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A CONVERGENCE FRAMEWORK FOR AIRYβ LINE ENSEMBLE

VIA POLE EVOLUTION

JIAOYANG HUANG AND LINGFU ZHANG

Abstract. The Airyβ line ensemble is an infinite sequence of random curves. It is a natural
extension of the Tracy-Widomβ distributions, and is expected to be the universal edge scaling
limit of a range of models in random matrix theory and statistical mechanics. In this work, we
provide a framework of proving convergence to the Airyβ line ensemble, via a characterization
through the pole evolution of meromorphic functions satisfying certain stochastic differential
equations. Our framework is then applied to prove the universality of the Airyβ line ensemble
as the edge limit of various continuous time processes, including Dyson Brownian motions with
general β and potentials, Laguerre processes and Jacobi processes.
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1. Introduction

During the 18th century, De Moivre established the Gaussian distribution for sums of inde-
pendent binomial variables, a concept later generalized by Laplace. Gauss popularized the cen-
tral limit theorem, used for error evaluation in systems characterized by independence. In re-
cent decades, there has been increasing interest in understanding fluctuations in highly corre-
lated systems, leading to the emergence of a different family of distributions known as Tracy-
Widomβ , which are indexed by a positive parameter β. Historically, such Tracy-Widomβ dis-
tributions for β = 1, 2, 4 were first observed in Random Matrix Theory, as the scaling limit of
the extreme eigenvalues of the classical matrix ensembles [58, 82, 84, 86, 121, 122]. Later, such
extreme eigenvalue statistics are proven to be universal, in the sense that Tracy-Widomβ limits
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2 ALEβ VIA POLE EVOLUTION

hold for a wide range of random matrix models, including adjacency matrices of random graphs,
which are usually sparse. See e.g., [16, 54, 71, 72, 78, 79, 90, 98, 118, 120]. Beyond matrix mod-
els, Tracy-Widomβ distributions also appear in lots of different random systems, such as random
tilings, 1+1 dimensional random growth models, exclusion processes, planar random geometry
such as first/last passage percolation models, and square ice models (six-vertex models). See e.g.,
[4,5,8,10–14,21,28,30,70,80,82–84,104,111,115,126,127]. Many of these models are related to each
other through their underlying integrable structures, and are in the so called Kardar-Parisi-Zhang
(KPZ) universality class, a topic in probability theory that has been intensively studied in recent
years.

A motivation of the current paper is to better understand the mathematical structures behind
Tracy-Widomβ distributions, and to develop new methods of proving convergence to them. The

main object studied here is the Airyβ line ensemble (ALEβ) {Aβ
i (t)}i∈N,t∈R, which can be defined

as a random process on N × R or a family of continuous random processes on R, with β > 0

being a parameter, and is ordered, i.e., Aβ
1 (t) ≥ Aβ

2 (t) ≥ Aβ
3 (t) ≥ · · · for any t. They are natural

generalizations of the Tracy-Widomβ distributions, akin to Brownian motions being generaliztions
of Gaussian distributions, and have Tracy-Widomβ as the one-point distribution of the top line

Aβ
1 . These ALEβ are believed to be universal objects, in the sense of being the scaling limit of

many random matrix models and interacting particle systems. However, basic properties of these
processes as well as these convergences remain quite mysterious so far, except for the special setting
of β = 2, where a determinantal structure is present and has been largely exploited using algebraic
methods.

In this paper, we take a new perspective, and our main result is a characterization of ALEβ in
terms of its Stieltjes transform and a system of stochastic differential equations (SDE). Our result
provides a new framework to prove convergence. As some examples, we prove convergence to ALEβ

from various random processes, including the classical β-Hermite/Laguerre/Jacobi processes and
their generalizations. We note that some of these were previously unknown even in the β = 1, 4
cases, where such convergences can be interpreted as the joint convergence of extreme eigenvalues of
correlated real/quaternion random matrices. Beyond these, our framework should also be applicable
to prove convergence to ALEβ for many other models; and for some of them, even the Tracy-
Widomβ limits were previously unknown. Moreover, our characterization also reveals some useful
information for ALEβ, such as Hölder properties and collision of adjacent lines.

1.1. Background. We next provide some setup, starting with some more classical processes.

1.1.1. Edge limit of general β-ensembles. Tracy-Widomβ distributions for general β > 0 was intro-
duced and studied in [53, 119] by Edelman and Sutton, and [113] by Ramirez, Rider and Virág, as
the scaling limit of the extreme eigenvalue of Gaussian β-ensembles. More generally, β-ensemble is
a probability distribution on n particle system x1 ≥ x2 ≥ · · · ≥ xn, with probability density:

(1.1)
1

Zn,β,W

∏

i<j

|xi − xj |β
n∏

i=1

W (xi),

where Zn,β,W is a renormalization constant, and W ≥ 0 is the weight function. There are three
special cases referred to as the classical ensembles, which are defined by

W (x) =





e−βx2/4, Hermite/Gaussian ensemble
xβ(m−n+1)/2−1e−βx/2, Laguerre ensemble

xβ(p−n+1)/2−1(1− x)β(q−n+1)/2−1, Jacobi ensemble

(1.2)
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These classical ensembles for β = 1, 2, 4 originated from the study of eigenvalue distributions of ran-
dom matrices. They represent the joint distributions of the eigenvalues of size n Gaussian, Wishart,
and Jacobi matrices. These matrices and their extreme eigenvalues, with β = 1 corresponding to
the real case, have been widely used in high-dimensional statistical inference (see the survey by
Johnstone [87]). Beyond random matrix theory, β-ensembles also describe the one-dimensional
Coulomb gas in physics [58], and are connected to orthogonal polynomial systems [91].

As mentioned earlier, as n → ∞, the distribution of the largest eigenvalues converges to the
Tracy-Widomβ distribution for β = 1, 2, 4, respectively. More generally, one can consider the edge
limit, i.e., the joint scaling limit of the top k eigenvalues for any arbitrary k, as a point process. It
has been shown [41–43] that this edge limit does not depend on the potential function W , but it
varies for each of β = 1, 2, 4. The β = 2 edge limit is also known as the Airy point process.

For β other than 1, 2, 4, obtaining such edge limit was a challenging problem, partly due to the
relative lack of exact-solvable structures. Based on a tri-diagonal random matrix model discovered
by Dumitriu and Edelman [49], this was resolved in [113], where the edge limit of Gaussian and
Laguerre β-ensemble is shown to be the eigenvalues of the β stochastic Airy operator (SAOβ), which
is also called the Airyβ point process. In particular, for each β > 0, the law of the largest eigenvalue
of SAOβ , i.e., the top particle in the Airyβ point process, is then defined as the Tracy-Widomβ

distribution. Later, such Airyβ point process limit is also extended to more generalW [17,18,25,95].
Analogous edge limits for discrete β-ensembles have been derived in [67].

1.1.2. Airy line ensemble. In another direction, the Tracy-Widom2 distribution and the (β = 2)
Airy point process are extended to the Airy line ensemble (ALE), an ordered family of random
processes {Ai(t)}i∈N,t∈R, where each Ai is continuous, and they are jointly stationary in the R

direction (see Figure 1). ALE was introduced by Prahöfer and Spohn [109], as the scaling limit
for the multi-layer polynuclear growth (PNG) model from the KPZ universality class. The top
line A1 is known as the stationary Airy2 process, whose one-point marginal is the Tracy-Widom2

distribution; and for any t ∈ R, {Ai(t)}i∈N is the Airy point process. ALE plays a central role
in KPZ, in particular through the construction of the directed landscape [37]. (See also [38] for
computing passage times in the directed landscape from ALE.)

ALE is particularly useful in KPZ, partly due to its Brownian Gibbs property, which was recog-
nized by Corwin and Hammond [35]. Specifically, for ALE minus a parabola, it inside any domain,
conditional on the boundary, is given by non-intersecting Brownian bridges. This fact is later widely
used as a powerful tool to study ALE and many KPZ class models. Aggarwal and the first-named
author provided a strong characterization of ALE, demonstrating that ALE (minus a parabola) is
the only random process on N × R with the Brownian Gibbs property as well as approximating a
parabola [6]. Such a strong characterization would be a powerful tool to prove convergence to ALE
and establishing KPZ universality for various models; see e.g. [4].

1.2. Airyβ line ensemble. From the success of ALE, the next question is to construct a time
dependent evolution for Tracy-Widomβ (and more generally Airyβ point process) for any β > 0.
Following [64] where this is formally introduced, we call it the Airyβ line ensemble (ALEβ). There
are several problems in this program:

• Construction What should it be? How to construct it?
• Description What are its properties? Ideally, can some precise information be given?
• Universality Why is ALEβ natural and interesting? Can it be shown to be the universal
scaling limit of many natural random processes, as the β = 2 case?
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Figure 1. An illustration of ALE

Towards these questions, there have been many results focusing on different aspects of ALEβ (some
tracing back to the studies of Airyβ point process, or for special β): infinite-dimensional SDE
[88,97,106,107], correlation function [11,85,104,109], and Laplace transform [64,81,102,103,117,118].
In this paper, we provide a different perspective using Stieltjes transform, tailored to the universality
problem. Moreover, we view results presented here and in the concurrent paper [64] (by Gorin, Xu,
and the second-named author, to be discussed shortly) complement to each other.

We now give a more detailed account on the state of the art, and further motivate our results.

1.2.1. The edge limit construction and convergence. Beyond ALE where β = 2, ALEβ was also
constructed and studied for several other special values: in [117] for β = 1 (and the arguments
there should also go through for β = 4), and in [60] for β = ∞. For general β > 0, even its
construction is relatively recent. One potential way, as inspired by the fact (from [35]) that ALE is
the edge scaling limit of the β = 2 Dyson Brownian motion (DBM), is to consider general β DBM:

(1.3) dλi(t) =

√
2

β
dBi(t) +

∑

1≤j≤n
j 6=i

dt

λi(t)− λj(t)
− 1

2
λi(t)dt,

where n ∈ N and {Bi}ni=1 are independent two-sided Brownian motions. There is a solution to this
SDE, such that {λi(t)}ni=1 for any t is a Gaussian β-ensemble; and this is known as the (stationary)
DBM of size n with parameter β. (See e.g., [9] for some more backgrounds on DBM.) One can then

define ALEβ {Aβ
i (t)}i∈N,t∈R as its edge limit, i.e., the limit of (i, t) 7→ n1/6λi(tn

−1/3) − 2n2/3 as

n → ∞. Note that for any fixed t, {Aβ
i (t)}i∈N should be the Airyβ point process, and Aβ

1 (t) should
follow the Tracy-Widomβ distribution.

Beyond DBM, another potential way of constructing ALEβ is via the edge limit of Gaussian
corners processes, which are random Gelfand-Tsetlin patterns, and can be viewed as multi-level
generalizations of Gaussian β ensembles. For β = 1, 2, 4, they can be defined as eigenvalues of
the top-left corners of different sizes, for Wigner matrices with Gaussian real, or complex, or
quaternionic entries (see e.g. [15, 59, 101]).

To justify the above definition of ALEβ, the above stated convergence should be proved. In [97],
this is achieved for stationary DBM and any β ≥ 1 via a coupling argument. In [64] the convergences
for both stationary DBM and Gaussian corners process are established, for any β > 0. The proofs
are via explicit formulas, also showing that both limits are the same. Very recently, in [52] a
tridiagonal model for DBM is proposed, which may also be used to demonstrate convergence to
ALEβ. Additionally, the arguments in this paper provide an alternative proof of DBM convergence.
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1.2.2. Description via explicit expressions. Historically, the theory of Tracy-Widomβ distributions
used to largely rely on explicit formulas, based on determinantal/Pfaffian structures or matrix
models (see e.g., [63, 113, 116, 118, 121, 123]). As for ALEβ, formulas used to be available only for
β = 2, i.e., ALE, in the construction by Prahöfer and Spohn [109]; and for β = ∞ in [60]. There are
various challenges in obtaining precise formulas for general β, primarily due to the lack of structures
in this generality. As above mentioned, the first construction of ALEβ for β ≥ 1 in [97] was via the
edge limit of DBM, using a more abstract convergence argument. Then in [64], precise formulas
for the Laplace transform of ALEβ are obtained. Such Laplace transforms also determine the law
of ALEβ, thereby [64] gives a direct and explicit definition of ALEβ for any β > 0.

1.2.3. Uniqueness and universality. As indicated by the convergence of both DBM and Gaussian
corners process to the same limit, i.e., ALEβ, in [64], it is natural to expect that ALEβ is also the
scaling limit of many other well-known processes. Some examples include DBM with general po-
tentials, non-intersecting random walks [61,74,93], various other β–corners processes [22,62,65] and
measures on Gelfand-Tsetlin patterns [29, 108], Macdonald processes [20], and (q, κ)-distributions
on lozenge tilings [23, 46].

A robust and general approach to establishing convergence involves a suitable characterization of
ALEβ. Specifically, this means identifying easily verifiable properties of ALEβ and demonstrating
that these properties uniquely determine ALEβ . To prove convergence, it would then suffice to
establish tightness and confirm that any subsequential limit satisfies these properties.

For ALEβ with β = 2, an elegant characterization is the Brownian Gibbs property [6] as men-
tioned above. However, this does not hold for any β 6= 2. The next natural candidate of charac-
terization would be an ‘infinite dimensional DBM’, by taking n → ∞ in (1.3). For example, [97]
shows that ALEβ (for β ≥ 1), i.e., the edge limit of finite dimension DBM, is a solution to such an
infinite dimensional DBM in a weak sense.

However, there are several technical challenges in developing a characterization and convergence
framework along this direction. First, particles (i.e., those λi in (1.3)) may collide or adjacent
particles may get too close, leading to singularities in the drift 1/(λi(t) − λj(t)) term. In [97], for
β ≥ 1 such singularities are ruled out using existing level replusion estimates (see [97, Theorem
2.2] and [25, Theorem 3.2]), which are known only for stationary DBM whose laws are given by
β-ensembles. Deriving such estimates for other models could be difficult. Moreover, for β < 1
collisions are inevitable. Second, the long-range interactions introduce additional complications
when analyzing infinitely many particles. In fact, even the well-posedness of the infinite-dimensional
DBM starting from a fixed intial condition appears to be absent from the literature, except for the
cases β = 1, 2, 4 [88, 106, 107] where the underlying algebraic structure is used1. As a result, for
the infinite-dimensional DBM, both proving the uniqueness of solution and verifying it for any
subsequential limit face various barriers.

To overcome these difficulties, in this paper we take an alternative approach, and characterize
ALEβ as the pole dynamics of meromorphic functions, satisfying a funciton-valued SDE. In other
words, we characterize ALEβ via the dynamics of its Stieltjes transform. This method completely
circumvent the issue of long-range interactions and collisions, and is applicable for any β > 0.

1Note that for an analogous infinite-dimensional SDE corresponding to the bulk limit of DBM, such well-posedness
has been achieved for β ≥ 1 (see [89, 105, 106, 124]). A key property used in the bulk setting is the cancellation of
particle interactions from left and right, and that is absent at the edge.



6 ALEβ VIA POLE EVOLUTION

1.3. Main characterization result. In the rest of this paper, we fix β > 0. We study (infinite)
line ensembles, by which we mean ordered families of continuous random processes, denoted by
{x(t)}t∈I = {xi(t)}i∈N,t∈I , for I = R or any interval, satisfying x1(t) ≥ x2(t) ≥ x3(t) ≥ · · · .

As already alluded to, we shall characterize ALEβ using its Stieltjes transform. If {x(t)}t∈R

were ALEβ, it would be imperative that (for each t ∈ R) the Stieltjes transform of {xi(t)}i∈N (with
complex variable w) asymptotically behaves like

√
w2 as w → ∞ in the complex plane. This is

because we expect {xi(t)}i∈N, as a one time slice of ALEβ, to be the Airyβ point process; hence, the
particles should be close to the zeros of the Airy function Ai(w). Therefore, the Stieltjes transform
of {xi(t)}i∈N should exhibit similar asymptotic behaviors as −Ai′(w)/Ai(w), which is known to
behave like

√
w as w → ∞.

We next give a more precise formulation of such asymptotic behaviors. Below we use H to denote
the open upper half complex plane. For Stieltjes transforms, we shall use the notion of Nevanlinna
functions, i.e., functions from H to H ∪ R that are holomorphic.

Definition 1.1. A measure µ on R is particle-generated, if it is locally finite, and is in the form of∑
x∈P δx, where P (the particles) is an at most countable multiset of real numbers. A Nevanlinna

function Y has a Nevanlinna representation of the form

Y (w) = b+ cw +

ˆ

R

(
1

x− w
− x

1 + x2

)
dµ(x),(1.4)

where b, c ∈ R, c ≥ 0. We say that Y is particle-generated, if the measure µ in its Nevanlinna
representation is particle-generated, namely µ =

∑
x∈P δx.

We note that such Y can be extended to a meromorphic function on C with Y (w) = Y (w), with
P being all the poles, and each residue equals 13.

Definition 1.2. For d, C∗ > 0, a Nevanlinna function Y is (d, C∗)-Airy-like, or simply Airy-like, if

(1) it is particle-generated, and all the poles are ≤ C∗;
(2) for all w with Im[w] ≥ C∗

√
Re[w] ∨ 0 + 1,

|Y (w) −√
w| ≤ C∗Im[

√
w]1−d

Im[w]
.(1.5)

Remark 1.3. The condition (2) implies the existence of infinitely many poles x1 ≥ x2 ≥ · · · . As
we will see shortly (Lemma 2.3), bounds similar to (1) and (2) (but may with a different domain
for w) would imply that the density of these poles would be close to

√−x in R−. Such density
closeness can be phrased as quantitative bounds on the distances between the poles and zeros of
the Airy function a1 > a2 > · · · , as stated in Lemma 2.3, and will be frequently used in our
proofs. Therefore, as a slight misuse of notions, we will refer to such density closeness as Airy-zero
approximation.

As another comment on (2): again note that the domain of w is different from that in Lemma 2.3,
since the domain here is taken to be easily verifiable for the sub-sequential limit of various models,
as will be evident in Section 7. In fact, bounds on |Y (w) −√

w| for w closer to R+ can be readily
deduced for Airy-like Nevanlinna functions (see Lemma 2.5).

Take a family of random Nevanlinna functions {Yt}t∈R. We next state two assumptions.

2Here and throughout this paper,
√
w, or any rational power of w ∈ C, is taken to be the branch on C \ R

−

3More precisely, for each x ∈ R, the residue at x equals the multiplicity of x in P .
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Assumption 1.4. For any t ∈ R, Yt is particle-generated. Moreover, there exists a (deterministic)
d > 0, a sequence t1, t2, · · · → −∞, and a tight family of random numbers {C∗,j}j∈N, so that each
Ytj is (d, C∗,j)-Airy-like.

Assumption 1.5. Such Yt is continuous in t, and satisfies the following SDE:

dYt(w) = dMt(w) +

(
2− β

2β
∂2
w Yt(w) +

1

2
∂w Yt(w)

2 − 1

2

)
dt,(1.6)

where Mt(w) are complex valued Martingales, with quadratic variation given by

d

dt
〈Mt(w)〉 =

1

3β
∂3
w Yt(w),(1.7)

and

d

dt
〈Mt(w),Mt(w

′)〉 = 2

β
∂w ∂w′

Yt(w)− Yt(w
′)

w − w′ ,(1.8)

for w 6= w′.

We now explain where this SDE comes from. Take the n dimensional stationary DBM {λi}ni=1

with parameter β, i.e., the stationary solution to (1.3). Let mt be the Stieltjes transform of
{λi(t)}ni=1, i.e.,

mt(z) =

n∑

i=1

1

λi(t)− z
, z ∈ C.

Then one can use Ito’s formula to write out an SDE satisfied by mt; by taking an appropriate
scaling limit from there, one gets the SDE (1.6). More details on this derivation can be found in
Section 7.

Our main result states that these two assumptions are sufficient to determine ALEβ uniquely.

