of

the organ. In consequence, a few rejections early in the match run trigger (with high

probability) long spells of inefficient rejections. Organs can go to waste even when

there are patients who would find them acceptable. Second, we estimate a structural

model of sequential assignment, and use the model estimates to evaluate the welfare

implications of different priority and information policies in the presence of social

learning.

Evidence of social learning is presented in Section 3. We present reduced-form evi-

dence that information about match run position negatively affects the probability

of organ placement. After controlling for all donor and patient risk factors (including

those measuring donor-patient compatibility), we find that, conditional on patients

who initially express interest in accepting the organ, their probability of final accep-

tance decreases as the sequence number increases. These results suggest that organs

offered at larger sequence numbers are perceived as lower quality. Meanwhile, our

data reveals a significant fraction of unused organs: 47% of lungs are ultimately
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rejected by all matched patients, and thus remain unallocated.3 Since a match run

is only initiated for organs that are deemed viable, this high rate of unused donor

organs suggests significant potential for improving efficiency.

Motivated by our reduced-form findings, in Section 4 we propose a structural model

of sequential assignment. Our model adapts the canonical social learning model

(Banerjee, 1992; Bikhchandani et al., 1992) to the institutional details of deceased-

donor organ allocations. Specifically, when matched with a donor, each patient is

assigned a sequence number that determines the order in which they decide whether

to accept or reject the offer. In addition to the observed donor characteristics, there

is a common unknown component of organ quality that can be either high or low.

Before making their decision, each patient receives a private, imperfect binary signal

about the organ quality,4 and observes all previous rejections by patients with lower

sequence numbers. They then decide to accept if, based on all available information,

their expected utility from accepting is higher than from rejecting. In Section 5,

we present our model estimates, which reveal a high prior probability of low-quality

organs and a high precision in patient’s private signals. Our estimated model closely

replicates both the data and the reduced-form evidence.

Using our estimated model, we conduct counterfactual experiments to assess the

welfare implications of different priority policies, and informational regimes, while

accounting for social learning. The first set of counterfactual experiments examines

two contrasting priority ranking policies: under the greedy priority policy, patients

are ranked in decreasing order of their probability of accepting the organ in question,

whereas under the reverse greedy priority policy, patients are ranked in increasing

order. Since the greedy policy offers organs to patients who value them the most

(and thus have the highest acceptance probability), it may seem at first to lead to

faster acceptances. Social learning, however, complicates this dynamic: a rejection

3Unlike the allocation of deceased-donor kidneys, where organs are routinely recovered before
being allocated and accepted, lungs that are not accepted are not recovered and remain in the
donor.

4Recall that we use ‘patient’ to refer collectively to the patient and their medical team, so this
signal could reflect information available to the medical team.
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by a patient with higher utility for the organ conveys a stronger negative signal about

the organ’s quality than if the same decision was made by a lower-utility patient.

This negative effect of social learning is amplified under the greedy priority policy, as

a series of rejections from higher-utility patients reinforces doubts about the organ,

which slows down further acceptances. Thus, a priori, it is unclear whether the

greedy priority policy, when interacting with social learning, leads to a more efficient

allocation process.

Table 6 summarizes the results from our first set of counterfactual experiments.

It shows that the greedy priority policy results in faster allocations as organs are,

on average, accepted by patients with smaller sequence numbers. However, due to

the negative informational effect of social learning, this policy also leads to fewer

organs being allocated compared to the current policy. Nevertheless, patients who

ultimately receive organs under this policy are better off on average, as they value

the organ highly and are less likely to receive low-quality organs. Thus, while the

greedy policy results in a slightly lower allocation rate because of social learning, it

ensures that organs are allocated quickly and to patients who value them more. In

contrast, the reverse greedy policy allocates more organs than the current policy, but

at a slower rate. In addition, the average utility of patients who receive a transplant

is lower under reverse greedy. This reduction occurs partly because early rejections

under the reverse greedy policy provide little information about organ quality, which

then leads to a higher acceptance rate of low-quality organs. Of course, a low-quality

organ may still be acceptable to many patients, since in principle all organs that are

offered in a match run are deemed medically viable.

Table 7 presents the results from our second set of counterfactual experiments, which

introduce different informational regimes under the current priority policy. First, we

implement a no social learning regime, where patients are blinded to their position

in the match run when making decisions.5 Since each patient decides based solely on

their own private signal, this regime eliminates the negative effects of social learn-

5If there are multiple acceptances, the organ is allocated to the patient with the smallest
sequence number among those who accept the offer.
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ing. As a result, it achieves the highest acceptance rate by uniformly increasing the

acceptance of all organs, regardless of their quality. However, due to the lack of

information aggregation, it also yields the lowest utility among patients who receive

a transplant and results in the slowest allocation process. Second, we consider an

information sharing regime, where each patient has access to the private signals of

all higher-priority patients in the same match run. By making past private signals

publicly available, this regime allows for the most amount of information aggrega-

tion (not just negative information) compared to both regimes with and without

social learning, serving as a useful benchmark. Consequently, it achieves the high-

est average utility for patients who receive a transplant and the fastest allocation

process.

Altogether, our results highlight the trade-offs involved in providing patients with

information about their match run position and how this interacts with different pri-

ority assignment policies. Our evidence shows that rejections in a match run convey

information about organ quality beyond the factors used to determine a patient’s

priority. Specifically, knowing their match run positions allows patients to infer ad-

ditional information from early rejections; however, these early rejections can distort

the underlying information, and, in the presence of social learning, lead to excessive

rejections. Thus, this finding supports proposals for organ procurement organiza-

tions to share more comprehensive and detailed information with patients and their

medical teams. The more information available to the patients, the less they will

need to rely on inferences based on the limited information obtained from others’

decisions. Taking into account the effect of social learning, our counterfactual analy-

sis suggests that the greedy priority policy performs the best in terms of maximizing

patient utility per acceptance and expediting the allocation process.

Related Literature We are closest to the contribution of Zhang (2010), who stud-

ies the role of social learning in the allocation of deceased donor kidneys. Our result

that, all else equal, the patient’s sequence number negatively affects the organ accep-

tance probability mirrors a similar observation in Zhang (2010). Through counter-
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factual simulations, the author shows that eliminating social learning reduces organ

wastage. More recently, De Mel et al. (2020) study how transplant centers assess

organ quality and how variability in their assessment abilities impacts the matching

process between donors and transplant centers. In contrast to Zhang (2010), De Mel

et al. (2020) find that eliminating the channel of social learning across transplant

centers does not significantly improve the organ discard rate.6 This paper comple-

ments previous works by focusing on the allocation of deceased-donor lungs. We find

that while the accumulation of negative information through social learning decreases

the organ acceptance rate, it also facilitates the rejection of low-quality organs. In

the absence of social learning, there is less information aggregation, which results

in lower patient utility and a slower allocation process. Thus, there is a trade-off

between maximizing the allocation rate and achieving a system that is both efficient

and high in match quality.

Several market design papers have empirically studied the efficiency and welfare

properties of deceased donor organ allocation, proposing various improvements. For

instance, focusing on the allocation of deceased-donor kidneys, Agarwal et al. (2018,

2021) study how dynamic incentives, where forward-looking patients strategically

wait longer to secure more desirable organs, affect organ wastage. Shi and Yin (2022)

show that eliminating organ wastage is at odds with prioritizing patients on the basis

of their waiting time. Muñoz-Rodriguez (2021) studies the effects of asymmetric

information in the allocation of hearts and livers, in which doctors are better informed

about patients’ urgency and readiness status than the organ procurement agency.

