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REDUCTION OF POISSON MANIFOLDS WITH

HAMILTONIAN LIE ALGEBROIDS

Yuji Hirota1 Noriaki Ikeda2

Abstract

Reduction theorem for Poisson manifolds with Hamiltonian Lie algebroids is presented.
The notion of compatibility of a momentum section is introduced to the category of Hamil-
tonian Lie algebroids over Poisson manifolds. It is shown that a compatible momentum
section is a Lie algebra homomorphism, and then the quotient space of the zero level set of
a compatible momentum section proves to be a Poisson manifold.

1 Introduction

Reduction in symplectic and Poisson geometry is a powerful tool to provide us with a method
to construct a new symplectic or Poisson manifolds, which has its roots in classical mechanics. In
physics, reduction is a systematic manner to eliminate extra variables on a phase space by using
symmetry or conservation laws. A phase space with symmetry is formulated geometrically to be
a symplectic manifold admitting a suitable action of a Lie group which is called a Hamiltonian
action. Given a Hamiltonian action, there is a map from the space to the dual of its Lie algebra
such that a Hamiltonian vector field of which coincides with the infinitesimal generator of the
action. Such a map is called a momentum map. Most of the readers know that reduction and
momentum map theory are inseparable from one another. One of the main reduction theorems
is due to J. E. Marsden and A. Weinstein [17]–what is called the Marsden-Weinstein reduction.

There are a lot of directions of developing reduction and momentum map theories. As one
of such directions, it is possible to extend symplectic manifolds to more general ones, such
as Poisson manifolds, multisymplectic manifolds, hyper/quaternionic Kähler manifolds and so
on. It goes without saying that reduction of Poisson manifolds with symmetries has been being
studied for many years by a lot of mathematicians, originating from the works by Euler, Lagrange
and so on. For further details and the history including symplectic cases, refer to [18, 19] and
references therein. Reduction and momentum map theory in the category of multisymplectic
manifolds has been actively developing involving another research fields such as classical field
theories, higher structures. We just mention some papers as examples [1, 2, 6]. As for the case
of hyper/quaternionic Kähler manifolds, the theory can be found in the work by K. Galicki & H.
B. Lawson and N. Hitchin [8, 9, 13] for instance. The momentum map for quaternionic Kähler
manifolds was proposed by K. Galicki and H. B. Lawson. It seems to be different from the usual
one for symplectic manifolds. In fact, it proves to be a compatible homotopy momentum section
of a certain bundle-valued 1-plectic manifold by the authors [11].

Recently, the notion of Hamiltonian Lie algebroids over (pre-)symplectic manifolds was intro-
duced by C. Blohmann and A. Weinstein in [4]. It is some kinds of generalization of symplectic
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manifolds with Hamiltonian actions. Objects corresponding to momentum maps are called
momentum sections, which are defined to be sections of the dual of Lie algebroids with some
conditions. For example, the usual momentum map J : M → g∗ is thought of as a section of
an action algebroid g⋉M → M in the context of Hamiltonian Lie algebroids. The structures
of Hamiltonian algebroids can be found in some Hamiltonian mechanics and gauged nonlinear
sigma models [10, 14]. The authors addressed reduction of them in wider settings in [11]. Around
the same time, C. Blohmann, S. Ronchi and A. Weinstein have extend them to the category of
Poisson manifolds in [5], and have called them Hamiltonian Lie algebroids over Poisson man-
ifolds. Incidentally, the notion of momentum sections has been generalized to the category of
Courant algebroids [15].

