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Abstract

The Schrödingerisation method combined with the autonomozation technique in [10] con-

verts general non-autonomous linear differential equations with non-unitary dynamics into sys-

tems of autonomous Schrödinger-type equations, via the so-called warped phase transformation

that maps the equation into two higher dimension. Despite the success of Schrödingerisation

techniques, they typically require the black box of the sparse Hamiltonian simulation, suitable

for continuous-variable based analog quantum simulation. For qubit-based general quantum

computing one needs to design the quantum circuits for practical implementation.

This paper explicitly constructs a quantum circuit for Maxwell’s equations with perfect

electric conductor (PEC) boundary conditions and time-dependent source terms, based on

Schrödingerization and autonomozation, with corresponding computational complexity anal-

ysis. Through initial value smoothing and high-order approximation to the delta function, the

increase in qubits from the extra dimensions only requires minor rise in computational com-

plexity, almost log log 1/ε where ε is the desired precision. Our analysis demonstrates that

quantum algorithms constructed using Schrödingerisation exhibit polynomial acceleration in

computational complexity compared to the classical Finite Difference Time Domain (FDTD)

format.
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1 Introduction

Maxwell’s equations are fundamental for understanding electromagnetic phenomena across a

broad spectrum of scales, from subatomic particles to galactic structures. The profound impact

of electromagnetic field theory on both science and technology is evident, with applications that

permeate nearly every aspect of modern life, particularly in fields such as electrical engineering,

optics, wireless optical communication, and remote sensing. In the context of modern wireless

communication, there is an exponential surge in demand for efficient signal processing capabilities.

Traditional algorithms are increasingly inadequate to meet these growing requirements. Despite

remarkable progress in addressing extensive physical systems through supercomputers [33,51], ob-

taining solutions within a feasible computation time is still intractable.

Quantum technology has achieved significant progresses, notably demonstrating quantum ad-

vantage over classical computers [5, 14, 17, 32, 38, 39, 50]. Among many potential applications, one

particularly promising area is the utilization of quantum computers to solve the time-dependent

Schrödinger equations, which follow unitary evolutions and hence the wave functions can be co-

herently represented on quantum computers. A variety of efficient quantum algorithms have been

developed in Hamiltonian simulations [2, 3, 7, 8, 11, 15, 28, 30, 31]. To this aim, it is convenient to

rewrite the source-free Maxwell formulation into a Hamiltonian system based on the Riemann-

Silberstein vectors for quantum simulation [9, 13,40,43–46].

When source terms or complex boundary conditions arise in electromagnetic field systems, the

time evolution of the system often ceases to be unitary. Therefore, it is essential to transform these

systems into unitary dynamical systems [1, 4, 10, 24, 25]. Among the unitarisation approaches, the

Schrödingerisation method introduced in [24,25] provides a simple and generic framework for quan-

tum simulation of all linear partial differential equations (PDEs) and ordinary differential equations

(ODEs). Its essence lies in employing a warped phase transformation that elevates the equations to

one higher dimension. In the Fourier space, this transformation reveals a system of Schrödinger-type

equations. The approach has been expanded to address a wide array of problems, including open

quantum systems in bounded domains with non-unitary artificial boundary conditions [19], prob-

lems entailing physical boundary or interface conditions [18], Maxwell’s equations [22], the Fokker-

Planck equation [27], ill-posed scenarios such as the backward heat equation [23], linear dynamical

systems with inhomogeneous terms [21], iterative linear algebra solvers [20], etc. Despite the sig-

nificant success of Schrödingerisation, the explicit design of the corresponding quantum circuits for

most problems remains to be addressed. Recently, quantum circuits based on Schrödingerisation

have been designed for heat equations, advection equations [16] and heat equations with boundary

conditions [26].

This paper details the explicit construction of quantum circuits derived from the quantum

algorithms through the process of Schrödingerisation, in conjunction with the aotonomousization

techniques in [10]. The main contributions of this paper are summarized as follows:

• We propose a quantum algorithm for Maxwell’s equations under Perfect Electric Conductor

(PEC) boundary conditions and time-varying source terms. This is accomplished by em-

ploying a stretching transformation to derive a homogeneous ordinary differential equation
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(ODE) system [21], followed by the process of Schrödingerisation. Additionally, we apply

the autonomousization methodology in [10] to construct a time-independent (autonomous)

Hamiltonian system in one higher dimension, characterized by a Hamiltonian operator with

spatially varying coefficients.

• We construct the quantum circuits corresponding to the proposed quantum algorithms.

• We apply smooth extension and high-order approximations to the delta function, demonstrat-

ing that the increase in dimensionality resulting from Schrödingerisation and the technique of

turning a time-dependent non-autonomous system to a time-independent autonomous only

increases mildly the computational complexity on quantum computations, almost log log 1/ε

with ε the desired precision. We further show that transforming a source-driven ODE system

into a homogeneous one by introducing auxiliary variables via a stretching transformation

does not degrade the success probability of obtaining the target state (see Remark 5.1), thus

maintaining the computational efficiency of the quantum algorithm.

The rest of the paper is organized as follows. In section 2, we present the matrix represen-

tation of Maxwell’s equations with physical boundary conditions and time-varying source terms.

In section 3, we give a brief review of the Schrödingerisation approach for general inhomogeneous

linear ODEs induced from the discretization of Maxwell’s equations, and turn the non-autonomous

system into an autonomous one. In section 4, we present the detailed implementation of quantum

circuits for the time-independent Hamiltonian system. In section 5, we show the computational

cost of the explicit quantum circuit and demonstrate that the complexity of the quantum algo-

rithm exhibits polynomial acceleration compared to classical algorithms. In section 6, we conduct

numerical experiments to validate the feasibility of the proposed algorithm, specifically focusing on

the accuracy of the recovery through Schrödingerisation and high-order convergence rates.

Throughout the paper, we restrict the simulation to a finite time interval t ∈ [0, T ], and we use

a 0-based indexing, i.e. j = {0, 1, · · · , N −1}, or j ∈ [N ], and |j⟩ ∈ CN , to denote a vector with the

j-th component being 1 and others 0. We shall denote the identity matrix and null matrix by I and

0, respectively, and the dimensions of these matrices should be clear from the context. Otherwise,

The notation IN stands for the N -dimensional identity matrix, and 1 denotes 2-dimension identity

matrix.

2 The matrix representation of Maxwell’s equations

In this section, we consider Maxwell’s equations for a linear homogeneous medium with con-

stant permittivity and permeability which are set to be 1, in the presence of sources of charge ρ

and currents J as

∂

∂t
E −∇×B = −J ,

∂

∂t
B +∇×E = 0, (1a)

∇ ·B = 0, ∇ ·E = ρ, (1b)
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in the three dimensional domain Ω = [0, 1]3. From Equation (1), the Maxwell-Gauss equation

(or Gauss’s law) and the Maxwell-Thomson equation (1b) are actually consequences of the other

equations and charge conservation equation

∂ρ

∂t
= ∇ · J . (2)

To simplify the notation, let

F =

(
Ex|0⟩+ Ey|1⟩+ Ez|2⟩+ ra|3⟩+Bx|4⟩+By|5⟩+Bz|6⟩+ rb|7⟩

)
,

J =

(
Jx|0⟩+ Jy|1⟩+ Jz|2⟩ − ρ|7⟩

)
.

Write Equation (1) in vector form as

∂F
∂t

= MF −J =

[
0 M

M† 0

]
F − J . M =


0 −∂z ∂y −∂x
∂z 0 −∂x −∂y
−∂y ∂x 0 −∂z
∂x ∂y ∂z 0

 . (3)

By comparing (1) and (3), it is evident that the auxiliary variable ra ≡ rb ≡ 0. We consider the

perfect electric conductor (PEC) boundary condition, which takes a specific form because a perfect

conductor supports surface charges and currents, preventing fields from penetrating the body [6],

i.e.,

n×E = 0, n ·B = 0, on ∂Ω, (4)

where n is the unit normal to the boundary ∂Ω.

3 Schrödingerization for Maxwell’s equations

In this section, we provide a brief review of the Schrödingerization [24,25] of Maxwell’s equa-

tions using Yee’s scheme [22]. We choose a uniform spatial mesh size △x = △y = △z =M−1 with

M an even positive integer given by M = 2m.

3.1 Notations of finite difference operator

Before presenting the discretization, we introduce some notation. We define the shift operators

as follows:

S+|j⟩ = |j + 1⟩, S−|j⟩ = |j − 1⟩, 1 ≤ j ≤M − 1.