Lastly, the connection between match run position at which an organ is accepted and

transplantation outcomes, such as mortality and graft survival, is extensively studied

in the medical literature (see, e.g., Cohen et al., 2018a for kidneys, Goldberg et al.,

2016 for liver, and Harhay et al., 2019 for lungs). Most of these studies conclude that

while there is a negative correlation between transplantation outcomes and match

6Social learning has been empirically studied in other contexts (see, e.g., Cipriani and Guarino
(2014) for a financial application, and Newham and Midjord (2018) for a voting application within
the FDA).
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run position at which an organ is accepted, these correlations are not statistically

significant once one controls for the transplant center that accepts the organs. The

conclusion is then that transplant centers that accept organs at later positions, which

are typically higher volume centers, have more experience in assessing organ quality

and are willing to take more organs because they have a larger patient population.

This strand of medical literature, however, acknowledges several limitations: (i) the

analysis is conducted solely on organs that are eventually transplanted, without

accounting for selection bias; (ii) other important outcomes, such as hospital length

of stay, duration of mechanical ventilation, postoperative functional status, quality

of life, and transplant cost, are not considered; and (iii) the conclusions rely on the

assumption that the data about donor-risk factors available to the econometrician is

also available to the transplant center at the time of offer evaluation—an assumption

that conflicts with many recent policy proposals aimed at making donor data more

readily accessible to evaluating transplant centers (Gilroy et al., 2019; Hackmann

et al., 2022). Due to these limitations, the medical community has requested a

randomized control trial in which some transplant centers are blinded to their patient

position in the match run to meaningfully evaluate the impact of match run position

on transplant outcomes (Cohen et al., 2018b).

Organization The rest of the paper is organized as follows. Section 2 describes the

institutional setting and our data. Section 3 provides reduced form evidence of social

learning in the allocation of deceased donor lungs. Section 4 presents the structural

model, and Section 5 discusses the results of the model estimation. Finally, using

the model estimates as a baseline, Section 6 analyzes the outcomes of counterfactual

experiments on different information and allocation policies across different measures

of efficiency and welfare.
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2 Institutional Background and Data

2.1 Institutional Background

An organ procurement organization (OPO) is a non-profit agency responsible for

recovering organs from deceased donors for transplantation. In the United States,

there are 56 such agencies, each legally permitted to operate within an assigned

donation service area. The OPO from which we obtained data is one of the largest

in the U.S., managing organ and tissue recovery for transplantation and serving

215 hospitals and 9 transplant centers in a region with a population of 20 million.

In assigning organs, this OPO implements the assignment rules outlined by the

Organ Procurement and Transplantation Network (henceforth, OPTN), which we

will discuss next.

OPTN Priority Assignment When an organ becomes available, the OPTN

ranks all potential compatible recipients (patients) according to a priority assign-

ment policy. Each patient’s priority is represented by their sequence number, with

those holding smaller numbers receiving offers before those with larger numbers. We

refer to the process of sequentially offering an organ to this list of patients as a match

run. According to OPTN (2019), the sequence number assigned to a patient in need

of a lung transplant is determined by four factors: (i) the lung allocation score (LAS),

which ranges from 0 to 100 and is calculated based on a combination of waitlist ur-

gency and post-transplant survival probabilities; (ii) blood-type compatibility with

the donor; (iii) total waiting time; and (iv) physical proximity to the donor. Initially,

matched donor-patient pairs are grouped based on physical proximity and blood type

compatibility. Within each group, priority is first given to patients with higher LAS,

and if there is a tie, priority is then given to those who have waited longer.

The Allocation System As mentioned before, the OPTN system offers the organ

to patients in ascending order of their sequence number in the match run. The start

of the match run initiates a two-stage decision process involving the patient and their

medical team, which we explain next.
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The first stage is known as “provisional yes,” where patients (together with their

medical team) need to decide within an hour, whether to provisionally accept or reject

the offer. Patients who decide to provisionally reject the offer are no longer eligible for

that organ.7 After the first stage, the allocation process moves to the second stage,

where patients who provisionally accepted the offer can then decide whether to finally

accept or reject it. At this stage, patients are informed of their sequence numbers

and the reasons for any prior rejections, if applicable (Harhay et al., 2019). If all

final decisions result in rejection, then the organ will not be allocated.8 Importantly,

neither provisional nor final rejections adversely affect patients’ priority in future

assignments.

When making the final acceptance decision, patients with lower priority (i.e., those

with larger sequence numbers) should engage in the following contingent reasoning:

they infer that, by the time it is their turn to decide, all higher-priority patients who

provisionally accepted the organ must have subsequently rejected it. In other words,

their decision to accept is contingent on previous rejections. This is because, if any

of these higher-priority patients had accepted the offer, it would not be their turn

to decide. Consequently, if previous rejections following provisional acceptance are

informative about organ quality, this reasoning creates a channel for social learning.

In Section 3, we present evidence supporting this reasoning and highlights the role

of social learning.

7According to OPTN, the provisional yes practice informs the acting organ procurement agency
that the patient (and their medical team) has received the offer and wishes to proceed, either by
accepting the organ or seeking more information (OPTN, 2019). Introduced in 2018, this practice
addresses concerns about patients who are not fit for transplantation but still appear on the waiting
list, causing delays in the allocation process. By allowing these patients to opt out, it streamlines
and expedites organ allocation by maintaining an active list of potential recipients.

8Sometimes, a third stage of “expedited placements” may occur when the OPO faces a last-
minute decline of a previously accepted organ or believes an organ to be viable but has been
declined. In such cases, the OPO may make a direct offer to a center with a history of more liberal
acceptance, regardless of the patient’s position on the match run. This stage is more common in
kidney allocations but occurs only occasionally with other organs. We abstract away from this
process as we do not observe it in our data.
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2.2 Data

Our data includes all lung donations managed by the concerned OPO between Jan-

uary 2019 and December 2020. For each donor organ, we observe a rich set of donor

and patient characteristics, as well as detailed records of their acceptance and rejec-

tion decisions.9 The only key missing variable is the total waiting time of a patient

at the time of receiving the offer. We construct this variable using data from the

Scientific Registry of Transplant Recipients, which includes the initial wait-listing

date for each patient.10 This allows us to calculate the patient’s total waiting time

for each offer by taking the difference between the date of the offer and their initial

wait-listing date, excluding any inactive periods.

To keep our empirical model tractable, we focus on patients over 12 years old who

need a bilateral lung transplant.11 Our dataset includes 32,786 offers, involving 548

deceased donors and 1,348 patients actively wait-listed during our observational pe-

riod. Although all patients in our dataset require a bilateral lung transplant, a small

portion of them receive a single lung transplant; we observe about 5% of accepted

donors (out of 290 in total) had their lungs allocated to two different patients. In

these cases, we treat the two allocations as a single allocation and use the smaller

sequence number of the two patients as the accepted sequence number.

The high rate of unallocated organs is a striking feature of our data. With approx-

imately 1,300 patients in need of a bilateral lung transplant and only 548 donors

available, demand is more than double the supply. Despite this, the final allocation

rate for these organs is only about 53%. Specifically, out of the 548 deceased donors,

9This includes the timing of decisions and the recorded reason for rejections.
10The dataset from the Scientific Registry of Transplant Recipients (SRTR) includes data on

all donors, wait-listed candidates, and transplant recipients in the US, submitted by members of
the OPTN. The Health Resources and Services Administration (HRSA) of the U.S. Department
of Health and Human Services provides oversight to the activities of both the OPTN and SRTR
contractors.