In the paper, we address reduction of Poisson manifolds with momentum sections for Hamil-
tonian Lie algebroids. We shall show that if a momentum section µ satisfies the compatibility
condition (see Definition 2.4), the zero level set µ−1(0) is Poisson reducible in the sense of J.
E. Marsden and T. Ratiu [16]. As opposed to the case of Ad∗-equivariant momentum maps for
the canonical actions of a Lie groups, a momentum section µ for a Hamiltonian Lie algebroid A
over a Poisson manifold M is not necessarily a Poisson map from M to A∗ in general. In fact,
Blohmann-Ronchi-Weinstein [5] showed that µ with a certain condition preserves their brackets
induced from each bivector field. Here, a bivector field on A∗ is given by the sum of the hori-
zontal lift Π̂M of a Poisson bivector field on M and a Poisson bivector filed ΠA∗ associated to
the fiber-wise linear Poisson structure on A∗. However, µ fails to be a Poisson map in general
because Π̂M + ΠA∗ is not necessarily a Poisson bivector field. This causes difficulty of the re-
duction in the setting of Hamiltonian Lie algebroids. Our idea for the reduction of µ−1(0) is
to impose one geometric condition, called the compatibility condition, on a momentum section
µ. Then, µ proves to be a Poisson map, which enable us to practice a consistent reduction.
In addition, we mention that another idea to construct a Poisson map in the Hamiltonian Lie
algebroid setting has been proposed in the authors’ another paper [12].

Throughout the paper, all manifolds and maps between them are assumed to be smooth. The
ring of smooth functions on a smooth manifold M is denoted by C∞(M). For a vector bundle
E → M , the space of smooth sections of E is denoted by Γ (E). In particular, if E = TM , we
shall write X(M) for Γ (TM). In the case of the exterior bundle E = ∧kT ∗M (k ≧ 1), we denote
by Ωk(M) the space of differential k-forms on M .

2 Hamiltonian Lie algebroids over Poisson manifolds

First, we make reference to the sign convention of Poisson calculus in the paper. Let (M,Π)
be a finite-dimensional Poisson manifold with a Poisson bivector field Π. We use the notation
Π♯ for a bundle morphism induced by Π. Concretely, Π♯ is given by

Π♯
x : T ∗

xM −→ TxM, αx 7−→ Π♯
x(αx) := (βx 7→ 〈βx ∧ αx,Πx〉) (2.1)

for any tangent vector αx, βx ∈ T ∗
xM at each x ∈ M . Moreover, we denote the Poisson bracket

of f, g ∈ C∞(M) by {f, g}Π. Consequently, the sign convention of Poisson calculus which we
adopt in the paper is as follows:

{f, g}Π = 〈df ∧ dg, Π〉 =
(

Π♯(dg)
)

f.

As is well-known, the bivector field Π defines a Lie bracket on Ω1(M) by

{ξ, η} := LΠ♯ξη − LΠ♯ηξ + d
(

〈ξ ∧ η, Π〉
)

, ξ, η ∈ Ω1(M),
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which is called the Koszul bracket. Here, LΠ♯ξη stands for the Lie derivative of η by Π♯ξ. We
remark that

d{f, g}Π = −{df, dg}, (2.2)

or alternatively,
[Π♯(df), Π♯(dg)] = Π♯({df, dg}) (2.3)

hold for any f, g ∈ C∞(M).

Next, we shall recall the definition of the notion of a Hamiltonian Lie algebroid over a Poisson
manifold. Let A be a Lie algebroid over a Poisson manifold (M,Π), whose anchor map is ρ. An
A-differential operator is denoted by ðA. Namely, ðA is a differential operator on the de Rham
complex Γ (∧•A∗), given by

(ðAθ)(α1, · · · , αk+1) :=

k+1
∑

i=1

(−1)i+1Lρ(αi)

(

θ(α1, · · · , α̌i, · · · , αk+1)
)

+
∑

i<j

(−1)i+jθ([αi, αj ], α1, · · · , α̌i, · · · , α̌j , · · · , αk+1), (2.4)

for any θ ∈ Γ (∧kA∗), α1, · · · , αk+1 ∈ Γ (A).
Suppose that A is endowed with a vector bundle connection ∇A. It induces a connection on

A∗, for which we use the same symbol ∇A. The induced connection on A∗ is defined as

(∇A
Xθ)(α) := LX

(

θ(α)
)