It is straightforward to verify that the matrices can be expressed as

S− =
2m−1∑
j=1

|j − 1⟩⟨j| =
m∑
j=1

1⊗(m−j) ⊗ σ01 ⊗ σ
⊗(j−1)
10 ≜

m∑
j=1

s−j , (5)

S+ =

2m−1∑
j=1

|j⟩⟨j − 1| =
m∑
j=1

1⊗(m−j) ⊗ σ10 ⊗ σ
⊗(j−1)
01 ≜

m∑
j=1

s+j , (6)

Ir =
2m−1∑
j=1

|j⟩⟨j| = 1⊗m − σ⊗m
00 . (7)
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Here σij := |i⟩⟨j|, i, j = 0, 1 is a 2× 2 matrix. These two shift operators satisfy S+ = (S−)†. For a

single qubit, the Pauli matrices are

X =

[
0 1

1 0

]
= σ01 + σ10, Y =

[
0 −i
i 0

]
= −iσ01 + iσ10, Z =

[
1 0

0 −1

]
= σ00 − σ11.

3.2 Discretization of Maxwell’s equations

According to Yee’s lattice configuration [41,49], the different components of the electromagnetic

field and of the current densities are calculated at different cell center (half integer index) and cell

vertices (integer index):

Ej(t) = (Ex,j , Ey,j , Ez,j) = (Ex,j1+
1
2
,j2,j3

, Ey,j1,j2+
1
2
,j3
, Ez,j1,j2,j3+

1
2
),

Bj(t) = (Bx,j , By,j , Bz,j) = (Bx,j1,j2+
1
2
,j3+

1
2
, By,j1+

1
2
,j2,j3+

1
2
, Bz,j1+

1
2
,j2+

1
2
,j3
).

Correspondingly, the current densities, charge densities and the auxiliary variables are located

according to Yee’s lattice configuration:

Jj(t) = (Jx,j , Jy,j , Jz,j) = (Jx,j1+ 1
2
,j2,j3

, Jy,j1,j2+ 1
2
,j3
, Jz,j1,j2,j3+ 1

2
),

ρj(t) = ρj1,j2,j3 , raj = raj1,j2,j3 , rbj = rb
j1+

1
2
,j2+

1
2
,j3+

1
2

.

Following Yee’s algorithm, one gets the semi-discrete system:

dEh

dt
−∇h ×Bh = −Jh,

drah
dt

= ∇h ·Bh, (8)

dBh

dt
+∇h ×Eh = 0,

drbh
dt

= ∇h ·Eh + ρh, (9)

where Eh, Bh, Jh, r
a
h and rbh are the collections of Ej , Bj , Jj , r

a
j , and r

b
j for 0 ≤ j1, j2, j3 < M ,

Eh =


∑

j Ex,j |j⟩∑
j Ey,j |j⟩∑
j Ez,j |j⟩

 , Bh =


∑

j Bx,j |j⟩∑
j By,j |j⟩∑
j Bz,j |j⟩

 , Jh =


∑

j Jx,j |j⟩∑
j Jy,j |j⟩∑
j Jz,j |j⟩

 , rαh =
∑
j

rαj |j⟩, α = a, b.

(10)

The perfect electric conductor (PEC) boundary condition is given by

Ex,j1+
1
2
,j2,j3

∣∣
j2=0 or j3=0

≡ 0, Ey,j1,j2+
1
2
,j3

∣∣
j1=0 or j3=0

≡ 0, Ez,j1,j2,j3+
1
2

∣∣
j1=0 or j2=0

≡ 0,

Bx,j1,j2+
1
2
,j3+

1
2

∣∣
j1=0

≡ 0, By,j1+
1
2
,j2,j3+

1
2

∣∣
j2=0

≡ 0, Bz,j1+
1
2
,j2+

1
2
,j3

∣∣
j3=0

≡ 0,

for 0 ≤ j1, j2, j3 < M and 0 ≤ t ≤ T . To satisfy the boundary condition, we set

Jx,j1+ 1
2
,j2,j3

∣∣
j2=0 or j3=0

≡ 0, Jy,j1,j2+ 1
2
,j3

∣∣
j1=0 or j3=0

≡ 0, Jz,j1,j2,j3+ 1
2

∣∣
j1=0 or j2=0

≡ 0.

The discrete curl operator ∇h× is defined using central differences, which are also applied in the

divergence operators. We define the difference matrices as follows

D− =
M−2∑
i=0

|i⟩⟨i+ 1| −
M−1∑
i=1

|i⟩⟨i| = S− − Ir, (11)

D+ =
M−1∑
i=1

|i⟩⟨i| −
M−1∑
i=1

|i⟩⟨i− 1| = Ir − S+. (12)
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It is evident that D− = −(D+)†. Using (11) and (12), we define the following matrices

D+
x =

IM ⊗ IM ⊗D+

△x
, D+

y =
IM ⊗D+ ⊗ IM

△y
, D+

z =
D+ ⊗ IM ⊗ IM

△z
, (13)

D−
x =

IM ⊗ IM ⊗D−

△x
, D−

y =
IM ⊗D− ⊗ IM

△y
, D−

z =
D− ⊗ IM ⊗ IM

△z
. (14)

Next, we define the discrete curl operator

ME
∇h× =


0 −D+

z D+
y −D+

x

D+
z 0 −D+

x −D+
y

−D+
y D+

x 0 −D+
z

D+
x D+

y D+
z 0

 , MB
∇h× =


0 D−

z −D−
y D−

x

−D−
z 0 D−

x D−
y

D−
y −D−

x 0 D−
z

−D−
x −D−

y −D−
z 0

 .

It follows that MB
∇h× = −(ME

∇h×)
†. The matrix representation of (8)-(9) can be rewritten as an

n = 8M3 dimensional ODE system:

d

dt
u = Au+ f , A =

[
0 ME

∇h×

MB
∇h× 0

]
, (15)

where u = |0⟩ ⊗Eh + |1⟩ ⊗ rah + |2⟩ ⊗Bh + |3⟩ ⊗ rbh and f = |0⟩ ⊗ f1 + |1⟩ ⊗ f2 with f1 =

[
−Jh

0

]
,

f2 =
∑2

j=0 |j⟩ ⊗ 0+ |3⟩ ⊗ ρh, and 0 ∈ RM3
is a zero vector.

3.3 A review of general framework of Schrödingerisation

It is time to consider the Schrödingerization of the linear system with source terms introduced

in [21],

d

dt

[
u

r

]
=

[
A F

0⊤ 0

][
u

r

]
= Ã

[
u

r

]
,

[
u(0)

r(0)

]
=

[
u0

r0

]
, (16)

where r = [c0, c0, · · · , c0]⊤, c0 = max{maxt∈[0,T ] ∥f∥l∞ , 1} is a constant, and F = σ00⊗F1+σ11⊗F2

with F1 = diag{f1/c0} and F2 = diag{f2/c0}. Since any matrix can be decomposed into a

Hermitian matric and an anti-Hermitian matric, Equation (16) can be expressed as

d

dt
uf = (H1 + iH2)uf , H1 =

1

2
(Ã+ Ã†), H2 =

1

2i
(Ã− Ã†), (17)

where uf = |0⟩u+ |1⟩r with H1 and H2 defined by

H1 =
1

2


0 0 F1 0

0 0 0 F2

F1 0 0 0

0 F2 0 0

 , H2 =
1

2i


0 2ME

∇h× F1 0

2MB
∇h× 0 0 F2

−F1 0 0 0

0 −F2 0 0

 , (18)

both of which are Hermitian. Thus, the sparsity of H1 equals to the sparsity of Ã. Using the

warped phase transformation w(t, p) = e−puf for p > 0 and extending the initial data to p < 0,

Equation (17) is converted to a system of linear convection equations [21]:

d

dt
w = −H1∂pw + iH2w,

w(0) = g(p)uf (0),

(19)
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with the smooth initial data g ∈ Cr(R) for any integer r ≥ 2 [23].

Next, we employ the spectral method to discretize the p-domain. We select a sufficiently large

domain p ∈ [−πL, πL], L > 0 such that

e−πL+|λmax(H1)|T ≈ 0, (20)

where λmax(H1) = maxt∈(0,T ) |λ(H1(t)))|. This ensures that the wave initially supported within

the domain remains so throughout the computation. We set the uniform mesh size △p = 2πL/Np

where Np = 2np is a positive even integer and grid points denoted by −πL = p0 < · · · < pNp = πL.