11This excludes patients who require both heart and lung transplants or a single lung transplant,
as the challenges they face and the urgency of their conditions differ substantially from those needing
a bilateral lung transplant. Patients under 12 are also excluded as they are prioritized differently
by the OPTN.
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about 258 had their lungs rejected by all matched patients. This substantial gap

between available organs and their utilization underscores the importance of evalu-

ating the efficiency and welfare outcomes of the current priority policy and exploring

alternative policies, which we will discuss in Section 6.

Patient and Donor Summary Statistics Table 1 summarizes patients’ and

donors’ characteristics in our sample. Panel (A) of Table 1 reports sample statistics

for patient characteristics, including health indicators such as body mass index (BMI)

and diabetic status, together with medical history, such as whether the patient had

any prior lung transplant. On average, patients have waited just over three months

before receiving their first lung transplant offer. The average LAS is approximately

43 points, with over 80% of patients having LAS between 30 and 50. Recall that a

higher LAS indicates a greater likelihood of benefiting from a lung transplant, and

the OPTN allocation system prioritizes patients with higher LAS.

During the sample period, patients received an average of 24 offers in total. However,

the median number of offers is only about 6, suggesting that many patients received

substantially fewer offers. The positive skewness in the number of offers received is

likely due to a small portion of patients with lower LAS remaining on the waitlist

for extended periods, thereby receiving a large number of offers.

Panel (B) of Table 1 reports the sample statistics for donor characteristics. On

average, donors are 18 years younger than the patients. Approximately 20% of

donors have either a history of heavy alcohol consumption or a status for increased

risk, suggesting considerable variability in the quality of donor lungs. Despite this

variability, the overall health of donor lungs is good, as indicated by the variable

“P/F ratio,” which averages around 420 and falls within the normal and healthy

range of 400 to 500 measured at sea level.12 However, although each donor is offered

to an average of 60 patients, fewer than 50% of these donor lungs are ultimately

12The P/F ratio is defined as the ratio between the partial pressure of arterial oxygen (PaO2,
measured in mmHg) and the fraction of inspired oxygen (FiO2, expressed as a decimal). A P/F
ratio below 300 suggests some level of impaired lung function.
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Table 1: Patient and Donor Characteristics

Mean S.D. Min Max
Panel A: Patient Characteristics (N = 1, 348)

Age 55.9 13.5 12 79
Female 51.7% 50.0% 0 100
Caucasian 67.5% 46.9% 0 100
Body Mass Index (BMI) 25.5 4.5 15 37
Diabetic patient 16.8% 37.4% 0 100
Previous lung transplant 3.6% 18.7% 0 1
Lung Allocation Score (LAS) 43.3 14.3 5.9 95.4
Waiting time (months) 3.4 7.5 0 87.1
Number of offers per patient 24.3 42.7 1 347

Panel B: Donor characteristics (N = 548)
Age 38.2 14.1 7 75
Weight (kg) 79.0 20.8 23.5 170.7
Height (cm) 169.5 10.8 119 198.5
Heavy alcohol history 17.7% 38.2% 0 1
IV drug use history 6.0% 23.8% 0 1
Increasing risk status 21.2% 40.9% 0 1
P/F ratio 419.3 102.3 80 1400
Number of offers per donor 59.8 48.4 1 222

N ote: For all patient characteristics that can vary throughout our
observational period, such as age, BMI, LAS, and waiting time, we
use the value recorded at the first offer that each patient receives.

accepted and allocated.

To see if there are any differences in lung quality between accepted and rejected

donors, Table 2 reports summary statistics of donor characteristics by their final

allocation outcome. As expected, accepted donors generally exhibit higher quality

compared to rejected donors. For example, accepted donors are, on average, three

years younger and have slightly lower probabilities of a history of heavy alcohol

consumption or intravenous drug use compared to rejected donors. More importantly,

the direct measure of lung quality, the P/F ratio, is approximately 10% higher in

accepted donors than in rejected ones, indicating that the former has better lung

12



Table 2: Donor Characteristics by Allocation Outcome

Accepted Donors Rejected Donors
Mean S.D. Mean S.D.

Age (year) 36.9 13.4 39.7 14.7
Weight (kg) 80.1 20.3 77.8 21.3
Height (cm) 169.5 10.6 169.4 11.1
History of heavy alcohol consumption 17.2% 37.8% 18.2% 38.7%
History of IV drug use 5.5% 22.9% 6.6% 24.9%
Increasing risk status 21.4% 41.1% 20.9% 40.8%
P/F ratio 437.2 83.0 399.2 117.4
Number of offers per donor 68.5 48.2 50.1 46.9
Number of observations N = 290 N = 258

functionality than the latter. We also note that lungs from accepted donors are

offered to approximately 20 more patients on average than rejected donors.

Acceptance Rate and Offers As described in Section 2.1, patients first decide

whether to provisionally accept the offer before making a final decision. So the ob-

served low final acceptance rate—only about 53%—could stem from either a high

provisional rejection rate or a situation in which many donors are provisionally ac-

cepted but ultimately rejected. Our data suggests that the latter is the case: more

than 95% of all offers are provisionally accepted, yet less than 1% result in final

acceptance. This low final acceptance rate is underestimated as our dataset only

includes final decisions up to the first acceptance in each match run. In other words,

we do not observe the potential final decisions of patients with lower priority than

the position at which the organ was accepted. Therefore, when considering the final

acceptance decisions, we exclude all offers made after the first acceptance, leaving us

with 15,773 offers for which both provisional and final decisions are recorded.

Table 3 reports the key characteristics of offers at different decision stages, shedding

light on the acceptance decisions from the patients’ perspective. Since most offers

are provisionally accepted, the characteristics of all offers and those provisionally

13



Table 3: Offers Characteristics by Decision Stage

All Provisional Yes Final Yes
Mean S.D. Mean S.D. Mean S.D.

Lung allocation score (LAS) 39.74 10.13 39.68 10.03 54.47 20.27
Primary blood type match (%) 76.40 42.47 76.43 42.44 96.90 17.37
Waiting time (month) 8.46 11.25 8.45 11.20 5.84 9.98
Distance (per NM) 247.95 212.58 239.80 186.84 119.00 130.79
Decision time (minute) - - 10.28 91.68 207.48 442.71
Number of observations N = 32, 786 N = 31, 329 N = 290

Note: The variable “primary blood type match” is a categorical variable with three levels:
0 for incompatible, 1 for moderate compatibility and 2 for the highest compatibility. All
observations in the dataset have a primary blood type match rating of at least 1. In
addition, the unit for waiting time is in months, and the unit for distance is measured in
nautical miles.

accepted are very similar. On average, an offer is provisionally accepted by a patient

with a LAS of about 40, who has been waiting for approximately 8 months, has about

a 76% chance of being a primary blood type match with the donor and is located

within 240 nautical miles of the donor.13 The only noticeable difference between all

offers and those provisionally accepted is the slightly shorter distance between the

donor and the patient.

In terms of decision time, provisional decisions occur much faster than final decisions.

On average, the former takes only about 10 minutes, whereas the latter requires an

additional 3 hours. We also observe that offers that are ultimately accepted tend to

be associated with patients who have higher LAS, are more likely to have a primary

blood type match with the donor, are geographically closer to the donor, and have

shorter waiting times. These relationships, except for waiting time, are as expected,

as they all contribute to a smaller sequence number and therefore a higher priority for

13Donor-patient pairs that are of primary blood type match include all four identical blood type
combinations (O-O, A-A, B-B, AB-AB), as well as specific cross-type matches: O donor with B
patient, A donor with AB patient, and B donor with AB patient. Pairs that are of secondary blood
type match consist of O donor with a patient with blood type A or AB. All offers in our sample
are either primary or secondary blood type matches.

