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The Competition Complexity of Prophet Secretary∗

Tomer Ezra† Tamar Garbuz‡

Abstract

We study the classic single-choice prophet secretary problem through a resource augmentation lens.
Our goal is to bound the (1− ǫ)-competition complexity for different classes of online algorithms. This
metric asks for the smallest k such that the expected value of the online algorithm on k copies of the
original instance, is at least a (1 − ǫ)-approximation to the expected offline optimum on the original
instance (without added copies).

We consider four natural classes of online algorithms: single-threshold, time-based threshold, activation-
based, and general algorithms. We show that for single-threshold algorithms the (1 − ǫ)-competition
complexity is Θ(ln(1/ǫ)) (as in the i.i.d. case). Additionally, we demonstrate that time-based threshold
and activation-based algorithms (which cover all previous approaches for obtaining competitive-ratios for

the classic prophet secretary problem) yield a sub-optimal (1−ǫ)-competition complexity of Θ
(

ln(1/ǫ)
ln ln(1/ǫ)

)

,

which is strictly better than the class of single-threshold algorithms. Finally, we find that the (1 − ǫ)-
competition complexity of general adaptive algorithms is Θ(

√

ln(1/ǫ)), which is in sharp contrast to
Θ(ln ln(1/ǫ)) in the i.i.d. case.

1 Introduction

One of the most fundamental research directions in mechanism design is the tradeoff between simplicity and
optimality of mechanisms. A canonical example of this tradeoff is the measure of competition complexity in
auctions, originated by Bulow and Klemperer [8] who asked the question of how many additional bidders
are needed to achieve using a simple mechanism the same revenue as the optimal (complicated) auction. In
particular, Bulow and Klemperer [8] showed that when selling a single item to a set of bidders with values
drawn i.i.d. from some regular1 distribution, the (simple) second price auction with an additional bidder
achieves at least the same expected revenue as the optimal distribution-tailored mechanism (the Myerson
auction [29]). This result asserts that recruiting one more bidder is more important (in terms of revenue)
than learning the exact distribution of the values of the bidders and tailoring the auction according to this
information. The work of Bulow and Klemperer [8] inspired a line of work [17, 21, 27, 4, 9, 22, 3, 5, 15, 6]
that studied the competition complexity measure of more evolved scenarios such as auctions to bidders with
independently but not identically distributed values, as well as auctions beyond single-item settings. In
particular, Feldman et al. [21] introduced the combination of competition complexity with approximation
algorithms, where instead of surpassing the revenue of the optimal auction, they aim to use as few as possible
additional bidders in a simple auction to obtain (1− ǫ)-approximation of the expected revenue of the optimal
mechanism.

Most of this line of work focused on two aspects of simple auctions. Namely, auctions that have less
information on the priors (such as the result of Bulow and Klemperer [8]) or auctions that are easy to
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1A distribution with density f and cumulative density F is regular if its virtual value function φ(v) := v −

1−F (v)
f(v)

is

non-decreasing.
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implement computationally (such as selling items separately, or the grand bundle in a second price auction).
However, a key complexity aspect of implementing mechanisms is the requirement to coordinate the bidders
to participate simultaneously.

In this paper, we study the competition complexity measure in online auctions where bidders arrive
sequentially and the seller needs to sell the item in an immediate and irrevocable fashion. Sequential auctions
are well-studied2 and are widely used in practice. Moreover, sequential auctions are likely to attract more
participants as there is no need for coordination between the bidders, and each bidder faces a simple decision
of whether to purchase the item at a take-it-or-leave-it price. Brustle et al. [5] introduced the question of
the competition complexity of dynamic pricing with i.i.d. bidders, and showed that in contrast to [8], the
exact competition complexity of online auctions is unbounded, and analyzed the asymptotic behavior of the
additional amount of bidders needed to achieve (1− ǫ)-approximation of the optimal offline auction. Brustle
et al. [6] extended the result of [5] to the case of independent but not identical bidders that arrive according
to the block arrival model (where they ask how many sequential copies of the original instance are needed
to approximate the expectation of the optimal auction on a single instance). However, the assumption that
participants arrive according to the block arrival model is very restrictive and captures only a few real-life
scenarios.

The research question of our paper is to analyze the competition complexity of independent but not
identical bidders that arrive in the more natural arrival model of a random order. Sequential auctions under
random arrival order relate heavily to the prophet secretary framework introduced by Esfandiari et al. [19], in
which a decision-maker faces a series of random rewards V1, . . . , Vn that arrive in a random order, and needs
to select one of them in an immediate and irrevocable fashion. The rewards are drawn independently from
some known distributions F1, . . . , Fn. The performance of the decision-maker is measured against a “prophet”
who knows all the realizations of the rewards in advance, and thus always selects the maximum reward. We
model our research question using the prophet secretary framework and ask how many additional copies of
the rewards are needed to approximate the maximum reward (without the additional copies). This result
implies competition complexity results for both approximating the social welfare, as well as approximating
the expected revenue (under the usual regularity assumption) of the optimal offline mechanism (i.e., the
second-price auction for social welfare, and the Myerson auction for revenue).

1.1 Our Contribution

In this work, we characterize the asymptotic behavior of the competition complexity of the prophet secretary
problem for different classes of algorithms. We consider four natural classes of algorithms for this problem in
increasing levels of generality, namely: single-threshold, time-based threshold, activation-based, and general
algorithms.

The first class (single-threshold), considers algorithms that set a single-threshold a priori and select
the first reward that exceeds it. This type of algorithms is well-studied and widely used in practice. The
second class (time-based threshold) considers algorithms that can adapt the threshold they use based on
the arrival time (but not on the identities of the current reward, nor the set of rewards that arrived so far).
The third class (activation-based) considers algorithms that decide (randomly) whether to activate a reward
based on its identity, value and arrival time (but independent of the realizations and arrival times of the
other rewards). The selected reward is the first activated reward (if such exists). The last class (general)
considers algorithms that can base their decisions on all available information including the identity of the
current reward, as well as the identities of the rewards arriving so far. All previous approaches for the prophet
secretary [19, 18, 2, 13, 25] used algorithms from the first two classes with the exceptions of [12] that provided
a (1− 1/e)-approximation using a non-adaptive personalized threshold algorithm that is a special case of the
third class3, and the recent work of Chen et al. [11] that introduced the class of activation-based algorithms,

2Sequential auctions are also studied under the prophet inequality framework. The connection to prophet inequality was
observed in Chawla et al. [10], where they showed that implementing a prophet inequality algorithm on the virtual values leads
to an approximation result against the expected revenue of the optimal Myerson’s auction.

3Non-adaptive personalized threshold algorithms are algorithms that set a static threshold for each reward a priori (which
is possibly different for different rewards). Then, they accept the first reward exceeding its own threshold.
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and used it to obtain the currently best known competitive-ratio of 0.688 for the prophet secretary problem.
Our main results (along with the known competition complexity results of previous works) are summarized

in the following table:

I.I.D. Block Arrival Adversarial Arrival Random Arrival
Single-Threshold Θ(ln (1/ǫ)) [6] Θ(ln (1/ǫ)) [6] Θ(1/ǫ) [6] Θ(ln(1/ǫ)) Thm. 3.1

Time-Based Threshold Θ
(

ln(1/ǫ)
ln ln(1/ǫ)

)

Thm. 4.1

Activation-Based Θ(ln ln (1/ǫ)) [5] Θ(ln ln (1/ǫ)) [6] Θ(1/ǫ) [6] Θ
(

ln(1/ǫ)
ln ln(1/ǫ)

)

Thm. C.1

General Θ
(√

ln(1/ǫ)
)

Thm. 5.1

Table 1: Competition complexity results of different classes of algorithms for the different arrival models. We
note that time-based threshold algorithms (and also activation-based algorithms) are as powerful as general
algorithms for the models of i.i.d., block arrival, and adversarial arrival. This is because, in these models, the
optimal algorithms are computed via backward induction, and can be interpreted as time-based threshold
algorithms.

We note that all of our main competition complexity results are asymptotically tight and are supported
by explicit constructions. For positive results (upper bounds) that means explicit descriptions of efficient
algorithms, and for negative results (lower bounds) that means explicit constructions of hard instances.

Implications of our results. Our results reveal that while single-threshold algorithms in the random
arrival model have the same asymptotic performance as in the i.i.d., and block arrival models, this is no
longer true for general algorithms that perform strictly worse in the random arrival model than in the i.i.d.,
and block arrival models. This implies that the random arrival model is (perhaps surprisingly) harder than
the block arrival model.