Define the vector wh as the collection of the function w at these grid points by

wh =
∑

k∈[Np]

∑
j∈[n]

wj(t, pk)|j⟩|k⟩, (21)

where wj is the j-th component of w. The one-dimensional basis functions for the Fourier spectral

method are typically chosen as

ϕpl (x) = eiν
p
l (x+πL), νpl = (l −Np/2)/L, 0 ≤ l ≤ Np − 1. (22)

Using (22), we define

Φp = (ϕpjl)Np×Np = (ϕpl (pj))Np×Np , Dp = diag{νp0 , · · · , ν
p
Np−1}. (23)

Considering the Fourier spectral discretization on p, one obtains

d

dt
wh = −i(H1 ⊗ Pp)wh + i(H2 ⊗ INp)wh ≜ −iHpwh. (24)

Here Pp is the matrix representation of the momentum operator −i∂p and is defined by Pp =

ΦpDp(Φ
p)†.

3.3.1 Turning a non-autonomous system into an autonomous one

In this subsection, we apply the autonomousization technique from [10] to transform the time-

dependent system into a time-independent one. The approach involves introducing a new variable

s, which reformulates the problem as a new system defined in one higher dimension, featuring

time-independent coefficients, as demonstrated in the following theorem.

Theorem 3.1. For the non-autonomous system in Equation (29), introduce the following initial-

value problem of an autonomous PDE

d

dt
v = − ∂

∂s
v − iHp(s)v, v(0) = δ(s)wh(0), s ∈ R. (25)

One can recover wh(t) from v(t, s) using

wh(t) =

∫ ∞

−∞
v(t, s) ds. (26)
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For the discretization in the s domain, we first truncate the infinite s-domain to [−πS, πS],
ensuring that S is sufficiently large so that e−πS+T ≈ 0. This allows us to approximate the

problem using periodic boundary conditions. Additionally, we set Hp(s) = 0 for s ≤ 0. We define

the collection of the function v, denoted by vh, at the points −πS = s0 < · · · < sNs = πS, where

si = −πS + (i − 1)△s for i ∈ [Ns]. Here, Ns = 2ns represents the number of grid points in the s

domain, and △s = 2πS
Ns

is the mesh size. Analogous to equations (22)-(23), we define

Φs = (ϕsjl)Ns×Ns = (eiν
s
l (sj+πS))Ns×Ns , Ds = diag{νs0, · · · , νsNs−1}, νsl =

l − Ns
2

S
,

and then

Ps = ΦsDs(Φ
s)−1, HS =

Ns−1∑
l=0

(
H1(sl)⊗ |l⟩⟨l| ⊗ Pp −H2(sl)⊗ |l⟩⟨l| ⊗ INp

)
.

The numerical scheme for the discretization of v is given by

d

dt
vh = −i(In ⊗ Ps ⊗ INp +HS)vh, vh(0) = uf (0)⊗ δh(0)⊗ gh, (27)

where gh = [g(p0) · · · g(pNp−1)]
⊤ and δh = [δh(s0), · · · , δh(sNs−1)]

⊤. The compactly supported

discrete Dirac delta function is defined as

δh(s) =
1

△s
β

(
s

△s

)
,

where β(ξ) is the unscaled approximation function supported on the interval [−q, q] for some con-

stant q. We recover the approximation to wh, denoted by wD
h such that

wD
h = △s

∑
l∈[Ns]

(In ⊗ ⟨l| ⊗ INp) · vh. (28)

Define

H = In ⊗ Ps ⊗ INp +
∑
l∈[Ns]

(
H1(sl)⊗ |l⟩⟨l| ⊗Dp −H2(sl)⊗ |l⟩⟨l| ⊗ INp

)
.

By changing variables to ṽh = [In ⊗ INs ⊗ (Φp)†]vh, one gets

d

dt
ṽh = −iHṽh, ṽh(0) = uf (0)⊗ δh(0)⊗ g̃h, (29)

where g̃h = (Φp)†gh. At this point, a quantum simulation can be performed for the Hamiltonian

system described by (29). The inverse Quantum Fourier transform is then applied to yield vh =

[In ⊗ INs ⊗ Φp]ṽh.

3.3.2 Recovery from Schrödingerisation

Finally, one needs to recover u from the warped transformation by selecting a suitable domain

in p. We adopt the recovery strategy outlined in [21].
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|uf (0)⟩

U

|uf (T )⟩

|δh(0)⟩ |δh(T )⟩

|gh⟩ QFT IQFT
|k⟩

Figure 1: Quantum circuit for Schrödingerisation of Equation (27).

Theorem 3.2. Assume the eigenvalues of H1 satisfy λ1(H1) ≤ λ2(H1) · · · ≤ λn(H1), the solution

to Equation (16) can be recovered from Equation (19) by

u = ep
∗
w(p∗), for any p∗ > p3, (30)

where p3 ≥ max{λn(H1)T, 0} with T the stop time of the evolution; or by using the integration,

u = ep
∗
∫ ∞

p∗
w(q) dq, p∗ > p3. (31)

In the case of Equation (15), we have |λ(H1)| ≤ 1
2 , the numerical electromagnetic field is

recovered by

uh|k⟩ = epk
(
In ⊗ |k⟩⟨k|

)
wD

h

= epk△s
(
In ⊗ |k⟩⟨k|

) ∑
l∈[Ns]

(
In ⊗ ⟨l| × INp

)
vh

= epk△s
∑
l∈[Ns]

(
In ⊗ ⟨l| ⊗ INp

)
Mkvh pk > T/2,

(32)

where Mk = In×Ns ⊗ |k⟩⟨k| is the projection measurement operator. Here we remark that we use

the quantum computer to evaluate

vh =
(
In ⊗ INs ⊗ Φp

)
U
(
In ⊗ INs ⊗ (Φp)†

)(
uf (0)⊗ δh(0)⊗ gh

)
≜ Uvh(0),

where U = exp(−iHT ) is unitary and U = (In ⊗ INs ⊗ Φp)U(In ⊗ INs ⊗ (Φp)†). A measurement

corresponding to the projection Mk = In ⊗ INs ⊗ |k⟩⟨k| is performed to select the |k⟩ component

of the state |vh⟩. Following the measurement, the summation is executed on a classical computer.

The complete circuit for implementing the quantum simulation of |vh⟩ is illustrated in Figure 1,

where QFT (IQFT) denotes the (inverse) quantum Fourier transform.

3.4 A higher order improvement in the extended domains

In order to achieve r-th order convergence rates of spectral methods and r-th order approxi-

mation to the delta function, it is essential that β(ξ) ∈ Hr(R) is sufficiently smooth and fulfills the

condition ∣∣△s ∑
l∈[Ns]

δh(sl − s)f(sl)− f(s)
∣∣ ≤ C△sr (33)

for f(x) ∈ Cr(R) [42]. Additionally, the initial data in the extended domain g(p) ∈ Cr(R) should
exhibit sufficient smoothness to ensure that wh(p, t) ∈ Cr(R). Then, we use the construction
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in [29, Appendix] to obtain r-th order approximation to the delta function β(ξ) ∈ Hr(R). As an

example, we present the 3rd-order interpolating function β(ξ) ∈ H2(R) from [48], given by

β(ξ) =


1− 5

2 |x|
2 + 3

2 |x|
3, 0 ≤ |x| ≤ 1,

1
2(2− |x|)2(1− |x|), 1 ≤ |x| ≤ 2,

0, otherwise.

(34)

Meanwhile we choose g(p) ∈ C2(R) in [23]:

g(p) =

 (192 − 19
2 e

−1)p5 + (492 − 23e−1)p4 + (352 − 29
2 e

−1)p3 + 1
2p

2 − p+ 1 p ∈ (−1, 0),

e−|p| p ∈ (−∞,−1] ∪ [0,∞).
(35)

For general r, this will lead to essentially the spectral accuracy for the approximation in the

extended space, if a spectral method is used [23].

4 Quantum circuit for Maxwell’s equations

The complete circuit for implementing the Schrödingerization method for Maxwell’s equations

is presented in Figure 1. In this section, we focus on the detailed construction of the quantum

circuit for the unitary operation

U = exp(−iHT ) = exp(−i(In ⊗ Ps ⊗ INp +HS)T ).

According to Equation (10), we define

Jαh =
∑
j

Jα,j
c0

|j⟩, α = x, y, z, ρ,

where Jρ,j = ρj . For simplicity, we make the following assumptions.

Assumption 4.1. For the parameter sl, 0 ≤ sl < T , l ∈ Is with |Is| ≤ O(ns), the discretization

source term J l
αh = Jαh(sl) takes the value either J l

α,1, or J
l
α,0, such that

J l
αh,j =

 J l
α,1 for j ∈ I l

α,

J l
α,0 otherwise,

α = x, y, z, ρ.

In addition, J l
α,h ≡ 0 for l ∈ [Ns]\Is, and we have |Iα| = maxl∈Is |I l

α| ≤ O(m).