14



the patient in any match run, where the probability of acceptance is usually higher.

Our descriptive results suggest that patients treat the two stages of decision-making

differently. Provisional decisions are made quickly and potentially influenced by

factors such as the immediate availability of clinicians or the patient’s physical con-

ditions for transplantation. In contrast, final decisions require more deliberation on

the quality of the match and thus take more time. Together, these observations

motivate us to separately model these two decisions and the information involved in

each (see Section 4).

3 Reduced-form Evidence of Social Learning

In this section, we present reduced-form evidence of social learning in lung trans-

plant acceptance decisions. We show that, even after controlling for all variables

that determine a patient’s sequence number, the probability of organ acceptance

decreases as the sequence number increases. In particular, we find that (i) the four

key variables—patient LAS, waiting time, and donor-patient blood type match and

distance—affect the sequence number in a manner consistent with the description

of the OPTN priority assignment, and (ii) sequence number exhibits a significant

negative effect on final acceptance decisions, even after conditioning on all controls.

These findings suggest that all else equal, a patient is less likely to accept an organ if

they receive the offer at a higher sequence number. This suggests receiving an offer

at a larger sequence number signals bad news about the offer. We also find that

sequence number has no effect on provisional acceptance decisions once we condition

on these key variables and other controls, consistent with the idea that patients treat

provisional and final acceptance decisions differently.

Sequence Number Recall that in Section 2, we describe how sequence number

is computed by the OPTN. Here, we present an alternative statistical model for

assigning sequence numbers, examining how a patient’s sequence number is related

to their characteristics, donor characteristics, and donor-patient compatibility. This
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model serves as a control in the main reduced-form evidence for social learning.

Specifically, we estimate the following model:

si,j = x′
jβ + x′

iγ + c′i,jα+ εi, (3.1)

where si,j is the sequence number of patient j when matched with donor i; xj is a

vector of patient j’s characteristics that include their LAS, total waiting time, BMI,

as well as health condition indicators such as diabetic status and history of previous

lung transplant; xi is a vector of donor i’s characteristics including age, weight,

height, P/F ratio and dummies for whether the donor has a history of IV drug

or heavy alcohol use. We also include ci,j, a vector of donor-patient compatibility

indicators, such as primary blood type match, age, weight, and height differences,

and the distance between donor i and patient j.14

The first column of Table 4 reports the results of regression (3.1). The coefficients

of interest are those that correspond to the four factors used by the OPTN to assign

sequence numbers: patient LAS, waiting time, and donor-patient blood type match

and distance. All four coefficients are statistically significant and exhibit the antic-

ipated signs: patients with higher LAS, a better blood type match, longer waiting

times, and closer geographical proximity to the donor are more likely to have lower

sequence numbers; thus receiving higher priority in the queue. In terms of magni-

tude, the coefficients for blood type match and distance are much larger than those

for LAS and waiting time, suggesting their first-order effects in determining priority

levels, which is consistent with the description in Section 2.1.

Acceptance Decisions Next, we examine the effect of sequence number on patient

acceptance decisions, controlling for all previous variables, including those used by

the OPTN to determine the sequence number. To do so, we run a Logit model as

14More specifically, the geographical distance between the donor and the patient is characterized
by “Zones,” where Zone A is for distances between 0-250 nautical miles (NM); Zone B is between
250-500 NM; Zone C is between 500-1000 NM; Zone D is between 1000-1500 NM; and Zone E is
between 1500-2500 NM.
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Table 4: Reduced-Form Analysis: Sequence Number, Provisional Acceptance and
Final Acceptance

(1) (2) (3)
Sequence number Provisional yes Final yes

Sequence number -0.001 -0.054∗∗∗

(0.001) (0.010)
Patient LAS -0.596∗∗∗ -0.018∗∗∗ 0.041∗∗∗

(0.016) (0.003) (0.004)
Primary blood type match -39.938∗∗∗ 0.020 0.759∗

(0.382) (0.077) (0.390)
Waiting time (month) -0.064∗∗∗ 0.005∗ -0.022∗∗

(0.013) (0.003) (0.010)
Distance (reference group–Zone A: 0-250 NM)
Zone B: 250-500 NM 40.807∗∗∗ 0.922∗∗∗ -0.888∗∗∗

(0.313) (0.078) (0.156)
Zone C: 500-1000 NM 31.356∗∗∗ -1.739∗∗∗ -1.810∗

(1.770) (0.094) (1.025)
Zone D: 1000-1500 NM 23.893∗∗∗ -1.180∗∗∗ -

(2.892) (0.234) -
Zone E: 1500-2500 NM 18.203∗∗∗ -2.485∗∗∗ -

(2.419) (0.176) -
Patient characteristics X X X
Donor characteristics X X X
Patient-donor differences X X X
Provisional yes - - X
Observations 32,697 32,697 14,587
R-squared 0.490 0.125 0.246
R-squared w/o si,j - 0.125 0.207

N ote: For all regressions, we control for a wide range of variables about the pa-
tient, donor and donor-patient characteristics which we do not report due to space
constraints. Note that since we restrict the sample to offers that are provisionally
accepted in Column (3), the variable “sequence number” is reordered based on the
initial sequence number of these patients. Robust standard errors are reported in
parentheses. ∗∗∗Significant at 1% level, ∗∗Significant at 5% level, ∗Significant at 10%
level. Columns (2)-(3) show results from a logit regression, so pseudo R-squared is
reported.
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follows:

yi = 1{βssi,j + x′
jβ + x′

iγ + c′i,jα+ εi ≥ 0}, (3.2)

where, as before, si,j is the sequence number of patient j when matched with donor

i, and the vectors xj, xi and ci,j represent the observed characteristics of patients,

donors, and donor-patient compatibility. In the specifications below, yi is a dummy

variable indicating whether the donor is provisionally accepted or finally accepted.

Provisional Yes The second column of Table 4 presents the result of regres-

sion (3.2) when yi represents the provisional acceptance decision. As reported in

the first row, after controlling for a rich set of observables, the negative coefficient

βs on sequence number is not statistically significant. This suggests that sequence

number itself does not affect patients’ provisional decisions beyond the information

included in the controls. The coefficient on patient LAS is negative and statistically

significant, indicating that patients with a higher LAS are more likely to opt out

the allocation process. We also observe a weak positive coefficient for waiting time,

suggesting that patients who have waited longer are slightly more likely to accept

provisionally. Finally, compared to patients in Zone A (within 0-250 NM of the

donor), only patients in Zone B (within 250-500 NM of the donor) are more likely

to provisionally accept the offer, while those in more distant zones are less likely to

do so. This is consistent with the idea that the provisional decisions reflect basic

unavailability for a potential transplant operation.

Final Decisions The third column of Table 4 presents the result of regression (3.2)

when yi represents the final acceptance decision. As mentioned before, our data on

patient final acceptance is truncated at the first acceptance.15 The coefficient of

interest here is the one associated with the sequence number. Unlike provisional

acceptance decisions, this coefficient is negative (β̂s = −0.054) and statistically sig-

nificant at the 1 percent level, even after controlling for all factors used to determine

sequence numbers, as well as all other observables.

15Recall that we exclude all offers following the first acceptance, resulting in 15,773 offers where
both provisional and final decisions are recorded.
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In other words, all else equal, having a larger sequence number alone decreases the

probability of a patient ultimately receiving a transplant. This significant negative

correlation between sequence number and final acceptance probability suggests that

transplant centers use patients’ sequence numbers to make negative inferences about

donor quality. Since a donor can only be allocated to the next patient in line if

it is rejected by all higher-priority patients, only information about rejections is

transmitted as the offer moves down the priority queue. The negative coefficient

on sequence number implies that previous rejections are interpreted as “bad news”

about the donor quality, thereby reducing the likelihood that the donor will finally

be accepted.