Second, our results for time-based threshold and activation-based algorithms reveal that these classes are
far from being optimal in terms of competition complexity. This hints that these classes of algorithms may
not yield the optimal competitive-ratio in classic settings (i.e., without adding competition). Thus, previous
approaches for the prophet secretary problem are likely to be far from optimal.

1.2 Our Techniques

Our analysis is based on examining the prophet secretary problem within a continuous-time model. In the
continuous-time model, instead of having an arrival order defined by a random permutation, our arrival
order defines for each reward an independent time that is distributed uniformly on the interval [0, 1]. The
independence of the arrival times simplify the analysis, and allows us to use several bounds developed in
[13] on the probability of not selecting a value by time t for time-based threshold algorithms. In particular,
Correa et al. [13] show that for any fixed time-based threshold algorithm, if one replaces two random rewards
V1, V2 by a single reward that is distributed as their maximum, it decreases the probability of stopping by
time t for any t ∈ [0, 1]; and if replacing V1, V2 by two random rewards V ′

1 , V
′
2 that have the same distribution

while maintaining the distribution of the overall maximum, it increases the probability of stopping before
time t for any t ∈ [0, 1]. We utilize these facts to analyze the first two types of algorithms. The second
ingredient we use for upper bounding the competition complexity is a stochastic domination argument. That
is, for every value x ∈ R≥0, we compare the probabilities that the prophet and our algorithms select a value
above x.

Single-threshold algorithms. For single-threshold algorithms, it is sufficient to consider two types of
values of x, values above and below the threshold. For the former, we show that a sufficient condition for
the stochastic domination argument is that the expected number of times we observe each type of rewards
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is at least 1. For the latter, it is sufficient to show that the probability that our algorithm selects a value
overall is sufficiently large.

Time-based threshold algorithms. For time-based threshold algorithms, we use a decreasing threshold
function that at the beginning (for time t ∈ [0, 2/k]) uses the same threshold of the single-threshold algorithm
we analyze. Whenever the expected number of times we observe each type of rewards is at least 1 (which is
the sufficient condition for the first case of the analysis of single-threshold algorithms) we can start decreasing
the threshold. We decrease the threshold according to the quantiles of the prophet at the rate of 1

tk , where
t is the time, and k is the number of copies of each reward. That is, at time t we use a threshold τ(t) such
that the probability of the prophet being below τ(t) is 1

tk . This rate is (up to constant) tight in order to
maintain the stochastic dominance relation to the value of the prophet, for each value above τ(t). Lastly, for
values below the last used threshold that correspond to quantile 1

k of the prophet, we analyze the probability
of not selecting a value overall.

General algorithms. Our most technical proof is analyzing the class of general algorithms, where all
previous algorithms for the prophet secretary problem developed for competitive-ratio analysis used only
non-adaptive strategies (either time-based threshold algorithms, or activation-based algorithms). Our algo-
rithm uses only two thresholds: τ1 which corresponds to a constant-quantile of the prophet, and τ2 which

corresponds to a e−
√

ln(1/ǫ)-quantile of the prophet. The adaptivity plays the role of deciding when to switch
between the two thresholds. To set the switching time we define the function q(t) to be the probability of
all the rewards from time t (included) having a value below the threshold τ2. Then the switching time is the
last time where q(t) ≤ ǫ. This adaptive switching time guarantees that the probability of selecting a value
overall is at least 1− ǫ, which prove the stochastic dominance condition for the case of x < τ2. Also, we show
that with high enough probability, the switching time between the two thresholds is late enough, such that
the analysis of x > τ1 is similar to the single-threshold case, and the probability of selecting a value before
the switching time (which ensures a value of at least τ1) is larger than the probability of the prophet having
a value above τ2 which resolves the remaining case of x ∈ [τ2, τ1]. Our careful choice for τ1 and τ2 combined
with the adaptive switching time yield the optimal tradeoff for the different cases in our analysis.

1.3 Further Related Work

Competition complexity. Since the work of Bulow and Klemperer [8] that introduced the competition
complexity measure focusing on the single-item case, it has been extended through several dimensions of
complexity. Eden et al. [17] and Beyhaghi and Weinberg [4] studied the multi-item setting under addi-
tive valuations over independent items, and analyzed the additional amount of bidders necessary for the
VCG mechanism to achieve at least the same revenue as the optimal (prior-dependent, computationally
unbounded) mechanism as a function of the number of items, and the number of agents. Eden et al. [17]
devised a lower bound of log(m) and an upper bound of n + 2m − 2 where n is the number of bidders in
the original instance, and m is the number of items. Beyhaghi and Weinberg [4] improved the upper bound
to min{n(ln(1 + m/n) + 2), 9

√
nm}. Derakhshan et al. [15] settled the competition complexity for the case

where the number of items is smaller than the number of bidders, proving that the competition complexity is
Θ(

√
nm). Feldman et al. [21] initiated the study of combining the competition complexity measure with ap-

proximation algorithms, showing that near-optimal revenue can be achieved with simple mechanisms (either
selling separately, or selling all items as a single bundle) for several settings with a logarithmic or constant
multiplicative factor of additional bidders. Cai and Saxena [9] improved the result of Feldman et al. [21]
showing that an O(n) additional number of bidders is always suffice for obtaining a near-optimal revenue
for additive valuations over independent items. Fu et al. [22] demonstrated that for obtaining a constant
approximation of the optimal revenue, it is suffice to add only a single bidder from one of the distributions
of the original instance and apply the VCG mechanism.

Liu and Psomas [27] studied the competition complexity in dynamic settings, finding that at most 3n
additional bidders are required to achieve revenue comparable to the optimal dynamic auction. For two-sided
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markets, Babaioff et al. [3] developed a budget-balanced, truthful, and prior-independent mechanism that
approximates the optimal welfare by adding additional buyers under stochastic dominance assumptions.

Lastly, for the competition complexity of the prophet inequality framework, beyond the works of Brustle
et al. [5, 6] that were mentioned earlier, Ezra and Garbuz [20] extended this framework to instances with
correlations between rewards in the block and adversarial arrival models, where different copies of rewards
are independent.

Prophet secretary. The prophet secretary problem has been studied extensively since the work of
Esfandiari et al. [19] that initiated it. Correa et al. [12] developed a (1 − 1/e)-competitive algorithm using
personalized thresholds in a non-adaptive mechanism. Ehsani et al. [18] showed that the approximation of
1 − 1/e can be achieved with a single-threshold, and also considered the multi-choice case under matroid
feasibility constraints, and combinatorial auctions for which they provide the same guarantee of 1− 1/e. Azar
et al. [2] were the first to surpass the 1− 1/e barrier with a refined case analysis, developing three time-based
threshold algorithms, where the best of the three algorithms achieves a competitive-ratio of 0.6346. Correa
et al. [13] introduced the sub-class of time-based threshold algorithms which they termed blind algorithms,
that use a non-increasing sequence of thresholds based on the distribution of the maximum, and used this
class to devise a 0.669-competitive algorithm. Harb [25] improved the competitive-ratio to 0.6724 using a
blind algorithm. Recently, Chen et al. [11] introduced the class of activation-based algorithms and used it
to obtain a 0.688-competitive algorithm surpassing the 0.675 upper bound for the class of blind algorithms
shown by Correa et al. [13].

In terms of upper bounds, Bubna and Chiplunkar [7] showed a separation of the competitive-ratios
achievable for the prophet secretary problem, and the free-order prophet inequality (where the decision-
maker can choose the order of arrival). The best known upper bound on the competitive-ratio for the
prophet secretary problem is 0.7235 [24].

Beyond the single-choice case, Arnosti and Ma [1] focused on settings where the algorithm (and the
prophet) are allowed to select at most k rewards, and provided a tight constant guarantee for the class of
single-threshold algorithms of γk ≈ 1− 1√

2πk
. Lee and Singla [26] introduced random order contention reso-

lution schemes (RCRS) which is a type of rounding schemes for online algorithms in random arrival models.
They used this type of algorithms to provide a (1− 1/e)-approximation algorithm for the prophet secretary
problem under matroid feasibility constraints. Fu et al. [23] developed a 8

15 -approximation algorithm for
the prophet secretary problem for random vertex arrival through the RCRS approach, which was improved
by MacRury et al. [28] to a 0.535-approximation for general graphs, and to a tight 0.567-approximation for
bipartite graphs.