To simplify notation, we denote

Θj = σj3m−1j3m−1 ⊗ · · · ⊗ σj0j0 , 0 ≤ j ≤ 23m − 1, (36)

where j = (j3m−1 · · · j0) =
∑3m−1

i=0 ji2
i, ji ∈ {0, 1} is the binary representation of j. By introducing

F α(sl) =
∑
j∈Il

α

1

c0
(J l

α,1 − J l
α,0)|j⟩⟨j|+

J l
α,0

c0
1⊗3m

=
∑
j∈Il

α

1

c0
(J l

α,1 − J l
α,0)Θj +

J l
α,0

c0
1⊗3m, α = x, y, z, ρ, (37)

10



one has the formula of F as

F (sl) = σ3,x ⊗ F x(sl) + σ3,y ⊗ F y(sl) + σ3,z ⊗ F z(sl) + σ3,ρ ⊗ F ρ(sl), (38)

with σ3,x = σ⊗3
00 , σ3,y = σ⊗2

00 ⊗ σ11, σ3,z = σ00 ⊗ σ11 ⊗ σ00, σ3,ρ = σ⊗3
11 .

We note that by employing the autonomousization technique described in [10], we can trans-

form the time evolution of the Hamiltonian system into a spatial variable-coefficient Schrödinger-

type equation. Consequently, constructing the circuit diagram for the time evolution of the Hamilto-

nian system essentially involves creating a quantum circuit for variable-coefficient unitary operators.

For more general cases of variable-coefficient matrices, we refer to [35,36].

The essential aspect of constructing the circuit lies in implementing the quantum circuit for

the Hamiltonian operator U(τ) = exp(iHτ), where τ represents the time increment. This can be

achieved by applying the first-order Lie-Trotter-Suzuki decomposition. Given that the Hamiltonian

H can be expressed as

H = HDs +HF +Hcurl, HDs = 1⊗(3m+4) ⊗ Ps ⊗ 1⊗np , (39)

HF =
1

2

Ns−1∑
l=0

(
X ⊗ F (sl)⊗ |l⟩⟨l| ⊗Dp − Y ⊗ F (sl)⊗ |l⟩⟨l| ⊗ 1⊗np

)
, (40)

Hcurl = i(σ00 ⊗ σ01 ⊗ME
∇h× + σ00 ⊗ σ10 ⊗MB

∇h×)⊗ 1⊗(np+ns), (41)

we introduce the operators

U1(τ) = exp(−iHDsτ), U2(τ) = exp(−iHF τ), U3(τ) = exp(−iHcurlτ). (42)

Thus, the approximation for U(τ) can be formulated as

exp(−iHτ) ≈ U1(τ)U2(τ)U3(τ). (43)

4.1 Quantum circuit for U1(τ)

From the definition of Ps, it is easy to construct the circuit of U1 as follows

U1(τ) = exp(−i1⊗3m+4 ⊗ ΦsDs(Φ
s)† ⊗ 1⊗np)

= 1⊗(3m+4) ⊗
(
Φs exp(

−iτ
2S

∑
l∈[Ns]

(l − Ns

2
)|l⟩⟨l|)(Φs)†

)

= 1⊗(3m+4) ⊗
(
Φs
(
exp(

iτNs

4S
)1⊗ns

)
·
(
exp(

−iτ
2S

∑
l∈[Ns]

l|l⟩⟨l|)
)
(Φs)†

)
⊗ 1⊗np

≜ 1⊗(3m+4) ⊗ Ũ1(τ)⊗ 1⊗np .

(44)

Using the binary representation of integers l = (lns−1 · · · l0) =
∑ns−1

j=0 lj2
j , lj ∈ {0, 1}, one gets

exp(
−iτ
2S

∑
l∈[Ns]

l|l⟩⟨l|) =
ns−1⊗
j=0

∑
lj=0,1

e−
iτ
2S

2jσlj lj =

ns−1⊗
j=0

P (
−2j−1

S
τ), (45)

where P (θ) =

[
1 0

0 eiθ

]
is the phase gate. According to Equation (44) and (45), one gets the circuit

of Ũ1(τ) as shown in Figure 2.

11



|qns⟩

QFT

P (−2ns−1τ
S )

IQFT

· · · ... ...

|q2⟩ P (−21τ
S )

|q1⟩ I τNs
2S

P (−20τ
S )

Figure 2: Quantum circuit for the operator Ũ1(τ), where Iθ = Rz(−θ)P (θ).

4.2 Quantum circuits for U2(τ)

For any fixed l = (lns · · · l0) ∈ Is and j = (j3m−1 · · · j0) ∈ I l
α, according to the notation in

Equation (36) and the representation of spatial variable coefficient matrix in Equation (37), we

define

Hα
Xp,lj

=
1

2c0
(J l

α,1 − J l
α,0)X ⊗ σ3,α ⊗Θj ⊗Θl ⊗Dp, (46)

Hα
Xp,l =

1

2c0
J l
α,0X ⊗ σ3,α ⊗ 1⊗3m ⊗Θl ⊗Dp, (47)

Hα
Y,lj

=
1

2c0
(J l

α,0 − J l
α,1)Y ⊗ σ3,α ⊗Θj ⊗Θl ⊗ 1⊗np , (48)

Hα
Y,l =

1

2c0
(−J l

α,0)Y ⊗ σ3,α ⊗ 1⊗(3m) ⊗Θl ⊗ 1⊗np . (49)

Then one can rewrite HF as

HF =
∑

α=x,y,z,ρ

∑
l∈Is

∑
j∈Il

α

(
Hα

Xp,lj
+Hα

Yp,lj

)
+Hα

Xp,l +Hα
Yp,l. (50)

Using Trotter’s splitting, one has

U2(τ) ≈
∏

α=x,y,z,ρ

∏
l∈Is

∏
j∈Il

α

Uα
Xp,lj

· Uα
Yp,lj

· Uα
Xp,l · U

α
Yp,l ≜ V2(τ), (51)

where

Uα
β,lj

= exp(−iHα
β,lj

τ), Uα
β,l = exp(−iHα

β,lτ), β = {Xp, Yp}.

Define a multi-controlled RX(θ) gate acting on the (m+1)-th qubit. This gate becomes active

when the qubits indexed in I1 are all set to 1 and the qubits indexed in I0 are all set to 0, denoted

CRXI1,I0

m+1 (2θ) = exp
(
− iθX ⊗ σ̃jm−1jm−1 ⊗ · · · ⊗ σ̃j0j0

)
, (52)

where σ̃jk , k ∈ [m] is determined by

σ̃jkjk =


σ00 k ∈ I0,

σ11 k ∈ I1,

1 otherwise.
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|ϕ3m+4⟩ RX(2θ)

|ϕ3m+3⟩

|ϕ3m+2⟩

|ϕ3m+1⟩

|ϕ3m⟩

· · ·

|ϕ1⟩ •

|qns⟩ •

· · ·

|q1⟩
(a) Ux

X,lj
(2θ)

|ϕ3m+4⟩ RX(2θ)

|ϕ3m+3⟩

|ϕ3m+2⟩

|ϕ3m+1⟩

|ϕ3m⟩

· · ·

|ϕ1⟩

|qns⟩ •

· · ·

|q1⟩
(b) Ux

X,l(2θ)

Figure 3: Quantum circuit for Ux
X,lj

(2θ) and Ux
X,l(2θ) with I1

j,3m = {0}, I1
l,ns

= {ns − 1}.

Similarly, we can define CRYI1,I0

m+1 (2θ) and CRZI1,I0

m+1 (2θ). For the fixed l = (lns · · · l0) ∈ Is and

j = (j3m−1 · · · j0) ∈ I l
α, the index sets for control points are defined by

Ii
j,3m = {k ∈ [3m] : jk = i}, Ii

l,ns
= {k ∈ [ns] : lk = i}, i = 0, 1. (53)

Using the definition provided in (52), we define the operators corresponding to the circuits

shown in Figure 3 as follows

Uα
X,lj

(2θ) = exp(−iθX ⊗ σ3,α ⊗Θj ⊗Θl) = CRX
I1
α,1,I0

α,1

3m+4+ns
(2θ) α = x, y, z, ρ, (54)

Uα
X,l(2θ) = exp(−iθX ⊗ σ3,α ⊗ 1⊗3m ⊗Θl) = CRX

I1
α,0,I0

α,0

3m+4+ns
(2θ) α = x, y, z, ρ. (55)

Here, the sets Ik
α,1 and Ik

α,0 are defined as

Ik
α,1 = {ns + 3m+ Ik

α} ∪ {ns + Ik
j,3m} ∪ Ik

l,ns
,

Ik
α,0 = {ns + 3m+ Ik

α} ∪ Ik
l,ns

,

for k = 0, 1. The sets Ik
j,3m, Ik

l,ns
are defined in (53). Additionally, we have

I1
x = ∅, I1

y = {0}, I1
z = {1}, I1

ρ = {0, 1, 2}, I0
α = {0, 1, 2}\I1

α, α = x, y, z, ρ,

as determined by the definition of σ3,α. The circuit of Uα
X,lj

(2θ) and Uα
X,l(2θ) are shown in Figure

3. Similarly, one has Uα
Y,lj

(2θ) and Uα
Y,l(2θ). Thus, it yields

Uα
Yp,lj

= Uα
Y,lj

(θα,1l τ)⊗ 1⊗np , Uα
Yp,l = Uα

Y,l(θ
α,0
l τ)⊗ 1⊗np , (56)

where θα,1l =
J l
α,0−J l

α,1

c0
, θα,0l = −J l

α,0

c0
.
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|ϕ⟩ Ux
X,lj

(θ) (Ux
X,lj

(θ))2 ... (Ux
X,lj

(θ))2
np−1

(Ux
X,lj

(θ))−2np−1

|ψnp⟩ ... •

· · · ...

|ψ2⟩ • ...

|ψ1⟩ • ...