We note that all coefficients for patient LAS, waiting time, and distance are sta-

tistically significant in final acceptance decisions but have opposite signs compared

to those in provisional acceptance decisions. For example, the coefficient for LAS

changes from negative in column (2) to positive in column (3) of Table 4. This sug-

gests that, unlike in provisional decisions, patients with a higher LAS—indicating

a more urgent status and better survival probability—are more likely to receive a

transplant, despite having a lower likelihood of provisional acceptance. Similarly, a

negative coefficient for Zone B (compared to Zone A) implies that patients residing

farther from the donor are less likely to receive a transplant, even though they have

a higher likelihood of provisional acceptance. Motivated by these findings, we model

these two decision stages separately in the following section.

4 Structural Model

We propose a model that combines a discrete-choice specification with sequential

decision-making which creates channels for social learning. To do so, we build on

the classic theoretical model of sequential social learning (Banerjee, 1992; Bikhchan-

dani et al., 1992), adapting it for the purposes of structural estimation. Specifically,

our model incorporates four key components that influence a patient’s acceptance

decisions: (i) unobserved lung quality that is common to all matched patients; (ii)
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observed donor and patient individual characteristics; (iii) observed donor-patient

match quality characteristics; (iv) unobserved heterogeneity. The first component,

an unobserved common-value component, is the focus of social learning, where pa-

tients update their beliefs negatively about this common quality based on past re-

jections within a match run. The second and third components capture observed

heterogeneity among patients, donors, and donor-patient pairs.

Donor Quality Each donor i ∈ N is endowed with a quality θi ∈ {−1, 1}, which
is identically and independently distributed across donors. We denote by p ∈ (0, 1)

the prior probability that the donor quality is θ = 1. Throughout, we refer to θi = 1

as donor i being of high quality and θi = −1 as donor i being of low quality. Each θi

captures any unobserved common aspects of the donor’s lung quality, in addition to

the observed donor characteristics, and it is unobserved by both the patients and the

econometrician. We assume that it is fixed throughout the allocation process. This

assumption is supported by our empirical observation that nearly all offers—about

98% in our dataset—receive a final decision before the organ is extracted, if at all,

from the donor.

Allocation When donor i becomes available, a match run is initiated for a set

of compatible patients, denoted by Ni. These patients, indexed by j, first make a

provisional decision; those who respond with a provisional yes are then asked for a

final decision. Provisional Yes decisions are made based on idiosyncratic factors such

as the availability of a transplant team at the center and the patient’s readiness for

transplantation. In contrast, final acceptance decisions are based on the patient’s

assessment of donor-patient compatibility and the quality of the donor organ.

Formally, we assume that each patient j ∈ Ni is endowed with two signals, denoted

by (νj, ωi,j), each taking values in {−1, 1}. The first signal νj indicates whether

patient j is ready for transplant (νj = 1) or not (νj = −1), and is independent of

the donor quality θi. We assume that νj are i.i.d. across patients j, with P[νj =

1] = µ ∈ (0, 1). The second signal ωi,j is informative about the donor quality, with
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precision α ∈ (1/2, 1), i.e., α = P[ωi,j = k|θi = k] for all k ∈ {−1,+1}. We assume

that conditional on θi, ωi,j are i.i.d. across patients j.

Final Acceptance Denote by Pi := {j ∈ Ni : νj = 1} the set of patients who are

ready to receive a transplant from donor i. When offered the organ from donor i,

patient j ∈ Pi decides whether to accept (di,j = A) or reject (di,j = R) the organ.16

Patient j’s utility from rejecting the organ is given by ϵRi,j. If patient j accepts a

donor of quality θi, their utility is given by

uA(x̃i,j, θi, ϵ
A
i,j) = x̃′

i,jβ̃ + γθi + ϵAi,j, (4.1)

where x̃′
i,j := (1,x′

i,x
′
j, c

′
i,j) consists of three observable components, including a

constant that normalized to one: xi is a vector of donor i’s characteristics; xj is

a vector of patient j’s characteristics; and ci,j is a vector of characteristics captur-

ing the compatibility between donor i and patient j (just as in the reduced-form

model in Section 3). The variables in x̃i,j are observable to both patient j and the

econometrician. The parameter β̃ is a vector consisting of the utility weights asso-

ciated with x̃i,j and γ is the utility weight associated with θi. Finally, ϵAi,j denotes

the idiosyncratic utility shock that patient j receives when accepting donor i’s lung.

We assume that ϵRi,j and ϵAi,j are distributed i.i.d. across patients and donors, each

following a Type I extreme value distribution. Consequently, the difference between

them, denoted by δi,j := ϵAi,j−ϵRi,j, follows a logistic distribution centered at zero with

a scale parameter of one.

Before deciding whether to accept or reject donor i, patient j ∈ Pi observes the

idiosyncratic (εRi,j, ε
A
i,j), the informative signal ωi,j, and their sequence number si,j.

17

Based on this information, patient j accepts the offer if the expected utility from

16By default, the decisions of patients in Ni \ Pi are set to R.
17Note that both the patients’ idiosyncratic shocks and the informative signals are unobserved

by other patients and the econometrician.
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accepting is greater than that from rejecting:

E[uA(x̃i,j, θi, ϵ
A
i,j)− uR(ϵRi,j)|ωi,j, si,j] ≥ 0.

From the perspective of patient j, the only unknown variable in the above expression

is θi. Thus, we can write the above inequality as

δi,j ≥ −v(x̃i,j, ωi,j, si,j), (4.2)

where

v(x̃i,j, ωi,j, si,j) = x̃′
i,jβ̃ + γE[θi|ωi,j, si,j]. (4.3)

Thus, (4.3) represents patient j’s final acceptance threshold for donor i, which is

determined by a combination of donor and patient characteristics (including those

describing their mutual compatibility), the patient’s private information, and the

information conveyed through the allocation process via the patient’s sequence num-

ber. The knowledge of patients’ sequence number plays an important role: when

evaluating the donor’s quality, a patient should condition their evaluation on the

event that all other patients with smaller sequence numbers must have rejected the

offer; otherwise, the offer would not have reached them in the first place. This leads

to a problem of negative inference as the donor is offered further down the match

run, which we discuss next.

The Inference Problem Conditional on Provisional Yes Since all patients

must provisionally accept the offer before making a final decision, patient j infers,

when it is their turn, that all higher-priority patients have provisionally accepted

but ultimately rejected the offer. According to (4.2), these final rejections are in-

fluenced by a combination of private information and patient characteristics. To

make the inference problem tractable, we assume that each patient j ∈ Pi knows the

characteristics of other patients in Pi with smaller sequence numbers.18

18This assumption also help ease the computational complexity of estimating our structural
model.
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Given these patient characteristics, patient j can thus infer the extent to which past

rejections are informative about donor quality. Recall that the expected quality of

θi conditioned on ωi,j and si,j is

E[θi|ωi,j, si,j] = E[θi|ωi,j, (di,j′)j′∈Pi,si,j′<si,j = R].

As si,j increases, the number of patients in Pi who ultimately reject donor i also

weakly increases. Consequently, one would expect E[θi|ωi,j, si,j] to be weakly de-

creasing in si,j. Intuitively, as the sequence number increases, the number of prior

rejections increases, leading to an accumulation of negative information about donor

quality. This reinforces doubt about the donor, further reducing the probability of

acceptance and triggering a cascading effect of rejections.