− θ(∇A
Xα) (2.5)

for any X ∈ X(M), θ ∈ Γ (A∗) and α ∈ Γ (A).
Define a Lie algebroid connection ℧ on the tangent bundle TM as

℧
TM
α X := [ρ(α), X] + ρ(∇A

Xα). (2.6)

It gives rise to a Lie algebroid connection on ∧pTM with p ≧ 1 (for which we denote by the
same symbol as ℧TM ) by

(℧TM
α P )(α1, · · · , αp) := Lρ(α)

(

P (α1, · · · , αp)
)

−

p
∑

i=1

P (α1, · · · ,℧
TM
α ρ(αi), · · · , αp), (2.7)

where P ∈ Xp(M) and α1, · · · , αp ∈ Γ (A).

Definition 2.1 (Hamiltonian Lie algebroid over Poisson manifold [5]). Let A be a Lie algebroid
over a Poisson manifold (M,Π) together with a vector bundle connection ∇A. A momentum
section µ is an element in Γ (A∗) which satisfies

ρ(α) = −Π♯〈∇Aµ, α〉 (2.8)

for any α ∈ Γ (A). A Lie algebroid A with a momentum section µ is called a Hamiltonian Lie
algebroid if it satisfies both

℧
TMΠ = 0 (2.9)

and
(ðAµ)(α1, α2) = Π

(

〈∇Aµ, α1〉, 〈∇
Aµ, α2〉

)

(2.10)

for any α1, α2 ∈ Γ (A).
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The symbol 〈∇Aµ, α〉 in (2.8) stands for a 1-form given by 〈∇Aµ, α〉(X) := (∇A
Xµ)(α) for

µ ∈ Γ (A∗) and α ∈ Γ (A). For the sake of simplicity, we shall sometimes write (∇Aµ)α for
〈∇Aµ, α〉. Generally, we use the notation θα for the interior product ıαθ of θ ∈ Ωk(M,A∗) by a
section α ∈ Γ (A). Namely, if θ ∈ Ωk(M,A∗) with k ≧ 1, θα is a k-form defined by

θα(X1, · · · ,Xk) := (ıαθ)(X1, · · · ,Xk) := 〈θ(X1, · · · ,Xk), α〉

where X1, · · · ,Xk are vector fields.

Remark 2.1. Due to the convention of (2.1), the sign factor in (2.8) is slightly different from
the one in [5]. A momentum section satisfying (2.10) is said to be bracket-compatible.

In order to broaden the scope of momentum section, we provide the following definition:

Definition 2.2. Under the same setting of Definition 2.1, we let S be a subset of Γ (A). A
smooth section µ ∈ Γ (A∗) is called a momentum section of A on S if the condition (2.8) is
satisfied for all element in S.

The fundamental example of Hamiltonian Lie algebroids might be the case where a Poisson
manifold admits a Hamiltonian action of a Lie group with an Ad-equivariant momentum map.
In the case, the action algebroid with a trivial connection is considered as a Hamiltonian Lie
algebroid (see also the subsection 4.1). Moreover, one can naturally regard a Hamiltonian Lie
algebroid structure over a symplectic manifold as a Hamiltonian Lie algebroid over a Poisson
manifold by a Poisson bivector induced from the symplectic form (see the subsection 4.2).

Example 2.3. Let n ≧ 1. R2n+1 is a regular Poisson manifold of rank 2n by the bivector field
Π =

∑

i
∂
∂qi

∧ ∂
∂pi

with coordinates (q1, · · · , qn, p1, · · · , pn, y). Consider a cotangent Lie algebroid

A = T ∗M over M = R2n+1 with a trivial connection ∇A by ∇A(fα) := df ⊗ α for a 1-form in
the form fα multiplied by a function f ∈ C∞(M). Define a vector field µ by

µ := −
n
∑

i=1

(

qi
∂

∂qi
+ pi

∂

∂pi

)

.