Theorem 1.6. For any {Yt}t∈R satisfying Assumption 1.4 and Assumption 1.5, its poles give a
line ensemble, which has the same law as ALEβ.

Several remarks are in line.

(i) Essentiality of Assumption 1.4 (in characterizing ALEβ). Both (1) and (2) in Definition 1.2
are necessary: without (1), the line ensemble may be ALEβ plus some additional lines (see [2, 45]
for an example in the β = 2 setting); while (2) rules out the possibility that the line ensemble
is ALEβ shifted by a (deterministic or random) constant. As already mentioned in Remark 1.3,
we’ve aimed to make Assumption 1.4 as minimal as possible to ensure broad applicability of our
convergence framework. As will be seen in Section 7, Assumption 1.4 is straightforward to verify
in these examples.

(ii) DBM convergence. Our proof of Theorem 1.6 does not a priori assume the convergence at the
edge of stationary DBM. Instead, in Section 7, we show the tightness at the edge of stationary
DBM, and that any subsequential limit satisfies Assumption 1.4 and Assumption 1.5. Therefore,
we essentially provide an alternative construction of ALEβ .

(iii) Stationarity. We also note that in Theorem 1.6, we do not assume that Yt is stationary. Rather,
it is a consequence of the theorem that the poles of Yt converge to ALEβ, which is stationary, and
hence Yt is stationary as well. Our proof of Theorem 1.6 in fact establishes a natural relaxation for
the SDE (1.6). Specifically, for a family of random particle-generated Nevanlinna functions {Yt}t≥0,
if there is a (deterministic) d > 0 and a random number C such that Y0 is (d, C)-Airy-like, and
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{Yt}t≥0 satisfies Assumption 1.5, then for T → ∞, the poles of {Yt}t≥T converge to ALEβ , under
the uniform in compact topology.

(iv) Stieltjes transform and poles dynamics. Stieltjes transforms and Nevanlinna functions have been
widely used to investigate and characterize eigenvalue distributions of random matrix ensembles.
See [57] for studies on eigenvalue rigidity, [7, 56] for bulk limits, and [31, 90, 98] for edge limits.

The concept of characterizing the evolution of interacting particle systems through the pole dy-
namics of meromorphic functions has been explored previously. In integrable systems, it has been
demonstrated that the movement of poles in certain solutions of various nonlinear PDEs can be
formally linked to the dynamics of particle systems interacting through simple two-body potentials.
This discovery was initially made in [34] for equations such as the Korteweg-de Vries and Burgers-
Hopf equations, and in [99] for specific integrable Hamiltonian systems. Subsequently, these obser-
vations were extended to include elliptic solutions of equations such as the Kadomtsev-Petviashvili
equation [94], the Korteweg–de Vries equation [40], the Kadomtsev-Petviashvili hierarchy [125], and
the Toda lattice hierarchy [110]. Our results can be interpreted as a stochastic counterpart to these
findings, wherein ALEβ is characterized as the pole evolution of the SDE (1.6).

1.4. Convergence framework. Given the characterization presented in Theorem 1.6, to prove
convergence to ALEβ, it suffices to

(1) establish the tightness of the Stieltjes transforms of the empirical particle density at the
microscopic scale, and

(2) verify that the scaling limit is Airy-like, and satisfies the SDE (1.6).

As a demonstration of this approach, we prove the convergence to ALEβ for several continuous
interacting particle systems. We next give the formal statement of our result.

We use a strong topology of uniform in compact convergence for line ensembles. More precisely,

for a sequence of ordered families of functions {f (1)
i (t)}i∈N,t∈R, {f (2)

i (t)}i∈N,t∈R, . . ., they converge to

{fi(t)}i∈N,t∈R under the uniform in compact topology, if for each i ∈ N, limn→∞ f
(n)
i = fi uniformly

in any compact interval.

Theorem 1.7. ALEβ is the edge scaling limit of stationary DBM with certain general potentials
(satisfying Assumption 7.1 below), stationary Laguerre process, and stationary Jacobi process, all
with parameter β, under the uniform in compact topology. We refer to Theorem 7.2 for a more
detailed statement.

The definitions and background of these processes, as well as the precise statement and proof, will
be given in Section 7. We emphasize that these convergence results are new even for the classical
cases of β = 1, 4 (except for the DBM with β = 1), which can be viewed as the joint convergence
of eigenvalues of time-evolved classical ensembles with real or quaternion entries.

We remark that the developed framework can also be applied to prove convergence to ALEβ for
the other mentioned models. The main remaining task is to establish the desired tightness given in
(1). While such tightness are not available from [26], a plausible way is to utilize the dynamical loop
equation, as in [75] where local laws down to any mesoscopic scale have been proven for random
tilings. We leave this for future works.

1.5. Other properties. In addition to proving convergence to ALEβ , our new characterization
can be leveraged to further investigate its properties. First, we can study the regularity of ALEβ .
The Brownian regularity for the ALE has been intensively studied in [35,36,68,69]. For ALEβ with
β ≥ 1, it has been established in [97] that the lines of ALEβ are locally Brownian. In Section 4
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we show that the lines of ALEβ are Hölder continuous with an exponent 1/2 for any β > 0. The
second property we study is the collision of lines. For β ≥ 1, it has been established in [97] that
the lines of ALEβ do not collide. Conversely, for β ∈ (0, 1), collisions among lines are anticipated.
We prove in Section 5 that the occurrence of collisions is almost surely of measure zero.

1.6. Proof ideas. We give an outline of our proofs, highlighting the main difficulties and ideas.
To prove the uniqueness in law as stated in Theorem 1.6, the overall strategy is to establish

a certain sense of ‘mixing in time’ of the dynamics (given by Assumption 1.5). More precisely,
we take two families of random particle-generated Nevanlinna functions, both satisfying the two
assumptions. Using the SDE (1.6) we reconstruct the dynamics of the poles, which are ‘infinite
dimensional DBM’ in a certain sense. We couple the two ‘infinite dimensional DBM’ obtained from
both functions, by coupling the driven Brownian motions. Then we show that the poles get closer
in time under this coupling. Thus since both dynamics start from time −∞, necessarily they are
the same.

For both the reconstruction of DBM and the coupling, an essential input is that the poles have
Airy-zero approximation, uniformly in time. This is implied by the uniform in time Airy-like
property, as explained in Remark 1.3. Then under Assumption 1.4, it remains to show that such
an approximation propagates in time, for which we again resort to the SDE (1.6).

In summary, three tasks are inline: propagation of Airy-zero approximation, reconstruction of
DBM, and coupling. We next explain each of them in more details.

1.6.1. Propagation of Airy-zero approximation. Our Assumption 1.4 concerns specific times, im-
plying that the i-th pole remains constant away from the i-th zero of the Airy function. Utilizing
the SDE (1.6), we manage to get refined estimates: the i-th pole approximates the i-th zero with
a polynomially small error over arbitrarily long time intervals with high probability, as demanded
for later steps. To achieve this, in Section 3, we analyze (1.6) along certain characteristics which
offset the singularity of the nonlinear term. This idea has previously been used (see e.g., [1,24,76])
to study DBM down to any mesoscopic scale, where the distance from the spectral parameter w
to the particles is much bigger than particle fluctuations. However, in our analysis of (1.6), we
operate at a microscopic scale, where the distance from w to the poles is of the same order as their
fluctuation size. While a straightforward union bound over characteristic flows from polynomially
many points suffices at the mesoscopic scale, our case demands careful selection of characteristic
flows and precise estimation of error terms in the SDE, tailored to their initial positions.

1.6.2. DBM reconstruction. As already mentioned, there are significant challenges in analyzing
DBM due to the singular repulsive interaction and possible particle collisions, in particular when
β ∈ (0, 1). Even for finite dimensional DBM, establishing the existence and uniqueness of a strong
solution requires the theory of multivalued SDE, see [32,33]. Our approach through pole evolutions
circumvents these issues entirely. Notably, there are no singularities even when poles collide.

On the other hand, a key challenge of our method lies in reconstructing the dynamics of each
pole, which requires ruling out the possibility of poles adhering to each other for prolonged periods.
To address these, in Section 4 we first establish that the trajectory of each pole is Hölder continuous
solely utilizing (1.6). Together with the Airy-zero approximation, for any short time interval, we
can identify a large index k such that the k-th and (k+1)-th poles remain bounded away from each
other. This enables us to localize the system and study the evolution of the first k poles, treating
the remaining poles’ influence as an additional potential. For this k poles system, in Section 5, by
employing classical Itô calculus on certain elementary symmetric polynomials, we show that the
time of collisions almost surely has measure zero. We note that similar ideas have been employed
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to show the instant diffraction of the particles for DBM [66]. Subsequently, the evolution of each
pole can be reconstructed by performing a contour integral of (1.6). As a result, the k poles system
can be interpreted as a k-dimensional DBM with a time-dependent random drift, which exhibits a
monotonicity property.

1.6.3. Uniqueness via coupling. In Section 6, we take two solutions to (1.6), and design a coupling
where the poles get closer in time. Consider the k-dimensional DBMs with random drifts recon-
structed in the previous step, for these two solutions respectively. Our coupling is by using the
same set of driven Brownian motions for both. Note that such k-dimensional DBMs with random
drifts are constructed with random k, and only for a short time interval; but we need a coupling
for a long time (to let the poles get closer). A trick here is to concatenate these short intervals, and
allow for different k in each of them, as long as k is always large enough.

There is a monotonicity property: if the i-th pole of the initial data for the first solution dominates
that of the second solution for each i, then at any time after the i-th pole of the first solution
dominates that of the second solution for each i. Then we can sandwich one solution between affine
shifts of the other, while keeping the error arising from the affine shifts arbitrarily small. Such
sandwiching forces the poles of the two solutions to get closer in time. By taking long enough time
intervals, they must coincide, establishing the uniqueness as desired. Such coupling and sandwiching
strategies have been used to establish local statistics universality in random lozenge tilings [3,5,77].

Notations. In the rest of this paper, for any a ≤ b ∈ R, we let Ja, bK = [a, b] ∩ Z. For any w ∈ C,
we use O(w) to denote some w′ ∈ C, satisfying |w′| < C|w| for some universal constant C > 0. We
also write w′ . w for w′ = O(w).

Acknowledgement. The research of J.H. is supported by NSF grant DMS-2331096 and DMS-
2337795, and the Sloan research award. The research of L.Z. is supported by NSF grant DMS-
2246664 and partially by the Miller Institute for Basic Research in Science. Part of this project
was done when L.Z. was visiting University of Pennsylvania in the spring of 2023, and he thanks
them for their hospitality. The authors would like to thank Paul Bourgade, Vadim Gorin, Benjamin
Landon, and Bálint Virág for helpful discussions.

2. Preliminaries and decomposition

In this section, we set up some preliminaries of our arguments.
We start with an explicit expression for any Airy-like Nevanlinna Y from Definition 1.2. The

expression involves the Airy function, which is usually denoted by Ai, and is a special function that
appears in various areas of mathematics and physics. It can be defined as an entire function, and the
solution to the Airy equation: Ai′′(w)−wAi(w) = 0 with Ai(w) → 0 as w → ∞ along R+. All the
zeros of Ai are on the real line, and are all negative, and we denote them as 0 > a1 > a2 > a3 > · · · .

We now give the expression.

Proposition 2.1. For any particle-generated Nevanlinna function Y : H → H ∪ R with infinitely
many poles x1 ≥ x2 ≥ · · · , if i) supi∈N |xi − ai| < ∞; and ii) there exists a sequence of complex
numbers wn → ∞ along any direction in (0, 3π/4), such that Y (wn)−

√
wn → 0, then

Y (w) =
∞∑

i=1

1

xi − w
− 1

ai
− Ai′(0)

Ai(0)
.(2.1)

Moreover, (2.1) holds if Y is Airy-like.
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The Nevanlinna representation (1.4), for any particle-generated Nevanlinna function Y with poles
P (a multiset), can be written as

Y (w) = b+ cw +
∑

x∈P

1

x− w
− x

1 + x2
,(2.2)

where b, c ∈ R, c ≥ 0. We remark that it is possible that P contains only finitely many numbers,
and the summation in (2.2) is finite. Then to prove Proposition 2.1, it remains to determine b and
c in (2.2) for Yt, and establish that the sum

∑∞
i=1

1
ai

− xi

1+x2
i
converges.

To start with, we first collect some basic estimates on the Airy function Ai and Nevanlinna
functions, which will also be used repeatedly in the rest of this paper.

2.1. Airy function. The Airy function has the following asymptotic formula. For | arg(w)| < π,

Ai(w) ∼ exp(−ζ)

w1/4

∞∑

n=0

Γ(n+ 5/6)Γ(n+ 1/6)

4π3/2n!(−2ζ)n
,

Ai′(w) ∼ −w1/4 exp(−ζ)

∞∑

n=0

1 + 6n

1− 6n
· Γ(n+ 5/6)Γ(n+ 1/6)

4π3/2n!(−2ζ)n
,

where ζ = 2
3w

3/2. In particular, there is
∣∣∣∣w

1/4 Ai(w) − exp(−2w3/2/3)

2
√
π

(
1− 5

48w3/2

)∣∣∣∣ ≤ D(| arg(w)|) | exp(−2w3/2/3)|
|w3| ,

∣∣∣∣w
−1/4 Ai′(w) +

exp(−2w3/2/3)

2
√
π

(
1 +

7

48w3/2

)∣∣∣∣ ≤ D(| arg(w)|) | exp(−2w3/2/3)|
|w3| ,

for any w ∈ C \R≤0, where D : [0, π) → R is a continuous function. See e.g., [47, Subsection 9.7.iv]
and [100, Appendix B]. It follows that

∣∣∣∣
Ai′(w)

Ai(w)
+
√
w

∣∣∣∣ . |w|−1,(2.3)

for any w ∈ C with |w| large enough and | arg(w)| < 3π/4. The Weierstrass representation gives

−Ai′(w)

Ai(w)
=

∞∑

i=1

1

ai − w
− 1

ai
− Ai′(0)

Ai(0)
(2.4)

It is also known that ai is around −(3iπ/2)2/3. More precisely, for any i ∈ N we have
∣∣∣∣∣ak +

(
3πi

2

)2/3
∣∣∣∣∣ . i−1/3.(2.5)

2.2. Estimates on Nevanlinna functions. We now present some estimates on (particle-generated)
Nevanlinna functions, which will be used in the Airy-like function part of Proposition 2.1. We note
that some of them are also used repeatedly in subsequent sections.

For any particle-generated Nevanlinna function Y : H → H ∪ R, from (2.2) we have

Im[Y (w)] = cIm[w] +
∑

x∈P

Im[w]

|x− w|2 .(2.6)
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Lemma 2.2. The quantity Im[w]Im[Y (w)] is monotone in Im[w]; the derivatives of Y satisfy

|Y (k)(w)| ≤ k!Im[Y (w)]

Im[w]k
≤ k!|Y (w)|

Im[w]k
,(2.7)

where Y (k) is the k-th derivative of Y , for any integer k ≥ 2.

Proof. We first consider k = 1. Denote w = E + iη, then (2.6) gives

Im[w]Im[Y (w)] = cη2 +
∑

x∈P

η2

|E − x|2 + η2
,(2.8)

which is increasing in η ≥ 0. Using (2.2), the derivative of Y (w) satisfies

|Y ′(w)| =
∣∣∣∣∣c+

∑

x∈P

1

(x− w)2

∣∣∣∣∣ ≤ c+
∑

x∈P

1

|x− w|2 =
Im[Y (w)]

Im[w]
.(2.9)

And by

|Y (k)(w)| ≤
∑

x∈P

k!

|x− w|k+1
≤ k!|Y ′(w)|

Im[w]k−1
,

the k ≥ 2 case follows. �

As already alluded to, if a particle-generated Nevanlinna function Y is close to the function
√
w,

its poles would be close to the Airy function zeros. More precisely, we have the following estimate.

Lemma 2.3. Take any parameters K > 100 and 0 ≤ δ < 1. Suppose that a particle-generated
Nevanlinna function Y satisfies the following conditions:

• there is no pole of Y in (K,∞);
• for any w = x+ iy with x ≤ K2 and y ≥ 4K2/(1 + |x|δ/2), we have

∣∣Y (w) −√
w
∣∣ ≤ Im[

√
w]1−δ

Im[w]
.

Then Y has infinitely many poles x1 ≥ x2 ≥ · · · , and |xi − ai| < CK4i−δ/6 for any i ∈ N, where
C > 0 is a universal constant.

In particular, these conditions are satisfied by Airy-like Nevanlinna functions (with K large and
δ = d).

Corollary 2.4. For any (d, C∗)-Airy-like Nevanlinna function Y (with poles x1 ≥ x2 ≥ · · · ), there
exists B > 0 depending only on C∗, such that |xi − ai| ≤ B for each i ∈ N.

The proof of Lemma 2.3 relies on the Helffer-Sjöstrand formula, which has become standard in
random matrix theory. Therefore, we defer it to Appendix A.

2.3. Proof of Proposition 2.1. Thanks to (2.3) and (2.4), we have

∞∑

i=1

1

ai − w
− 1

ai
− Ai′(0)

Ai(0)
−√

w → 0,(2.10)

when w → ∞ along any direction in (−3π/4, 3π/4). By |ai| ∼ (3πi/2)2/3 from (2.5), we have

|ai + (3πi/2)2/3|, |xi + (3πi/2)2/3| ≤ B(2.11)
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for a large B > 0; in particular x1 ≤ B. If we take w with arg(w) ∈ (−3π/4, 3π/4) and |w| > 2B,
∣∣∣∣∣

∞∑

i=1

1

xi − w
− 1

ai
−

∞∑

i=1

1

ai − w
− 1

ai

∣∣∣∣∣

≤
∞∑

i=1

|ai − xi|
|xi − w||ai − w| ≤

∞∑

i=1

B

|xi − w||ai − w|

=
∑

i>|w|3/2

B

|xi − w||ai − w| +
⌊|w|3/2⌋∑

i=1

B

|xi − w||ai − w|

.
∑

i>|w|3/2

B

i4/3
+

⌊|w|3/2⌋∑

i=1

B

|w|2 .
1

|w|1/2 ,

(2.12)

where in the last line we used that, when i > |w|3/2, |xi − w||ai − w| & i4/3 for the first term, and
|xi − w||ai − w| & |w|2 for the second term (since |w| > 2B).

Therefore, (2.10) and (2.12) together give that

∞∑

i=1

1

xi − w
− 1

ai
− Ai′(0)

Ai(0)
−√

w → 0,(2.13)

for w → ∞ along any direction in (−3π/4, 3π/4). Also note that, thanks to (2.11), we have
∣∣∣∣∣

∞∑

i=1

1

ai
− xi

1 + x2
i

∣∣∣∣∣ ≤
∞∑

i=1

∣∣∣∣
1 + xi(xi − ai)

ai(1 + x2
i )

∣∣∣∣ ≤
∞∑

i=1

1 + |ai|B +B2

|ai|(1 + ((ai +B) ∧ 0)2)
< ∞.(2.14)

By plugging (2.14) into the representation (2.2) for Y , we can rewrite Y as (for some b′ ∈ R)

Y (w) = b+ cw +

∞∑

i=1

1

xi − w
− xi

1 + x2
i

= b′ + cw +

∞∑

i=1

1

xi − w
− 1

ai
− Ai′(0)

Ai(0)
.(2.15)

By our assumption, Y (wn) −
√
wn → 0 as n → ∞. Taking w = wn in (2.15), comparing with

(2.13), we conclude that b′ + cwn → 0 when n → ∞. It follows that b′ = c = 0, and (2.1) holds.

Finally, if Y is Airy-like, then Corollary 2.4 implies that supi∈N |xi−ai| < ∞, and |Y (ni)−
√
ni| →

0 as n → ∞. These verify the assumptions in Proposition 2.1, and (2.1) holds. �

2.4. Domain extension. As stated in Remark 1.3, for an Airy-like Nevanlinna function Y , we
also provide a bound of |Y (w) −√

w| for w close to R+, which will be useful later.