Thus, the amount of negative information conveyed through the sequence number

can be seen as a measure of the extent of social learning in the current OPTN

system. In Section 6, we conduct counterfactual experiments to assess the impact

of social learning by varying the amount of information in the sequence number,

ranging from no information to the maximum amount of private information. Taking

into account the effect of social learning, we then examine how different priority

assignment algorithms influence the informational content of the sequence number

and their welfare implications.

5 Estimation

Motivated by our empirical evidence (see Section 3), we estimate our model using

maximum likelihood in two steps. First, from the data we directly estimate the prob-

ability of provisional acceptance µ. Second, we estimate the remaining parameters

using the Nelder-Mead simplex algorithm, a direct search method. The parameters

estimated in the second step include: α, the precision of the informative private

signals; p, the prior probability that the lung quality is high; γ, the coefficient for

the expected lung quality; and β̃, the vector of coefficients for donor, patient and
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donor-patient match quality characteristics. Conditional on all provisional accep-

tances—which occurs with probability µ—the vector of parameters Φ := (α, p, γ, β̃)

collectively governs the final decision process.

For each donor i and each patient j ∈ Ni, we observe the following set of variables

in the data:

Λi,j = (1j∈Pi
,1di,j=A, si,j,xi,xj, ci,j)

where 1j∈Pi
is an indicator for whether patient j provisionally accepts donor i; 1di,j=A

is an indicator for whether patient j finally accepts donor i; si,j is the sequence

number assigned to patient j for donor i; xi is a vector of donor i’s characteristics;

xj is a vector of patient j’s characteristics; and ci,j is a vector of donor-patient

compatibility characteristics. Let Λi = (Λi,j)j∈Ni
denote the data observed for donor

i, and Λ = (Λi)i∈N denote the data observed for all donors.

5.1 The Likelihood Function

In the first step, since provisional decisions are governed by the patient’s first signal

νj, which are i.i.d. across patients and independent of donor quality, the maximum

likelihood estimator of µ is given by
∑

i∈N |Pi|∑
i∈N |Ni| . In the second step, given a vector

of parameters Φ, we first focus on the probability that donor i is accepted by some

patient j ∈ Pi. According to (4.2), the probability of patient j accepting donor i is

P[di,j = A|x̃i,j, ωi,j, si,j; Φ] = 1− F (−v(x̃i,j, ωi,j, si,j; Φ)),

where F is the cumulative distribution function of the standard logistic distribution.

The complementary probability, F (−v(x̃i,j, ωi,j, si,j; Φ)) is thus the probability of

patient j ∈ Pi rejecting donor i. Denote by

j∗i = argmin
si,j

{j ∈ Pi : di,j = A}

the patient in Pi who finally accepts donor i and has the smallest sequence number.

So, if there are multiple j ∈ Pi such that di,j = A, donor i is allocated to patient j∗i .
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Since patients’ idiosyncratic shocks are i.i.d., the likelihood that donor i is finally

accepted by j∗i under Φ is

L A
i (Φ; Λi) =

(
1− F (−v(x̃i,j∗i

, ωi,j∗i
, sij∗i ; Φ))

)
·

∏
j∈Pi:si,j<si

j∗
i

F (−v(x̃i,j, ω
2
i,j, si,j; Φ)).

Note that the first term is the probability that donor i is accepted by patient j∗i ,

conditional on all higher-priority patients rejecting the offer despite provisionally

accepting it. The second term is the probability of this conditional event—i.e., that

donor i is ultimately rejected by these higher-priority patients who had provisionally

accepted the offer. In contrast, the probability of donor i being rejected by all

patients in Pi is

L R
i (Φ; Λi) =

∏
j∈Pi

F (−v(x̃i,j, ωi,j, si,j; Φ)).

Let S ⊆ N denote the set of donors that are successfully allocated, i.e., it has been

accepted by at least one patient in Pi. The log-likelihood function of the observed

donor allocations is thus equal to

L L (Φ; Λ) :=
∑
i∈S

logL A
i (Φ; Λi) +

∑
i∈N\S

logL R
i (Φ; Λi). (5.1)

The first term in (5.1) is the log-likelihood of all donors in S being accepted, while

the second term is the log-likelihood of all donors in N \ S not being accepted by

any matched patients.

5.2 Estimation Results

We report the coefficient estimates and corresponding standard deviations for se-

lected parameters in (5.1) in Table 5. The full estimation results are provided in

Table A.1 in the appendix. Recall that µ is the provisional acceptance probability,

which reflects the overall readiness of the patient pool to receive a transplant. Our

estimate of 0.96 suggests that provisional acceptances are extremely common among

lung transplant patients. Additionally, α represents the precision of the patients’
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Table 5: Estimation Results

Parameter Estimate S.D.
µ 0.958 –
α 0.850 0.039
p 0.383 0.046
γ 4.934 0.005

β̃ (selected)
Patient LAS 0.033 0.001
Patient waiting time (month) -0.024 0.002
Donor-patient primary blood type match 0.775 0.006
Donor-patient distance (per NM) -0.003 0.001

N ote: The standard deviations are obtained through the BHHH
estimator.

private information regarding the unobserved quality of the donor’s lungs, and p

represents the patients’ prior belief that the quality is high. Our estimates for α

and p—0.85 and 0.38, respectively—suggest that although patients generally hold a

pessimistic view of the unobserved quality, the private information they receive is

highly informative.

The estimated coefficients β̃ for the patient, donor, and donor-patient compatibility

characteristics show the expected signs, have reasonable magnitudes, and align with

our reduced-form estimates. For example, a patient’s utility for accepting a donor

increases with a higher LAS or a primary blood type match, while it decreases as

the patient waits longer or as the geographical distance between the patient and

donor increases. Notably, the estimated coefficient for unobserved donor quality,

γ, is about five times larger than that for a primary blood type match, which is

the largest coefficient among all patient, donor, and donor-patient characteristics.

This highlights the critical role of unobserved donor quality in determining patient

acceptance decisions.

To evaluate our model fit, we use these estimates to obtain predicted acceptance

probabilities for patients at different sequence numbers. Figure 5.1 plots the average
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Figure 5.1: Conditional Acceptance Probability by Sequence Number

predicted acceptance probabilities and compares them with the empirical acceptance

rate by sequence number. As shown in the figure, our model generally fits well with

the observed pattern of acceptance, particularly in capturing the sharp decline in

the acceptance rate at the initial sequence numbers. For instance, the acceptance

rate at sequence number one in the data is approximately 21 percent, dropping by

half to around 11 percent at sequence number two—closely aligning with our model

predictions of 21 and 8 percent, respectively.

Note that all reported probabilities, both predicted and empirical, are conditional

acceptance probabilities. For example, if the acceptance probability at sequence

number 5 is 0.1, this indicates a 10% chance that the offer will be accepted by the

patient who is fifth in line, conditional on all patients with sequence numbers 1 to

4 having rejected the offer. Using these conditional probabilities, we can calculate

the likelihood that the organ is allocated by sequence number, say, 50.19 The like-

19Formally, let x = (x1, x2, . . .) be the vector of conditional acceptance probabilities where xi

denotes the probability of accepting the offer at sequence number i. The probability that the offer
is accepted by sequence number n is

∑n
k=1(

∏k−1
i=1 (1− xi)xk). We limit the calculation to sequence
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lihoods derived from the predicted and empirical probabilities are about 57% and

56%, respectively—both close to the observed overall allocation rate of 53% in the

data.