The opposite connection ∇A on TM is also given by a trivial connection. We have

〈∇Aµ, α〉 = −
∑

i

(aidqi + bidpi)

for any 1-form α =
∑

i(aidqi + bidpi) + cdy. By a simple computation, we have Π♯〈∇Aµ, α〉 =
−Π♯(α), which means µ satisfies the condition (2.8). That is, µ is a momentum section with
respect to ∇A on Ω1(M).

Lastly, we shall introduce the notion of compatibility for momentum sections of Lie algebroids
over Poisson manifolds (c.f. [11]). Let A be a Lie algebroid equipped with a connection ∇A over
a Poisson manifold M , and µ a momentum section of it.

Definition 2.4. µ is said to be compatible with A if it satisfies the condition (2.10) and moreover,
(ıα ◦ ∇A)µ = (d ◦ ıα)µ for any α ∈ Γ (A).

Example 2.5. Let µ be a momentum section for a Hamiltonian Lie algebroid A over a Poisson
manifold M equipped with a vector bundle connection ∇A. Assume that the basic curvature of
∇A is zero, that is, ∇A satisfies the following equation

[α,∇A
Xβ] + [∇A

Xα, β]−∇A
X [α, β] −∇A

ρ(∇A
Xα)

β +∇A
ρ(∇A

Xβ)
α = 0
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for any α, β ∈ Γ (A) and X ∈ X(M) (see [3, 12]).
Let Γ (A)C be the subset of Γ (A) which consists of all smooth section α of A such that

∇Aα = 0. From the assumption, we have ∇A[α, β] = 0 holds for any α, β ∈ Γ (A)C . Namely,
Γ (A)C is closed under the Lie bracket [·, ·] in Γ (A). Moreover, we have

〈∇Aµ, α〉 = d〈µ, α〉 − 〈µ, ∇Aα〉 = d〈µ, α〉.

Thus, µ is a compatible momentum section on Γ (A)C .

If µ is compatible with A, then both

ρ(α) = −Π♯(dµα) (2.11)

and
ρ(α)µβ − ρ(β)µα − µ[α, β] = Π(dµα, dµβ) (2.12)

hold for any section α, β of A. Substituting (2.11) to (2.12), we can get the following proposition:

Proposition 2.6. If a momentum section µ is compatible with A, it is a Lie algebra homomor-
phism from Γ (A) to C∞(M), i.e.,

µ[α, β] = {µα, µβ}Π

holds for any α, β ∈ Γ (A).

3 Reduction

Let A be a Hamiltonian Lie algebroid with an anchor ρ over a Poisson manifold (M,Π).
Suppose that a momentum section µ ∈ Γ (A∗) is compatible with A. Let Mµ be the preimage
of the zero section of A∗ by µ, i.e.,

Mµ =
{

z ∈ M |µ(z) = 0 ∈ A∗|z
} ι
→֒ M.

We assume that Mµ is an embedded manifold of M .
The anchor map ρ of A gives rise to a singular distribution Dρ, which is called the charac-

teristic distribution by

M ∋ x 7−→ Dρ(x) := span
{

ρ(α)x |α ∈ Γ (A)
}

⊂ TxM.

Dρ is integrable subbundle of TM . For further details of a singular distribution and the inte-
grability, refer to [7, 20, 21]. We denote by Lρ(x) a maximal integral manifold of Dρ containing
x. The set of 1-forms vanishing on Dρ(x) at each x ∈ M is denoted by ann(Dρ(x)) and is called
the annihilator of Dρ(x). That is,

ann
(

Dρ(x)
)

:=
{

η ∈ T ∗

xM | η(X) = 0 for any X ∈ Dρ(x)
}

, x ∈ M.