Beyond competitive analysis (when comparing to the prophet), Dütting et al. [16] developed a polynomial-
time approximation scheme (PTAS) that approximate the optimal online algorithm (that is not bounded
computationally). Lastly, Cristi and Ziliotto [14] considered the sample complexity of the prophet inequality
framework. They showed that a constant number of samples per distribution suffices to achieve near optimal
competitive-ratios for different variants of the prophet inequality problem, including prophet secretary.

1.4 Organization

The paper is organized as follows. We formally state our model in Section 2 where in Section 2.1 we
present known facts from previous works. In Section 3 we provide our result for the class of single-threshold
algorithms. In Section 4 we provide our result for the class of time-based threshold algorithms. In Section 5
we provide our result for the class of general algorithms. Lastly, in Appendix C we provide our result for
the class of activation-based algorithms.

2 Model

Prophet Secretary. Consider the problem where a decision-maker faces a sequence of n independent
rewards V1, . . . , Vn that arrive online in a random order and needs to select one of them in an online fashion
(not selecting a value is equivalent to receiving a reward of 0). Each reward Vi is distributed according to
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some known distribution Fi ∈ ∆ where ∆ is the set of all distributions over non-negative reals. We denote
by ∆∗ the set of all finite product distributions of non-negative reals, i.e., ∆∗ =

⋃

n∈N∆n. The distributions
F1, . . . , Fn are independent, and we denote by F their product distribution. The rewards arrive in a random
order σ ∼ Sn, where Sn is the uniform distribution over permutations of size n. At each time i = 1, . . . , n,
the algorithm observes σ(i), and Vσ(i), and needs to decide immediately and irrevocably whether to accept
it or discard it. If the algorithm selects at time i, the process terminates, and the algorithm’s utility is Vσ(i).
Traditionally, the performance of the decision-maker is measured using the competitive-ratio benchmark,
which is the ratio between the expected value chosen by the decision-maker (who makes decisions online)
and the expected value of the maximum in hindsight (also referred to as the prophet as he knows the
realizations of future rewards, thus always selecting the maximum). We denote an online algorithm for the
decision-maker by ALG, and the (possibly random) value chosen by ALG on a realized sequence defined by
V1, . . . , Vn, σ by ALG(V1, . . . , Vn, σ). Thus, the competitive-ratio of an algorithm ALG is

ρ(ALG) = inf
F∈∆∗

E[ALG(V1, . . . , Vn, σ)]

E[maxi∈[n] Vi]
,

where the expectation of the numerator is over the randomness of the rewards V1, . . . , Vn, over the arrival
order σ, and might also depend on the randomness of the algorithm if such exists.

Continuous-Time Model. Throughout the paper, we consider an equivalent model of the prophet secre-
tary problem, known as the continuous-time model. In this model, instead of drawing a random permutation
σ ∼ Sn, each random variable Vi is associated with an arrival time ti, where the ti’s are independent, and are
distributed uniformly over the interval [0, 1]. The algorithm observes the variables according to their arrival
times, and upon an arrival, the algorithm knows the time t (which is equal to some ti), and observes the value
Vi, and its identity i. Any algorithm for the continuous-time model can be transformed into a randomized
algorithm for the discrete-time model by drawing a priori n times t′1, . . . , t

′
n and ordering them, then in the

online process when Vσ(i) arrives, treat it as if Vσ(i) arrives at time that is equal to the σ(i)-th smallest
time in the multi-set {t′1, . . . , t′n}. For the other direction, an algorithm for the discrete-time model can be
transformed into an algorithm for the continuous-time model by ignoring the time arrival, and only use as
the discrete-time the number of rewards arriving so far. It is straightforward to verify, that the output of
the algorithms defined by these reductions is distributed the same as the outputs of the original algorithms,
thus leading to the same guarantees (since the distribution of the benchmark, i.e., the value of the prophet,
is not influenced by the order of arrivals, or the arrival times).

Competition Complexity. In this paper, we study the expected performance of an online algorithm that
observes more rewards compared to the maximum in hindsight (without the added rewards). In particular,
we analyze algorithms that observe k independent copies of each reward in the original instance. Our research
question is how many copies are needed to achieve a certain approximation of the prophet’s value in the
original instance. Formally, we consider algorithms that observe a sequence of N = n ·k independent random
rewards Vi,j for i ∈ [n], j ∈ [k]. Each such variable Vi,j is distributed independently from Fi, and is associated
with an arrival time ti,j distributed uniformly from the interval [0, 1]. The algorithm ALG observes the N
rewards according to the continuous-time model, and needs to choose one of them in an online fashion. The
goal is to design an algorithm with as few as possible copies that approximates the expected maximum value
of the original instance. We denote by OPT the distribution of the maximum value of the original instance
(without the additional copies), i.e., OPT = maxi∈[n] Vi. We denote by ~V the vector of random variables

(V1,1, . . . , Vn,k), and by ~t the corresponding vector of random arrival times (t1,1, . . . , tn,k). Given ~V , ~t and

some online algorithm ALG, we denote by ALG(~V ,~t) the (possibly random) output of ALG, when running

on online input defined by (~V ,~t). We use the following definition to measure the competition complexity of
different classes of algorithms:

Definition 2.1 (Competition Complexity). Given a class of algorithms C, and ǫ ∈ [0, 1/e], the (1 − ǫ)-
competition complexity of class of algorithms C is the smallest positive integer k such that for every F ∈ ∆∗,
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there exists an algorithm ALG ∈ C such that

E[ALG(~V ,~t)] ≥ (1 − ǫ) · E[OPT].

We note that we define the competition complexity only for ǫ ≤ 1/e since a (1 − 1/e)-approximation can
be achieved even when using a simple single-threshold algorithm without additional copies [18]. Moreover,
the case of ǫ = 0 is also referred to as exact competition complexity; it was shown in [5, Theorem 1] that
the exact competition complexity is unbounded even for the i.i.d. case (namely, when F1 = . . . = Fn). So,
naturally, our focus will be on the case where ǫ > 0.

Classes of Algorithms. In this paper we consider the following classes of algorithms (in increasing levels
of generality):

• Single-threshold algorithms: Given a threshold τ ∈ R≥0, ALGτ is the algorithm that returns the
first value exceeding τ .

• Time-based threshold algorithms: Given a threshold function that maps times to thresholds
τ : [0, 1] → R≥0, ALGτ is the algorithm that returns the first value satisfying Vi,j > τ(ti,j).

• Activation-based algorithms: Such an algorithm is defined by activation functions gvi,j : [0, 1] →
[0, 1] parameterized by i ∈ [n], j ∈ [k] and v in the support of reward Vi,j , where gvi,j maps a time
t ∈ [0, 1] to a probability of activating reward Vi,j when it realizes to have a value of v and arrives at
time t. The algorithm returns the first reward that is activated.

• General algorithms: Algorithms that can base their decisions on all available information, including,
most importantly, the set of rewards that arrived so far.

We note that single-threshold algorithms behave exactly the same whether they are in the discrete-time
model, or in the continuous-time model. Regarding time-based threshold and activation-based algorithms,
there is an analog for them in the discrete-time model which uses functions, with a discrete domain of time
of [N ] instead of having a continuous domain of [0, 1]. Our tight analysis for the continuous-time model
for these classes can be transformed into tight analysis for these classes in the discrete-time model (see
Remark 4.1).

We note that discrete time-based threshold algorithms are optimal for the prophet inequality setting
under known arrival order, and all of the algorithms analyzed so far for obtaining competitive-ratios for the
prophet secretary problem [19, 18, 2, 13, 1] are (continuous or discrete) time-based threshold algorithms with
the exceptions of [12] that analyzed the class of non-adaptive personalized thresholds (which is a special case
of activation-based algorithms) and [11] that used an activation-based algorithm. The class of non-adaptive
personalized threshold algorithms assigns before the arrival of the rewards a non-adaptive different threshold
for each reward. Then it selects the first reward exceeding its threshold. This is a special case of activation-
based algorithms, that use gvi,j that are independent of the time, are always 0 or 1, and are 1 for values of v
above some threshold τi,j (and 0 for values of v below τi,j). The class of time-based threshold algorithms is
a subclass of the class of activation-based algorithms where all gvi,j(t) = 1 [v > τ(t)] for every i, j, v, t.

Correa et al. [13] introduced a subclass of time-based threshold algorithms called blind algorithms. Each
such sub-class is parametrized by a quantile function α : [0, 1] → [0, 1). Then, for every instance defined by
F1, . . . , Fn, it uses the time-based threshold algorithm with threshold function τ : [0, 1] → R≥0 defined as

τ(t) = max{x | Pr[OPT ≤ x] ≤ α(t)}.