Lemma 2.5. For Y : H → H ∪ R being any (d, C∗)-Airy-like Nevanlinna function, we have

|Y (w) −√
w| ≤ B|w|−1/2, ∀ arg(w) ∈ (0, 3π/4), |w| > B.

for B > 0 depending only on d and C∗.

Proof. By Corollary 2.4, there is B′ > 0 with each |xi − ai| ≤ B′. Then, for any w ∈ H with
arg(w) ∈ (0, 3π/4), |w| > 2B′, we have |ai − w| ≤ 2|xi − w|.

By Proposition 2.1 and (2.4), we have
∣∣∣∣Y (w) +

Ai′(w)

Ai(w)

∣∣∣∣ ≤
∞∑

i=1

∣∣∣∣
1

ai − w
− 1

xi − w

∣∣∣∣ =
∞∑

i=1

∣∣∣∣
xi − ai

(xi − w)(ai − w)

∣∣∣∣ ≤
∞∑

i=1

2B′

|ai − w|2 .
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Using (2.5), we have that

∞∑

i=1

1

|ai − w|2 =

⌊|w|3/2⌋∑

i=1

1

|ai − w|2 +

∞∑

i=⌊|w|3/2⌋+1

1

|ai − w|2 .
|w|3/2
|w|2 +

∞∑

i=⌊|w|3/2⌋+1

1

i4/3
. |w|−1/2.

Thus with (2.3), the conclusion follows. �

2.5. Topological statements. As we shall derive convergence to ALEβ from Stieltjes transforms,
we will need several statements on the functional spaces, which we provide here.

Definition 2.6. For any locally finite measures µ1, µ2, · · · on R, we say that they converge in the
vague topology to another locally finite µ, if µn(f) → µ(f), for any f : R → R that is compactly
supported and smooth.

Such vague topology arises naturally from Nevanlinna function convergence.

Lemma 2.7. Take Nevanlinna functions Y1, Y2, · · · and Y such that Yn → Y as n → ∞, uniformly
in any compact subset of H. Suppose the corresponding measures (in their Nevanlinna representa-
tion) are µ1, µ2, · · · and µ, respectively, then µn → µ in the vague topology.

Proof. Take any f that is compactly supported and smooth, and let K be a large enough number
such that f = 0 outside [−K,K]. Take a smooth function χ : R+ → R, such that χ = 1 on (0, 1),
and χ = 0 on (2,∞). By Lemma A.1, we have

µn(f) =
1

π

ˆ

x+iy∈H

−Re[Yn(x+ iy)]yf ′(x)χ′(y)− Im[Yn(x+ iy)](yf ′′(x)χ(y) + f(x)χ′(y))dxdy.

We note that yf ′(x)χ′(y) = f(x)χ′(y) = 0 whenever (x, y) 6∈ [−K,K]× [1, 2]. Also, yf ′′(x)χ(y) = 0
whenever (x, y) 6∈ [−K,K] × (0, 2]; and for y ≤ 2, from Nevalinna representation we have that
Im[Yn(x + iy)] ≤ 2

y Im[Yn(x + 2i)]. Therefore, we have that the integrand in the above integral is

non-zero only in [−K,K]× (0, 2]; and it is bounded by a constant, which is independent of n by the
uniform convergence of Yn in [−K,K]× [1, 2]. Thus we can apply dominated convergence theorem
to deduce that the above integral converges to

µ(f) =
1

π

ˆ

x+iy∈H

−Re[Y (x+ iy)]yf ′(x)χ′(y)− Im[Y (x+ iy)](yf ′′(x)χ(y) + f(x)χ′(y))dxdy.

So the conclusion follows. �

On the other hand, in the setting of particle-generated measures, vague topology convergence
can imply pole convergence.

Lemma 2.8. For a sequence of particle-generated measures µ1, µ2, . . ., such that µk → µ as k → ∞
in the vague topology, the limit µ must also be particle-generated. Moreover, if there is some K > 0
such that µk([K,∞)) = 0 for each k, then the followings are true. We denote by xk

i the i-th largest
pole of µk (with the convention that xk

i = −∞ if there are less than i poles). For each i ∈ N, either
xk
i → −∞ as k → ∞, or limk→∞ xk

i exists and is a pole of µ. Also, all the poles of µ are given by
such limits.

Proof. By vague topology convergence, for any a < b, we have that lim supk→∞ µk([a, b]) ≤ µ([a, b]),
and lim infk→∞ µk((a, b)) ≥ µ((a, b)). Then for any a < b with µ([a, b]) < 1, we must have
µk([a, b]) = 0 for k large enough, since each µk([a, b]) must be an integer. Therefore, µk((a, b)) = 0
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for k large enough, and µ((a, b)) = 0. These imply that µ in any open interval is either ≥ 1 or zero.
Therefore, in any compact interval, µ is supported on finitely many points.

Now take any x where µ({x}) > 0. Take any a < x < b such that µ((a, b)) = µ([a, b]) = µ({x}).
Then for k large enough, µk((a, b)) = µk([a, b]) = µ({x}); so µ({x}) ∈ N. These imply that µ is
particle-generated.

Under the additional assumption, there is µ((K,∞)) = 0. So we can write the poles of µ as
x1 ≥ x2 ≥ · · · (with the convention that xi = −∞ if there are less than i poles). Then we can show
xk
i → xi via induction in i ∈ N, using that for each a < b with a, b 6∈ {xi}∞i=1, µk((a, b)) = µ((a, b))

for any k large enough. �

3. Pole evolution: uniform rigidity in time

In this section, we prove a uniform in time estimate for the poles. More precisely, the following
proposition states that for the SDE (1.6), with high probability, its pole evolution gives a line
ensemble (i.e., all the poles are bounded from above, and the trajectories are continuous), and the
poles are close to the zeros of the Airy function, uniformly in time.

Proposition 3.1. For any d, C∗ > 0, there exist small δ, c > 0 and large C > 0, such that the
following holds. Take any particle-generated {Yt}t∈R satisfying Assumption 1.5, and large T > 0.

Conditional on the event that Y0 is (d, C∗)-Airy-like, with probability at least 1−e−c(logT )2 , we have

(1) The poles of {Yt}t∈[T,2T ] give a line ensemble {xi(t)}i∈N,t∈[T,2T ], and for each t ∈ [T, 2T ]
and w ∈ H,

Yt(w) =

∞∑

i=1

1

xi(t)− w
− 1

ai
− Ai′(0)

Ai(0)
.(3.1)

(2) For each t ∈ [T, 2T ], i ∈ N, y ≤ C, we have that

(3.2) |xi(t)− ai| ≤
C(log T )40

iδ
,

and

(3.3) |{i ∈ N : xi(t) ∈ [y − 1, y + 1]}| ≤ C
√
|y|+ 1.

This immediately implies the first part of Theorem 1.6.

Corollary 3.2. For any {Yt}t∈R satisfying Assumption 1.4 and Assumption 1.5, its poles give a

line ensemble {xi(t)}i∈N,t∈R, and Yt(w) =
∑∞

i=1
1

xi(t)−w − 1
ai

− Ai′(0)
Ai(0) for any t ∈ R.

We note that (3.3) (which is a Wegner estimate) follows easily from (3.2), plus

|{i ∈ N : ai(t) ∈ [y − 1, y + 1]}| ≤ C
√

|y|+ 1,

which directly follows from (2.5).
Our general strategy is to obtain uniform in time estimates for Yt−

√
w, and to apply Lemma 2.3.

The main tasks are (1) to estimate bulk pole densities, via bounding |Yt(w) −
√
w| for w in a

reasonable domain contained in H (in particular, allowing for polynomially close to the real axis,
when Re[w] → −∞); (2) to bound the first pole x1. Both these are to be achieved through analyzing
the SDE (1.6).
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3.1. Characteristic flow. We consider the characteristic flow,

∂t wt = −√
wt, w0 ∈ H,(3.4)

which can be solved as

∂t
√
wt = −1

2
, wt = (w0 − t/2)2.(3.5)

By plugging this characteristic flow into (1.6), itô’s formula gives the following semi-martingale
decomposition for Yt(wt)−

√
wt

d(Yt(wt)−
√
wt) = (dMt)(wt) +

(
2− β

2β
∂2
w Yt(wt) + (Yt(wt)−

√
wt) ∂w Yt(wt)

)
dt,(3.6)

with the Martingale term (dMt)(wt) = d(Mt(wt))− (∂w Mt)(wt)dt, whose quadratic variations are
given by (using (1.7)):

(3.7)
d

dt

〈
ˆ t

0

(dMs)(ws)

〉
=

1

3β
∂3
w Yt(w)

∣∣∣∣
w=wt

.

In the rest of this section, we fix d, C∗ > 0, and take {Yt}t∈R satisfying Assumption 1.5, and
(unless otherwise noted) conditional on Y0 which is (d, C∗)-Airy-like. All the constants below
(including those in . and O(·)) can depend on d and C∗. We take T to be a large number, and set
K = (log T )8.

3.2. Estimates for the bulk. We next prove the following bound of |Yt(w) −
√
w| for w in a

domain contained in H. It will be used to bound the bulk pole densities.

Proposition 3.3. There exist small δ, c > 0 such that the following holds. Define the spectral
domain

D = {κ+ iη : η ≥ K, η−1−δK ≤ κ ≤
√
K2 + η2}.(3.8)

With probability 1− e−c(logT )2 , for any t ∈ [T, 2T ], and
√
w ∈ D, it holds

∣∣Yt(w) −
√
w
∣∣ ≤ Im[

√
w]1−δ

Im[w]
.(3.9)

Thanks to the (away from the real axis) Lipschitz property of Yt(w)−
√
w in Lemma 2.2, we only

need to prove (3.9) for a set of carefully chosen mesh points. Namely, we consider the following
mesh of points in the upper half plane:

L =

{
κ+ iη : η3 ∈ Z, η ≥ K,κ =

Z

η2
,K ≤ κ ≤ T +K + η

}
.(3.10)

Lemma 3.4. For any κ′ + iη′ ∈ D as defined in (3.8) and t ∈ [T, 2T ], there exists κ+ iη ∈ L such
that t ≤ 2κ− 2η−1−δK, and

|κ′ − κ+ t/2|, |η′ − η| ≤ 1

η2
.(3.11)

Proof. Suppose that η′ ∈ [i1/3, (i + 1)1/3] for some integer i ≥ K3, we can take η = i1/3, therefore
|η − η′| ≤ (i + 1)1/3 − i1/3 ≤ i−2/3/3 = η−2/3. Suppose that κ′ + t/2 ∈ [jη−2, (j + 1)η−2] for some
j ∈ Z, we can take κ = (j + 1)η−2. Then κ ≥ κ′ + T/2 > K, and κ ≤ κ′ + T + η−2 ≤ T +K + η,
and |κ′ − κ+ t/2| ≤ η−2. Also κ− t/2 ≥ κ′ ≥ η−1−δK, thus t ≤ 2κ− 2η−1−δK. �
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Now Proposition 3.3 follows from the following estimate on one point.

Lemma 3.5. The following holds true for small enough δ, c > 0. Take any u = κ0 + ηi ∈ L,
and let

√
wt = u − t/2 =: κt + ηi for each t < 2κ0. Conditional on Y0 with |Y0(w0) −

√
w0| ≤

Im[
√
w0]

1−d/Im[w0], with probability 1− e−c
√
η,

|Yt(wt)−
√
wt| ≤

1

κtηδ
, ∀ 0 ≤ t ≤ 2T ∧ (2κ0 − 2η−1−δK).(3.12)

Proof of Proposition 3.3. By a union bound over all the points in L, Lemma 3.5 implies that

|Yt(wt)−
√
wt| ≤

1

κtηδ
, ∀ 0 ≤ t ≤ 2T ∧ (2κ0 − 2η−1−δK),

√
w0 ∈ L,(3.13)

with probability at least

1−
∑

η≥K,η3∈Z

Ce−c
√
ηη2(2T + 2η) ≥ 1− e−c(logT )2 ,(3.14)

where we used that K = (logT )8 and T is large enough, and C > 0 is a large constant.

For any t ∈ [T, 2T ] and
√
w′ = κ′+iη′ ∈ D, thanks to Lemma 3.4, there exists

√
w0 = κ+iη ∈ L

such that |κ′ − κt|, |η′ − η| ≤ η−2. Then we have η−1−δK/2 < κt < 2η. It also follows that

(3.15) |√wt −
√
w′| ≤

√
|κ′ − κt|2 + |η′ − η|2 ≤

√
2η−2,

and

|wt − w′| ≤ |√wt +
√
w′||√wt −

√
w′| ≤ (2

√
κ′2 + η2 + 2η−2)

√
2η−2 . η−1.(3.16)

In particular, this implies that |wt − w′| is much smaller than 2κtη = Im[wt] (which is at least
η−δK). It then follows from Lemma 2.2 that

|Yt(wt)− Yt(w
′)| . Im

√
wt

Im[wt]
|wt − w′| = |wt − w′|

2κt
.

1

κtη
.(3.17)

Combining this with (3.14) and (3.15), and using that η−2 is much smaller than 1
κtηδ (which is at

least η−1−δ/2), we conclude that

|Yt(w
′)−

√
w′| . 1

κtηδ
.

1

2κ′η′δ
=

Im[
√
w]1−δ

Im[w]
.

Then the proof finishes by taking a slightly smaller δ (to remove the constant factor). �

We now prove the one point estimate, using (3.6).

Proof of Lemma 3.5. We introduce the following stopping time,

σ = inf

{
0 ≤ t ≤ 2T : |Yt(wt)−

√
wt| ≥

1

κtηδ
, or κt ≤ η−1−δK, or t = 2T

}
.(3.18)

We now bound the terms in the RHS of (3.6). For 0 ≤ t ≤ σ, we have Im[Yt(wt)] ≤ 2Im[
√
wt] = 2η,

since

|Im[Yt(wt)]− η| ≤ 1

κtηδ
≤ η

K
.(3.19)

Therefore (using Lemma 2.2) we get

| ∂2
w Yt(wt)| ≤

2Im[Yt(wt)]

Im[wt]2
≤ 4Im[

√
wt]

Im[wt]2
=

1

κ2
tη

.(3.20)
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The quadratic variation of the martingale term is given by (3.7); then (again using Lemma 2.2)
∣∣∣∣
d

dt

〈
ˆ t

0

(dMs)(ws)

〉∣∣∣∣ ≤
2Im[Yt(wt)]

βIm[wt]3
≤ 4Im[

√
wt]

βIm[wt]3
=

1

2βκ3
tη

2
.

By integrating in time, we have
ˆ t∧σ

0

ds

2βκ3
tη

2
≤ 1

2βκ2
tη

2
.

Take θ =
√
η. By the Burkholder-Davis-Gundy inequality, for any 0 ≤ t ≤ 2T the following holds

with probability4 ≥ 1− Ce−cθ:

sup
0≤s≤t∧σ

∣∣∣∣
ˆ s

0

(dMu)(wu)

∣∣∣∣ ≤
θ

2κtη
.

Then we can take a union bound over times

t =

(
2− 1

2i−1

)
κ0, κt =

κ0

2i
,

for i ∈ J1, 3 log2(T )K, and get that with probability 1− C log(T )e−cθ,
∣∣∣∣
ˆ t

0

(dMs)(ws)

∣∣∣∣ ≤
θ

κtη
, ∀ 0 ≤ t ≤ σ.(3.21)

Now by (3.6), and using (3.20) and (3.21), we have that for any 0 ≤ t ≤ σ,

|Yt(wt)−
√
wt)| ≤

ˆ t

0

|Ys(ws)−
√
ws| |∂wYs(ws)| ds+

2θ

κtη
+ |Y0(w0)−

√
w0| .(3.22)

Here we used that
´ t

0
2

κ2
sη
ds < 4

κtη
, which is much smaller than θ

κtη
.

For 0 ≤ t ≤ σ, (using Lemma 2.2) we have

| ∂w Yt(wt)| ≤
Im[Yt(wt)]

Im[wt]
≤ 1

2κt
+

|Yt(wt)−
√
wt|

2κtη
≤ 1

2κt
+

1

2κ2
tη

1+δ
=: γ(t) ≤ 1

κt
.

Then for any 0 ≤ s < t ≤ σ,
ˆ t

s

γ(u)du ≤ log(κs/κt) +
1

κtη1+δ
≤ log(κs/κt) +

1

K
.(3.23)

By Grönwall’s inequality and (3.22), for any 0 ≤ t ≤ σ, we can bound |Yt(wt)−
√
wt| by:

2θ

κtη
+ |Y0(w0)−

√
w0|+

ˆ t

0

γ(s)

(
2θ

κsη
+ |Y0(w0)−

√
w0|
)
exp

(
ˆ t

s

γ(u)du

)
ds.(3.24)

We note that by (3.23), exp(
´ t

s
γ(u)du) ≤ 2κs

κt
. Also

ˆ t

0

γ(s)
θ

κsη
· κs

κt
ds ≤ θ

κtη

ˆ t

0

1

κs
ds =

2 log(κ0/κt)θ

κtη
,

and
ˆ t

0

γ(s) |Y0(w0)−
√
w0|

κs

κt
ds ≤ |Y0(w0)−

√
w0|
ˆ t

0

1

κt
ds =

t
∣∣Y0(w0)−

√
w0

∣∣
κt

.

4Here and in the rest of this proof, C is used to denote a large constant, whose value may change from line to
line.
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Therefore we have

|Yt(wt)−
√
wt| ≤

2(1 + 4 log(κ0/κt))θ

κtη
+

(
1 +

2t

κt

)
|Y0(w0)−

√
w0| ≤

1

2κtηδ
,

where in the last inequality we used log(κ0/κt) ≤ log(Tη2), which is much smaller than η1/2−δ

provided K is large enough; and
(
1 +

2t

κt

)
|Y0(w0)−

√
w0| ≤

(
1 +

2t

κt

)
Im[

√
w0]

1−d

Im[w0]
=

(
1 +

2t

κt

)
1

(2κt + t)ηd
≤ 1

3κtηδ
.(3.25)

Therefore, since Yt(wt)−
√
wt is continuous in t, we conclude that σ = 2T ∧ (2κ− 2η−1−δK) with

probability 1− Ce−c
√
η. �

3.3. Estimates for the first pole. Under the same setup as the previous subsection (in particular,
T is taken to be any large number, and K = (log T )8), we next prove the following proposition,
which states that with high probability all the poles are bounded by K.

Proposition 3.6. There exists a small number c > 0 such that the following holds. With probability

1− e−c(logT )4 , for any t ∈ [0, 2T ], Yt has no pole in (K,∞).

We introduce the following stopping time, which is the first time the largest pole exceeds K,

σ0 = inf {0 ≤ t ≤ 2T : Yt has a pole in (K,∞), or t = 2T } .(3.26)

We now denote Kj = jK for j ∈ N (in particular K1 = K), and consider a mesh of points:

L =

{
κ+ iη : η = (400Kj)

−1/4, κ = Zη,
√
Kj + η2 ≤ κ ≤

√
Kj+1 + η2 + 2T, j ∈ N

}
.

Then for any
√
w = κ + iη ∈ L, it holds κη2 ≥ 1/4, and Im[

√
w] = η ≥ 1/κη1−δ, provided K is

large enough.
Now Proposition 3.6 follows from the following estimate on one point.