Then, we have

Proposition 3.1. If f, g are smooth functions on M such that (df)z, (dg)z ∈ ann
(

Dρ(z)
)

at
each z ∈ Mµ, then (d{f, g}Π)z ∈ ann

(

Dρ(z)
)

.
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Proof. Let α ∈ Γ (A) and z ∈ Mµ. We remark that (2.11) holds since µ is compatible with A.
By the assumption, we have ρ(α)f = 0 on Mµ. Therefore,

(

d{f, g}Π
)

z

(

ρ(α)z
)

= ρ(α)z
(

Π♯(dg)
)

= [ρ(α), Π♯(dg)]zf −Π♯(dg)z
(

ρ(α)f
)

= [ρ(α), Π♯(dg)]zf

= [Π♯(dµα), Π♯(dg)]zf.

From (2.3), (2.2) and {µα, g}Π = 0 it follows that

[Π♯(dµα), Π♯(dg)]zf = −
{

f, {µα, g}Π
}

Π
(z) = 0.

Hence, we have
(

d{f, g}Π
)

z

(

ρ(α)z
)

= 0. Since α ∈ Γ (A) and z ∈ Mµ are arbitrary, we have the
desired result.

We write Eρ for the set of local flows of vector fields in Dρ, i.e.,

Eρ =
{

φX
t |φX

t is a local flow of X = ρ(α) for some α ∈ Γ (A)
}

and consider the pseudogroup Pρ of transformations generated by Eρ

Pρ = {idM}
⋃

{

φX1

t1 ◦ · · · ◦ φXk
tk

∣

∣ k ∈ N, φ
Xj

tj
∈ Eρ or (φ

Xj

tj
)−1 ∈ Eρ

}

,

where idM denotes the identity map of M .

Remark 3.1. For the definition of a pseudogroup, we refer to Chapter 3 in [19].

For the sake of simplicity, we shall use the notation φt for an element in the form φX1

t1
◦· · ·◦φXk

tk
in Pρ and write Dom φt for the domain of φt. Define

P0
ρ :=

{

φt ∈ Pρ | (µ ◦ φt)(x) = 0 (x ∈ Domφt)
}

.

And moreover, for each x ∈ M we define

P0
ρ · x :=

{

φt(x) |φt ∈ P0
ρ , Domφt ∋ x

}

and call it the P0
ρ -orbit through x. If z ∈ Mµ, the P0

ρ -orbit through z coincides with the
intersection of the leaf Lρ(z) containing z of the singular distribution Dρ and Mµ i.e., P0

ρ · z =
Lρ(z) ∩ Mµ. The relation being in the same P0

ρ -orbit is an equivalence relation. Therefore,
Mµ is partitioned into P0

ρ -orbits. We write Mρ for the space of P0
ρ -orbits Mµ/P

0
ρ , and let

πρ : Mµ → Mρ be the natural quotient map.

Theorem 3.2. Assume that the orbit space Mρ is a smooth manifold such that πρ is a submer-
sion. If

Π♯
z

(

ann(Dρ(z))
)

⊂ TzMµ +Dρ(z) (3.1)

holds for each z ∈ Mµ, then Mρ is a Poisson manifold whose Poisson bracket {·, ·}Π/ is uniquely
determined by

{f, g}Π/ ◦ πρ = {f̃ , g̃}Π ◦ ι (3.2)

for any smooth function f, g on Mρ, where f̃ , g̃ are extensions of f ◦πρ, g ◦πρ, respectively, with
conditions that (df̃)z, (dg̃)z ∈ ann

(

Dρ(z)
)

at each z ∈ Mµ.
Conversely, if Mρ is endowed with a Poisson structure by (3.2), then the condition (3.1) is

satisfied.
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Proof. Assume that (3.1) holds for any z ∈ Mµ. Let f, g be any smooth function on Mρ and f̃ , g̃
extensions of f ◦πρ, g ◦πρ. Namely, f̃ and g̃ are smooth functions on M satisfying f̃ |Mµ = f ◦πρ
and g̃|Mµ = g ◦ πρ, respectively. Suppose that their differentials df̃ , dg̃ vanish on Dρ|Mµ , and

define a function {f, g}Π/ on Mρ as (3.2). Then, from Proposition 3.1, it follows that d{f̃ , g̃}Π

also vanishes on Dρ|Mµ . This implies that {f̃ , g̃}Π is constant on each leaf of Dρ|Mµ . Therefore,
{f, g}Π/ is well-defined as a function on Mρ. Next, we shall show that the function {f, g}Π/

does not depend on the choice of their extensions. Let g̃′ be another extension of g ◦π satisfying
(dg̃′)z ∈ ann