A single-threshold algorithm is said to be blind if it uses a threshold of a specific quantile from the distribution
of the maximum (independent from the instance). A single-threshold blind algorithm is equivalent to using
a constant function α(t) = c for all t ∈ [0, 1] for some constant c ∈ [0, 1).
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Simplifying Assumptions and Notations. Throughout the paper, we assume for devising our positive
results that all of the distributions are continuous. This assumption can be made without loss by allowing
the algorithms to use randomization to break ties using standard techniques (see, e.g., [18]). This assumption
implies that in the definition of the time-based threshold strategy τ(t) that corresponds to a blind algorithm
with a quantile function α : [0, 1] → [0, 1), it holds that Pr[OPT ≤ τ(t)] = α(t) instead of only Pr[OPT ≤
τ(t)] ≤ α(t). Our constructions for hardness results use point-masses, however, this is not a key property of
our constructions, and the examples can be adapted to the continuous case.

We abuse notation and use Fi to denote both the distribution and its CDF. For two distributions D1, D2,
we denote by D1 ·D2, the distribution of the maximum between two independent samples from D1, and D2

(which has a CDF of the product of the CDF’s of D1, and D2).
We use n

√
D as the distribution with a CDF equal to the n-th root of the CDF of D.

Given some algorithm ALG, we denote by T the stopping time of ALG, where if the algorithm does not
select a value, then T = 1.

Throughout our analysis, we will assume for simplicity that all the arrival times t1,1, . . . , tn,k are different
and are strictly smaller than 1, which happens with high probability, and therefore does not influence the
results presented in this paper.

Lastly, when it is clear from context, we omit the input of the algorithm and write ALG instead of
ALG(~V ,~t).

Probability Tools. In this paper, we use the following variants of well-known theorems in probability:

Theorem 2.1 (Stirling Approximation). For every n it holds that

√
2πn

(n

e

)n

≤ n! ≤ e
√
n
(n

e

)n

.

Theorem 2.2 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent random variables where Xi ∈ [ai, bi]
almost surely, and E[

∑

i∈[n] Xi] = µ. Then for every t > 0 it holds that

Pr

[
∑

i

Xi ≥ t+ µ

]

≤ exp

(

− 2t2
∑

i∈[n](bi − ai)2

)

.

2.1 Preliminaries

In this section, we present known facts about time-based threshold algorithms, which variants of them were
proven in [13]. In Appendix B, we prove them for completeness, and since we use slightly different versions
than the ones proven in [13].

Given F1, . . . , Fn, and t ∈ [0, 1], and a non-increasing function τ : [0, 1] → R, let pτ (t, F1, . . . , Fn) be the
probability that the algorithm defined by τ stops before time t. I.e., for a single distribution it holds that

pτ (t, F1) = Pr[t1 < t ∧ V1 > τ(t1)] = E[1 [t1 < t] (1− F1(τ(t1))],

and for multiple distributions, it holds that

pτ (t, F1, . . . , Fn) = 1−
n∏

i=1

(1− pτ (t, Fi)).

Lemma 2.1. For every threshold function τ : [0, 1] → R≥0, and distributions F1, F2, it holds that

pτ (t, F1 · F2) ≤ pτ (t, F1, F2).
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Lemma 2.2. For every threshold function τ : [0, 1] → R≥0, and distributions F1, F2, it holds that

pτ (t, F1, F2) ≤ pτ (t,
√

F1 · F2,
√

F1 · F2). (1)

By applying Lemma 2.2 infinitely many times, we get the following corollary:

Corollary 2.1. For every threshold function τ : [0, 1] → R≥0, and distributions F1, . . . , Fn, it holds that

pτ (t, F1, . . . , Fn) ≤ pτ (t,
n

√

F1 · . . . · Fn, . . . ,
n

√

F1 · . . . · Fn
︸ ︷︷ ︸

n times

).

We next observe that for time t, the event that some reward Vi arrives at time ti = t increases the
probability of reaching time t.

Observation 2.1. For every threshold function τ : [0, 1] → R≥0, every instance defined by F1, . . . , Fn, for
every i ∈ [n], and t ∈ [0, 1), it holds that

Pr[T ≥ ti | ti = t] ≥ Pr[T ≥ t].

Lastly, we observe that we can assume without loss of generality that the threshold function τ is non-
increasing since if one uses the non-increasing “sorted” version of τ , then a simple exchange argument implies
that the “sorted” threshold algorithm leads to at least the same performance.

Observation 2.2. For every threshold function τ : [0, 1] → R≥0, there exists a non-increasing threshold
function τ ′ : [0, 1] → R≥0, for which for every instance it holds that E[ALGτ ′ ] ≥ E[ALGτ ].

3 Single-Threshold Algorithms

In this section, we analyze the competition complexity of the class of single-threshold algorithms.

Theorem 3.1. The (1 − ǫ)-competition complexity of the class of single-threshold algorithms is Θ(ln(1/ǫ)).
Moreover, this can be achieved using a blind single-threshold algorithm.

Proof. The proof of the lower bound follows by a lower bound given in [6] for the competition complexity of
single-threshold algorithms in the i.i.d. case (where F1 = . . . = Fn).

We show that k = ⌈2 ln(1/ǫ)⌉ is sufficient. In the remainder, we present the upper bound. Consider the
threshold τ satisfying

Pr[OPT ≤ τ ] =
1

2
.

We will use the observations from Section 2.1, and thus treat the threshold τ as a constant threshold function
τ : [0, 1] → R≥0, where τ(t) = τ for every t ∈ [0, 1].

We next show that for every value of x, it holds that

Pr[ALG > x] ≥ (1 − ǫ) Pr[OPT > x],

which implies the theorem.

Case 1: x > τ . Let pi = Pr[Vi ≤ x]. By the Union bound, it holds that

Pr[OPT > x] ≤
∑

i∈[n]

Pr[Vi > x] =
∑

i∈[n]

(1 − pi). (2)
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On the other hand, we note that since x > τ , if the algorithm reaches time ti,j where Vi,j > x, then the
algorithm selects a value larger than x. Thus, we get

Pr[ALG > x] ≥
∫ 1

0

∑

i∈[n],j∈[k]

Pr[T ≥ ti,j ∧ Vi,j > x | ti,j = t]dt

=

∫ 1

0

∑

i∈[n],j∈[k]

Pr[T ≥ ti,j | ti,j = t] · Pr[Vi,j > x]dt

≥ k ·
∑

i∈[n]

(1− pi) ·
∫ 1

0

Pr[T ≥ t]dt

= k ·
∑

i∈[n]

(1− pi) ·
∫ 1

0



1− pτ (t, F1, . . . , F1
︸ ︷︷ ︸

k times

, . . . , Fn, . . . , Fn
︸ ︷︷ ︸

k times

)



 dt, (3)

where the first inequality is since if ti,j is reached and Vi,j > x, then reward Vi,j is selected; the first equality
is since the events of time ti,j is reached and Vi,j > x are independent when fixing ti,j = t; the second
inequality holds by Observation 2.1 and by the definition of pi’s; the second equality is by definition of pτ .

We also know that

∫ 1

0



1− pτ (t, F1, . . . , F1
︸ ︷︷ ︸

k times

, . . . , Fn, . . . , Fn
︸ ︷︷ ︸

k times

)



 dt ≥
∫ 1

0



1− pτ (t,
n

√

F1 · . . . · Fn, . . . ,
n

√

F1 · . . . · Fn
︸ ︷︷ ︸

nk times

)



 dt

=

∫ 1

0

(

1− pτ (t,
n

√

F1 · . . . · Fn)
)nk

dt

=

∫ 1

0

(

1− t+ t · n

√

F1 · . . . · Fn(τ(t))
)nk

dt

=

∫ 1

0

(

1− t+ t · n

√

1

2

)nk

dt ≥
∫ 1

0

2−tkdt

= − 2−tk

ln(2) · k

∣
∣
∣
∣

1

0

=
1− 2−k

ln(2) · k ≥ 1

k
, (4)

where the first inequality holds by Corollary 2.1; the first and second equalities are by definition of pτ ; the
third equality is since for t ∈ [0, 1], it holds that F1 · . . . ·Fn(τ(t)) =

1
2 ; the second inequality holds for every

n; the last inequality holds for every k ≥ 2.
Overall, we get that

Pr[ALG > x]
(3)

≥ k·
∑

i∈[n]

(1−pi)·
∫ 1

0



1− pτ (t, F1, . . . , F1
︸ ︷︷ ︸

k times

, . . . , Fn, . . . , Fn
︸ ︷︷ ︸

k times

)



 dt
(4)

≥
∑

i∈[n]

(1−pi)
(2)

≥ Pr[OPT > x],

which concludes the proof of this case.