Figure 4: Quantum circuit for Ux
Xp,lj

with θ = τθα,1lp
.

Noting that Dp =
∑Np−1

k=0
1
L(k −

Np

2 )|k⟩⟨k|, one gets the expression of Uα
Xp,lj

, Uα
Xp,l

as follows

Uα
Xp,lj

=

( ∑
k∈[Np]

Uα
X,lj

(kτθα,1lp
)⊗ |k⟩⟨k|

)(
Uα
X,lj

(−Npτθ
α,1
lp

)⊗ 1⊗np

)
,

Uα
Xp,l =

( ∑
k∈[Np]

Uα
X,l(kτθ

α,0
lp

)⊗ |k⟩⟨k|
)(

Uα
X,l(−Npτθ

α,0
lp

)⊗ 1⊗np

)
,

where θα,1lp
= 1

Lc0
(J l

α,0 − J l
α,1) and θα,0lp

=
J l
α,0

2Lc0
. Using the binary representation of integers k =

(knp−1 · · · k0) =
∑np−1

g=0 2gkg, kg ∈ {0, 1}, one gets

Uα
X,lj

(kθ) = (Uα
X,lj(θ))

k =

np∏
g=1

(Uα
X,lj(θ))

kg2g .

Therefore, there holds

∑
k∈[Np]

Uα
X,lj

(kτθα,1lp
)⊗ |k⟩⟨k| =

∑
knp ···k0

np−1∏
g=0

(Uα
X,lj

(τθα,1lp
))kg2

g ⊗ (σknpknp
⊗ · · · ⊗ σk0k0)

=

np−1∐
g=0

 ∑
kg=0,1

(Uα
X,lj

(τθα,1lp
))kg2

g ⊗ σkgkg


=

np−1∐
g=0

(
(Uα

X,lj
(τθα,1lp

))kg2
g ⊗ |1⟩⟨1|+ 1⊗3m+4+ns ⊗ |0⟩⟨0|

)
.

(57)

The product
∐

denotes the regular matrix product for the first register, which consists of ns+3m+4

qubits, and the tensor product for the second register. Since (Uα
X,lj

(θ))2
g
can be implemented at

a cost independent of g, the advantage of applying the binary representation of k can be realized.

The circuit for Uα
Xp,lj

is illustrated in Figure 4. The circuit for Uα
Xp,l

is obtained by replacing Uα
X,lj

with Uα
X,l, as shown in Figure 5.

4.3 Quantum circuit for U3(τ)

Before giving the specific circuit for U3(τ), we use the Bell basis to decompose a class of the

matrix shown in [16].
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|ϕ⟩ Ux
X,l(θ) (Ux

X,l(θ))
2 ... (Ux

X,l(θ))
2np−1

(Ux
X,l(θ))

−2np−1

|ψnp⟩ ... •

· · · ...

|ψ2⟩ • ...

|ψ1⟩ • ...

Figure 5: Quantum circuit for Ux
Xp,l

with θ = τθα,1l .

Lemma 4.1. Given an operator of the form S = eiλσ01 ⊗ σ
⊗(n−1)
10 + e−iλσ10 ⊗ σ

⊗(n−1)
01 , where λ is

a real number, there exits a unitary matrix U such that

S = UI
n (−λ)Λ(UI

n (λ))
†,

where Λ = Z ⊗ σ
⊗(n−1)
11 . The unitary matrix UI

n (−λ) is defined as

UI
n (−λ) = (

∏
k∈I

CNOTn
k)Pn(λ)Hn,

where I = {1, 2, · · · , n − 1} is the index set, Hn is the Hadamard gate acting on the n-th qubit,

Pn(λ) is the phase gate P (λ) acting on the n-th qubit and CNOTn
k is the CNOT gate acting on

the k-th qubit controlled by the n-th qubit.

To present the explicit quantum circuit for U3, we first decompose Hcurl into

Hcurl = i(σ00 ⊗ σ01 ⊗ME
∇h× + σ00 ⊗ σ10 ⊗MB

∇h×)⊗ 1⊗(np+ns)

= (Hx +Hy +Hz)⊗ 1⊗(ns+np),
(58)

where the matrices Hx, Hy and Hz are defined as follows

Hx =
(
σ00 ⊗ σ01 ⊗ Y ⊗X ⊗D+

x − σ00 ⊗ σ10 ⊗ Y ⊗X ⊗D−
x

)
,

Hy = −
(
σ00 ⊗ σ01 ⊗ Y ⊗ Z ⊗D+

y − σ00 ⊗ σ10 ⊗ Y ⊗ Z ⊗D−
y

)
,

Hz =
(
σ00 ⊗ σ01 ⊗ 1⊗ Y ⊗D+

z − σ00 ⊗ σ10 ⊗ 1⊗ Y ⊗D−
z

)
.

The circuit for U3 is approximated by U3 ≈ (UxUyUz)⊗ 1⊗(ns+np) with

Ux = exp(−iHxτ), Uy = exp(−iHyτ), Uz = exp(−iHzτ).

From Equations (5) and (6), we find that Hx = Hx1 +Hx2 , where Hx1 and Hx2 can be defined by

Hx1 = −
( 1

△x
σ00 ⊗ σ01 ⊗ Y ⊗X ⊗

m∑
j=1

1⊗(3m−j) ⊗ σ10 ⊗ σ
⊗(j−1)
01

+
1

△x
σ00 ⊗ σ10 ⊗ Y ⊗X ⊗

m∑
j=1

1⊗(3m−j) ⊗ σ01 ⊗ σ
⊗(j−1)
10

)
,

Hx2 =
1

△x
σ00 ⊗X ⊗ Y ⊗X ⊗ 1⊗2m ⊗ Ir.
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(a) Wj (b) Vx1

Figure 6: Quantum circuit for Wj and Vx1 .

We can express the tensor product of the Pauli matrices by

Z ⊗ Y ⊗X = (1⊗ UY ⊗H) · Zσ,3 · (1⊗ U †
Y ⊗H), (59)

X ⊗ Y ⊗X = (H ⊗ UY ⊗H) · Zσ,3 · (H ⊗ U †
Y ⊗H). (60)

Here UY is defined as HP (π2 )H and Zσ,3 represents Z⊗3. Applying Lemma 4.1 yields

Hx1 = ŨZY X ·
m∑
j=1

(
U

Ix,j
3m+3(0)X3m+3,j(σ00 ⊗

−Zσ,3

△x
⊗ 1⊗(3m−j) ⊗ σ⊗j

11 )X3m+3,j(U
Ix,j
3m+3(0))

†
)
Ũ †
ZY X .

In this expression, ŨZY X is defined as 1⊗2 ⊗ UY ⊗ H ⊗ 1⊗3m. The term U
Ix,j
3m+3(λ) is given by

(
∏

k∈Ix,j
CNOT3m+3

k )P3m+3(λ)H3m+3. The set Ix,j represents {1, 2, · · · , j}, and X3m+3,j denotes

the X gate acting on the (3m + 3)-th and j-th qubit. Using the first-order Lie-Trotter-Suzuki

decomposition, it yields

Ux1 = exp(−iHx1τ)

≈ ŨZY X ·
m∏
j=1

(
UIx,j
3m+3(0)X3m+3,jCRZ

I1
x,j ,I0

x,j

3m+1→3m+3(
−2τ

△x
)X3m+3,j(U

Ix,j
3m+3(0))

†
)
· Ũ †

ZY X

= ŨZY X

m∏
j=1

WjŨ
†
ZY X = Vx1 .