(

Dρ(z)
)

at each z ∈ Mµ. Clearly, g̃ − g̃′ = 0 on Mµ, and d(g̃ − g̃′) vanishes on
Dρ|Mµ . Therefore, using the assumption (3.1), we have

∀z ∈ Mµ;
〈

(df̃)z, Π
♯
z

(

d(g̃ − g̃′)z
)〉

= 0,

alternatively
∀z ∈ Mµ; {f̃ , g̃}Π(z) = {f̃ , g̃′}Π(z).

This means that the function {f, g}Π/ ◦ πρ is independent of the choice of extension. From the
fact that {·, ·}Π is a Poisson bracket, we see that Mρ inherits a Poisson structure {·, ·}Π/ which
satisfies π∗

ρ{·, ·}Π/ = ı∗{·, ·}Π.
Conversely, we assume that the orbit space Mρ is endowed with a Poisson structure deter-

mined by (3.2). We shall show the relation (3.1) or, equivalently,

ann
(

TzMµ

)

∩ ann
(

Dρ(z)
)

⊂ Π♯
z

(

ann
(

Dρ(z)
))

(3.3)

for any point z in Mµ. Fix any point z in Mµ. If Uz is a slice chart for Mµ around z, then Dρ is
locally expressed as Dρ = (Uz ∩Mµ)× V with V a vector subspace of Rk ⊕Rm−k ∼= Rm, where
m,k (k < m) are dimensions of M, Mµ, respectively.

Take an element αz ∈ ann
(

TzMµ

)

∩ ann
(

Dρ(z)
)

to be arbitrary. From αz ∈ ann
(

TzMµ

)

, αz

can be written locally as αz = (dF )z with F ∈ C∞(Uz) defined as

F (x) = a1xk+1 + a2xk+2 + · · ·+ am−kxm, x ∈ Uz

for some a = (a1, · · · , am−k) ∈ Rm−k. Moreover, since αz ∈ ann
(

Dρ(z)
)

, it turns out that F
satisfies

F |Uz∩Mµ = 0 and ∀y ∈ Uz ∩Mµ; (dF )y|Dρ(y) = 0. (3.4)

Next, let βz ∈ ann
(

Dρ(z)
)

and G a function on Uz such that

βz = (dG)z and ∀y ∈ Uz ∩Mµ; (dG)y|Dρ(y) = 0.

If g is a function on Mρ such that the extension of which is G, then

〈αz, Π
♯
z(βz)〉 = {F, G}Π(z) = {0, g}Π/ ◦ πρ(z) = 0.

This means that αz ∈ Π♯
z

(

ann
(

Dρ(z)
))

. Therefore, (3.3) holds.

4 Examples

4.1 Poisson manifolds with canonical actions of Lie groups

Let (M,Π) be a Poisson manifold admitting a canonical left action of a compact Lie group
G with Lie algebra g. Then, the induced Lie algebra action ̺ : g → X(M) satisfies LξMΠ = 0
for any element ξ in g, where ξM = ̺(ξ). One can define a Lie algebroid structure on a trivial
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vector bundle M × g whose anchor map is defined by ρ(ξ) = −ξM . It is called an action Lie
algebroid (or a transformation algebroid, see [7]), and is denoted by g⋉M . Let J : M → g∗ be
an equivariant momentum map associated to the canonical g-action. From Corollary 2.6 in [5],
A = g⋉M is a hamiltonian Lie algebroid with a trivial connection ∇A = d. Here, we remark
that sections of A are confined to constant ones. Hence, J proves to be compatible with A.

Suppose that the zero element 0 in g∗ is a regular value of J and let MJ = J−1(0). The
characteristic distribution of A is given by

Dρ(x) = span
{

ξM (x) | ξ ∈ g
}

= g · x, x ∈ M.