6 Counterfactual Experiment

Using our structural estimates, we conduct a series of counterfactual experiments

to examine the impact of social learning on allocation outcomes and its interaction

with different allocation policies. As a baseline, we simulate the organ allocation

process under the OPTN priority assignment policy described in Section 2. We then

consider two sets of counterfactual experiments: one modifies the priority assign-

ments to evaluate the effects of different policy proposals, while the other adjusts

the information available to patients to better understand the role of social learning.

To implement the counterfactual simulations, we first construct the simulated data.

For each donor, we randomly draw a set of blood type-compatible patients from

the entire patient pool, ensuring that the number of assigned patients matches the

data. We then rank these patients according to different priority policies. In our

baseline experiment, we replicate the OPTN’s priority assignment algorithm. For

alternative policies, we compute the predicted acceptance probabilities using our

structural estimates and rank patients accordingly. This results in different patient

samples for each priority policy. For each sample, we randomly draw donor quality,

patients’ signals, and their idiosyncratic shocks according to our model estimates.

We then compute the expected donor quality based on the information available for

each patient, which varies across informational treatments. This process leads to a

final decision (acceptance or rejection) for each patient. If the donor is allocated, we

calculate the utility for the patient receiving the offer according to (4.1).20

number 50, as the conditional acceptance probabilities become negligible beyond this point.
20Specifically, we calculate what is known as the ex-ante maximum expected utility. As is well

known, the ex-ante maximum expected utility of patient j before the realization of her idiosyncratic
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6.1 Alternative Priority Policies

This section compares two alternative priority policies to the one currently used by

the OPTN. These two policies differ in how they rank patients in a match run. The

first policy, called greedy priority, offers the organ to patients in descending order of

their estimated acceptance utility. The second policy, called reverse greedy priority,

offers the organ to patients in ascending order of their estimated acceptance utility.

In the absence of social learning, greedy priority maximizes the speed of organ al-

location and ensures that the organ goes to the patient who values it the most, as

those with the largest acceptance utility also have the highest acceptance probabil-

ity. Thus, if the sole concern is allocation efficiency or ensuring the organ is given to

the highest-value patient, without considering social learning, greedy priority seems

to be the best policy. This policy, however, is also the “worst” when the goal is to

minimize the negative inference from social learning: when an organ is rejected by

patients who are most likely to accept it, subsequent patients infer the most nega-

tive information, making them more likely to reject as well. Consequently, in the

presence of social learning, the net effect of greedy priority on allocation efficiency

and patient welfare remains unclear.

In contrast, reverse greedy priority minimizes the impact of social learning, as the

negative inference from past rejections is least informative under this policy. This

is because these rejections come from patients who were more likely to reject the

organ in the first place. So this policy is the “best” when the goal is to minimize

the negative effects of social learning. However, since it prioritizes patients with the

lowest acceptance utility, it leads to the lowest acceptance utility and the slowest

allocation process. In the rest of this section, we present empirical results examining

the effects of both policies on allocation efficiency, patient welfare, and the extent of

utility shocks (εAi,j , ε
R
i,j) is

E[max{uA(x̃i,j , θi, ε
A
i,j), u

R(εRi,j)}] = c+ log
(
1 + exp

(
x̃′
i,jβ̃ + γθi

))
,

where c is Euler’s constant, c ≈ 0.577.
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Table 6: Counterfactual 1: Different Priority Policies with Social Learning

(1) (2) (3)
Priority Policy OPTN (Current) Greedy Reverse Greedy

Panel (A): Efficiency Outcomes
Allocation Rate (%) 47.22 46.26 49.33
Accepted Sequence Number 6.91 5.13 15.49

Panel (B): Welfare Outcomes
Acceptance Utility 2.52 2.75 1.48
Total Acceptance Utility 619.72 662.27 381.03
Acceptance Rate of High Quality (%) 32.63 32.44 32.63
Rejection Rate of Low Quality (%) 44.53 45.30 42.42

Panel (C): Accepted Patient Characteristics
LAS 59.12 64.24 38.15
Waiting time (month) 5.35 3.03 8.27
Primary blood type match 1.61 1.60 1.54
Distance (NM) 99.76 155.73 339.75
Provisional Yes ✓ ✓ ✓
Available Information one private signal and past rejections

N ote: The variable “Acceptance Utility” represents the average utility of patients who accept
the offer. The variable “Total Acceptance Utility” is the sum of all acceptance utilities. In
cases where multiple patients accept the same donor, the donor is allocated to the patient
with the highest priority according to the corresponding priority policy.

social learning, and compare them to the current OPTN priority policy.

Panel (A) of Table 6 presents two efficiency outcomes: the average allocation rate and

the average accepted sequence number. Column (1) reports our baseline simulation

which replicates the OPTN priority policy. We find that our simulation is consistent

with what is observed in the data (see Section 2.2). While the actual allocation

rate is 53%, with an average accepted sequence number of 8.5, our simulation yields

an average allocation rate of 47% and an average accepted sequence number of 7.

Columns (2) and (3) present the outcomes from greedy and reverse greedy priorities.

Reverse greedy increases the allocation rate by 2 percentage points compared to the

OPTN policy, while greedy priority reduces it by about 1 percentage point. Thus,
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the shift between the “best” and the “worst” policy in terms of minimizing the

effect of social learning results in an approximately 3 percentage point difference

in the overall allocation rate. This increased allocation rate under reverse greedy

does not come without a cost, as it results in the slowest allocation process, with

an average accepted sequence number of around 15—about three times that under

greedy priority. These results highlight a trade-off between maximizing the allocation

rate and expediting the allocation process when evaluating different priority policies

under social learning.

Panel (B) of Table 6 reports welfare outcomes under different priority policies. In

terms of patient welfare, we compute the average utility of patients who finally receive

an organ. As expected, greedy priority achieves the highest average acceptance

utility, followed by the current OPTN policy, and then reverse greedy priority. In

terms of social welfare, greedy priority also achieves the highest total acceptance

utility—the sum of the utilities of all patients who receive an organ—despite having

the lowest allocation rate. Therefore, from the perspective of a social planner who

aims to maximize total welfare and expedite the allocation process, greedy priority

seems to perform the best among these three considered policies.

In the same panel, we also report the rate of “correct” decisions: accepting high-

quality donors and rejecting low-quality ones. However, it may still be optimal for the

patient to reject a high-quality organ, or accept a low-quality organ, as donor-patient

compatibility is an important factor. We find that while the acceptance rate of high-

quality donors remains consistently around 32% across all three policies, the rejection

rate for low-quality donors ranges from 42% to 45%, with the highest rejection rate

under greedy priority.21 This is not surprising, as greedy priority aggregates the most

negative information as patients move down the queue, increasing the likelihood of

rejecting low-quality donors. Thus, for these patients to accept the offer, the utility

of accepting must also be higher. This higher acceptance threshold could partially

21Suppose all patients are homogeneous and base their decisions solely on their private signals.
Our structural estimates suggest that the overall acceptance rate for high-quality donors is around
33%, while the rejection rate for low-quality donors is approximately 52%.
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explain the improved acceptance utility under greedy priority.

Panel (C) of Table 6 reports the average characteristics of patients who receive the

organ. Compared to the current policy, greedy priority puts more weight on patient

LAS and less on donor-patient distance when assigning priority. Specifically, the

average LAS for patients under greedy priority is about 5% higher than under the

OPTN policy, while the average distance from the donor is about 56 nautical miles

farther. Additionally, patients under greedy priority have the shortest waiting time

among all three policies. In summary, greedy priority seems to benefit patients with

high LAS, even if they are farther away from the donor or have waited a relatively

short period, as they are deemed to be more likely to accept the offer.