Here, CRZ
I1
x,j ,I0

x,j

3m+1→3m+3(2θ) represents a multi-gate RZ3(2θ) = exp(−iθZσ,3), acting on the (3m+1)

to (3m+ 3)-th qubits controlled by I1
x,j and I0

x,j given by

I1
x,j = {1, 2, · · · , j}, I0

x,j = {3m+ 4}.

The circuits of Wj and Vx1 are shown in Figure 6. Noting that Ir = 1⊗m − σ⊗m
00 and Equation
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|q3m+4⟩

|q3m+3⟩ H

RZ3(
−2τ
△x ) RZ3(

2τ
△x)

H

|q3m+2⟩ UY U †
Y

|q3m+1⟩ H H

|q3m⟩

· · ·

|qm⟩

· · ·

|q1⟩

Figure 7: Quantum circuit for Ux2 .

(60), one has

Ux2 = exp(−iHx2τ)

= ŨXYX · CRZ∅,{3m+4}
σ3m+1→3m+3

(
−2τ

△x
) · CRZ∅,{1,2,··· ,m,3m+4}

σ3m+1→3m+3
(
2τ

△x
) · Ũ †

XYX ,

where ŨXYX = 1 ⊗ H ⊗ UY ⊗ H ⊗ 1⊗3m. The circuit of Ux2 is shown in Figure 7, and the

approximation of Ux is given by

Ux = Ux1Ux2 ≈ Vx = Vx1 · Ux2 . (61)

An argument similar to the computation of Ux shows the approximation of Uy as

Uy ≈ Vy = Vy1 · Uy2 , (62)

Vy1 = ŨZY Z ·
m∏
j=1

(
U

Iy,j
3m+3(0)X3m+3,jCRZ

I1
y,j ,I0

y,j

3m+1→3m+3(
2τ

△y
)X3m+3,j(U

Iy ,j
3m+3(0))

†
)
· Ũ †

ZY Z ,

Uy2 = ŨXY Z · CRZ∅,{3m+4}
3m+1→3m+3(

2τ

△y
) · CRZ∅,{m+1,··· ,2m,3m+4}

3m+1→3m+3 (
−2τ

△y
) · Ũ †

XY Z ,

where Iy,j = {m+ 1,m+ 2, · · · ,m+ j}, and

I0
y,j = {3m+ 4}, I1

y,j = {m+ 1,m+ 2, · · · ,m+ j}.

Here ŨZY Z = 1⊗2 ⊗ UY ⊗ 1⊗(3m+1), and ŨXY Z = 1⊗H ⊗ UY ⊗ 1⊗(3m+1). Similarly, one has the

approximation of circuit of Uz shown as

Uz ≈ Vz = Vz1 · Uz2 , (63)

Vz1 = ŨZ1Y ·
m∏
j=1

(
U

Iz,j
3m+3(0)X3m+3,jCRZ

I1
z,j ,I0

z,j

3m+1→3m+3(
−2τ

△z
)X3m+3,j(U

Iz,j
3m+3(0))

†
)
· Ũ †

Z1Y ,

Uz2 = ŨX1Y · CRZ∅,{3m+4}
3m+1→3m+3(

−2τ

△z
) · CRZ∅,{2m+1,··· ,3m,3m+4}

3m+1→3m+3 (
2τ

△z
) · Ũ †

X1Y ,
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where Iz,j = {2m+ 1, 2m+ 2, · · · , 2m+ j} and

I0
z,j = {3m+ 4}, I1

z,j = {2m+ 1, 2m+ 2, · · · , 2m+ j}.

Here ŨZ1Y = 1⊗3 ⊗ UY ⊗ 1⊗3m and ŨX1Y = H ⊗ 1⊗ UY ⊗ 1⊗3m.

In summary, the approximation of the time evolution exp(−iHτ) with H defined in (29) is

given by

V (τ) = U1V2

(
VxVyVz ⊗ 1⊗(ns+np)

)
= U1V2

∏
α=x,y,z

(
Vα1 Uα2

)
⊗ 1⊗(ns+np), (64)

where U1 is defined in (44)-(45), V2 is defined in (51), and Vx, Vy and Vz are defined in (61), (62)

and (63), respectively.

5 Complexity analysis

In this section, we analyze the complexity of the previously constructed quantum circuits. We

begin by demonstrating the approximation of the circuit implementation for exp(iHτ) with a time

step τ , where

H = γ
d∑

α=1

n∑
j=1

ηα(e
iλα(s−j )α + e−iλα(s+j )α) (65)

as proved in [34]. Here ηα and γ are real scalar parameters, while λα ∈ R is the phase parameter

and

(sµj )α = 1⊗(α−1)n ⊗ sµj ⊗ 1⊗(d−α)n,

for µ ∈ {+,−}.

Lemma 5.1. The time evolution operator exp(−iHτ), with H defined in (65), can be approximated

by the unitary

d⊗
α=1

V (γηατ, λα) =
d∏

α=1

1⊗(α−1)n ⊗

 n∏
j=1

1⊗(n−j) ⊗ U
Ij
n (λ)CRZ

I1
j ,∅

j (2γτ)(U
Ij
n (−λ))†

⊗ 1⊗(d−α)n,

where Ij = I1
j = {1, 2, · · · , j − 1}, CRZ

I1
j ,∅

j (2γτ) = exp(−iγτZ ⊗ σ
⊗(j−1)
11 ) is a multi-controlled

RZ(2γτ) gate acting on the j-th qubit when the 1, · · · , (j−1)-th qubits become 1. The approximation

error is upper bounded in the sense of the operator norm as

∥ exp(−iHτ)−
d⊗

α=1

V (γηατ, λα)∥ ≤ γ2τ2(n− 1)

2

d∑
α=1

η2α.

Lemma 5.2. Consider the Schrödingerized equation d
dt |ṽh⟩ = −iH|ṽh⟩ with the Hamiltonian H

given in (29). The time evolution operator exp(−iHτ) with the time step τ can be approximated

by the unitary V (τ) in (64). The approximation error in the sense of the operator norm is upper

bounded as

∥ exp(−iHτ)− V (τ)∥ ≲
dτ2(m− 1)

△x2
+
τ2Fmax

△p△x
+
τ2Fmax

△p△s
+

τ2

△s△x
+

(d+ 1)|I||Is|F 2
maxτ

2

△p
, (66)

where d = 3 is the dimension, |I| = max
α=x,y,z,ρ,l∈Is

|I l
α|, Fmax = ∥F ∥max.
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Proof. Using Trotter’s splitting and the triangle inequality, it yields

∥ exp(−iHτ)− V (τ)∥

≲τ2
(
∥[HDs +HF , Hcurl]∥+ ∥[HDs , HF ]∥

)
+ ∥U2 − V2∥+ ∥U3 − (VxVyVz)⊗ 1⊗(ns+np)∥. (67)

In the following, we consider the approximation of the right-hand sides of (67) term by term.

Under the assumption that △x = △y = △z, one has

∥[HDs +HF , Hcurl]∥ ≲ ∥HDs +HF ∥∥Hcurl∥ ≲
Fmax

△p△x
+

1

△s△x
, (68)

∥[HDs , HF ]∥ ≲ ∥HDs∥∥HF ∥ ≲
Fmax

△s△p
. (69)

The error for ∥U2 − V2∥ is bounded by

∥U2 − V2∥ ≲
∑

α=x,y,z,ρ
l∈Isj∈Il

α

(
∥[Hα

Xp,lj
, Hα

Yp,lj
]∥+ ∥[Hα

Xp,lj
, Hα

Yp,lj
]∥+ ∥[Hα

Xp,l, H
α
Yp,lj

]∥+ ∥[Hα
Xp,l, H

α
Yp,l]∥

)

≲ (d+ 1)|I||Is|
F 2
max

△p
,

(70)

where |I| = max
α=x,y,z,ρ

max
l∈Is

|I l
α|. This leads from Lemma 5.1 to the estimation of the last term in

Equation (67) as follows

∥U3 − (VxVyVz)⊗ 1⊗(ns+np)∥ ≤ ∥U3 − (UxUyUz)⊗ 1⊗(ns+np)∥+ ∥Ux − Vx∥+ ∥Uy − Vy∥+ ∥Uz − Vz∥

≲ τ2(∥[Hx +Hy, Hz]∥+ ∥[Hx, Hy]∥) +
∑

α=x,y,z

∥Uα1 − Vα1∥

≲
τ2

△x2
+
dτ2(m− 1)

△x2
. (71)

Inserting (68)–(71) into (67), the proof is completed.

Lemma 5.3. The approximation of exp(−iHτ) denoted by V (τ), where H is the Hamiltonian

defined in (29) and τ is the time step, can be implemented by O (dm+ ns + (d+ 1)|I||Is|np)
single-qubit gates and at most O

(
dm2 + n2s + (d+ 1)|I||Is|np(ns +md)

)
CNOT gates, where |I| =

max
α=x,y,z,ρ

max
l∈Is

|I l
α| and np, ns,m ≥ d = 3.