If v ∈ Π♯
x

(

ann(g·x)
)

, then, there exists a covector α ∈ T ∗
xM such that v = Π♯

x(α) and α(ξM (x)) =
0. For any ξ ∈ g, we have

〈(dJ)x(v), ξM(x)〉 = (dJξ)x(v) = −α(ξM (x)) = 0,

which implies that v ∈ ker(dJ)x. Hence, Π
♯
x

(

ann(g · x)
)

⊂ ker(dJ)x holds at each x ∈ M . As a

result, the condition Π♯
x

(

ann(g · x)
)

⊂ TxMJ + g · x is satisfied. Therefore, by Theorem 3.1, the
quotient manifold MJ/G inherits a Poisson structure from M satisfying (3.2).

4.2 Hamiltonian Lie algebroids over symplectic manifolds

First, we shall recall the definition of Hamiltonian Lie algebroids over symplectic manifolds.
Let (M,ω) be a symplectic manifold and A a Lie algebroid over M whose anchor map is ρ.
Suppose that A is equipped with a vector bundle connection ∇A. One can get a connection
(which is denoted by the same letter ∇A) on A∗ and an A-connection ℧TM on TM in the same
way as (2.5) and (2.6), respectively. Moreover, ℧TM can be extended to an A-connection on
∧kT ∗M as

(℧TM
α η)(X1, · · · ,Xk) := Lρ(α)

(

η(X1, · · · ,Xk)
)

−
k

∑

i=1

η(X1, · · · ,℧
TM
α Xi, · · · ,Xk)

for any vector fields X1,X2, · · · ,Xk, where η ∈ Ωk(M).

Definition 4.1 (Hamiltonian Lie algebroid over symplectic manifold [4]). An element µ ∈ Γ (A∗)
is called a (∇A-)momentum section if

∇Aµ = −ıρ(α)ω (4.1)

holds for any α ∈ Γ (A). A Lie algebroid A with a momentum section µ is called a Hamiltonian
Lie algebroid if it satisfies both

℧
TMω = 0 (4.2)

and
(ðAµ)(α1, α2) = ω(ρ(α1), ρ(α2)) (4.3)

for any α1, α2 ∈ Γ (A).

We remark that the expression of (4.1) and (4.3) is different from the original one in [4] due
to the sign convention. If the condition (4.2) is satisfied, A is said to be symplectically anchored
with respect to ∇A. On the other hand, µ is said to be bracket-compatible if (4.3) is satisfied.
Denote by {·, ·}ω a Poisson structure induced by the 2-form ω, that is,

{f, g}ω := ω(Xf , Xg), f, g ∈ C∞(M),
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where Xf ,Xg are Hamiltonian vector fields of f, g, respectively. A Hamiltonian Lie algebroid
over a symplectic manifold (M,ω) is also the one over the Poisson manifold (M, {·, ·}ω).

The notion of compatibility of a ∇A-momentum section µ is also introduced in the same way
as Definition 2.4. Similarly to the Poisson case, the following argument is easily verified.

Proposition 4.2. Let µ be a ∇A-momentum section. If µ is compatible with A, then it is a Lie
homomorphism from Γ (A) to C∞(M):

∀α, β ∈ Γ (A) µ[α, β] = {µα, µβ}ω.

The condition (3.1) is equivalent to that

∀z ∈ Mµ Dρ(z)
ω ⊂ TzMµ +Dρ(z), (4.4)

where Dρ(z)
ω denotes the symplectic orthogonal space of Dρ(z) in TzM . As a corollary of

Theorem 3.2, we have

Corollary 4.3. The orbit space Mρ is a Poisson manifold with Poisson structure {·, ·}ω/
uniquely determined by

{f, g}ω/ ◦ πρ = {f̃ , g̃}ω ◦ ι

for any smooth function f, g on Mρ if and only if the condition (4.4) is satisfied.
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