Case 2: x ≤ τ . In this case, it holds that

Pr[ALG > x] = pτ (1, F1, . . . , F1
︸ ︷︷ ︸

k times

, . . . , Fn, . . . , Fn
︸ ︷︷ ︸

k times

) ≥ pτ (1, F1 · . . . · Fn, . . . , F1 · . . . · Fn
︸ ︷︷ ︸

k times

)

= 1− (1− pτ (1, F1 · . . . · Fn))
k = 1−

(
1

2

)k

≥ 1− ǫ ≥ (1 − ǫ) · Pr[OPT > x],

where the first inequality is by Lemma 2.1; the third equality is by definition of τ ; the second inequality
holds for every ǫ > 0 by our choice of k; and the last inequality is since a probability is bounded by 1. This
concludes the proof of the theorem.
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4 Time-Based Threshold Algorithms

In this section, we analyze the case of time-based threshold algorithms. We show that

Theorem 4.1. The (1−ǫ)-competition complexity of the class of time-based threshold algorithms is Θ
(

ln(1/ǫ)
ln ln(1/ǫ)

)

.

Moreover, this can be achieved using a blind algorithm.

Our upper bound is based on constructing a blind algorithm, which is given in Section 4.1, and our lower
bound which holds for any time-based threshold algorithm is proved in Section 4.2.

4.1 Blind Algorithms

Let α : [0, 1] → [0, 1) be the following quantile function:

α(t) =

{
1
2 , if t ≤ 2

k ,
1
tk , if t > 2

k .

Note that this is a valid quantile function since 1
tk ∈ [0, 1) for every t > 2

k . The corresponding threshold
function of α is τ : [0, 1] → R satisfying for every t ∈ [0, 1] that

Pr [OPT ≤ τ(t)] = α(t).

Lemma 4.1. The (1− ǫ)-competition complexity of the blind algorithm defined by α is O
(

ln(1/ǫ)
ln ln(1/ǫ)

)

.

Proof. We show that k =
⌈

2 ln(1/ǫ)
ln ln(1/ǫ)

⌉

is sufficient. We next show that for every value of x, it holds that

Pr[ALG > x] ≥ (1 − ǫ) Pr[OPT > x].

Case 1: x is such that Pr[OPT > x] ≤ 1
2 . The proof of this case is almost identical to the proof of Case

1 in the proof of Theorem 3.1, where the only difference is that we analyze the performance of the algorithm
until time 2

k , in which it uses the same threshold as in Theorem 3.1. For completeness, the proof of this case
can be found in Appendix A.

Case 2: x is such that Pr[OPT > x] ∈ (12 , 1 − 1
k ]. Let tx = 1

k·Pr[OPT≤x] . Note that 1 ≥ tx > 2/k, and

by definition of α and the corresponding threshold function we have that τ(tx) ≥ x. Thus, it holds that

Pr[ALG > x] ≥ pτ (tx, F1, . . . , F1
︸ ︷︷ ︸

k times

, . . . , Fn, . . . , Fn
︸ ︷︷ ︸

k times

)

≥ pτ (tx, F1 · . . . · Fn, . . . , F1 · . . . · Fn
︸ ︷︷ ︸

k times

)

= 1− (1− pτ (tx, F1 · . . . · Fn))
k, (5)

where the first inequality is since if the algorithm selects a value before time tx, it must be at least x, and
the second inequality is by Lemma 2.1. It also holds that

1− pτ (tx, F1 · . . . · Fn) =

∫ 2

k

0

1

2
dt+

∫ tx

2

k

1

tk
dt+

∫ 1

tx

1dt = 1− tx +
ln(ektx/2)

k
. (6)

Overall, we get that

Pr[ALG > x] ≥ 1−
(

1− tx +
ln(ektx/2)

k

)k

≥ 1− e · tx · k
2

· e−tx·k ≥ 1− 1

tx · k = Pr[OPT > x],

where the first inequality is by Inequalities (5) and (6), the second inequality is by the identity e−x ≥
(1− x/k)k, and the third inequality holds for every value of tx > 0.
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Case 3: x is such that Pr[OPT > x] > 1− 1
k . In this case, for every time t ∈ [0, 1], it holds that τ(t) > x,

which implies that the probability of selecting a value larger than x, is the probability of selecting a value
overall. Thus,

Pr[ALG > x] = pτ (1, F1, . . . , F1
︸ ︷︷ ︸

k times

, . . . , Fn, . . . , Fn
︸ ︷︷ ︸

k times

) ≥ pτ (1, F1 · . . . · Fn, . . . , F1 · . . . · Fn
︸ ︷︷ ︸

k times

)

= 1− (1− pτ (1, F1 · . . . · Fn))
k = 1−

(
ln(ek/2)

k

)k

≥ 1− ǫ ≥ (1− ǫ) · Pr[OPT > x],

where the first inequality is by Lemma 2.1; the third equality is by setting tx = 1 in Equation (6); the second
inequality holds for every ǫ < 1/e by our choice of k; and the last inequality is since a probability is bounded
by 1. This concludes the proof of the lemma.

4.2 Time-Based Threshold Algorithms: Hardness

In this section, we show a tight bound on the competition complexity of time-based threshold algorithms.

Lemma 4.2. The (1−ǫ)-competition complexity of the class of time-based threshold algorithms is Ω
(

ln(1/ǫ)
ln ln(1/ǫ)

)

.

Proof. We show that k = ln(1/ǫ)
4 ln ln(1/ǫ) is not sufficient (we assume for simplicity of the proof that k is an integer).

Consider an instance consisting of two types of rewards: the first has a deterministic value of 1, the second
is random and has value 1 +

√
ǫ with probability 1− p and value 0 with probability p, where p = 1

k .
The expected value of the prophet is 1+

√
ǫ− p · √ǫ. Thus, giving (1− ǫ)-approximation means that the

algorithm needs to have an expected reward of at least

(1 − ǫ) · E[OPT] = (1− ǫ)(1 +
√
ǫ − p ·

√
ǫ) > 1 +

√
ǫ− 3p ·

√
ǫ.

Since there are only three values in the supports of the distributions of the rewards, and one of them is
0 (which an optimal algorithm can always discard), then by Observation 2.2, we can consider time-based
threshold algorithms that use a non-increasing threshold ALGt that are defined by a time t ∈ [0, 1], where
until time t they use accept only the value of 1 +

√
ǫ, and from time t they accept values in {1, 1 + √

ǫ}.
Consider an algorithm ALGt for some time t. We distinguish between two cases depending on the time t.

Case 1: t ≤ 1
2k . In this case, we say that an order of arrival of N rewards is “bad” if all rewards arrive

after time t. The probability of a “bad” order is

Pr[“bad” order] = (1− t)2k ≥
(

1− 1

2k

)2k

≥ 1

4
, (7)

where the last inequality holds for every k ≥ 1.
Under a “bad” order, the algorithm selects the first non-zero value. Since the amount of rewards with a

value of 1 is at least the amount of rewards with a value of 1+
√
ǫ, and since under the event that the order

is “bad”, all of the rewards arrive uniformly at random, we get that

Pr[ALGt = 1 | “bad” order] ≥ 1

2
. (8)

Thus, the performance of algorithm ALGt is bounded by

E[ALGt] ≤ 1+
√
ǫ−

√
ǫ ·Pr[ALGt = 1 | “bad” order] ·Pr[“bad” order]

(7),(8)

≤ 1+
√
ǫ−

√
ǫ · 1

2
· 1
4
= 1+

√
ǫ−

√
ǫ

8
.

For sufficiently small ǫ (such that k ≥ 25), it holds that 3p < 1
8 , which means that ALG does not provide

a (1− ǫ)-approximation, which concludes the proof of this case.

12



Case 2: t > 1
2k . In this case, we say that an order of arrival of N rewards is “bad” if all of the deterministic

rewards (rewards of the first type) arrive before time t.
Under “bad” order, if all the randomized rewards (rewards of the second type) have a value of 0, then

the algorithm gains a reward of 0. Thus,

E[ALGt] ≤ (1 +
√
ǫ)(1− Pr[ALGt = 0]) ≤ (1 +

√
ǫ)(1− Pr[ALGt = 0 | “bad” order] · Pr[“bad” order])

≤ (1 +
√
ǫ)(1− pk · tk) ≤ 1 +

√
ǫ−

(
1

2k2

)k

.

For sufficiently small ǫ (such that k ≥ 3), it holds that 3p
√
ǫ <

(
1

2k2

)k
, which means that ALG does not

provide a (1− ǫ)-approximation. This concludes the proof of the lemma.