Lemma 3.7. For any B > 0, the following holds true for small enough δ, c > 0. Take any j ≥ 0,
u = κ0 + ηi ∈ L with η = (400Kj)

−1/4, and let
√
wt = u− t/2 =: κt + ηi for each t. Conditional on

Y0 with |Y0(w0)−
√
w0| ≤ B|w0|−1/2, with probability ≥ 1− e−c

√
Kj ,

|Yt(wt)−
√
wt| ≤

1

κtη1−δ
, ∀ 0 ≤ t ≤ σ0 ∧ (2κ0 − 2

√
Kj + η2).(3.27)

Proof of Proposition 3.6. As Y0 is (d, C∗)-Airy-like, Lemma 2.5 implies that (for some B > 0)

|Y0(w)−
√
w| ≤ B|w|−1/2 for all arg(w) ∈ (0, 3π/4), |w| > B.(3.28)

By an union bound over all the points in L, Lemma 3.7 implies that conditional on (3.28), with
probability at least (for some c′ > 0, and taking c < c′ and T large)

1−
∞∑

j=1

3T (400Kj)
1/4e−c′

√
Kj = 1−

∞∑

j=1

3T (400jK)1/4e−c′
√
jK ≥ 1− e−c

√
K ,(3.29)

it holds that for any j ∈ N and
√
w0 = κ0 + (400Kj)

−1/4i ∈ L,

|Yt(wt)−
√
wt| ≤

1

κtη1−δ
, ∀ 0 ≤ t ≤ σ0 ∧ (2κ0 − 2

√
Kj + η2).(3.30)
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Next we show that (3.30) implies that σ0 = 2T . Take any t ∈ [0, 2T ], and x ≥ K. Then

Kj ≤ x < Kj+1 for some j ∈ N. Take η = (400Kj)
−1/4. Then

√
x+ η2 + t/2 ∈ [iη, (i + 1)η] for

some i ∈ N. We can take κ0 = (i+1)η and
√
w0 = κ0+iη ∈ L, so that κt ∈ [

√
x+ η2,

√
x+ η2+η].

Then we have

Re[wt] = κ2
t − η2 ∈ [x, x+ 3

√
xη],

Im[wt] = 2κtη ≥ 2
√
xη.

If there is a pole of Yt at x, (by Nevanlinna representation (2.2)) necessarily,

Im[Yt(wt)] ≥
Im[wt]

|x− wt|2
≥ Im[wt]

(3
√
xη)2 + Im[wt]2

=
2κt

9xη + 4κ2
tη

2
≥ 1

7
√
xη

,

However, (3.30) (note that κt ≥
√
Kj + η2, so t ≤ 2κ0 − 2

√
Kj + η2) implies

Im[Yt(wt)] ≤ Im[
√
wt] +

1

κtη1−δ
= η +

1

κtη1−δ
≤ η +

1√
xη1−δ

<
1

7
√
xη

This leads to a contradiction. Therefore (with probability ≥ 1− e−c
√
K) there is no pole in (K,∞)

at any time in [0, σ0]. Recall the definition of σ0 from (3.26). Using that Yt is continuous in t, and
Lemma 2.7 and Lemma 2.8, we conclude that σ0 = 2T , and Proposition 3.6 follows. �

Proof of Lemma 3.7. We introduce the following stopping time

σ = inf

{
t ≤ σ0 : |Yt(wt)−

√
wt| ≥

1

κtη1−δ
, or κ2

t − η2 ≤ Kj , or t = σ0

}
.(3.31)

For t ≤ σ, it is necessary that t ≤ σ0, and Yt has no pole in (K,∞). Moreover, we also have that

κt ≥
√
Kj + η2 ≥

√
Kj, and κtη

2−δ ≥ 1, provided that K is large enough.
We now consider the terms in the RHS of (3.6). For 0 ≤ t ≤ σ, using Nevanlinna representation

(2.2) we have

| ∂2
w Yt(wt)| ≤

∑

x∈P

1

|x− wt|3
≤ 1

|wt −K|
∑

x∈P

1

|x− wt|2
≤ Im[Yt(wt)]

|wt −K|Im[wt]
,

where the second inequality follows from that Re[wt] = κ2
t − η2 ≥ Kj ≥ K ≥ x for any x ∈ P . As

|Im[Yt(wt)]− Im[
√
wt]| ≤ 1/(κtη

1−δ) ≤ η, we have Im[Yt(wt)] ≤ 2η, so

| ∂2
w Yt(wt)| ≤

2η

|wt −K|Im[wt]
≤

√
2

(κ2
t − η2 −K + 2κtη)κt

,

where we used Im[wt] = 2κtη, and |wt −K| = |κ2
t − η2 −K + 2iκtη| for the second inequality. By

integrating in time, we have
ˆ t

0

| ∂2
w Ys(ws)|ds ≤

ˆ t

0

√
2

(κtκs − η2 −K + 2κtη)κt
ds

≤2
√
2(log(κtκ0 − η2 −K + 2κtη)− log(κ2

t − η2 −K + 2κtη))

κ2
t

≤ 2
√
2 log(1 + κ0/(2η))

κ2
t

.

(3.32)

The quadratic variation of the martingale term is given by (3.7). By using Nevanlinna representation
(2.2) for Yt, we have ∣∣∣∣

d

dt

〈
ˆ t

0

(dMs)(ws)

〉∣∣∣∣ ≤
∑

x∈P

2

β|x − wt|4
.
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Then using Re(wt) ≥ Kj ≥ K ≥ x for any x ∈ P , we can bound the above by

2

β|wt −K|2
∑

x∈P

1

|x− wt|2
≤ 2Im[Yt(wt)]

β|wt −K|2Im[wt]
≤ 4

β(κ2
t − η2 −K + 2κtη)2κt

,

where we used Im[Yt(wt)] ≤ 2η, Im[wt] = 2κtη, and |wt −K| = |κ2
t − η2 −K + 2iκtη| for the last

inequality. By integrating in time, we have

ˆ t

0

4ds

β(κ2
s − η2 −K + 2κsη)2κs

≤
ˆ t

0

4ds

β(κtκs − η2 −K + 2κtη)2κt

≤ 8

β(κ2
t − η2 −K + 2κtη)κ2

t

≤ 4

βκ3
t η

.

Similarly to (3.21), taking θ = K
1/4
j , a union bound implies that with probability 1− log(T )e−cθ,

(3.33)

∣∣∣∣
ˆ t

0

(dMs)(ws)

∣∣∣∣ ≤
θ√
κ3
tη

, ∀ 0 ≤ t ≤ σ.

Now by (3.6), and using (3.32) and (3.33), we have that for any 0 ≤ t ≤ σ,

|Yt(wt)−
√
wt)| ≤

ˆ t

0

|Ys(ws)−
√
ws| |∂wYs(ws)| ds+

2θ√
κ3
tη

+ |Y0(w0)−
√
w0| .(3.34)

Here we used that 2
√
2 log(1+κ0/(2η))

κ2
t

< θ√
κ3
tη
, provided K is large enough.

As for ∂w Yt(wt), for 0 ≤ t ≤ σ (using Lemma 2.2) we have

| ∂w Yt(wt)| ≤
Im[Yt(wt)]

Im[wt]
≤ 1

2κt
+

|Yt(wt)−
√
wt|

2κtη
≤ 1

2κt
+

1

2κ2
tη

2−δ
=: γ(t) ≤ 1

κt
.

Then for any 0 ≤ s < t ≤ σ (noticing that κtη
2 ≥ 1/20),

ˆ t

s

γ(u)du ≤ log(κs/κt) +
1

κtη2−δ
≤ log(κs/κt) + 20ηδ.(3.35)

By Grönwall’s inequality and (3.34), for any 0 ≤ t ≤ σ, we can bound |Yt(wt)−
√
wt| by:

2θ√
κ3
tη

+ |Y0(w0)−
√
w0|+

ˆ t

0

γ(s)

(
2θ√
κ3
sη

+ |Y0(w0)−
√
w0|
)
exp

(
ˆ t

s

γ(u)du

)
ds.

By (3.35), exp(
´ t

s
γ(u)du) ≤ 2κs

κt
. Also

ˆ t

0

γ(s)
θ√
κ3
sη

· κs

κt
ds ≤ θ

κt

ˆ t

0

1√
κ3
sη

ds ≤ θ√
κ3
tη

,

and
ˆ t

0

γ(s) |Y0(w0)−
√
w0|

κs

κt
ds ≤ |Y0(w0)−

√
w0|
ˆ t

0

1

κt
ds =

t
∣∣Y0(w0)−

√
w0

∣∣
κt

.

Therefore for θ = K
1/4
j , it holds

|Yt(wt)−
√
wt| ≤

6θ√
κ3
tη

+

(
1 +

2t

κt

)
|Y0(w0)−

√
w0| ≤

1

2κtη1−δ
,
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where in the last inequality we used that
(
1 +

2t

κt

)
|Y0(w0)−

√
w0| ≤ B

(
1 +

2t

κt

)
|w0|−1/2 ≤ B

(
1 +

2t

κt

)
1

κt + t/2
≤ 1

3κtη1−δ
.

Therefore, since Yt(wt) −
√
wt is continuous in t, we conclude that σ = σ0 ∧ (2κ0 − 2

√
Kj + η2)

with the desired probability. �

3.4. Proof of Proposition 3.1. As before, take T large enough and K = (logT )8. Proposition 3.6
and Proposition 3.3 verify the two assumptions in Lemma 2.3, respectively. Thus with probability

1− e−c(logT )2 , for any t ∈ [T, 2T ], Yt has infinitely many poles x1(t) ≥ x2(t) ≥ · · · , satisfying
|xi(t)− ai| < CK4i−δ/6.(3.36)

This gives the second statement in Proposition 3.1, after replacing δ/6 by δ.
The statement (3.36) also verifies the first assumption in Proposition 2.1. Moreover, in (3.9) we

can take a sequence of complex numbers wn = ni, so that |Yt(wn) −
√
wn| → 0 as n → ∞. This

verifies the second assumption in Proposition 2.1, from which (3.1) holds.
Finally, for each i ∈ N, the continuity of xi(t) in t ∈ [T, 2T ] follows from the continuity of Yt in

t, and Lemma 2.7, Lemma 2.8. �

4. Hölder Regularity

In this section, we upgrade the trajectory continuity into Hölder regularity.

Proposition 4.1. For any B > 0, there exist large and small C, c > 0 such that the following
holds. Take any {Yt}t∈R satisfying Assumption 1.5, and that its poles are given by a line ensemble

{xi(t)}i∈N,t∈R, and that Y0(w) =
∑∞

i=1
1

xi(0)−w − 1
ai

− Ai′(0)
Ai(0) for any w ∈ H. Take k ∈ N large

enough and any 0 < ξ < ck−4/3. Then conditional on the event that

(4.1) |xi(0)− ai| ≤ B, ∀i ∈ Jk/2, 2kK,

with probability > 1− e−ck1/6

we have

max
0≤s≤ξ

|xk(s)− xk(0)| ≤ Ck2/3ξ1/2.

Proof. We first prove the (with conditional probability > 1− e−ck1/6

) upper bound

max
0≤s≤ξ

xk(s) ≤ xk(0) + Ck2/3ξ1/2.(4.2)

The lower bound min0≤s≤ξ xk(s) ≥ xk(0)− Ck2/3ξ1/2 can be proven in the same way.
By (4.1) with (2.5), we conclude that there exists a large constant C1 such that

|{i : xi(0) ∈ [xk(0)− 1, xk(0) + 1]}| ≤ C1k
1/3.(4.3)

Take small δ ≤ 1/(C1k
1/3). Then (4.3) implies that there exists some 1 ≤ ℓ ≤ C1k

1/3, such that
xk−ℓ−1(0)− xk−ℓ(0) ≥ δ. We take the smallest such ℓ, then |xk−ℓ(0)− xk(0)| ≤ δℓ.

Let E = xk−ℓ(0) + δ/2, and take a small b > 0 and w = E + ib. Next we show that, provided

δ ≥ 8bC
1/2
1 k1/6,

Im[Y0(w)] = Im[Y0(E + ib)] =

∞∑

i=1

b

|E + ib− xi(0)|2
≤ 1

4b
.(4.4)
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For this, from (4.1) and (2.5), we have |{i : xi(0) ∈ [E−δ/2−m,E−δ/2− (m−1)]}| ≤ C1m
1/2k1/3

for each m ∈ N. It follows that

∑

i:xi(0)≤E−δ/2

b

|E + ib− xi(0)|2
≤

∞∑

m=1

∑

i:xi(0)∈[E−δ/2−m,E−δ/2−(m−1)]

b

|E + ib − xi(0)|2

≤
∞∑

m=1

C1bm
1/2k1/3

(δ/2 +m− 1)2
≤ 8C1bk

1/3

δ2
≤ 1

8b
,

using that δ ≥ 8bC
1/2
1 k1/6. By a similar argument, we can also upper bound the summation over

xi(0) ≥ E + δ/2, and (4.4) follows.
We now introduce a stopping time τ :

τ = inf

{
s ≥ 0 : Im[Ys(w)] ≥

1

2b

}
∧ ξ.

For 0 ≤ s ≤ τ , it follows from Lemma 2.2

|∂2
wYs(w)| ≤

2Im[Ys(w)]

b2
≤ 1

b3
, | ∂w Ys(w)

2| = 2|∂wYs(w)| · |Ys(w)| ≤
|Ys(w)|

b2
.

Thus by Assumption 1.5,

|Ys(w)− Y0(w)| ≤
∣∣∣∣
ˆ s

0

dMu(w)

∣∣∣∣ +
´ s

0 |Yu(w)|du
2b2

+O
( s

b3

)
.(4.5)

For the Martingale term, using (1.7) and Lemma 2.2, it follows that (for 0 ≤ s ≤ τ)
∣∣∣∣
d

ds
〈Ms(w)〉

∣∣∣∣ ≤
2Im[Ys(w)]

βb3
≤ 1

βb4
.

Therefore, by the Burkholder-Davis-Gundy inequality, there exists a small constant c1 > 0,

P

(
sup

0≤s≤τ

∣∣∣∣
ˆ s

0

dMu(w)

∣∣∣∣ ≥
k1/6ξ1/2

b2

)
≤ e−c1k

1/6

(4.6)

By plugging (4.6) into (4.5), it follows that with probability e−c1k
1/6

,

|Ys(w) − Y0(w)| = O
(
k1/6ξ1/2

b2
+

ξ

b3

)
, ∀s ∈ [0, τ ],(4.7)

provided that ξ ≤ b2. Now we take a large C2 > 0, and assume that ξ ≤ b2/(C2k
1/3). Then for any

s ∈ [0, τ ], and using (4.4), we have

Im[Ys(w)] ≤ |Ys(w) − Y0(w)|+ Im[Y0(w)] <
1

2b
,

which, in particular, implies that τ = ξ. Since Im[Ys(w)] =
∑∞

i=1
b

|w−xi(s)|2 , this further implies

that {xi(s)}i∈N ∩ [E − b, E + b] = ∅, for any s ∈ [0, ξ].

In summary, we conclude that with probability 1− e−c1k
1/6

, {xi(s)}i∈N ∩ [E − b, E + b] = ∅, for
any s ∈ [0, ξ]. Since xk(0) < E, it follows that (with probability 1− e−c1k

1/6

) for any s ∈ [0, ξ],

xk(s) ≤ E − b = xk−ℓ(0) + δ/2− b ≤ xk(0) + δℓ+ δ/2 ≤ xk(0) + 2C1k
1/3δ.

Finally, we choose the parameter δ and b, satisfying all the above constraints:

δ ≤ 1/(C1k
1/3), δ ≥ 8bC

1/2
1 k1/6, ξ ≤ b2/(C2k

1/3).
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Then we can take b = C
1/2
2 k1/6ξ1/2 and δ = 8C

1/2
1 C

1/2
2 k1/3ξ1/2. By taking C large enough and c

small enough (depending on C1, C2, and c1), the constraint δ ≤ 1/(C1k
1/3) is also satisfied since

ξ < ck−4/3; and (4.2) follows. �

5. Recover Dyson Brownian Motion

In this section, we localize any line ensemble given by the poles of the SDE (1.6), by deriving
another SDE satisfied by the first finitely many poles (in the sense of weak solution).

More precisely, for the line ensemble {xi(t)}i∈N,t∈R of poles, we prove that, if for some large k ∈ N,
xk(t) and xk+1(t) are bounded away from each other for certain amount of time, the evolution of
x1(t) ≥ x2(t) ≥ · · · ≥ xk(t) is then described by DBM plus a drift term, describing the effect of
{xi(t)}∞i=k+1.

Proposition 5.1. For any C > 0 the following is true. Take any {Yt}t∈R satisfying Assumption 1.5,
and that its poles are given by a line ensemble {xi(t)}i∈N,t∈R. Fix a large k ∈ N, and denote the
stopping time

τ = inf{t ≥ 0 : xk(t)− xk+1(t) ≤ 1/(Ck1/3)} ∪ {1}.(5.1)

Conditional on the event τ > 0, there exist independent Brownian motions B1, · · · , Bk adapted to
the filtration Ft = σ({x(u)}u≤t), satisfying

(5.2) dxi(t) =

√
2

β
dBi(t) +

∑

1≤j≤k
j 6=i

dt

xi(t)− xj(t)
+Wt(xi(t))dt, ∀i ∈ J1, kK, t ∈ [0, τ ],

where Wt is a random meromorphic function, defined as

Wt(w) = −Yt(w) +

k∑

i=1

1

xi(t)− w
.

Moreover, almost surely the following holds:
ˆ τ

0

1(∃1 ≤ i < j ≤ k : xi(t) = xj(t))dt = 0.(5.3)

The rest of this section is devoted to proving Proposition 5.1. Using that {xi(t)}i∈N are poles of
Yt, we derive (5.2) from Assumption 1.5, using a contour integral. For this, we need first establish
that the poles do not collide at almost every time (i.e., (5.3)). The idea to establish the collision
time estimate is to consider the process (xi(t) − xj(t))

2 for some i < j, showing that its level-0
local time equals 0. We mainly follow the standard argument used to study the Bessel process, see
[114, Chapter XI, Section 1]. To analyze such processes we again resort to contour integrals, and
therefore an induction will be used.

We next give the semi-martingale decomposition of a process, which is the sum of (xi(t)−xj(t))
2

for i, j in an interval.
For any line ensemble {x(t)}t∈R satisfying Assumption 1.5, and any a, α ∈ N with α ≥ 2, denote

(5.4) W a,α
t (w) = −Yt(w) +

a+α−1∑

i=a

1

xi(t)− w
,

and

Za,α(t) =
∑

a≤i<j≤a+α−1

(xi(t)− xj(t))
2 = α

a+α−1∑

i=1

xi(t)
2 −

(
a+α−1∑

i=1

xi(t)

)2

.
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Lemma 5.2. In the above setup, take any t0 ∈ R, and denote the stopping time

σ = inf{t ≥ t0 : xa−1(t) = xa(t) or xa+α−1(t) = xa+α(t) or t = t0 + 1},
where we use the convention that x0(t) = ∞, when a = 1. Then Za,α in [t0, σ) satisfies dZ

a,α(t) =
dMa,α(t) + V a,α(t)dt, where

V a,α(t) = 2
∑

1≤i<j≤α

(xi(t)− xj(t))(W
a,α
t (xi)−W a,α

t (xj)) + α2(α − 2) +
2α(α− 1)

β
,

and dMa,α(t) is the Martingale term, with quadratic variation

(5.5)
d

dt
〈Ma,α(t)〉 = 8α

β
Za,α(t).

Proof. For simplicity of notations, we fix a, α, and write Z(t) = Z(t)a,α, V (t) = V (t)a,α, an
dM(t) = dM(t)a,α within this proof.

For t with xa−1(t) > xa(t) and xa+α−1(t) > xa+α(t), we take a contour C = Ct enclosing
xa(t), · · · , xa+α−1(t), but not any xi(t) for i < a or i ≥ a+ α. Then by Assumption 1.5, we have

d

a+α−1∑

i=a

xi(t) = − 1

2πi

˛

C
wdYt(w)dw

= − 1

2πi

˛

C
wdw

(
dMt(w) +

(
2− β

2β
∂2
w Yt(w) +

1

2
∂w Yt(w)

2 − 1

2

)
dt

)
.

(5.6)

Note that
˛

C
wdw = 0,

˛

C
w∂2

wYt(w)dw =

˛

C

∞∑

i=1

2wdw

(xi(t)− w)3
= 0,

and

− 1

2πi

˛

C

w

2
∂wYt(w)

2dw =
1

2πi

˛

C

Yt(w)
2

2
dw =

a+α−1∑

i=a

W i,1
t (xi(t)).