Proof. Let NS(U) be the number of single-qubit gates of the operator U and NCNOT(U) be the

number of non-local gates of the operator U . It is obvious that

Nβ(V (τ)) = Nβ(U1) +Nβ(V2) +
∑

α=x,y,z

(
Nβ(Vα1) +Nβ(Vα2)

)
,

where β = {S,CNOT}. According to Figure 2, the implementation of U1 just has a maximum of

NS(U1) = O(ns + 1) (72)

single gates. The non-local gates included in the operator U1 are O(n2s) CR gates to implement the

(inverse) quantum Fourier transform (QFT, IQFT), which corresponds to O(n2s) CNOT gates.
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The number of single qubit gates and CNOT gates of V2 satisfies

Nβ(V2) =
∑
l∈Is

∑
j∈Il

α

(
Nβ(Uα

Xp,lj
) +Nβ(Uα

Yp,lj
)
)
+
(
Nβ(Uα

Xp,l) +Nβ(Uα
Yp,l)

)
, (73)

where β ∈ {S,CNOT}. From Figures 3–5, one can find that the operator Uα
Xp,lj

has np Uα
X,lj

which

is a multi-controlled RX gate, each consisting of ns + m(d + 1) control points, and Uα
Xp,l

has np

multi-controlled RX gates, each of which has ns + 3 control points. It is known from [47] that the

multi-controlled RZ gate with (j−1) control qubits can be decomposed into single-qubit gates and

at most 16j− 40 CNOT gates. Therefore, the number of single-qubit and CNOT gates required to

implement the operator Uα
Xp,lj

and Uα
Xp,l

are

NS(Uα
Xp,lj

) = np, NCNOT(Uα
Xp,lj

) = np(16(ns +m(d+ 1) + 1)− 24), (74)

NS(Uα
Xp,l) = np, NCNOT(Uα

Xp,l) = np(16(ns + d+ 1)− 24). (75)

From Equation (56), one gets

NS(Uα
Yp,lj

) = 1, NCNOT(Uα
Yp,lj

) = 16(ns +m(d+ 1))− 24, (76)

NS(Uα
Yp,l) = 1, NCNOT(Uα

Yp,l) = 16(ns + d+ 1)− 24. (77)

Inserting Equation (74)–(77) into Equation (73), the number of gates to implement V2 are

NS(V2) = O ((d+ 1)|Is||I|(np + 1)) , NCNOT(V2) = O ((d+ 1)|Is||I|(npns + dnpm)) , (78)

where |I| = max
α=x,y,z,ρ,l∈Is

|I l
α|, d = 3.

As shown in Figure 6, the operator Wj consists of a multi-controlled RZ3 gate with j + 1

control points and a total of 2(j − 1) CNOT gates. Therefore, the number of CNOT gates and

single-qubit gates required to implement the approximated Vx1 is

NS(Vx1) = O(m), NCNOT(Vx1) = O(m2). (79)

From Figure 7, it yields similarly

NS(Ux2) = O(1), NCNOT(Ux2) = O(m+ 1). (80)

In summary, from (72)-(80), one has

NS(V (τ)) = O (dm+ ns + (d+ 1)|I||Is|np) ,

NCNOT(V (τ)) = O
(
dm2 + n2s + (d+ 1)|I||Is|np(ns +md)

)
,

where d = 3. The proof is finished.

5.1 Main results

In this subsection, we present the main result of the complexity of the Schrödingerisation for

Maxwell’s equations. Before that, we give the error estimates of the spectral methods (see for

example [37]).
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Lemma 5.4. For u ∈ Hm
p (I) which consists of functions with derivatives of order up to m − 1

being 2πL-periodic, there holds

∥u− INu∥L2(I) ≲ △pm|u|Hm(I), (81)

where IN is the discrete Fourier interpolation by

INu(p) =
N/2∑

k=−N/2

ũke
ik(p/L+π), ũk =

1

Nck

N−1∑
j=0

u(pj)e
−ik(pj/L+π), k = −N/2, · · · , N/2, (82)

where ck = 1 for |k| < N/2, and ck = 2 for k = ±N/2.

Lemma 5.5. Assume L and S are large enough such that e−Sπ+T ≈ e−Lπ+T/2 ≈ 0, and g(p) ∈
Cr(R), β(ξ) ∈ Hr(R) is the r-th order approximation to the δ function. Define vD

h (T ) = Vvh(0)
and uD

h |k⟩ = epk△s
∑

l∈[Ns]

(In⊗⟨l|⊗ INp)Mkv
D
h , where V = (In⊗ INs ⊗Φp)V Nt(τ)(In⊗ INs ⊗ (Φp)†).

The relative error holds as follows

∥uD
h |k⟩ − uf |k⟩∥
∥uf (T )∥

≲
epk∥uf (0)∥
∥uf (T )∥

∥V − U∥+△pr +△sr, (83)

where U = (In ⊗ INs ⊗ Φp)U(In ⊗ INs ⊗ (Φp)†), and pk ≥ T/2.

Proof. Since e−πL+T/2 ≈ 0 and g(p) ∈ Cr(R) , the error bounded by the spectral method is obtained

from Lemma 5.4 such that
∥Mkwh − e−pkuf |k⟩∥

∥w(t, pk)∥
≤ O(△pr), (84)

where Mk = In ⊗ |k⟩⟨k| and we use w(t, pk) = e−pku for pk ≥ T/2 from the recovery Theorem 3.2.

Since v satisfies the transport equation in the s direction, and β(ξ) ∈ Hr(R) is the rth-order

approximation to the δ function, one gets the error between the semi-discrete solution wD
h in

Equation (28) and wh in Equation (25)-(26) from Lemma 5.4

∥Mk(w
D
h −wh)∥

∥w(t, pk)∥
≤ O(△sr), (85)

under the assumption e−πS+T ≈ 0. Here we used the relation ∥Mkwh∥ = (1 + O(△pr))∥w(t, pk)∥
from Equation (84). According to Equation(84)-(85), one has the relative error as follows

∥uD
h |k⟩ − uf |k⟩∥
∥uf (T )∥

=

∥epk△s
∑

l∈[Ns]

(In ⊗ ⟨l| ⊗ INp)MkVvh(0)− uf |k⟩∥

∥uf (T )∥

≤ epk

∥uf (T )∥
∥∥△s ∑

l∈[Ns]

(In ⊗ ⟨l| ⊗ INp)Mk(V − U)vh(0)
∥∥

+
1

∥w(T, pk)∥
∥∥△s ∑

l∈[Ns]

(In ⊗ ⟨l| ⊗ INp)MkUvh(0)−Mkwh

∥∥+ ∥∥ epk

∥uf (T )∥
wh(t, pk)− |uf ⟩|k⟩

∥∥
≲
epk∥uf (0)∥
∥uf (T )∥

∥V − U∥+△pr +△sr.

Here we have usedw(t, pk) = e−pkuf (t) and ∥△s
∑

l∈[Ns]
(In⊗⟨l|⊗INp)Mkvh(0)∥ = O(∥uf (0)∥).
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Theorem 5.1. Given Maxwell’s equations with time dependent source term, then uf (t), the solu-

tion of Equation (17) with a mesh size △x = △y = △z = 1/M , m = log2M , can be prepared with

precision ε using the Schrödingerisation method depicted in Figure 1. Assume the assumptions in

Lemma 5.5 and Assumption 4.1 hold, this preparation can be achieved using at most

Õ

(
T 2e

3
2 ∥uf (0)∥3

ε∥uf (T )∥3
(
M2d2m(|I||Is|+m) +

(dFmax|I||Is|)2
r
√
ε

))
single-qubit gates and

Õ

(
T 2e

3
2 ∥uf (0)∥3

ε∥uf (T )∥3
(
M2d2m2(d|I||Is|+m) +

md(dFmax|I||Is|)2
r
√
ε

))
CNOT gates.

Proof. We divide the time into equal intervals, with the time step defined as τ = T/Nt. For the

simulation accuracy to be within ε, according to Lemma 5.5, one needs to choose the number of

simulation steps Nt and mesh size △p, △s to satisfy the following conditions

∥U − V∥ = ∥UNt(τ)− V Nt(τ)∥ ≤ Nt∥U(τ)− V (τ)∥ ≤
e−pk∥uf (T )∥

∥uf (0)∥
ε, (86)

△p ∼ △s ∼ r
√
ε. (87)

Combined with Lemma 5.2, Nt should be large enough such that

Nt ≥
T 2epk∥uf (0)∥
ε∥uf (T )∥

(
d(m− 1)

△x2
+

Fmax
r
√
ε△x

+
Fmax
r
√
ε2

+
1

r
√
ε△x

+
F 2
max|I||Is|d

r
√
ε

)
.