Remark 4.1. We note that Lemma 4.2 can be adapted easily to the discrete-time model. Consider an
instance where besides the two rewards defined in the instance described in the lemma, it has m additional
rewards that are deterministically 0. This does not change the distribution of the maximum value, however,
the times in which the important rewards arrive behave similarly to the continuous-time model. Again, we can
assume that the discrete-time-based thresholds are non-increasing. When m goes to infinity, the performance
of a discrete-time-based threshold algorithm that until time t ∈ [(m + 2)k] uses a threshold of 1 +

√
ǫ and

after time t uses a threshold of 1, converges to the performance of the algorithm ALGt′ for t′ = t
(m+2)k .

5 General Algorithms

In this section, we prove our main result:

Theorem 5.1. The (1− ǫ)-competition complexity of the class of general algorithms is Θ
(√

ln(1/ǫ)
)

.

Our upper bound is given in Section 5.1, and our lower bound is proved in Section 5.2.

5.1 General Algorithms: Algorithm

Lemma 5.1. The (1− ǫ)-competition complexity of the class of general algorithms is O
(√

ln(1/ǫ)
)

.

Proof. We assume for simplicity of the proof that ǫ is of the form e−ℓ2 for some integer ℓ ≥ 2. We show
that k = 8

√

ln(1/ǫ) = 8ℓ is sufficient. Let τ1, τ2 be two threshold satisfying that Pr [OPT ≤ τ1] =
3
4 , and

Pr [OPT ≤ τ2] = e−ℓ. Let qi = Pr[Vi ≤ τ2]. We define q(t) for every t ∈ [0, 1] to be the probability of not
selecting a value if starting at time t and using the single-threshold τ2. I.e.,

q(t) =
∏

i∈[n],j∈[k]

(1− (1 − qi) · 1 [ti,j ≥ t]) .

We note that for every realization of ti,j ’s, the function of q(t) is weakly increasing in t, and can only strictly
increase immediately after some time ti,j , thus it is right continuous. We define S to be the random variable
of the last time where q(t) is at most ǫ, i.e., S = max{t ∈ [0, 1] | q(t) ≤ ǫ} (the maximum is well-defined
since q is increasing and right-continuous, with q(0) =

∏

i∈[n] q
k
i = e−kℓ = ǫ8 ≤ ǫ, which implies that the

maximum is over a non-empty set). Note that S is only dependent on the values of ~t, and is independent

from the values of ~V .
Our algorithm works as follows:

1. For time t ∈ [0, S), use threshold τ1.

2. For time t ∈ [S, 1], use threshold τ2.
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We note that the algorithm is well-defined, since at time t, it can be deduced whether t < S or t ≥ S since
it is a function of the set of rewards that arrived so far.

Throughout the proof, for indexes i, j we denote the variable Ti,j (respectively, Si,j) as the stopping time
(respectively, the time of switching thresholds) of our algorithm on an instance without Vi,j . We also define
T ′ as the stopping time of the algorithm that uses only threshold τ1 for all t ∈ [0, 1]. We define respectively,
T ′
i,j as the stopping time of the single-threshold algorithm (with threshold τ1) on an instance without Vi,j .

Observation 5.1. For every i ∈ [n], j ∈ [k], and every realization of ~V , ~t, it holds that T ≥ min{ti,j , Ti,j}.

Proof. For every realization of ~t it holds that Si,j ≤ S, therefore, when applying our algorithm on the
instance without Vi,j , it always uses a threshold lower or equal to the threshold used in the instance with
Vi,j . Thus, T < Ti,j can only happen if Vi,j is selected, for which T = ti,j .

We next show that for every value of x, it holds that

Pr[ALG > x] ≥ (1 − ǫ) Pr[OPT > x].

Case 1: x ≥ τ1. Let pi = Pr[Vi ≤ x]. By the Union bound, it holds that

Pr[OPT > x] ≤
∑

i∈[n]

Pr[Vi > x] =
∑

i∈[n]

(1 − pi). (9)

On the other hand

Pr[ALG > x] =
∑

i∈[n],j∈[k]

Pr[Vi,j > x ∧ ti,j ≤ T ] =
∑

i∈[n],j∈[k]

Pr[Vi,j > x] · Pr[ti,j ≤ T ]

≥
∑

i∈[n],j∈[k]

Pr[Vi,j > x] · Pr[ti,j ≤ min{ti,j , Ti,j}]

=
∑

i∈[n],j∈[k]

Pr[Vi,j > x] · Pr[ti,j ≤ Ti,j] =
∑

i∈[n],j∈[k]

(1 − pi) · E[Ti,j ], (10)

where the first equality is since if the algorithm reaches some ti,j , and Vi,j > x ≥ τ1, then the algorithm
returns this value; the second equality is since whether time ti,j is reached is independent of the value of
Vi,j ; the inequality is by Observation 5.1; the last equality is since ti,j and Ti,j are independent and ti,j is
distributed uniformly over [0, 1].

We can bound the expected value of Ti,j by

E[Ti,j ] ≥ E[min{T ′
i,j, Si,j}] ≥

2

k
Pr

[

min{T ′
i,j, Si,j} ≥ 2

k

]

≥ 2

k

(

Pr

[

T ′
i,j ≥

2

k

]

− Pr

[

Si,j <
2

k

])

, (11)

where the first inequality is since Ti,j < Si,j implies that Ti,j = T ′
i,j , and the second inequality is by Markov’s

Inequality.
We next bound separately each of the terms Pr

[
T ′
i,j ≥ 2

k

]
and Pr

[
Si,j <

2
k

]
. It holds that

Pr

[

T ′
i,j ≥

2

k

]

≥ Pr

[

T ′ ≥ 2

k

]

= 1− pτ1(
2

k
, F1, . . . , F1
︸ ︷︷ ︸

k times

, . . . , Fn, . . . , Fn
︸ ︷︷ ︸

k times

)

≥ 1− pτ1(
2

k
, n

√

F1 · . . . · Fn, . . . ,
n

√

F1 · . . . · Fn
︸ ︷︷ ︸

N times

)

=

(

1− pτ1(
2

k
, n

√

F1 · . . . · Fn)

)nk

=

(

1− 2

k

(

1− n

√

3

4

))nk

≥ 9

16
, (12)
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where the first inequality is since for the single-threshold algorithm, adding Vi,j at time ti,j can only decrease
the stopping time; the second inequality is by Corollary 2.1; the last equality is by the definition of τ1; and
the last inequality holds for every n, k.

For bounding Pr
[
Si,j <

2
k

]
, we define wi = − ln (qi). By definition of τ2, we know that Pr[Vi ≤ τ2] ≥

Pr[OPT ≤ τ2] > 0, so wi is well-defined. Moreover, since Pr[OPT ≤ τ2] =
∏

i∈[n] Pr[Vi ≤ τ2], we get that

∑

i∈[n]

wi = −
∑

i∈[n]

ln(Pr[Vi ≤ τ2]) = − ln(Pr[OPT ≤ τ2]) = ℓ.

Given a realization of ~t, we denote by A(~t) the set of variables Vi′,j′ arriving at time ti′,j′ ≥ 2
k , i.e.,

A(~t) =

{

(i′, j′) ∈ [n]× [k] | ti′,j′ ≥
2

k

}

.

We bound the probability of Si,j <
2
k by

Pr

[

Si,j <
2

k

]

= Pr




∏

(i′,j′)∈A(~t)\{(i,j)}

qi′ > ǫ



 = Pr




∑

(i′,j′)∈A(~t)\{(i,j)}

wi′ < ℓ2





≤ Pr




∑

(i′,j′)∈A(~t)

wi′ < ℓ2 + wi





= Pr




∑

i′∈[n],j′∈[k]

wi′ · 1
[

ti′,j′ ≥
2

k

]

< ℓ2 + wi





≤ Pr




∑

i′∈[n],j′∈[k]

wi′ · 1
[

ti′,j′ <
2

k

]

> 7ℓ2 − ℓ





≤ exp

(

− 2
(
7ℓ2 − 3ℓ

)2

∑

i′∈[n],j′∈[k] w
2
i′

)

≤ exp

(

− 2
(
4ℓ2
)2

k · (∑i′∈[n]wi′ )2

)

= e−4ℓ ≤ 1

16
, (13)

where the first equality is by the definition of Si,j ; the second equality is by taking log over both sides
and rearranging; the first inequality is by adding the term corresponding to (i, j) which is bounded by wi;
the third equality is by the definition of A(~t); the second inequality is since

∑

i′∈[n],j′∈[k] wi′ = kℓ = 8ℓ2,

and since wi ≤ ℓ; the third inequality is by Hoeffding’s Inequality (where the term 3ℓ is the expectation of
∑

i′∈[n],j′∈[k] wi′ · 1
[
ti′,j′ <

2
k

]
); the fourth inequality holds since ℓ ≥ 1 and since wi′ ’s are non-negative; the

last inequality holds since ℓ ≥ 1.
Combining everything together, we get that

Pr[ALG > x]
(10)

≥
∑

i∈[n],j∈[k]

(1− pi) · E[Ti,j ]
(11)

≥
∑

i∈[n],j∈[k]

(1− pi) ·
2

k

(

Pr

[

T ′
i,j ≥

2

k

]

− Pr

[

Si,j ≤
2

k

])

(12),(13)

≥
∑

i∈[n],j∈[k]

(1− pi) ·
2

k

(
9

16
− 1

16

)

=
∑

i∈[n]

(1− pi)
(9)

≥ Pr[OPT > x],

which concludes the proof of the case.