Note that the poles of W i,1
t are x1(t), x2(t), . . ., except for xi(t). Then we have

(5.7) d

a+α−1∑

i=a

xi(t) = − 1

2πi

˛

C
wdMt(w)dw +

a+α−1∑

i=a

W a,α
t (xi(t))dt,

using that
∑a+α−1

i=a W i,1
t (xi(t)) =

∑a+α−1
i=a W a,α

t (xi(t)).
Similarly, we have

d

a+α−1∑

i=a

x2
i (t) = − 1

2πi

˛

C
w2dYt(w)dw

= − 1

2πi

˛

C
w2dw

(
dMt(w) +

(
2− β

2β
∂2
w Yt(w) +

1

2
∂w Yt(w)

2 − 1

2

)
dt

)

= − 1

2πi

˛

C
w2dMt(w)dw +

(
2
a+α−1∑

i=a

W a,α
t (xi(t))xi(t) + α(α− 2) +

2α

β

)
dt.

(5.8)

Here for the last equality, we used that
˛

C
w2dw = 0, − 1

2πi

˛

C
w2∂2

wYt(w)dw = − 1

2πi

˛

C

∞∑

i=1

2w2dw

(xi(t)− w)3
= 2α,
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− 1

2πi

˛

C

w2

2
∂wYt(w)

2dw =
1

2πi

˛

C
wYt(w)

2dw = 2

a+α−1∑

i=a

W i,1
t (xi(t))xi(t),

and that
∑a+α−1

i=a W i,1
t (xi(t))xi(t) =

∑a+α−1
i=a W a,α

t (xi(t))xi(t) +
α(α−1)

2 .
Now using (5.6) and (5.8), and Ito’s formula, we can write dZ(t) = dM(t) + V (t)dt, with

V (t) =2α

a+α−1∑

i=a

W a,α
t (xi(t))xi(t) + α2(α− 2) +

2α2

β

− 2

(
a+α−1∑

i=a

xi(t)

)(
a+α−1∑

i=a

W i,1
t (xi(t))

)
− 2

(2πi)2β

‹

C2

ww′ ∂w ∂w′

Yt(w) − Yt(w
′)

w − w′ dwdw′

=2
∑

1≤i<j≤α

(xi(t)− xj(t))(W
a,α
t (xi)−W a,α

t (xj)) + α2(α− 2) +
2α(α− 1)

β
.

Here we used (1.8) in the first equality. For the second equality, it is by evaluating the contour
integral in w and w′, via integration by parts.

As for dM(t), we have

dM(t) =
1

2πi

˛

C

(
2w

a+α−1∑

i=a

xi(t)− αw2

)
dMt(w)dw.

By (1.8), the quadratic variation d〈M(t)〉/dt therefore equals

2

(2πi)2β

‹

C2

(
2w

a+α−1∑

i=a

xi(t)− αw2

)(
2w′

a+α−1∑

i=a

xi(t)− αw′2
)
∂w ∂w′

Yt(w) − Yt(w
′)

w − w′ dwdw′

=
8

(2πi)2β

‹

C2

(
a+α−1∑

i=a

xi(t)− αw

)(
a+α−1∑

i=a

xi(t)− αw′
)

Yt(w)− Yt(w
′)

w − w′ dwdw′.

By taking the w′ residues at xa(t), . . . , xa+α−1(t), we get

8

2πiβ

˛

C

(
a+α−1∑

i=a

xi(t)− αw

)


a+α−1∑

j=a

∑a+α−1
i=a xi(t)− αxj(t)

w − xj(t)


dw.

By further taking the w residues at x1(t), . . . , xα(t), this equals

8α

β


α

a+α−1∑

i=a

x2
i (t)−

(
a+α−1∑

i=a

xi(t)

)2

 =

8α

β
Z(t),

and the conclusion follows. �

We next establish the collision time estimate, for poles whose indices are in an interval.

Lemma 5.3. Under the same setup as Lemma 5.2, almost surely
ˆ σ

t0

1[xa(t) = xa+1(t) = · · · = xa+α−1(t)]dt = 0.
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Proof. Again, we write Z(t) = Z(t)a,α and V (t) = V (t)a,α in this proof.
We use the local time of Z(t) to analyze its boundary behavior at zero. According to Lemma 5.2,

Z(t) for t ∈ [t0, σ) is a semi-martingale. We let Lh
t be the level h local time in [t0, σ) (with Lh

t0 = 0

for each h ∈ R). Then by [114, Chapter VI, Theorem 1.7], almost surely Lh
t is continuous in t and

cadlag (right continuous) in h, and L0
t = L0

t − L0−
t satisfies

(5.9) L0
σ = 2

ˆ σ

t0

1(Z(t) = 0)V (t)dt =

(
α2(α − 2) +

2α(α− 1)

β

)
ˆ σ

t0

1(Z(t) = 0)dt,

where for the second equality, we used that if Z(t) = 0, then xa(t) = · · · = xa+α−1(t) and V (t) =

α2(α− 2) + 2α(α−1)
β .

Thanks to the occupation time formula [114, Chapter VI, Corollary 1.6], we have
ˆ ∞

0

h−1Lh
σdh =

ˆ σ

t0

Z(t)−1d〈Z(t)〉 ≤ 8α

β
< ∞,

where we used (5.5) which gives d〈Z(t)〉 = 8αZ(t)dt/β, and σ ≤ t0+1. Since Lh
σ is right continuous

in h, it follows that L0
σ = 0, and hence (5.9) implies that almost surely

´ σ

t0
1(Z(t) = 0)dt = 0. Thus

the conclusion follows. �

Proof of Proposition 5.1. We take the following two steps.

Step 1: Non-collision. We will first show (5.3), i.e., dt almost everywhere poles do not collide.
More precisely, we will prove inductively on ℓ = 1, 2, 3, · · · , k − 1

ˆ τ

0

1(x1(t), x2(t), · · · , xk(t) take at most ℓ distinct values)dt = 0.(5.10)

The claim of Proposition 5.1 follows from the case of ℓ = k − 1 in (5.10).
For the base case where ℓ = 1, it follows from Lemma 5.3 with a = 1 and α = k, and t0 = 0.

(Note that in this case, we always have σ ≥ τ)
We next give the induction step: if (5.10) holds for some 2 ≤ ℓ < k − 1, then it holds for ℓ+ 1.
Under the induction hypothesis, dt almost everywhere, there exist 0 < α1 < α2 < · · · < αℓ < k

such that

xα1 (t) > xα1+1(t), xα2(t) > xα2+1(t), · · · , xαℓ
(t) > xαℓ+1(t),(5.11)

Fix the indices 0 < α1 < α2 < · · · < αℓ < k, the set of time t ∈ [0, τ ] such that (5.11) holds is a
random open set, and we denote it by I ⊂ [0, τ ].

Next we show that almost surely, for almost every t ∈ I, x1(t), x2(t), · · · , xk(t) take at least ℓ+2
distinct values. This implies that (5.10) holds for ℓ+1. For the convenience of notations, we denote
α0 = 0 and αℓ+1 = k. Since ℓ ≤ k − 2, there exists some ν ∈ J0, ℓK such that αν+1 − αν ≥ 2. We
then apply Lemma 5.3 with a = αν + 1 and α = αν+1 − αν , and t0 taking any rational numbers.
We note that the union of all such [t0, σ) would cover I, therefore

ˆ

I

1(xa(t) = · · · = xa+α−1(t))dt = 0.

Thus for almost every t ∈ I, xa(t), · · · , xa+α−1(t) would take at least two distinct values, so we
finish the induction step.

Then by induction principle, we finish the proof of (5.3).

Step 2: Dyson Brownian motion. We next prove (5.2). For that we need to construct the
Brownian motions Bi(t) in (5.2). By (5.3) and that each xi(t) is continuous, for any t ∈ [0, τ ]
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outside a closed measure zero set (i.e., in a countable union of open intervals, whose closure is
[0, τ ]), we have xi(t) > xi+1(t) for each i ∈ J1, kK. Then we can take a small contour Ci = Ci,t
enclosing xi(t) but not any other poles. From (5.7) in the proof of Lemma 5.2, we have

(5.12) dxi(t) =

√
2

β
dBi(t) +W i,1

t (xi(t))dt,

where

dBi(t) = −
√

β

2

1

2πi

˛

Ci

wdMt(w)dw.

We can then further extend Bi(t) to all of [0, τ ] as a continuous process. The quadratic variations
are given by

d

dt
〈Bi(t), Bj(t)〉 =

1

(2πi)2

‹

Ci×Cj

ww′ ∂w ∂w′

Yt(w) − Yt(w
′)

w − w′ =
1

(2πi)2

‹

Ci×Cj

Yt(w)− Yt(w
′)

w − w′ ,

which equals 1(i = j). Then it follows that {Bi(t)}ki=1 are independent Brownian motions.

Noting that Wt = W 1,k
t , we get (5.2) from (5.12). �

Remark 5.4. Another approach to study DBM developed in [66] is based on applying Ito’s formula
to the elementary symmetric functions

∑
1≤j1<j2···<jn

xj1xj2 · · ·xjn . There a large family of Dyson
type interacting particle systems are considered. For β ≥ 1, they show that if the initial data
has some particles at the same location, they will separate instantly. The method there could
potentially be adapted and derive non-collision in the above proof as well.

6. Coupling and Uniqueness

In this section we prove the uniqueness part of Theorem 1.6.
Take any {Yt}t∈R satisfying Assumption 1.4 and Assumption 1.5. Let {x(t)}t∈R = {xi(t)}i∈N,t∈R

be the line ensemble given by its poles (from Corollary 3.2). We also take another line ensemble
{y(t)}t∈R = {yi(t)}i∈N,t∈R through the same way.

Proposition 6.1. The two line ensembles {x(t)}t∈R and {y(t)}t∈R have the same law.

Our general strategy is to construct a coupling of the dynamics in t, where x(t) and y(t) would
get closer as t increases. Then by sending the starting time of the dynamics to −∞, one concludes
that these two line ensembles must equal in law.

The coupling. There are four parameters δ, C, T, n in the definition of this coupling. Here δ, C > 0
are small and large real numbers; −T is among the sequence t1, t2, · · · → −∞ in Assumption 1.4,
and T is large enough depending on δ, C; and we let n = ⌊T ⌋. We shall mainly consider the
dynamics of the first order n many paths, for t ∈ [−T, T ].

For each t ∈ [−T, T ], let E [t] be the event where

|xi(t)− ai|, |yi(t)− ai| ≤
C(logT )40

iδ
,

for each i ∈ N.
For each ℓ ∈ J0, 2Tn3K, denote tℓ = −T + ℓn−3. Under E [tℓ], by (2.5), we let kℓ and k′ℓ be the

smallest numbers in [[n, 2n− 1]], such that

|xkℓ
(tℓ)− xkℓ+1(tℓ)| ≥

2

C′n1/3
, |yk′

ℓ
(tℓ)− yk′

ℓ+1(tℓ)| ≥
2

C′n1/3
,
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where C′ is a large enough universal constant. Note that when n is large enough depending on C′,
such kℓ and k′ℓ exist.

We introduce a stopping time τ (with respect to the filtration Ft = σ({x(u)}u≤t, {y(u)}u≤t)), as
follows. If there exists any t ∈ [−T, T ] such that E [t] does not hold, or if there is any ℓ ∈ J0, 2Tn3−1K
and t ∈ [tℓ, tℓ+1], such that

|xkℓ
(t)− xkℓ+1(t)| ∧ |yk′

ℓ
(t)− yk′

ℓ+1(t)| ≤
1

C′n1/3
,

we let τ be the smallest such t. Otherwise, we let τ = ∞.

Lemma 6.2. For any ε > 0, there exist n, δ, C, such that P[τ = ∞] ≥ 1− ε.

Proof. By Proposition 3.1, for small enough δ, large enough C and n, we have P
[⋂

t∈[−T,T ] E [t]
]
≥

1− ε/2. Then by the Hölder continuity estimate Proposition 4.1,

P[τ = ∞] ≥ 1− ε/2− 2Tn4e−cn1/6 ≥ 1− ε,

where c > 0 is small enough depending on C, and the second inequality is by taking n large. �

By Proposition 5.1, we can find a family of independent Brownian motions {Bi}2ni=1, such that
for each ℓ ∈ J0, 2Tn3 − 1K and t ∈ [tℓ ∧ τ, tℓ+1 ∧ τ ], i ∈ J1, kℓK,

dxi(t) =

√
2

β
dBi(t) +



∑

1≤j≤kℓ
j 6=i

1

xi(t)− xj(t)
+Wt(xi(t))


 dt,

Wt(w) =
Ai′(0)

Ai(0)
+

kℓ∑

i=1

1

ai
+

∞∑

i=kℓ+1

1

w − xi(t)
+

1

ai
,

(6.1)

where we used Corollary 3.2 for the expression of Wt. We can similarly find a family of independent
Brownian motions {Bi}2ni=1, such that for each ℓ ∈ J0, 2Tn3− 1K and t ∈ [tℓ ∧ τ, tℓ+1 ∧ τ ], i ∈ J1, k′ℓK,

dyi(t) =

√
2

β
dBi(t) +



∑

1≤j≤k′
ℓ

j 6=i

1

yi(t)− yj(t)
+W t(yi(t))


 dt,

W t(w) =
Ai′(0)

Ai(0)
+

k′
ℓ∑

i=1

1

ai
+

∞∑

i=k′
ℓ+1

1

w − yi(t)
+

1

ai
.

(6.2)

We now couple {Bi}2ni=1 and {Bi}2ni=1 so that they equal almost surely. Thereby, we get a coupling
between {x(t)}t∈R and {y(t)}t∈R.

The following proposition states that under this coupling, these two line ensembles are close to
each other with high probability.

Proposition 6.3. Fix any ε, θ > 0 and S > 0. Then there exist n, δ, C, such that under the above
coupling with probability 1− ε,

|xi(t)− yi(t)| ≤ θ, ∀t ∈ [−S, S], i ∈ J1, nK.
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In the following, we will prove that with probability 1− ε,

xi(t) ≤ yi(t) + θ, ∀t ∈ [−S, S], i ∈ J1, nK.(6.3)

The lower bound that xi(t) ≥ yi(t)− θ can be proven in the same way.
Our strategy is to consider a shifted version of {y(t)}t∈R, which at t = −T is much larger than

x(−T ); then we show that it is larger than {y(t)}t∈R for t ∈ [−S, S] (under the coupling), while
the amount of shift is ≤ θ in [−S, S].

We now define the shifted version of {y(t)}t∈R. For any t ∈ R and i ∈ N, we let

ỹi(t) = yi(t) +M − κ(t+ T ),

where M and κ are taken as follows. By Assumption 1.4 and Corollary 2.4, we take M taken large
enough (depending only on ε) such that with probability 1− ε/2,

yi(−T ) +M > xi(−T ), ∀i ∈ N.(6.4)

We then take κ such that
M − κ(T − S) = θ.

Then for n = ⌊T ⌋ large enough (depending on M,S, θ), the above choice of parameters imply

κ <
2M

n
, M − κ(S + T ) = θ − 2Sκ ≥ θ

2
.(6.5)

We can now rewrite (6.2) in terms of {ỹ(t)}t∈R. For each ℓ ∈ J0, 2Tn3−1K and t ∈ [tℓ∧τ, tℓ+1∧τ ],
i ∈ J1, k′ℓK, we have

dỹi(t) =

√
2

β
dBi(t) +



∑

1≤j≤k′
ℓ

j 6=i

1

ỹi(t)− ỹj(t)
+ W̃t(ỹi(t))


 dt,

W̃t(w) =
Ai′(0)

Ai(0)
− κ+

k′
ℓ∑

i=1

1

ai
+

∞∑

i=k′
ℓ+1

1

w − ỹi(t)
+

1

ai
.

(6.6)

Lemma 6.4. There exist n, δ, C, such under the above coupling the following hodls. Take any
ℓ ∈ J0, (S + T )n3K. Assuming that

ỹi(tℓ ∧ τ) > xi(tℓ ∧ τ), ∀i ∈ J1, nK,

then

ỹi(t) > xi(t), ∀t ∈ [tℓ ∧ τ, tℓ+1 ∧ τ ], i ∈ J1, nK.(6.7)

Assuming this lemma, we can now finish proving the uniqueness in law of line ensembles.

Proof of Proposition 6.3. As already alluded to, it suffices to prove (6.3). From our choice of M
(see (6.4)), we have that ỹi(−T ) > xi(−T ) for all i ≥ 1. Then by repeatedly applying Lemma 6.4
for ℓ ∈ J0, (S + T )n3K, and Lemma 6.2, we conclude that with probability 1 − ε, we have τ = ∞
and ỹi(t) > xi(t) for all t ∈ [−T, S] and i ∈ J1, nK. In particular for t ∈ [−S, S], this gives

yi(t) + θ = yi(t) + (M − κ(T − S)) ≥ yi(t) + (M − κ(t+ T )) > xi(t).

This finishes the proof of (6.3). �

Proof of Proposition 6.1. The conclusion follows from taking θ, ε to zero and S to infinity in Propo-
sition 6.3. �
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The rest of this section is devoted to proving Lemma 6.4. The idea is straightforward: from the
coupling we take the difference between (6.1) and (6.6), to cancel out the Brownian motions; and
the rest are deterministic arguments.

Proof of Lemma 6.4. For simplicity of notation, in this proof we fix ℓ, and write k = kℓ and k′ = k′ℓ.
Recall that k, k′ ∈ [[n, 2n− 1]]. We can take the difference between (6.1) and (6.6), so that for any
i ∈ J1, nK,

d(ỹi(t)− xi(t)) =
∑

j∈J1,nK,j 6=i

(xi(t)− ỹi(t))− (xj(t)− ỹj(t))

(ỹi(t)− ỹj(t))(xi(t)− xj(t))
dt

+


W̃t(ỹi(t)) +

k′∑

j=n+1

1

ỹi(t)− ỹj(t)
−Wt(xi(t))−

k∑

j=n+1

1

xi(t)− xj(t)


dt.

(6.8)

Denote the stopping time σ to be the first time after tℓ ∧ τ , such that there exists at least one
index i∗ ∈ J1, nK with xi∗(σ) = ỹi∗(σ) (if there were multiple such indices, take i∗ to be the smallest
one). We will prove that σ ≥ tℓ+1 ∧ τ then (6.7) holds.

We prove by contradiction, and assume that σ < tℓ+1∧ τ . By the definition of the stopping time
τ , for each i ∈ N, i ≥ n/3, and t ∈ [−T, S ∧ τ ], we have

(6.9) xi(t) ≤ ai +
C(logT )40

iδ
≤ yi(t) +

2C(logT )40

iδ
< yi(t) +M − κ(t+ T ) = ỹi(t).

We let a (resp. b) be the smallest (resp. largest) index with xa(σ) = xi∗(σ) (resp. xb(σ) = xi∗(σ));
and we let a′, b′ ∈ N be the corresponding indices for yi∗(σ). By (6.9), and that ỹi(σ) ≥ xi(σ) for
each i ∈ J1, nK, necessarily 1 ≤ a′ ≤ a ≤ b′ ≤ b < n/2. Now for (6.8), by summing over i ∈ Ja, b′K,
and integrating from σ − ι to σ for a sufficiently small ι, we have

0 >

b′∑

i=a

(ỹi(t)− xi(t))
∣∣∣
σ

σ−ι
=

ˆ σ

σ−ι

b′∑

i=a

∑

j∈J1,nK\Ja,b′K

(xi(t)− ỹi(t)) − (xj(t)− ỹj(t))

(ỹi(t)− ỹj(t))(xi(t)− xj(t))
dt

+

ˆ σ

σ−ι

b′∑

i=a

W̃t(ỹi(t)) +
k′∑

j=n+1

1

ỹi(t)− ỹj(t)
−Wt(xi(t))−

k∑

j=n+1

1

xi(t)− xj(t)
dt.