6.2 Alternative Information Treatments

In this section, we focus on the OPTN priority policy but modify the information

each patient observes when deciding whether to finally accept the offer. Our baseline

is the current OPTN policy, which allows for social learning: each patient receives a

private signal and observes the past rejections of higher priority patients. We then

introduce two alternative informational treatments. The first treatment, referred to

as no social learning, completely eliminates the negative inference from social learning

and aggregates no private information: each patient receives one private signal and

acts as if they are the first in the priority queue. The second treatment, referred

to as information sharing, aggregates the maximum amount of private information:

each patient receives their private signal and also observes the private signals of all

higher-priority patients.

Table 7 reports the outcomes of these informational treatments. Compared to the

baseline where patients make negative inferences from past rejections, eliminating

this negative inference nearly doubles the overall allocation rate, increasing it from

47% to about 84%. However, many of these additional acceptances result from

“incorrect” decisions—accepting low-quality donors. In the no-social-learning treat-

ment, the rejection rate of low-quality donors is only about 15%, much lower than
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Table 7: Counterfactual 2: Different Information Treatments Under the OPTN
Priority policy

(1) (2) (3)
Information Social No Social Information
Treatment Learning Learning Sharing

Panel (A): Efficiency Outcomes
Allocation Rate (%) 47.22 83.69 48.94
Accepted Sequence Number 6.91 7.33 2.49

Panel (B): Welfare Outcomes
Acceptance Utility 2.52 1.83 2.71
Total Acceptance Utility 619.72 798.60 692.09
Acceptance Rate of High Quality (%) 32.63 39.92 40.31
Rejection Rate of Low Quality (%) 44.53 15.36 50.48

Panel (C): Accepted Patient Characteristics
LAS 59.12 52.63 59.13
Waiting Time (Month) 5.35 7.02 6.49
Primary blood type match 1.61 1.57 1.61
Distance (NM) 99.76 94.82 77.39
Provisional Yes ✓ ✓ ✓
Priority policy OPTN Priority (Current)

in treatments involving social learning or information sharing. In contrast, in the

information-sharing treatment, where patients have access to the most information

when making their decisions, the rejection rate of low-quality donors increases to

about 51%, and the resulting allocation rate is around 49%, close to the 47% ob-

served with social learning. Thus, even though only negative information is aggre-

gated, social learning achieves a similar allocation rate to that of full information

transparency.

Furthermore, across all treatments, the average acceptance utility is lowest in the

no-social-learning treatment, indicating poorer match quality due to the lack of infor-

mation. Meanwhile, the average acceptance utility in the social learning treatment

is similar to that in the information-sharing treatment. This suggests that social

learning improves patient welfare by raising their threshold for accepting an offer.
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Additionally, having more information, whether negative or not, accelerates patients’

decision-making. This is reflected in the average accepted sequence number: it is

around 2.5 when patients share their private signals, increases to 6.9 when others’

signals remain private but patients can infer from past rejections, and rises to 7.3

when there is no additional information beyond their own private signals.

We conduct two additional sets of counterfactual experiments on different informa-

tion treatments, applying both greedy and reverse greedy priorities (see Table A.2

and Table A.3 in the appendix). The results there suggest that combining greedy

priority with information sharing yields the best outcome overall. This combina-

tion not only maximizes patient welfare by achieving the highest average acceptance

utility but also accelerates the allocation process by attaining the lowest average ac-

cepted sequence number. As seen before, one way to shift the current OPTN policy

toward greedy priority is by placing greater emphasis on patient LAS and reducing

the weight on donor-patient distance and waiting time when determining a patient’s

priority.

7 Conclusion

In this paper, we develop a structural model of sequential social learning, specifically

adapted to the allocation of deceased donor lungs in the United States. Using data

from a prominent organ procurement organization from 2019 to 2020, we estimate the

model and find strong reduced-form evidence of social learning. Our counterfactual

experiments demonstrate that social learning has a significant impact: under the

current priority policy used by the OPTN, the average allocation rate nearly doubles

when social learning is absent. However, this increase in organ allocation rate comes

at the cost of lower patient utility per acceptance and a slower allocation process. Due

to the heterogeneity in patients’ preferences for each organ—largely driven by donor-

patient compatibility—the inefficiency caused by social learning remains relatively

moderate. In fact, the allocation rate under social learning is only slightly lower

than that achieved under information sharing, where patients have access to the
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most information.

When evaluating different priority policies, we find that greedy priority, which priori-

tizes patients with higher acceptance utility, delivers better outcomes in both patient

welfare and allocation efficiency, even though social learning is most severe under this

policy. When combined with policies that promote information sharing and trans-

parency, greedy priority achieves the best overall outcome, effectively eliminating the

negative effects of social learning.
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Table A.1: Estimation Results

Parameter Estimate S.D.
µ 0.958 –
α 0.850 0.039
p 0.383 0.046
γ 4.934 0.005

β̃
Patient Characteristics
LAS 0.033 0.001
Waiting time (month) -0.024 0.002
BMI 0.145 0.001
Female -0.053 0.005
Diabetic 0.130 0.244
Previous lung transplant 0.439 0.413

Donor Characteristics
P/F ratio 0.001 0.000
Age (year) 0.005 0.001
Weight (kg) -0.070 0.001
Height (cm) 0.071 0.001
History of IV drug use -0.014 0.344
History of heavy alcohol consumption -0.034 0.040
Increasing risk status -0.149 0.111

Donor-Patient Pair Characteristics
Primary blood type match 0.775 0.006
Distance (per NM) -0.003 0.001
Age difference 0.027 0.001
Height difference 0.076 0.002
Weight difference -0.064 0.001

N ote: This table shows the full set of estimates for our structural
model. The standard deviations are obtained through the BHHH
estimator.
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Table A.2: Counterfactual 3: Different Information Treatments Under the Greedy
Priority Policy

(1) (2) (3)
Information Social No Social Information
Treatment Learning Learning Sharing

Panel (A): Efficiency Outcomes
Allocation Rate (%) 46.26 83.69 50.10
Accepted Sequence Number 5.13 6.46 2.34

Panel (B): Welfare Outcomes
Acceptance Utility 2.75 1.99 2.95
Total Acceptance Utility 662.27 867.18 770.70
Acceptance Rate of High Quality (%) 32.44 39.73 40.31
Rejection Rate of Low Quality (%) 45.30 15.16 49.33

Panel (C): Accepted Patient Characteristics
LAS 64.24 57.52 64.24
Waiting Time (Month) 3.03 3.97 2.93
Primary blood type match 1.60 1.58 1.62
Distance (NM) 155.73 150.50 144.66
Provisional Yes ✓ ✓ ✓
Priority policy Greedy Priority
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Table A.3: Counterfactual 4: Different Information Treatments Under the Reverse
Greedy Priority Policy

(1) (2) (3)
Information Social No Social Information
Treatment Learning Learning Sharing

Panel (A): Efficiency Outcomes
Allocation Rate (%) 49.33 83.30 45.11
Accepted Sequence Number 15.49 17.88 6.79

Panel (B): Welfare Outcomes
Acceptance Utility 1.48 1.17 1.49
Total Acceptance Utility 381.03 507.89 350.06
Acceptance Rate of High Quality (%) 32.63 39.54 40.31
Rejection Rate of Low Quality (%) 42.42 15.36 54.32

Panel (C): Accepted Patient Characteristics
LAS 38.15 38.51 37.43
Waiting Time (Month) 8.27 8.80 10.02
Primary blood type match 1.54 1.52 1.54
Distance (NM) 339.75 300.93 445.80
Provisional Yes ✓ ✓ ✓
Priority policy Reverse Greedy Priority
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