Case 2: x ∈ [τ2, τ1). We first bound the probability of OPT selecting a value larger than x by

Pr[OPT > x] ≤ Pr[OPT > τ2] ≤ 1− e−ℓ. (14)
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On the other hand

Pr[ALG > x] ≥ Pr[T < S] = Pr[T ′ < S] ≥ Pr

[

T ′ <
1

2
≤ S

]

≥ 1− Pr

[

T ′ ≥ 1

2

]

− Pr

[

S <
1

2

]

. (15)

We can bound the probability of T ′ ≥ 1
2 by

Pr

[

T ′ ≥ 1

2

]

= 1− pτ1(
1

2
, F1, . . . , F1
︸ ︷︷ ︸

k times

, . . . , Fn, . . . , Fn
︸ ︷︷ ︸

k times

) ≤ 1− pτ1(
1

2
, F1 · . . . · Fn, . . . , F1 · . . . · Fn
︸ ︷︷ ︸

k times

)

= (1− pτ1(
1

2
, F1 · . . . · Fn))

k =

(

1− 1

2

(

1− 3

4

))k

=

(
7

8

)8ℓ

, (16)

where the inequality is by Lemma 2.1.
Given a realization of ~t, we denote by A(~t) the set of variables Vi,j arriving at time ti,j ≥ 1

2 , i.e.,

A(~t) =

{

(i, j) ∈ [n]× [k] | ti,j ≥
1

2

}

.

We bound the probability of S < 1
2 by

Pr

[

S <
1

2

]

= Pr




∏

(i,j)∈A(~t)

qi > ǫ



 = Pr




∑

(i,j)∈A(~t)

wi < ℓ2





= Pr




∑

i∈[n],j∈[k]

wi · 1
[

ti,j ≥
1

2

]

< ℓ2





= Pr




∑

i∈[n],j∈[k]

wi · 1
[

ti,j <
1

2

]

> 7ℓ2





≤ exp

(

− 2
(
7ℓ2 − 4ℓ2

)2

∑

i′∈[n],j′∈[k] w
2
i′

)

≤ exp

(

− 2
(
3ℓ2
)2

k · (∑i′∈[n] wi′)2

)

= e−
9

4
ℓ, (17)

where the first inequality is by Hoeffding’s inequality (where the term 4ℓ2 is the expectation of
∑

i∈[n],j∈[k] wi ·
1

[
ti,j <

1
2

]
), and the second inequality is since wi are non-negative.

Overall, we get that

Pr[ALG > x]
(15)

≥ 1− Pr

[

T ′ ≥ 1

2

]

− Pr

[

S <
1

2

]
(16),(17)

≥ 1−
(
7

8

)8ℓ

− e−
9

4
ℓ ≥ 1− e−ℓ

(14)

≥ Pr[OPT > x],

where the third inequality holds for every ℓ ≥ 2. This concludes the proof of this case.

Case 3: x < τ2. It holds that

Pr[ALG > x] ≥ Pr[∃(i, j) ∈ [n]× [k] : Vi,j > τ2 ∧ ti,j ≥ S] = 1− q(S) ≥ 1− ǫ ≥ (1 − ǫ) Pr[OPT > x],

where the first inequality is since if there exists such Vi,j , then a value of at least τ2 > x is selected; the first
equality is by definition of q(t); the second inequality is by definition of S; and the last inequality is since a
probability is bounded by 1. This concludes the proof of the lemma.
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5.2 General Algorithms: Hardness

In this section, we show a lower bound on the competition complexity of general algorithms. We note that
this hardness result applies even for algorithms that know the random arrival order in advance.

Lemma 5.2. The (1− ǫ)-competition complexity of the class of general algorithms is Ω
(√

ln(1/ǫ)
)

.

Proof. Consider an instance consisting of two types of rewards: the first has a deterministic value of 1,
the second is random and has value 1 +

√
ǫ with probability 1 − p and value 0 with probability p, where

p = e−
√

ln(1/ǫ). We show that k =

√
ln(1/ǫ)

2 is not sufficient.
We say that an order of arrival of N rewards is “bad” if all the deterministic rewards (rewards of the first

type) arrive before all of the randomized rewards (rewards of the second type). Under such an order, an
online algorithm cannot obtain an expected value of more than 1. This is since the expected value of the
algorithm when discarding all of the deterministic rewards is (1+

√
ǫ)·(1−pk) = (1+

√
ǫ)·(1−√

ǫ) = 1−ǫ < 1
(which implies that it is better to select one of the deterministic rewards).

Under non-bad order, the algorithm can obtain at most 1+a, which is the maximum value in the support
of the distributions.

The probability of a “bad” order is

Pr[“bad” order] =
(k!)2

(2k)!
≥ 2πk

(
k
e

)2k

e
√
2k
(
2k
e

)2k
≥ 1

4k
, (18)

where the first inequality is by Stirling approximation.
Thus, the performance of any algorithm is bounded by

E[ALG] ≤ Pr[“bad” order] · 1 + Pr[not “bad” order] · (1 +
√
ǫ)

(18)

≤ 1 +
√
ǫ−

√
ǫ

4k
.

On the other hand, the expected value of the prophet is E[OPT] = 1 +
√
ǫ − p · √ǫ.

However,
(1 − ǫ) · E[OPT] = (1− ǫ)(1 +

√
ǫ − p ·

√
ǫ) > 1 +

√
ǫ− 3p ·

√
ǫ,

while for sufficiently small ǫ (such that k ≥ 4), it holds that 3p < 1
4k

, which means that ALG does not
provide a (1− ǫ)-approximation, which concludes the proof.
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A Proof of Case 1 of Lemma 4.1

Let pi = Pr[Vi ≤ x]. By the Union bound, it holds that

Pr[OPT > x] ≤
∑

i∈[n]

Pr[Vi > x] =
∑

i∈[n]

(1 − pi). (19)

On the other hand, we note that since x is above the median of OPT and since τ(t) is the median of OPT,
then x > τ(t). Thus, if the algorithm reaches time ti,j where Vi,j > x, then the algorithm selects a value
larger than x. Thus, by analyzing the probability that the algorithm selects a value larger than x up to time
2
k , we get

Pr[ALG > x] ≥
∫ 2

k

0

∑

i∈[n],j∈[k]

Pr[T ≥ ti,j ∧ Vi,j > x | ti,j = t]dt

=

∫ 2

k

0

∑

i∈[n],j∈[k]

Pr[T ≥ ti,j | ti,j = t] · Pr[Vi,j > x]dt

≥ k ·
∑

i∈[n]

(1 − pi) ·
∫ 2

k

0

Pr[T ≥ t]dt

= k ·
∑

i∈[n]

(1 − pi) ·
∫ 2

k

0



1− pτ (t, F1, . . . , F1
︸ ︷︷ ︸

k times

, . . . , Fn, . . . , Fn
︸ ︷︷ ︸

k times

)



 dt, (20)

where the first inequality is since if ti,j is reached and Vi,j > x, then reward Vi,j is selected; the first equality
is since the events of time ti,j is reached and Vi,j > x are independent when fixing ti,j = t; the second
inequality holds by Observation 2.1 and by the definition of pi’s; the second equality is by definition of pτ .
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We also know that