(6.10)

Consider the first term on the RHS of (6.10). Since xi(t), ỹi(t) are continuous, limt→σ ỹi(t)−xi(t) =
0 for i ∈ [[a, b′]], and limt→σ ỹi(t) − xi(t) > 0 for at least one i /∈ [[a, b′]]. Also, we have that
limt→σ(ỹi(t)− ỹj(t))(xi(t)− xj(t)) ≥ 0, for each i ∈ Ja, b′K and j ∈ J1, nK \ Ja, b′K. Thus

lim inf
ι→0

1

ι

ˆ σ

σ−ι

b′∑

i=a

∑

j∈J1,nK\Ja,b′K

(xi(t)− ỹi(t)) − (xj(t)− ỹj(t))

(ỹi(t)− ỹj(t))(xi(t)− xj(t))
dt > 0.(6.11)

We next consider the second term in the RHS of (6.10). From the definition of τ , E [t] holds for
any t ∈ [tℓ ∧ τ, tℓ+1 ∧ τ ]. Thus when n,C are large enough, for any i ∈ Ja, b′K and j > n it holds

|xi(t)− xj(t)|, |ỹi(t)− ỹj(t)| ≤ Cj2/3.(6.12)

We can rewrite the integrand as

b′∑

i=a

∞∑

j=n+1

xi(t)− ỹi(t)

(ỹi(t)− ỹj(t))(xi(t)− xj(t))
+

b′∑

i=a

−κ+
∞∑

j=n+1

ỹj(t)− xj(t)

(ỹi(t)− ỹj(t))(xi(t)− xj(t))
.(6.13)
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Since limt→σ ỹi(t)−xi(t) = 0 for i ∈ [[a, b′]], and limt→σ(ỹi(t)− ỹj(t))(xi(t)−xj(t)) > 0 for i ∈ [[a, b′]]
and j > n, the first term in (6.13) converges to zero as t → σ. For the second term in (6.13), using
(6.12), it is at least

∞∑

j=n+1

ỹj(t)− xj(t)

C2j4/3
− κ ≥

∞∑

j=n+1

M − κ(t+ T )− 2C(log T )40

jδ

C2j4/3
− κ ≥ θ

10C2n1/3
− κ ≥ κ,

where the first inequality is by E [t]; and in the second and last inequalities we used that

M − κ(t+ T ) ≥ M − κ(S + T ) ≥ θ/2 ≥ (20C2n1/3κ) ∨ (4C(log T )40/nδ),

which is by (6.5) and taking n large enough (depending on ε, θ, S and δ, C). Then we conclude that

lim inf
ι→0

1

ι

ˆ σ

σ−ι

b′∑

i=a

W̃t(ỹi(t)) +

k′∑

j=n+1

1

ỹi(t)− ỹj(t)
−Wt(xi(t))−

k∑

j=n+1

1

xi(t)− xj(t)
dt > 0.(6.14)

Combining (6.11) and (6.14), we conclude that for ι > 0 small enough, the RHS of (6.10) is positive,
which leads to a contradiction. �

7. Convergence to the Airyβ line ensemble

The dynamical versions of the three classical ensembles as in (1.2) correspond to Dyson Brownian
motion (DBM), the Laguerre process, and the Jacobi process, all of which have been intensively
studied in the literature, as seen in [9, 27, 44, 92]. In this section we prove that their edge limit
is ALEβ, i.e., Theorem 1.7. In particular, for DBM our method covers more general potentials
(beyond quadratic ones). Our strategy is to prove tightness, and verify that any subsequential limit
satisfies Assumption 1.4 and Assumption 1.5, and then apply Theorem 1.6.

We now formally introduce these processes, from a random matrix theory perspective.

DBM (and with general potential). Let Bt = (Bij(t)) be an n × n real/complex Brownian
matrix (with each entry given by Brownian motion B(t) for the real case; and given by (B(t) +

B̂(t)i)/
√
2 with B(t) and B̂(t) being independent Brownian motions for the complex case), and

define Xt = (Bt +B∗
t )/

√
2 (where B∗

t is the complex conjugate of Bt). Then the eigenvalues of Xt

(denoted by {λ(n)
i (t)}ni=1) satisfy

dλ
(n)
i (t) =

√
2

β
dBi(t) +

∑

1≤j≤n
j 6=i

dt

λ
(n)
i (t)− λ

(n)
j (t)

,

with β = 1 (real case) or 2 (complex case). At time t = 1 the law is given by the Hermite/Gaussian
ensemble.

More generally, one can consider DBM with potential V and any β > 0,

dλ
(n)
i (t) =

√
2

β
dBi(t) +

∑

1≤j≤n
j 6=i

dt

λ
(n)
i (t)− λ

(n)
j (t)

−
√
n

2
V ′
(
λ
(n)
i (t)√
n

)
dt.(7.1)

Under specific conditions for the potential V (refer to Assumption 7.1), the rescaled particle

configurations λ
(n)
i (t)/

√
n (adopting the notations from [26]) have a β-ensemble as the stationary
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measure, with the following probability density proportional to:

1

Zn,β,V

∏

1≤i<j≤n

|xi − xj |β
n∏

i=1

e−
βn
2

∑n
i=1 V (xi),(7.2)

where Zn,β,V is a renormalization constant. Under mild conditions of V (x) (see e.g., [39, Theorem
1]), there exists a unique equilibrium measure µV characterized by the following variational principle

µV := argminµ

{
−
ˆ

R2

log |x− y|dµ(x)dµ(y) +
ˆ

R

V (x)dµ(x)

}
(7.3)

where the minimization is taken over all probability measures on R.
We shall work on DBM with potentials under the following technical assumptions.

Assumption 7.1. The potential function V (x) satisfies

• It is analytic on R.
• There exist constants M0, C, c > 0 such that V ′(x) ≥ c and supy∈[M0,x] V

′(y)/y ≤ CV (x)
for all x ≥ M0, and similar estimates apply for x ≤ −M0.

Under the previous assumptions, it is known that there exists a unique equilibrium measure µV on
R characterized by the variational principle (7.3). We further assume V (x) satisfies

• The measure µV has a density ̺V , which is positive and supported on a single interval
[A,B], with square root singularities at A and B. More precisely, there exists RA > 0 and
R = RB > 0, such that limx→0+ x−1/2̺V (A + x) = RA/π and limx→0+ x−1/2̺V (B − x) =
R/π.

• The function x 7→ V (x)/2 −
´

log |x − y|dµV (y) achieve its minimum value only in the
interval [A,B].

In particular, Assumption 7.1 is satisfied by any V that is analytic and strongly convex (see
[39]). Next we recall some estimates of the equilibrium density ̺V and its Stieltjes transform

(7.4) mV (z) =

ˆ B

A

̺V (x)/(x − z)dx, z ∈ C \ [A,B],

from [26, Section 2.1].
By Assumption 7.1, V (x) is analytic on R, so it can be extended analytically to a simply con-

nected open set Ω of the complex plane, which contains [A,B]. The equilibrium density ̺V (x) is
supported on [A,B], given explicitly by

̺V (x) =
r(x)

π

√
(x −A)(B − x) =

R

π

√
B − x+O(|B − x|3/2), x ∈ [A,B],(7.5)

where

r(z) =
1

2π

ˆ B

A

V ′(z)− V ′(x)

z − x
· dx

(x−A)(B − x)
,

is analytic in Ω, with RA = r(A)
√
B −A and R = RB = r(B)

√
B −A. And

mV (z) =
−V ′(z) + 2r(z)

√
(z −A)(z −B)

2
= −V ′(B)

2
+R

√
z −B +O(|z −B|),(7.6)

for z ∈ Ω \ [A,B].
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Laguerre process. Let Bt = (Bij(t)) be an n × m real/complex Brownian matrix, and define

Xt = BtB
∗
t . Assume n ≤ m, then the evolution of eigenvalues of Xt (denoted by {λ(n)

i (t)}ni=1) is
given by the Laguerre process

dλ
(n)
i (t) =

2√
β

√
λ
(n)
i (t)dBi(t) +


m+

∑

1≤j≤n
j 6=i

λ
(n)
i (t) + λ

(n)
j (t)

λ
(n)
i (t)− λ

(n)
j (t)


 dt,(7.7)

where β = 1 (real case) or 2 (complex case); while the Laguerre process, i.e., solution to (7.7), is
also considered for any β > 0. At time t = 1 the law is given by the Laguerre ensemble. There is
also a stationary version:

(7.8) dλ
(n)
i (t) =

2√
β

√
λ
(n)
i (t)dBi(t) +


m+

∑

1≤j≤n
j 6=i

λ
(n)
i (t) + λ

(n)
j (t)

λ
(n)
i (t)− λ

(n)
j (t)


dt− λ

(n)
i dt,

whose equilibrium measure is given by the Laguerre ensemble in (1.2).

Jacobi process. Let Θ(t) be the Brownian motion on the m×m orthogonal/unitary group. Take
p+ q = m and p ≥ n+1, q ≥ n+1 and denote C(t) the left corner of Θ(t) with size n×p. Then the

evolution of the eigenvalues of C(t)C(t)∗ (denoted by {λ(n)
i (t)}ni=1) is given by the Jacobi process

dλ
(n)
i (t) =

2√
β

√
λ
(n)
i (t)(1 − λ

(n)
i (t))dBi(t)

+


p−mλ

(n)
i (t) +

∑

1≤j≤n
j 6=i

λ
(n)
i (t)(1 − λ

(n)
i (t)) + λ

(n)
j (t)(1 − λ

(n)
j (t))

λ
(n)
i (t)− λ

(n)
j (t)


 dt,

(7.9)

where β = 1 and 2 correspond to the orthogonal and unitary cases, respectively. Again, the Jacobi
process, i.e., solution to (7.9), is also considered for any β > 0. We refer to [48, Chapter 9] and
[44, Section 1.2] for detailed discussions of this matrix Jacobi process and the derivation of (7.9)5.
The equilibrium measure of (7.9) is given by the Jacobi ensemble in (1.2).

For the special case with β = 1, 2, 4, the Jacobi ensemble also describes the eigenvalues of
MANOVA (multivariate analysis of variance) matrices. LetW = (W1,W2) be an n×m real/complex
Gaussian matrix, and W1 consists of its first p columns and W1 consists of its last q columns. The
eigenvalues of the matrix (W1W

∗
1 +W2W

∗
2 )

−1/2W1W
∗
1 (W1W

∗
1 +W2W

∗
2 )

−1/2 are given by the Jacobi
ensemble.

Given the above setup, we now state the more precise version of Theorem 1.7.

Theorem 7.2. For each n ∈ N, let {λ(n)
i (t)}ni=1 be either the stationary DBM (7.1) with fixed

general potential V satisfying Assumption 7.1, Laguerre process (7.8), or Jacobi process (7.9).
Take n → ∞, with

• lim supm/n < ∞ and lim infm/n > 1 in the Laguerre case;
• lim sup p/n, lim sup q/n < ∞, lim inf p/n > 1, lim inf q/n > 0 in the Jacobi case.

Then we have that {(λ(n)
i (ζt)−E)/χ}∞i=1 converges to ALEβ, under the uniform in compact topology.

Here we take the convention of λ
(n)
i = −∞ for i > n, and E, ζ, χ are as follows:

5Note that compared to the definition of the Jacobi process in [44], here we rescale time by a factor of β.
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DBM: E = Bn1/2, ζ = R−4/3n−1/3, χ = R−2/3n−1/6, where B, R, and ̺V from Assumption 7.1;
Laguerre: E = (

√
m+

√
n)2, ζ = 2−1(

√
m+

√
n)2/3(mn)−1/3, χ = (

√
m+

√
n)4/3(mn)−1/6;

Jacobi: E =

(√
p(m−n)+

√
qn

m

)2

, ζ = (E(1−E))1/3

2(pq(m−n))1/3
n−1/3, χ = (E(1−E))2/3

(pq(m−n))1/6
n−1/6.

The rest of this section is devoted to the proof of this result. We note that, effectively, our proof
also gives a self-contained contruction of ALEβ , which is defined and shown to be the edge limit of
quadratic potential DBM in [64].

7.1. Scaling of particles and Stieltjes transform. Our proof of convergence to ALEβ consists
of the following tasks:

(1) Write out the SDE satisfied by the (rescaled) Stieltjes transform;
(2) Establish tightness of the (rescaled) Stieltjes transform and particles;
(3) Verify Assumption 1.4 and Assumption 1.5 for any subsequential limit.

This subsection is for task (1).
For each one of the three processes, denote the Stieltjes transform

m
(n)
t (z) =

n∑

i=1

1

λ
(n)
i (t)− z

, z ∈ C.

And we let λ̃
(n)
i (t) = (λ

(n)
i (ζt)−E)/χ. We shall define a certain (time-evolving) particle-generated

Nevanlinna function Y
(n)
t with poles {λ̃(n)

i (t)}ni=1, through a rescaling from m
(n)
t ; and as n → ∞,

such Y
(n)
t should converge to Yt in Assumption 1.4 and Assumption 1.5.

In light of the Airy-like property, we will instead work with ∆
(n)
t (w) = Y

(n)
t (w)−√

w, which we
next define for the three cases, respectively.

7.1.1. Scaling of particles and Stieltjes transform.
DBM. We consider the DBM (7.19) with general potential V starting from the stationary dis-

tribution. Then the law of {λ(n)
i (t)/

√
n}ni=1 for every fixed t ∈ R is the β ensemble (7.2). In

light of the measure ̺V , {λ(n)
i (t)}ni=1 for a fixed t should fill in the interval of [A

√
n,B

√
n],

with square root behavior of density near the edges. Take mV as in (7.4). Since E = Bn1/2

and χ = R−2/3n−1/6, χm
(n)
t (E + χw) is approximately by χ

√
nmV (B + n−1/2χw), which equals

−χ
√
nV ′(B)
2 +

√
w +O(n−1/3|w|) according to (7.6). Therefore, we let

∆
(n)
t (w) = χ

(
m

(n)
ζt (E + χw) +

√
nV ′(B)

2

)
−√

w

= χ
(
m

(n)
ζt (E + χw)−√

nmV (B + n−1/2χw)
)
+O(n−1/3|w|).

(7.10)

Then since λ̃
(n)
i (t) = (λ

(n)
i (ζt)− E)/χ = R2/3n1/6λ

(n)
i (tR−4/3n−1/3)−R2/3Bn2/3, we also have

∆
(n)
t (w) +

√
w =

n∑

i=1

1

λ̃
(n)
i (t)− w

+
R−2/3V ′(B)

2
n1/3.

Laguerre. It is known (see e.g., [50]) that the density of {λ(n)
i (t)}ni=1 for a fixed t is approximated

by the (rescaled) Marchenko-Pastur law

(7.11) ̺(n)mp(x) =

√
(x− E−)(E+ − x)

2πx
,
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supported on the interval [E−, E+], where E− = (
√
m−√

n)2 and E+ = E = (
√
m−√

n)2. Taking
its Stieltjes transform we get

m(n)
mp(z) =

ˆ

̺
(n)
mp(x)dx

x− z
=

−(z −m+ n) +
√
(z − (m+ n))2 − 4mn

2z
,

which should approximate m(n)(z). In particular, we have m
(n)
mp(E) = −

√
n√

m+
√
n
. In light of this,

we rescale m
(n)
t (z) in time by ζ and in space by χ, and denote

∆
(n)
t (w) = χ

(
m

(n)
ζt (E + χw) +

√
n√

m+
√
n

)
−√

w.

Then we have

∆
(n)
t (w) +

√
w =

n∑

i=1

1

λ̃
(n)
i (t)− w

+
χ
√
n√

m+
√
n
.

Jacobi. By e.g., [51], the density of {λ(n)
i (t)}ni=1 for a fixed t is approximated by the following law:

(7.12) ̺
(n)
Ja (x) =

m
√
(x − E−)(E+ − x)

2πx(1− x)
,

supported on the interval [E−, E+], whereE− =

(√
p(m−n)−√

qn

m

)2

andE+ = E =

(√
p(m−n)+

√
qn

m

)2

.

Taking its Stieltjes transform we get

m
(n)
Ja (z) =

ˆ

̺
(n)
Ja (x)dx

x− z
=

−(mz − 2nz + n− p) +
√
(mz + n− p)2 − 4znq

2z(1− z)
,

which should approximate m(n)(z). In particular, we have m
(n)
Ja (E) = −mE−2nE+n−p

2E(1−E) . Thus we

denote

∆
(n)
t (w) = χ

(
m

(n)
ζt (E + χw) +

mE − 2nE + n− p

2E(1− E)

)
−√

w,

and we have

∆
(n)
t (w) +

√
w =

n∑

i=1

1

λ̃
(n)
i (t)− w

+
χ(mE − 2nE + n− p)

2E(1− E)
.

Now we have defined the rescaled particles and Stieltjes transform. In the rest of this section,

unless otherwise noted, all the notations set up above ({λ̃(n)
i (t)}i∈N,t∈R and {∆(n)

t (w)+
√
w}w∈H,t∈R,

etc.) refer to any one of the three above cases.

7.1.2. Rescaled SDE and error terms. We now present the SDE satisfied by ∆
(n)
t .

Proposition 7.3. The following SDE is satisfied:

(7.13) d∆
(n)
t (w) = dM

(n)
t (w) +

2− β

2β
∂2
w(∆

(n)
t (w) +

√
w) +

1

2
∂w(∆

(n)
t (w) +

√
w)2 − 1

2
+ E(n)

t (w).

Here E(n)
t (w) is some error term, and M

(n)
t (w) is the Martingale term, with quadratic variation

given by

(7.14)
d

dt
〈M (n)

t (w),M
(n)
t (w′)〉 = 2

β

n∑

i=1

1

(λ̃
(n)
i (t)− w)2(λ̃

(n)
i (t)− w′)2

+ Ê(n)
t (w,w′),
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for any w,w′ ∈ H, where Ê(n)
t (w,w′) is some other error term.

These error terms satisfy the following estimates. Take any compact K ⊂ H. For any w,w′ ∈ K,
there is

(7.15) |E(n)
t (w)|, |∂wE(n)

t (w)| . n−1/3(1 + |∆(n)
t (w) +

√
w|)2,

and

(7.16) |Ê(n)
t (w,w′)|, |∂w∂w′ Ê(n)

t (w,w′)| . n−2/3(1 + |∆(n)
t (w) +

√
w|),

where all the constants behind . can depend on K.

To draw connection with Assumption 1.5, we note that the quadratic variation of the Martingale
term can also be written as

(7.17)
d

dt
〈M (n)

t (w)〉 = 1

3β
∂3
w(∆

(n)
t (w) +

√
w) + Ê(n)

t (w,w),

and

(7.18)
d

dt
〈M (n)

t (w),M
(n)
t (w′)〉 = 2

β
∂w ∂w′

(
(∆

(n)
t (w) +

√
w)− (∆

(n)
t (w′) +

√
w

′
)

w − w′

)
+ Ê(n)

t (w,w′),

for w 6= w′.

Proof of Proposition 7.3. We prove this for the cases respectively. Constants in all . in this proof
are allowed to depend on K.

DBM. For simplicity, below, we only consider the stationary DBM in (7.1) with V (x) = x2/4.
The same arguments apply to any potential satisfying Assumption 7.1, essentially verbatim. More

precisely, we now consider {λ(n)
i (t)}ni=1 satisfying

dλ
(n)
i (t) =

√
2

β
dBi(t) +

∑

1≤j≤n
j 6=i

dt

λ
(n)
i (t)− λ

(n)
j (t)

− 1

2
λ
(n)
i (t)dt,(7.19)

with the law of {λ(n)
i (t)}ni=1 for every fixed t ∈ R being the Hermite/Gaussian β ensemble. In this

setting, ∆
(n)
t (w) from (7.10) simplifies as

∆
(n)
t (w) = n−1/6(m

(n)

tn−1/3(2
√
n+ wn−1/6) +

√
n)−√

w.