From Equation (87), one has

Np =
2πL

△p
= O(

ln(1ε )
r
√
ε

), np = log2Np = O(log(
ln(1ε )

r
√
ε

)), (88)

Ns =
2πS

△s
= O(

ln(1ε )
r
√
ε

), ns = log2Ns = O(log(
ln(1ε )

r
√
ε

)), (89)

where we have used the assumption e−πS+T ≈ e−πL+T
2 ≈ 0 ≤ ε. Therefore, the numbers of

single-qubit gates and CNOT gates to implement V Nt(τ) are, respectively,

NS(V
Nt(τ)) = O(NtNS(V (τ)))

≤O

(
T 2epk∥uf (0)∥
ε∥uf (T )∥

(
d|I||Is| log(

ln(1ε )
r
√
ε

) +md
)
·
(
M2dm+

Fmax(M + dFmax|Is||I|)
r
√
ε

))
=Õ

(
T 2epk∥uf (0)∥
ε∥uf (T )∥

(
M2d2m(|I||Is|+m) +

(dFmax|I||Is|)2
r
√
ε

))
,

NCNOT(V
Nt(τ)) = O(NtNCNOT(V (τ)))

≤Õ

(
T 2epk∥uf (0)∥
ε∥uf (T )∥

(
M2d2m2(d|I||Is|+m) +

md(dFmax|I||Is|)2
r
√
ε

))
.

Next, we consider the probability of getting the desired state

Mk|vD
h ⟩ ≈

e−pkuf (T )|k⟩ ⊗ δh

∥vD
h (T )∥

≈
e−pk∥uf (T )∥

∥uf (0)∥
|uf (T )⟩|k⟩|δh(T )⟩.

The first approximation is from Lemma 5.5 and Equation (86). Therefore, O(
e2pk∥uf (0)∥2
∥uf (T )∥2 ) mea-

surements are needed. The proof is finished by choosing pk = T/2.
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Remark 5.1. From (15), by applying Duhamel’s principle, one gets

uT = u(T ) = eATu0 +

∫ T

0
eA(T−s)f(s) ds.

Since A is skew Hermitian, one has

∥uT ∥2 = ∥u0∥2 + 2u⊤
0 f̃ + ∥f̃∥2,

where f̃ =
∫ T
0 e−Asf(s)ds and ∥f̃∥ ≤ ∥

∫ T
0 f(s)ds∥. Consequently, it follows that ∥uT ∥/∥u0∥ =

O(1) for any fixed T = O(1), provided that the source terms satisfy J , ρ ∈ L∞(0, T ;L2(Ω)). Con-

sidering uf (T ) = u(T ) + r, it follows

∥uf (0)∥2

∥uf (T )∥2
=

△xd∥u0∥2 + 8c20
△xd∥uT ∥2 + 8c20

≈
∥E0∥2L2(Ω) + ∥B0∥2L2(Ω) + 8c20

O(∥E0∥2L2(Ω)
+ ∥B0∥L2(Ω)) + 8c20

Here we used the numerical integration △xd∥u0∥2 ≈ ∥E(0)∥2L2(Ω) + ∥B(0)∥2L2(Ω). Noting that

c0 = max{ max
t∈(0,T )

∥f∥l∞ , 1} ≤ max{ max
t∈(0,T )

J , max
t∈(0,T )

ρ, 1} = O(1), one has ∥uf (0)∥/∥uf (T )∥ = O(1).

Therefore, introducing an auxiliary variable r to obtain a homogeneous equation (16) does not

impose a significant additional computational burden.

5.1.1 Comparison with the classical algorithm (FDTD)

To achieve an approximate solution with accuracy ε using a second-order spatial discretization,

we choose M = 1/
√
ε and m ∼ log(1/

√
ε). According to Theorem 5.1, the computation cost for

single-qubit and CNOT gates is at most

Õ

(
T 2e3T/2∥uf (0)∥3d3

∥uf (T )∥3

(
1

ε2

(
log

(
1√
ε.

))
+

F 2
max

ε1/r+1

))
= Õ

(
d3ε−2 log(

1
r
√
ε
)

)
, r ≥ 2.

In comparison, classical algorithms, such as the explicit Finite-Difference Time-Domain (FDTD)

method, incur a computational cost of O(ε−1− d
2 ). Our quantum algorithms, derived via Schrödingerization,

demonstrate a modest advantage in computational complexity when d = 3.

To further enhance the advantages of quantum computing, we can employ a higher-order

Trotter-Suzuki formula [12] for H =
∑k

l=1 γlHl such that k∏
j=1

exp(−iγjHjT

2Nt
)

1∏
j=k

exp(−iγjHjT

2Nt
)

Nt

= exp(−iHT ) + O(
(khT )3

N2
t

), (90)

where h = maxj ∥Hj∥. For the HamiltonianH defined in (39)–(41), withHF andHcurl reformulated

in Equation 50 and Equation (58), respectively, achieving an approximation with precision ε requires

the time step Nt to satisfy

Nt = O

(
1√
ε
(
md+ ns + d|I||Is|np

△x
)
3
2

)
. (91)

Since the number of gates required to implement the circuit is doubled, the computational cost for

single-qubit and CNOT gates remains at most

Õ(ε−
5
4 log(

1
r
√
ε
)), (92)

when d = O(1). This represents a significant acceleration compared to classical algorithms.
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Figure 8: Simulation of electromagnetic fields by Schrödingerisation at T = 1/2 with the truncated

domain restriced to p ∈ (−4π, 4π), s ∈ (−5, 5), and mesh size △x = 1
24
, △s = 10

27
, △p = 8π

27
.

6 Numerical tests

For the numerical experiments, we utilize a classical computer to simulate the Hamiltonian

system, verifying the practicality of the algorithms above, particularly focusing on the high-order

accuracy of the scheme and recovery from Schrödingerisation. To simplify the presentation, we

restrict ourselves to a reduced version of the Maxwell equations with one spatial variable, x, namely

∂tEy + ∂xBz = −Jy, ∂tBz + ∂xEy = 0, in [0, 2],

Ey(0) = 0, Ey(2) = 0.

In order to test the accuracy of the algorithm, we set the exact solution as

Ey = sin(π(x+ t))− sin(πt), Bz = − sin(π(x+ t)). (93)

In this numerical test, we truncate the p region to (−4π, 4π) and the s region to (−5, 5). The

simulation stops at T = 1/2. We examine the convergence rates of Schrödingerization concerning

p and s variables with fixed △x = 1/24. The result of the above simulation is shown in Figure 8,

which shows that the numerical solutions from Schrödingerisation are in agreement with the exact

solutions.

As shown in Table 1, a second-order convergence is achieved owing to the smoothness of

g(p) ∈ C2(R), β(ξ) ∈ H2(R), and the utilization of second-order temporal discretization schemes.

(△p,△s,△t) (8π
25
, 10
25
, 1
26
) order (8π

26
, 10
26
, 1
27
) order (8π

27
, 10
27
, 1
28
) order

∥Eschr − Eh∥l∞ 4.5819e-01 - 1.0865e-01 2.07 1.5440e-02 2.81

∥Bschr −Bh∥l∞ 4.2349e-01 - 1.0732e-01 1.98 9.7667e-03 3.45

Table 1: The convergence rates of ∥Eschr−Eh∥l∞ and ∥Bschr−Bh∥l∞ , respectively, where Eh and Bh

are the solutions to Equation (8)–(9), Eschr and Bschr are the recovery from the Schrödingerisation

according to Equation (32) with k := minj{j : pj > 0.5}.
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7 Conclusions

The Schrödingerisation method, in conjunction with the autonomousization approach in [10],

transforms time-varying linear partial and ordinary differential equations with non-unitary dynam-

ics into time-independent Schrödinger-type equations. This transformation is achieved through a

warped phase transformation that maps the equations into two higher dimensions. In this paper,

we present a detailed implementation and accordingly the detailed computational complexity anal-

ysis of quantum circuits for the Schrödingerisation of Maxwell’s equations under Perfect Electric

Conductor (PEC) boundary conditions and time-varying source terms. Through the application

of smooth extension in the initial data of the extended space, and high-order approximations to

the delta function, the rise in dimensionality due to the transformation does not increase the com-

putational load of quantum computations, only O(log log(1/ε)) with ε the desired precision. In

addition, transforming source-driven ODE systems into homogeneous systems by introducing aux-

iliary variables with the stretch transformation [21] does not diminish the success probability of

obtaining the target states.
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