∫ 2

k

0



1− pτ (t, F1, . . . , F1
︸ ︷︷ ︸

k times

, . . . , Fn, . . . , Fn
︸ ︷︷ ︸

k times

)



 dt ≥
∫ 2

k

0



1− pτ (t,
n

√

F1 · . . . · Fn, . . . ,
n

√

F1 · . . . · Fn
︸ ︷︷ ︸

nk times

)



 dt

=

∫ 2

k

0

(

1− pτ (t,
n

√

F1 · . . . · Fn)
)nk

dt

=

∫ 2

k

0

(

1− t+ t · n

√

F1 · . . . · Fn(τ(t))
)nk

dt

=

∫ 2

k

0

(

1− t+ t · n

√

1

2

)nk

dt ≥
∫ 2

k

0

2−tkdt

= − 2−tk

ln(2) · k

∣
∣
∣
∣

2

k

0

=
1− 1

4

ln(2) · k ≥ 1

k
, (21)

where the first inequality holds by Corollary 2.1; the first and second equalities are by definition of pτ ; the
third equality is since for t ∈ [0, 2

k ], it holds that F1 · . . . ·Fn(τ(t)) =
1
2 ; the second inequality holds for every

n.
Overall, we get that

Pr[ALG > x]
(20)

≥ k·
∑

i∈[n]

(1−pi)·
∫ 2

k

0



1− pτ (t, F1, . . . , F1
︸ ︷︷ ︸

k times

, . . . , Fn, . . . , Fn
︸ ︷︷ ︸

k times

)



 dt
(21)

≥
∑

i∈[n]

(1−pi)
(19)

≥ Pr[OPT > x],

which concludes the proof of this case.

B Proofs of Claims in the Preliminaries

Lemma 2.1. For every threshold function τ : [0, 1] → R≥0, and distributions F1, F2, it holds that

pτ (t, F1 · F2) ≤ pτ (t, F1, F2).

Proof. We sample values V1, V2 and times t1, t2 for them. Let i = argmaxj∈[1,2] Vj .

pτ (t, F1, F2) = 1− (1− pτ (t, F1)) · (1− pτ (t, F2))

= pτ (t, F1) + pτ (t, F2)− pτ (t, F1) · pτ (t, F2)

= Pr[t1 < t ∧ V1 > τ(t1)] + Pr[t2 < t ∧ V2 > τ(t2)]

− Pr[t1 < t ∧ V1 > τ(t1)] · Pr[t2 < t ∧ V2 > τ(t2)]

≥ Pr[ti < t ∧ Vi > τ(ti)] = pτ (t, F1 · F2).

This concludes the proof of the lemma.

Lemma 2.2. For every threshold function τ : [0, 1] → R≥0, and distributions F1, F2, it holds that

pτ (t, F1, F2) ≤ pτ (t,
√

F1 · F2,
√

F1 · F2). (1)

Proof. We prove the above inequality for every realization of the multiset {t1, t2} = {r, s}, where r ≤ s (i.e.,
we sample the pair (r, s) of arrival times of V1, V2, but not the corresponding matching between V1, V2 to
r, s). Denote the event of the pair of times t1, t2 as a multiset being {r, s} as Er,s. We distinguish between
the following cases:
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Case 1: r, s ≥ t. The probability that the algorithm defined by τ stops before time t is 0 for both sides of
the equation.

Case 2: r < t ≤ s. It holds that

0 ≤ 1

2

(√

F1(τ(r)) −
√

F2(τ(r))
)2

=
1

2
F1(τ(r)) +

1

2
F2(τ(r)) −

√

F1 · F2(τ(r)). (22)

Thus we have

pτ (t, F1, F2 | Er,s) =
1

2
(1− F1(τ(r))) +

1

2
(1 − F2(τ(r)))

= 1− 1

2
F1(τ(r)) −

1

2
F2(τ(r))

(22)

≤ 1−
√

F1 · F2(τ(r))

= pτ (t,
√

F1 · F2,
√

F1 · F2 | Er,s).

Case 3: r, s < t. It holds that

0 ≤ 1

2

(√

F1(τ(r))F2(τ(s)) −
√

F1(τ(s))F2(τ(r))
)2

=
1

2
F1(τ(r))F2(τ(s)) +

1

2
F1(τ(s))F2(τ(r)) −

√

F1 · F2(τ(r)) ·
√

F1 · F2(τ(s)). (23)

Thus we have

1− pτ (t, F1, F2 | Er,s) =
1

2
F1(τ(r))F2(τ(s)) +

1

2
F1(τ(s))F2(τ(r))

(23)

≥
√

F1 · F2(τ(r)) ·
√

F1 · F2(τ(s))

= 1− pτ (t,
√

F1 · F2,
√

F1 · F2 | Er,s).
Therefore, Equation (1) holds for all realizations of the multi-set {t1, t2}, and thus, it holds also in expecta-
tion. This concludes the proof of the lemma.

C Hardness for Activation-Based Algorithms

In this section, we show a tight bound on the competition complexity of activation-based algorithms.

Theorem C.1. The (1−ǫ)-competition complexity of the class of activation-based algorithms is Θ
(

ln(1/ǫ)
ln ln(1/ǫ)

)

.

Proof. The proof of the upper bound follow from Lemma 4.1 since a time-based threshold algorithm is a

special case of activation-based algorithm. We next show a lower bound by showing that k = ln(1/ǫ)
4 ln ln(1/ǫ) is

not sufficient (we assume for simplicity of the proof that k is a large enough integer). Consider an instance
consisting of two types of rewards: the first has a deterministic value of 1, the second is random and has
value 1 +

√
ǫ with probability 1− p and value 0 with probability p, where p = 1

ln(1/ǫ) .

The expected value of the prophet is 1+
√
ǫ− p · √ǫ. Thus, giving (1− ǫ)-approximation means that the

algorithm needs to have an expected reward of at least

(1 − ǫ) · E[OPT] = (1− ǫ)(1 +
√
ǫ − p ·

√
ǫ) > 1 +

√
ǫ− 3p ·

√
ǫ.

An algorithm is defined by an activation function gvi,j : [0, 1] → [0, 1] for each reward (i, j), and a value
v in the support of Vi,j . We assume without loss of generality that the activation of 0 is always 0 and the
activation of 1 +

√
ǫ is always 1 (since it is the maximum value in the support of the instance). This defines

the functions of gv2,j for v ∈ {0, 1 +√
ǫ}. Thus, an algorithm is defined by the functions g11,j : [0, 1] → [0, 1]

for j ∈ [k]. We distinguish between two cases:
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Case 1: Pr
[
∃j ∈ [k] such that t1,j ≤ 2

k and V1,j is activated
]
≥ 1

k . In this case, we say that an order
of arrival of N rewards is “bad” if all the random rewards (rewards of the second type) arrive after time 2

k .
The probability of a “bad” order is

Pr[“bad” order] =

(

1− 2

k

)k

≥ 1

10
, (24)

where the last inequality holds for every k ≥ 8.
By the definition of the case we are considering, it holds that

Pr[ALG = 1 | “bad” order] ≥ 1

k
, (25)

since whether a reward of the deterministic type is activated is independent from the arrival times of the
random rewards.

Thus, the performance of ALG is bounded by

E[ALG] ≤ 1+
√
ǫ−

√
ǫ ·Pr[ALG = 1 | “bad” order] ·Pr[“bad” order]

(24),(25)

≤ 1+
√
ǫ−

√
ǫ· 1
k
· 1
10

= 1+
√
ǫ−

√
ǫ

10k
.

For sufficiently small ǫ (such that k ≥ 61), it holds that 3p < 1
10k , which means that ALG does not provide

a (1− ǫ)-approximation, which concludes the proof of this case.

Case 2: Pr
[
∃j ∈ [k] such that t1,j ≤ 2

k and V1,j is activated
]
< 1

k . For every j ∈ [k] it holds that

Pr[V1,j is activated] ≤ Pr

[

t1,j ≥
2

k

]

+ Pr

[

t1,j ≤
2

k
and V1,j is activated

]

≤ 1− 2

k
+ Pr

[

∃j′ ∈ [k] : t1,j′ ≤
2

k
and V1,j′ is activated

]

≤ 1− 1

k
(26)

Therefore, it holds that

Pr[ALG = 0] ≥ pk ·
∏

j∈[k]

Pr[V1,j is not activated]
(26)

≥ pk ·
(
1

k

)k

≥ p2k =
√
ǫ (27)

Thus, the performance of ALG is bounded by

E[ALG] ≤ (1 +
√
ǫ)(1− Pr[ALG = 0])

(27)

≤ (1 +
√
ǫ)(1−

√
ǫ) = 1− ǫ < 1 +

√
ǫ − 3p ·

√
ǫ.

This means that ALG does not provide a (1−ǫ)-approximation, which concludes the proof of the theorem.
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