By Itô’s formula, m
(n)
t (z) satisfies a Burgers type SDE on H:

dm
(n)
t (z) = −

n∑

i=1

dλ
(n)
i (t)

(λ
(n)
i (t)− z)2

+

n∑

i=1

d〈λ(n)
i (t)〉

(λ
(n)
i (t)− z)3

= −
√

2

β

n∑

i=1

dBi(t)

(λ
(n)
i (t)− z)2

+
1

2
∂z((m

(n)
t )2(z) + zm

(n)
t (z))dt+

2− β

2β
∂2
z m

(n)
t (z)dt,

(7.20)



38 ALEβ VIA POLE EVOLUTION

where the last line follows from the fact that

n∑

i=1

1

(λ
(n)
i (t)− z)2


∑

j:j 6=i

1

λ
(n)
i (t)− λ

(n)
j (t)

− λ
(n)
i (t)

2




=
1

2

n∑

i6=j

(
1

(λ
(n)
i (t)− z)2

1

λ
(n)
i (t)− λ

(n)
j (t)

+
1

(λj(t)− z)2
1

λ
(n)
j (t)− λ

(n)
i (t)

)
− 1

2
z ∂z mt(z)−

1

2
mt(z)

= −1

2

∑

i6=j

λ
(n)
i (t)− z + λj(t)− z

(λ
(n)
i (t)− z)2(λ

(n)
j (t)− z)2

− 1

2
z ∂z m

(n)
t (z)− 1

2
m

(n)
t (z)

= −
∑

i6=j

1

(λ
(n)
i (t)− z)(λ

(n)
j (t)− z)2

= −1

2
∂z((m

(n)
t )2(z) + zm

(n)
t (z)) +

n∑

i=1

1

(λ
(n)
i (t)− z)3

.

We can rewrite (7.20) as (7.13), with

E(n)
t (w) =

1

2n1/3
∂w

(
w(∆

(n)
t (w) +

√
w)
)
, Ê(n)

t (w,w′) = 0.

Using Lemma 2.2, we can bound the error term E(n)
t (w) and its derivative by

|E(n)
t (w)| . |w|Im[∆

(n)
t (w) +

√
w]

Im[w]n1/3
+

|∆(n)
t (w) +

√
w|

n1/3
,

|∂wE(n)
t (w)| . |w|Im[∆

(n)
t (w) +

√
w]

Im[w]2n1/3
+

Im[∆
(n)
t (w) +

√
w]

Im[w]n1/3
.

Laguerre. By Ito’s formula, (7.7) implies that on H,

(7.21) dm
(n)
t (z)

= − 2√
β

N∑

i=1

√
λ
(n)
i (t)dBi(t)

(λ
(n)
i (t)− z)2

+∂z(z(m
(n)
t )2(z)+(z−m+n)m

(n)
t (z))dt+

4− 2β

β

N∑

i=1

λ
(n)
i (t)dt

(λ
(n)
i (t)− z)3

.

With rescaling, we can rewrite (7.21) as

χdm
(n)
ζt (E + χw) = −

√
2√

β(
√
m+

√
n)

n∑

i=1

(E + χλ̃
(n)
i (t))1/2dBi(t)

(λ̃
(n)
i (t)− w)2

+ζ ∂w((E + χw)(m
(n)
ζt )2(E + χw) + (χw + 2

√
n(
√
m+

√
n))m

(n)
ζt (E + χw))dt

+
2− β

βE

N∑

i=1

(E + χλ̃
(n)
i (t)))dt

(λ̃
(n)
i (t)− w)3

.

(7.22)

Letting M
(n)
t (w) be the first term in the RHS. Its quadratic variation is then given by

d

dt
〈M (n)

t (w),M
(n)
t (w′)〉 = 2

β(
√
m+

√
n)2

n∑

i=1

E + χλ̃
(n)
i (t)

(λ̃
(n)
i (t)− w)2(λ̃

(n)
i (t)− w′)2

=
2

β

n∑

i=1

1

(λ̃
(n)
i (t)− w)2(λ̃

(n)
i (t)− w′)2

+ Ê(n)
t (w,w′),
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with

Ê(n)
t (w,w′) =

2

β(
√
m+

√
n)2

n∑

i=1

χλ̃
(n)
i (t)

(λ̃
(n)
i (t)− w)2(λ̃

(n)
i (t)− w′)2

.
Im[∆

(n)
t (w) +

√
w]|w′|

n2/3Im[w]Im[w′]2
,

where we used |λ̃(n)
i (t)−w′| ≥ Im[w′] and Im[∆

(n)
t (w)+

√
w]

Im[w] =
∑n

i=1
1

|λ̃(n)
i (t)−w|2

. This gives the desired

bound for |Ê(n)
t (w,w′)|. Similarlly we can bound |∂w∂w′ Ê(n)

t (w,w′)|.
We next bound E(n)

t (w) and its derivative. We can write the second term in the RHS of (7.22)
as I + II:

I = ζ ∂w

(
E + χw

χ2
(∆

(n)
t (w) +

√
w)2 +

(
χ
√
n√

m+
√
n

)2
w

χ
− χ

√
n√

m+
√
n
w

)

= ζ ∂w

(
E + χw

χ2
(∆

(n)
t (w) +

√
w)2

)
− 1

2
=

1

2
∂w(∆

(n)
t (w) +

√
w)2 − 1

2
+ E(n),I

t (w),

II = ζ ∂w

((
−2

√
n(E + χw)

χ(
√
m+

√
n)

+
2
√
n(
√
m+

√
n)

χ
+ w

)
(∆

(n)
t (w) +

√
w)

)
= E(n),II

t (w).

And the third term in the RHS of (7.22) can be written as

III =
2− β

βE

n∑

i=1

(E + χλ̃
(n)
i (t))dt

(λ̃
(n)
i (t)− w)3

=
2− β

β

n∑

i=1

dt

(λ̃
(n)
i (t)− w)3

+ E(n),III
t (w).

And E(n)
t (w) = E(n),I

t (w) + E(n),II
t (w) + E(n),III

t (w). We have that

E(n),I
t (w) = ∂w

(
ζw

χ
(∆

(n)
t (w) +

√
w)2
)

.
|∆(n)

t (w) +
√
w|2 + |w|| ∂w(∆

(n)
t (w) +

√
w)2|

n1/3

.
1

n1/3

(
|∆(n)

t (w) +
√
w|2 + |w||∆(n)

t (w) +
√
w| Im[∆

(n)
t (w) +

√
w]

Im[w]

)
,

E(n),II
t (w) = ζ ∂w

(
(
√
m−√

n)w√
m+

√
n

(∆
(n)
t (w) +

√
w)

)

.
|∆(n)

t (w) +
√
w|

n1/3
+

|w|| ∂w(∆
(n)
t (w) +

√
w)|

n1/3
.

|∆(n)
t (w) +

√
w|

n1/3
+

|w|Im[∆
(n)
t (w) +

√
w]

n1/3Im[w]
,

E(n),III
t (w) =

2− β

βE

n∑

i=1

χλ̃
(n)
i (t)dt

(λ̃
(n)
i (t)− w)3

.
1

n2/3

n∑

i=1

|λ̃(n)
i (t)− w| + |w|
|λ̃(n)

i (t)− w|3
.

Im[∆
(n)
t (w) +

√
w]|w|

n2/3Im[w]2
.

These together give the bound for |E(n)
t (w)|. Similarly we can get the same bound for |∂wE(n)

t (w)|.
Jacobi. By Ito’s formula, from (7.9) we get

(7.23) dm
(n)
t (z) = − 2√

β

N∑

i=1

√
λ
(n)
i (t)(1 − λ

(n)
i (t))dBi(t)

(λ
(n)
i (t)− z)2

+ ∂z(z(1− z)(m
(n)
t )2(z) + (mz − 2nz + n− p)m

(n)
t (z))dt+

4− 2β

β

N∑

i=1

λ
(n)
i (t)(1 − λ

(n)
i (t))dt

(λ
(n)
i (t)− z)3
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The remaining arguments follow from computations analogous to the Laguerre case, and we omit
the details. �

7.2. Tightness. This subsection is for the remaining tasks (2) and (3), i.e., tightness and verifying
assumptions. They can be summarized as the following statement

Proposition 7.4. For any sequence of integers → ∞, we can take a subsequence n1 < n2 < · · · ,
such that as k → ∞, {∆(nk)

t (w) +
√
w}w∈H,t∈R and {λ̃(nk)

i (t)}i∈N,t∈N converge jointly under the

uniform in compact topology. Moreover, the limit of {∆(nk)
t (w)+

√
w}w∈H,t∈R is particle-generated,

satisfying Assumption 1.4 and Assumption 1.5, with the limit of {λ̃(nk)
i (t)}i∈N,t∈N being the poles.

This proposition, together with Theorem 1.6, implies Theorem 7.2.
The proof of this tightness result has two components. First, since all the three processes in

Theorem 7.2 are stationary, a single time slice is described by the corresponding β-ensemble. The
tightness at one time is established, thanks to the results from [26], which also verify Assump-
tion 1.4. Second, we check the tightness of the Stieltjes transform over a time interval, and verify
Assumption 1.5. These are achieved using the SDE (7.13).

7.2.1. Tightness at one time. We now show that for fixed time t, ∆
(n)
t (w)+

√
w converges as n → ∞

to a particle-generated Nevanlinna function along subsequences, and verify Assumption 1.4. We

note that along this procedure we also get the tightness of {λ̃(n)
i (t)}i∈N at fixed t, which has already

been proven to converge to the eigenvalues of the β stochastic Airy operator, in e.g., [73, 96, 112].

Proposition 7.5. For any fixed t ∈ R, and any sequence of integers → ∞, we can take a subse-

quence n1 < n2 < · · · , such that {∆(nk)
t (w) +

√
w}w∈H (under the uniform in compact topology)

and {λ̃(nk)
i (t)}i∈N converge jointly as k → ∞. Besides, the limit of {∆(nk)

t (w)+
√
w}w∈H is (d, C∗)-

Airy-like, with the limit of {λ̃(nk)
i (t)}i∈N being its poles. Here d is a universal constant, and C∗ is

random with law independent of the subsequence or t.

The following lemma states that ∆
(n)
t satisfies similar statements as being Airy-like.

Lemma 7.6. For any ε > 0, there exists a large constant C > 0, such that for any t ∈ R, the
following holds with probability 1− ε:

• the particles are bounded above, i.e., λ̃
(n)
1 (t) ≤ C;

• for any w = a+ ib with |w| ≤ n1/6 and b ≥ C
√
a ∨ 0 + 1, it holds

|∆(n)
t (w)| ≤ CIm[

√
w]1/2

Im[w]
.(7.24)

Before providing its proof, we derive Proposition 7.5 from it.

Proof of Proposition 7.5. First we show tightness of ∆
(n)
t (w)+

√
w. For this, note that ∆

(n)
t (w)+

√
w

is holomorphic in H, so it suffices to show that for any fixed compact subset K ⊂ H, |∆(n)
t (w)+

√
w|

is uniformly bounded in K.
Take any ǫ > 0. Let δ > 0 small enough depending on ǫ, and that K ⊂ {w = a + bi : |a| ≤

1/δ, δ ≤ b ≤ 1/δ}. Then (7.24) implies that (with probability 1− ε),

|∆(n)
t (a+ i/δ) +

√
a+ i/δ| ≤ |a+ i/δ|1/4

δ
+ |a+ i/δ|1/2 <

2

δ5/4
,(7.25)
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for |a| ≤ 1/δ. Using Lemma 2.2, we have

− ∂w log |∆(n)
t (w) +

√
w| ≤ 1

Im[w]
.

By integrating this expression from w = a+ i/δ to w = a+ bi, we conclude that

|∆(n)
t (a+ bi) +

√
a+ bi| ≤ 1

bδ
|∆(n)

t (a+ i/δ) +
√
a+ i/δ| ≤ 2

bδ9/4
.(7.26)

This implies that with probability 1− ε, |∆(n)
t (w) +

√
w| is uniformly bounded in K.

Now by taking a subsequence, we have the convergence of ∆
(nk)
t (w) +

√
w. By Lemma 2.7 and

Lemma 2.8, the limit is particle-generated. By Lemma 7.6, and taking a further subsequence,
the limit is (d, C∗)-Airy-like as asserted, and in particular, has infinitely many poles. Then by

Lemma 2.7 and Lemma 2.8 again, we have that for each i ∈ N, λ̃
(nk)
i (t) converges as k → ∞, and

these give all the poles. �

In the rest of this subsection, we derive Lemma 7.6 from an optimal local law for β-ensembles,
proved in [26].

Theorem 7.7. [26, Corollary 1.6, Proposition 2.5 and Proposition 3.5] We consider β-ensemble
x1 ≥ · · · ≥ xn whose distribution density is given by (7.2), with potential V (x) satisfying Assump-
tion 7.1. Denote

sn(z) =
1

n

n∑

i=1

1

xi − z
, mV (z) =

ˆ

dµV (x)

x− z
.

There exist η > 0, and C > 0 such that for any q ≥ 1 and n ≥ 1, the following holds

(1) For any 0 ≤ u ≤ n2/3, it holds that

P(∃k ∈ J1, nK, xk 6∈ [A− un−2/3, B + un−2/3]) ≤ Ce−u3/4/C .

(2) For any z ∈ H, with A− η ≤ Re[z] ≤ B + η and 0 < Im[z] ≤ η,

E[|sn(z)−mV (z)|q] ≤
(Cq)2q

(nIm[z])q
.

For z ∈ H with κ = |Re[z]−A|∧ |Re[z]−B|, 0 < Im[z] ≤ η, and Cq1/2/(n
√
κ) ≤ Im[z] ≤ κ,

E[|sn(z)−mV (z)|2q] ≤
(Cq)2q

(nIm[z])4qκq
+

(Cq)q

n2q(κIm[z])q
+

(Cq)2q

n2qκq

Remark 7.8. According to the proofs in [26] (see [26, Section 2.1 and Remark 2.4]), for Theorem 7.7
to hold, Assumption 7.1 on the potential V (x) can be relaxed to the following statements:

• V (x) is analytic in Ω, which is a simply connected open subset of C, containing an interval
[A,B].

• There is a unique µV given by (7.3), where the minimization is taken over all probability
measures on R ∩ Ω. Moreover, µV has density ̺V whose support is [A,B], and has square
root singularities at A and B (with coefficients RA/π > 0 and R/π = RB/π > 0).

• (7.5) and (7.6) hold, and the function r(z) there is analytic and nonzero in Ω.

Besides, Theorem 7.7 remains valid if V = Vn depends on n, provided that the above conditions
are satisfied quantitatively and uniformly for each Vn. Specifically, there exists a constant C > 0
(independent of n) such that

• |A|, |B| < C, |B −A| > C−1;
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• for any z ∈ Ω, C−1 < |r(z)| < C (note that this implies uniform bounds of RA and RB);
• Ω (which may depend on n) contains the C−1 neighborhood of [A,B];
• the constants in O in (7.5) and (7.6) are < C.

Under these assumptions, the original proof in [26] applies without modification, ensuring that
Theorem 7.7 remains valid.

With these extensions, we can now address both the Laguerre and Jacobi cases. More precisely,
in the Laguerre case, (upon a rescaling of particles to constant order) we have

V (x) = Vn(x) = −m− n+ 1− 2/β

n
log(x) + x,

and

A = (
√
(m+ 1− 2/β)/n− 1)2, B = (

√
(m+ 1− 2/β)/n+ 1)2,

̺V (x) = ̺Vn(x) =

√
4(m+ 1− 2/β)n− (xn− (m+ n+ 1− 2/β))2

2πxn
.

See e.g., [50]. Note that this ̺V is approximately a rescaling of ̺
(n)
mp from (7.11). Moreover, we have

r(z) =
2mV (z) + V ′(z)

2
√
(z −A)(z −B)

=
1

2z
.

In the Jacobi case, we have

V (x) = Vn(x) = −p− n+ 1− 2/β

n
log(x) − q − n+ 1− 2/β

n
log(1− x),

and

A =

(√
(p+ 1− 2/β)(m− n+ 2− 4/β)−

√
(q + 1− 2/β)n

m+ 2− 4/β

)2

,

B =

(√
(p+ 1− 2/β)(m− n+ 2− 4/β)−

√
(q + 1− 2/β)n

m+ 2− 4/β

)2

,

̺V (x) = ̺Vn(x) =
(m+ 2− 4/β)

√
(x −A)(B − x)

2πx(1− x)n
.

See e.g., [51]. Note that this ̺V is approximately a rescaling of ̺
(n)
Ja from 7.12. Moreover, we have

r(z) =
2mV (z) + V ′(z)

2
√
(z −A)(z − B)

=
(m+ 2− 4/β)

2z(1− z)n
.

In both cases, it is evident that the above conditions are satisfied, under the limiting scheme specified
in Theorem 7.2.

Theorem 7.7 can be translated into the following estimates of λ̃
(n)
1 (t) and ∆

(n)
t (w).

Lemma 7.9. There exists C > 0 such that (for any n ∈ N and t ∈ R) the following holds:

(1) For any 0 < u = O(n2/3), it holds that

P(λ̃
(n)
1 (t) > u) ≤ Ce−u3/4/C .(7.27)
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(2) For any q ≥ 1 and w = a+ ib with |w| = O(n2/3),

E[|∆(n)
t (w) +O(n−1/3|w|)|q ] ≤ (Cq)2q

bq
,(7.28)

and when Cq1/2/
√
a ≤ b ≤ a,

E[|∆(n)
t (w) +O(n−1/3|w|)|2q ] ≤ (Cq)2q

b4qaq
+

(Cq)q

(ab)q
+

(Cq)2q

n2q/3aq
.(7.29)

Proof. We prove the statement for the DBM with general potential, and the other two cases can
be proven in the same way (since Theorem 7.7 also applies, as discussed in Remark 7.8).

For the stationary DBM of (7.1), the rescaled particles (λ
(n)
1 (t)/

√
n, λ

(n)
2 (t)/

√
n, · · · , λ(n)

n (t)/
√
n)

follow the β-ensemble (7.2) with potential V (x). The first statement (7.27) follows the first state-
ment of Theorem 7.7. We recall from (7.10) that

∆
(n)
t (w) = χ

(
m

(n)
ζt (E + χw)−√

nmV (B + n−1/2χw)
)
+O(n−1/3|w|).(7.30)

Note that m
(n)
ζt (E + χw) has the same law as

√
nsn((E + χw)/

√
n) in Theorem 7.7. Then (7.28)

and (7.29) follow from the second statement of Theorem 7.7 and (7.30). �

Proof of Lemma 7.6. The estimate on λ̃
(n)
1 (t) follows from (7.27).

In the following we prove (7.24). We denote w = z2, z = κ + iη with κ ≥ 0. Then a = κ2 − η2

and b = 2κη. Take K > 0 large enough depending on ε. Then (7.24) follows from the following two
statements:

(1) Denote D1 = {κ + iη : η ≥ K,K/η ≤ κ ≤ 10η}. It holds with probability 1 − ε/2 that

|∆(n)
t (w)| ≤ C/(κ

√
η) uniformly for

√
w ∈ D1, |w| ≤ n1/6.

(2) Denote D2 = {κ+ iη : η ≥ K,κ ≥ 10η}. It holds with probability 1− ε/2 that |∆(n)
t (w)| ≤

C/(κ
√
η) uniformly for

√
w ∈ D2, |w| ≤ n1/6.

We first prove (1). For κ ≤ 10η, by taking q =
√
u/(Ce) in (7.28), Markov’s inequality implies

P

(
|∆(n)

t (w)| ≥ u

κη
+

C|w|
n1/3

)
≤ e−2

√
u/(Ce), u ≥ 1.(7.31)

By taking u =
√
η/4 in (7.31), and noticing that for |w| ≤ n1/6, C|w|/n1/3 ≤ 1/(2κ

√
η),

P

(
|∆(n)

t (w)| ≥ 1

κ
√
η

)
≤ e−η1/4/(Ce)(7.32)

We take a lattice L1 = {(κ+ iη ∈ D1 : η = j1/3, j ∈ N, κ ∈ N/η2}, which is a discretization of D1.

By an union bound using (7.32), we have that |∆(n)
t (w)| ≤ 1/(κ

√
η) for each w ∈ L1, |w| ≤ n1/6,

except for an event with probability
∞∑

j=⌈K3⌉
10je−j1/12/(Ce) ≤ ε/2.

By our construction of the lattice L1, for any κ+ iη ∈ D1, there exists some κ′ + iη′ ∈ L1 such that
|(κ+ iη)− (κ′ + iη′)| . η−2. By Lemma 2.2 we have

| ∂w(∆
(n)
t (w) +

√
w)| ≤ Im[∆

(n)
t (w) +

√
w]

Im[w]
(7.33)
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Using (7.33), via an argument similar to the proof of Proposition 3.3, the estimates for points in
the lattice L1 extend to all points in the domain D1, implying (1).

Now consider (2). For κ/10 ≥ η ≥ K,κ2η ≥ Cq1/2, and |w| ≤ n1/6, (7.29) simplifies to

E[|∆(n)
t (w) +O(|w|n−1/3)|2q] ≤ (Cq)2q

(κη)2qκ2q
.(7.34)

By taking q = κ
√
η/(2Ce), and using that C|w|/n1/3 ≤ 1/(2κ

√
η) for |w| ≤ n1/6, Markov’s inequal-

ity implies

P

(
|∆(n)

t (w)| ≥ 1

κ
√
η

)
≤ e−2q = e−κ

√
η/(Ce).(7.35)

Then (2) follows by first taking an union bound of (7.35) over the lattice {(κ + iη ∈ D2 : κ =
j1/3, j ∈ N, η ∈ N/κ2}, and (as before) using (7.33) to extend the estimates for all points in D2. �

7.2.2. Tightness as time dependent processes. The claim of Proposition 7.4 follows from the follow-
ing tightness statements.

Lemma 7.10. For any T > 0 and compact K ⊂ H, both {M (n)
t (w) − M

(n)
−T (w)}t∈[−T,T ],w∈K and

{∆(n)
t (w)}t∈[−T,T ],w∈K are tight as n → ∞ .

Assuming this, we now prove the (subsequential) convergence announced at the beginning of this
subsection.

Proof of Proposition 7.4. Using Lemma 7.10, and the Skorokhod representation theorem, we can

take a subsequence, n1 < n2 < · · · , such that almost surely, as k → ∞, {∆(nk)
t (w) +

√
w}t∈R,w∈H

converges (uniformly in compact sets) to a random process {Yt(w)}t∈R,w∈H, and {M (nk)
t (w)}t∈R,w∈H

also converges to a random process {Mt(w)}t∈R,w∈H. Both convergences are under the uniform in
compact topology.

Moreover, using Proposition 7.5, and by passing to a further subsequence, we can assume that
for each rational t, Yt is (d, C∗,t)-Airy-like, where d is a universal constant, and {C∗,t}t∈Q is a tight

family of random variables; and {λ̃(nk)
i (t)}i∈N converges almost surely to {λi(t)}i∈N, which are the

poles of Yt. (Note that here we cannot derive the same for all t ∈ R, as Lemma 7.6 is not uniform
in t.)

From the continuity of Yt in t, we can deduce that Yt is particle-generated from each t ∈ R, by
Lemma 2.7 and Lemma 2.8.

Verify limiting SDE. From its construction we see that Yt satisfies Assumption 1.4. Next, we
check that Assumption 1.5 is also satisfied, i.e., we verify (1.6), (1.7), and (1.8).

We can deduce the following uniform in compact convergence:

• ∂3
w(∆

(nk)
t (w) +

√
w) → ∂3

w Yt(w).

• ∂w ∂w′

(
(∆

(nk)
t (w)+

√
w)−(∆

(nk)
t (w′)+

√
w′)

w−w′

)
→ ∂w ∂w′

(
Yt(w)−Yt(w

′)
w−w′

)
, with the space of (w,w′)

being {(w,w′) ∈ H2, w 6= w′}.
Both of these convergences follow from the uniform in compact convergence of ∆

(nk)
t (w) +

√
w,

and using Cauchy’s integral formula (and taking contour integrals around w and w′) to compute
the derivatives via taking a contour integral around w. Then from (7.17) and (7.18), and that

|Ê(nk)
t (w,w′)| → 0 by Proposition 7.3, we get (1.7) and (1.8).
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Now in (7.13), from the uniform in compact convergence of ∆
(nk)
t (w) +

√
w, we can deduce the

following uniform in compact convergence:

• ∂2
w(∆

(n)
t (w) +

√
w) and ∂w(∆

(n)
t (w) +

√
w)2 converge to ∂2

w Yt(w) and ∂w Yt(w)
2, respec-

tively. This again follows by using Cauchy’s integral formula, to compute the derivatives
via taking a contour integral around w.

Then since |E(nk)
t (w)| → 0 by Proposition 7.3, we get (1.6).

Uniform convergence. Now by Corollary 3.2, the poles of {Yt}t∈R give a line ensemble, which
we denote by {λi(t)}i∈N,t∈R. We note that this is consistent with the previously defined {λi(t)}i∈N

for rational t.
Take T > 0. We next show that almost surely, for each i ∈ N, λ

(nk)
i (t) → λi(t) as k → ∞,

uniformly in [−T, T ].
First, from Corollary 3.2, there exists a random and large enough numberX > maxt∈[−T,T ] λ1(t)+

1, and maxt∈[−T,T ] Im[Yt(X+i)] < 0.01. Then by the uniform in compact convergence of {∆(nk)
t (w)+

√
w}t∈R,w∈H, for k large enough, we have maxt∈[−T,T ] Im[∆

(nk)
t (X + i) +

√
X + i] < 0.02, therefore

X 6∈ {λ(nk)
i (t)}i∈N for any t ∈ [−T, T ]. On the other hand, by the convergence of λ

(nk)
1 (0) → λi(0),

for k large enough, we have λ
(nk)
1 (0) < X . Thus, maxt∈[−T,T ] λ

(nk)
1 (t) < X whenever k is large

enough.

Suppose that for some i ∈ N, λ
(nk)
i (t) does not uniformly converge to λi(t) in [−T, T ] (as k → ∞).

Then there is a sequence t1, t2, · · · , limk→∞ tk = t0 ∈ [−T, T ], such that as k → ∞, λ
(nk)
i (tk) does

not converge to λi(t0).

However, by the uniform (in t and w) convergence of ∆
(n)
t (w) +

√
w to Yt(w), we have that

limk→∞ ∆
(nk)
t (w) +

√
w = Yt0(w), uniformly for w in any compact subset of H. With the upper

bound of λ
(nk)
1 (tk) < X , by Lemma 2.7 and Lemma 2.8 we have that limk→∞ λ

(nk)
i (tk) = λi(t0) for

each i ∈ N, thereby arriving at a contradiction. �

Proof of Lemma 7.10. Take p to be a large constant. In this proof, all the constants in . and O(·)
can depend on K, T , and p.

We start with the martingale terms. From (7.14), we have
∣∣∣∣
d

dt
〈M (n)

t (w)〉
∣∣∣∣ ≤

2

β

n∑

i=1

1

|λ̃(n)
i (t)− w|4

+ |Ê(n)
t (w,w)| ≤ 2

β
· Im[∆

(n)
t (w) +

√
w]

Im3[w]
+ |Ê(n)

t (w,w)|,

and ∣∣∣∣
d

dt
〈M (n)

t (w) −M
(n)
t (w′)〉

∣∣∣∣

≤ 2

β

n∑

i=1

|w − w′|2|λ̃(n)
i (t)− w + λ̃

(n)
i (t)− w′|2

|λ̃(n)
i (t)− w|4|λ̃(n)

i (t)− w′|4
+ |Ê(n)

t (w,w) − 2Ê(n)
t (w,w′) + Ê(n)

t (w′, w′)|

≤ 2

β
|w − w′|2

(
Im[∆

(n)
t (w) +

√
w]

Im3[w]Im2[w′]
+

Im[∆
(n)
t (w′) +

√
w

′
]

Im2[w]Im3[w′]

)

+ |Ê(n)
t (w,w) − 2Ê(n)

t (w,w′) + Ê(n)
t (w′, w′)|,

for w 6= w′. Using (7.15) to bound the error terms in the Laguerre and Jacobi cases, we have that

the above two are O(1+ |∆(n)
t (w)+

√
w|) and O(|w−w′|2(1+ |∆(n)

t (w)+
√
w|)), respectively. Then
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thanks to Burkholder-Davis-Gundy inequality, for any w,w′ ∈ K, and −T ≤ t ≤ t′ ≤ T ,

(7.36) E

[∣∣∣M (n)
t′ (w)−M

(n)
t (w)

∣∣∣
p]

. E



∣∣∣∣∣

ˆ t′

t

d〈M (n)
s (w)〉

∣∣∣∣∣

p/2

 . |t′ − t|p/2,

and

(7.37) E

[∣∣∣(M (n)
t (w) −M

(n)
−T (w)) − (M

(n)
t (w′)−M

(n)
−T (w

′))
∣∣∣
p]

. E

[∣∣∣∣
ˆ t

−T

d〈M (n)
s (w)〉 − d〈M (n)

s (w′)〉
∣∣∣∣
p/2
]
. |w − w′|p,

where in the last inequalities we used the above bounds and (7.28).

The tightness of {M (n)
t (w)−M

(n)
−T (w)}t∈[−T,T ],w∈K then follows from these estimates with p > 4

(see e.g., [117, Lemma 5.9], which can be proved by bounding the modulus of continuity via a union
bound across scale, and using e.g., [19, Theorem 7.3]).

We now turn to ∆
(n)
t (w). From the one time tightness in Proposition 7.5, it suffices to derive the

tightness of {∆(n)
t (w) −∆

(n)
−T (w)}t∈[−T,T ],w∈K. From (7.13), and using Lemma 2.2, for any w ∈ K

and −T ≤ t ≤ t′ ≤ T we have

∆
(n)
t′ (w)−∆

(n)
t (w) = M

(n)
t′ (w) −M

(n)
t (w)

+

ˆ t′

t

O
(
1 + |E(n)

s (w)|+ Im[∆
(n)
t (w) +

√
w]

Im[w]2
+

Im[∆
(n)
t (w) +

√
w]|∆(n)

t (w) +
√
w|

Im[w]

)
ds.

Then by (7.16), (7.28), and (7.36), we have

E

[∣∣∣∆(n)
t′ (w) −∆

(n)
t (w)

∣∣∣
p]

. |t′ − t|p/2.

Besides, for any w,w′ ∈ K, for each r = 0, 1, 2 we have

|∂r
w(∆

(n)
t (w) +

√
w)− ∂r

w(∆
(n)
t (w′) +

√
w′)| ≤ (r + 1)!|w − w′|

n∑

i=1

|λ̃(n)
t − w|r + |λ̃(n)

t − w′|r

|λ̃(n)
t − w|r+1|λ̃(n)

t − w′|r+1

≤ (r + 1)!|w − w′|
(
Im[∆

(n)
t (w) +

√
w]

Im[w]r+1
+

Im[∆
(n)
t (w′) +

√
w′]

Im[w′]r+1

)
.

Then from (7.13), using this and (7.16), (7.28), (7.37), we get

E

[∣∣∣(∆(n)
t (w)−∆

(n)
−T (w)) − (∆

(n)
t (w′)−∆

(n)
−T (w

′))
∣∣∣
p]

. |w − w′|p.

Thereby the tightness of {∆(n)
t (w) − ∆

(n)
−T (w)}t∈[−T,T ],w∈K follows, from these moments bounds

with p > 4. �

Appendix A. Particle location and Stieltjes transform

In this appendix we analyze particle-generated Nevanlinna functions. The main objective is to
quantitatively establish the relation between the Airy-like property (from Definition 1.2) and the
locations of the poles. In particular, we will prove Lemma 2.3 in this appendix.

We note that most of the arguments presented here are classical in random matrix theory. Our
starting point is the following relation between any Nevanlinna function and its corresponding
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measure. This relation can be viewed as a version of the Helffer-Sjöstrand formula (see e.g., [55,
Section 11.2]).

A.1. Helffer-Sjöstrand formula. Take any compactly supported smooth test functions f and χ
on R, such that χ = 1 in a neighborhood of 0. Define f̃(x + iy) := (f(x) + iyf ′(x))χ(y). Then for
any λ ∈ R, we have (for ∂ z̄ = 1

2 (∂x +i ∂y))

f(λ) =
1

π

ˆ

R2

∂ z̄ f̃(x+ iy)

λ− x− iy
dxdy,

which further leads to the following statement.

Lemma A.1. Take any Nevanlinna function Y : H → H ∪ R, with Nevanlinna representation

Y (w) = b+ cw +

ˆ

(
1

λ− w
− λ

1 + λ2

)
dµ(λ),

for some b, c ∈ R, c ≥ 0, and µ being a Borel measure on R. Then there is
ˆ

f(λ)dµ(λ) =
2

π

ˆ

x+iy∈H

Re
[
∂ z̄ f̃(x+ iy)Y (x+ iy)

]
dxdy.

These identities are classical and follow directly from standard complex analysis arguments; see
e.g., [55, Section 11.2]. We omit the proofs here.

A.2. Proof of Lemma 2.3. Our strategy is to extract the particle locations from Y , using
Lemma A.1.

We denote σ = δ/6, and take any s > 0, and a smooth test function f = f (s) : R → R≥0,
satisfying

• f = 1 on [−s2/3,K];
• f = 0 on R \ [−s−σ − s2/3, 2K];
• |f ′| . sσ and |f ′′| . s2σ on [−s−σ − s2/3, s2/3];
• |f ′| . 1 and |f ′′| . 1 on [K, 2K].

We next prove

(A.1)

∣∣∣∣∣

∞∑

i=1

f(xi)−
1

π

ˆ

R+

f(−x)
√
xdx

∣∣∣∣∣ . K4s1/3−σ.

for any s > 10K3. Then by the assumption that x1 ≤ K, and (2.5), the estimate Lemma 2.3
follows.

Take another smooth test function χ = χ(s) : R → R≥0, with χ = 1 on [−s2/3, s2/3], χ = 0 on

R \ [−s2/3 − 1, s2/3 + 1], and |χ′| . 1 on R. Let f̃(x+ iy) = (f(x) + iyf ′(x))χ(y) for any x, y ∈ R.
Then by Lemma A.1, we have

∞∑

i=1

f(xi(t))−
1

π

ˆ

R+

f(−x)
√
xdx =

2

π

ˆ

x+iy∈H

Re
[
∂ z̄ f̃(x+ iy)(Yt(x+ iy)−

√
x+ iy)

]
dxdy.

(A.2)

Denote Et(x+ iy) := Yt(x+ iy)−√
x+ iy. The RHS of (A.2) decomposes into

− 1

π

ˆ

x+iy∈H

(f ′′(x)yχ(y)Im[Et(x+ iy)] + Im [(f(x) + iyf ′(x))χ′(y)Et(x+ iy)]) dxdy.(A.3)
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The first term. For the term f ′′(x)yχ(y)Im[Et(x + iy)], we note that f ′′ is non-zero only on the
two intervals [−s−σ − s2/3,−s2/3] and [K, 2K].

For the first interval, we break the integral in y into two parts: 0 < y < 4K2s−σ, and y ≥
4K2s−σ. Using that yIm[Yt(x + iy)] is increasing in y (from Lemma 2.2), we have that for any
x ∈ [−s−σ − s2/3,−s2/3] and 0 < y < 4K2s−σ,

yIm[E(x+ iy)] < yIm[Y (x + iy)] ≤ 4K2s−σIm[Y (x+ 4iK2s−σ)],

which, by the second condition of Y , is further bounded by (using that σ ≤ δ/3 and s > K3)

4K2s−σ
√

|x+ 4iK2s−σ|+ |x+ 4iK2s−σ|(1−δ)/2 . K2s1/3−σ.

It follows that (using |f ′′| . s2σ)

1

π

ˆ 4K2s−σ

0

ˆ −s2/3

−s−σ−s2/3
|f ′′(x)|yχ(y)Im[Et(x+ iy)]dxdy . K4s1/3−σ.

For integrating over y ≥ 4K2s−σ, we perform an integration by parts in x, and get

1

π

ˆ ∞

4K2s−σ

ˆ −s2/3

−s−σ−s2/3
f ′′(x)yχ(y)Im[E(x+ iy)]dxdy

=
1

π

ˆ ∞

4K2s−σ

ˆ −s2/3

−s−σ−s2/3
f ′(x)yχ(y)Im[∂x E(x+ iy)]dxdy

=
1

π

ˆ ∞

4K2s−σ

ˆ −s2/3

−s−σ−s2/3
f ′(x)yχ(y)Re[∂y E(x+ iy)]dxdy.

Via another integration by parts in y, this equals

1

π

ˆ −s2/3

−s−σ−s2/3
f ′(x)yχ(y)Re[E(x+ iy)]dx

∣∣∣∣
y=4K2s−σ

− 1

π

ˆ ∞

4K2s−σ

ˆ −s2/3

−s−σ−s2/3
f ′(x) ∂y(yχ(y))Re[E(x+ iy)]dxdy.

The first line above is bounded (using the second condition of Y ) by

1

π
|s−σ + s2/3 + 4iK2s−σ|(1−δ)/2 . s(1−δ)/3;

and as for the second line, its absolute value is bounded by

1

π

ˆ ∞

4K2s−σ

|∂y(yχ(y))|
|s−σ + s2/3 + iy|(1−δ)/2

y
dy . s(1−δ)/3

ˆ ∞

4K2s−σ

|∂y(yχ(y))|
y

dy . s1/3−σ,

where the last inequality holds whenever σ ≤ δ/6.
For the integral of f ′′(x)yχ(y)Im[Et(x + iy)] for x ∈ [K, 2K], we similarly break the integral in

y into two parts: 0 < y < 4K2 and y ≥ 4K2. Using that yIm[Yt(x + iy)] is increasing in y (from
Lemma 2.2), we have that for any x ∈ [K, 2K] and 0 < y < 4K2,

yIm[E(x+ iy)] < yIm[Y (x+ iy)] ≤ 4K2Im[Y (x+ 4iK2)] . K3,
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where we used the second condition of Y for the last inequality. Therefore (using |f ′′| . 1 on
[K, 2K]) we have

1

π

ˆ 4K2

0

ˆ 2K

K

|f ′′(x)|yχ(y)Im[Et(x+ iy)]dxdy . K6.

For integrating over y ≥ 4K2, using a similar integration by parts procedure, we get

1

π

ˆ 2K

K

f ′(x)yχ(y)Re[E(x + iy)]dx

∣∣∣∣
y=4K2

− 1

π

ˆ ∞

4K2

ˆ 2K

K

f ′(x) ∂y(yχ(y))Re[E(x+ iy)]dxdy.

Using the second condition of Y , the first line above is . K, and the absolute value of the second
line is bounded by (using again σ ≤ δ/3)

1

π

ˆ ∞

4K2

|∂y(yχ(y))|
|2K + iy|(1−δ)/2

y
dy . s(1−δ)/3 < s1/3−σ.

The second term. We now consider the term Im [(f(x) + iyf ′(x))χ′(y)Et(x + iy)] in (A.3). Note
that χ′(y) 6= 0 only for y ∈ [s2/3, s2/3 + 1]. For such y and x ∈ [−s−σ − s2/3,−s2/3] ∪ [K, 2K], we
have |E(x + iy)| . s−1/3−δ/3, by the second condition of Y . Therefore,

1

π

ˆ

x+iy∈H

|Im [(f(x) + iyf ′(x))χ′(y)Et(x+ iy)]|dxdy(A.4)

.s−1/3−δ/3

ˆ s2/3+1

s2/3

ˆ

(1 + s2/3|f ′(x)|)|χ′(y)|dxdy . s1/3−δ/3 ≤ s1/3−σ,(A.5)

using σ ≤ δ/3.
In summary, we have proved (A.1) by putting together the above estimates. Thus the conclusion

follows. �
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