
ar
X

iv
:2

41
1.

11
04

1v
1 

 [
m

at
h.

N
A

] 
 1

7 
N

ov
 2

02
4 Directional diffusion splitting method for

advection-diffusion-reaction model ∗

R. Drebotiy, H. Shynkarenko

Ivan Franko National University of Lviv,
1, Universytetska St., Lviv, 79000, Ukraine

Abstract

We propose certain approach of solving two-dimensional non-
stationary and stationary advection-diffusion-reaction boundary value
problems through their reduction to the set of corresponding one-
dimensional problems. This method leverages special splitting and
interpolation schemes, providing iterative algorithm with a large de-
gree of parallelization possibilities. We combine that algorithm with
the finite element method to solve obtained one-dimensional problems,
but in fact, it can be combined also with other discretization methods,
like finite volume or finite difference methods.

1. Introduction

In this article we consider two-dimensional non-stationary and stationary
advection-diffusion-reaction (ADR) problems. There are several well-known
general methods, which can be applied to the problems if such kind, to
obtain numerical solution. For stationary case, we will have a boundary
value problem (BVP) for equation of elliptic type, which can be successfully
discretized by finite difference, finite volume and finite element methods.
For the non-stationary problem we will have equation of parabolic type,
combining boundary problem in space dimensions and the first-order initial
problem in the time dimension. Typically such problems are discretized
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separately in time and space dimensions. According to the order of that
discretization we can obtain Cauchy problem in standard form for the system
of first-order equations or the sequence of elliptic problems in each time
”slice”. In space dimensions the finite elements or finite differences are used
for discretization. In time dimension we typically use available toolset of
first-order initial problem discretization methods, like Euler, Runge-Kutta,
Adams methods etc.

For problems on large domains, modeling, for example, pollution mi-
gration over large country region, it is crucial to have efficient method of
obtaining the solution, since the amount of discretization nodes and a size
of resulting system of linear equation can be large. The same problem arises
when we deal with singularly perturbed problems, having, for example, large
advection-over-diffusion rate. In the last case many adaptive/stabilized
schemes are proposed to deal with the singular perturbations. Without
respect to which method/scheme is used, in general, for large problems,
parallelization is the crucial tool, which is leveraged.

Not all methods are well suited for parallelization. Some which are
suited, can have certain amount of synchronization points, so, in general, the
level of parallelization capabilities can be different. For example well-known
conjugate gradient (CG) method from scratch is not suited well to paral-
lelization (as opposed to vector computations) [1] and so different techniques
are implemented (like preconditioners) to increase the amount of parallelism
and efficiency.

Also we may note, that iterative methods for large sparse systems, ob-
tained from discretization, can often depend on a matrix condition num-
ber, which for singularly perturbed problems can be large, making iterative
solvers less efficient.

Here we recall simple parallelizable method from [2] for pure advection-
reaction problems and generalize it with the same ideas for the transport
problem with diffusion present.

The paper is structured as follows: first we define model ADR prob-
lem; then we describe new algorithm; after that we present some numerical
experiments.
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2. Advection-diffusion-reaction problem

Let us consider the following two-dimensional Dirichlet problem for the sta-
tionary advection-diffusion-reaction equation:











find function u : Ω̄ → R such that:

− µ∆u+ ~β · ∇u+ σu = f in Ω ⊂ R
2,

u = 0 on Γ = ∂Ω.

(2.1)

Here Ω is a bounded domain with a Lipschitz boundary Γ = ∂Ω, µ =
const > 0 and σ = const > 0 are coefficients of diffusion and reaction
respectively, function f = f(x) and vector ~β = (β1(x), β2(x)) represent
the sources and advection flow velocity respectively. We will consider non-
compressible flow, i.e., ∇ · ~β = 0 in Ω. Also we consider the case, when
vector field ~β does not have closed integral curves completely lying in Ω̄.

Problem (2.1) is a limit case of corresponding non-stationary problem
for parabolic equation:























find function u = u(x, t) : Ω̄× [0, T ] → R such that:

u′t − µ∆xu+ ~β · ∇xu+ σu = f in Ω× (0, T ],

u(x, t) = 0, (x, t) ∈ Γ× [0, T ], Γ := ∂Ω

u(x, 0) = u0(x), x ∈ Ω̄.

(2.2)

Here we denoted corresponding operators by x subscript to show that they
are acting only in spatial dimensions. Also we let the time interval [0, T ]
to be finite only for certainty. In general we can keep T = +∞. For such
case if we suppose, that the concentration u stabilizes in time, i.e. we will
have dynamic equilibrium, then u′t → 0 as t → +∞, so we will have the
degeneration of the problem (2.2) to stationary problem (2.1).

In this article we propose the method for non-stationary problem (2.2).
We can then use it iteratively through time integration scheme to obtain
approximation for elliptic problem (2.1). For advection-dominated problem,
we can specially choose the u0 to make the time steps count needed for
adequate approximation of the solution of stationary problem lower.

3. Diffusion splitting

Let us represent all vectors as columns by default. Recall, that the direc-
tional derivative of the function u in the spatial direction ~e = (e1, e2)

T ,
‖~e‖ = 1 can be computed as u′~e = ~e ·∇xu. By the application of this formula
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two times, it is easy to see, that the second directional derivative in the same
direction can be computed by the formula u′′

~e2
= ∇x · (~e ~eT∇xu).

Let us consider the normalized advection vector field ~b(x) =
(b1(x), b2(x)) := ~β/‖~β‖. Consider also orthogonal vector field ~γ(x) =
(β2(x),−β1(x)) and corresponding normalized field ~p = ~γ/‖~γ‖.

It is obvious, that identity matrix I can be then decomposed as a sum
of two orthogonal projections:

I = ~b ~bT + ~p ~pT . (3.3)

Now we can transform the first (diffusion) term of the ADR equation:

µ∆xu = µ∇x · (I∇xu) = µ∇x · (~b ~b
T∇xu) + µ∇x · (~p ~pT∇xu) (3.4)

Note, that each of obtained terms represents second directional derivative
of u in the appropriate direction.

4. Variational formulation and semi-discretization

in time

As a backend of full discretization of our problems we use finite element
method and thus we need to reformulate our problem in the form of varia-
tional equation.

The boundary value problem (2.1) admits the following variational for-
mulation:

{

find u ∈ V := H1
0 (Ω) such that,

a(u, v) = 〈l, v〉 ∀v ∈ V,
(4.5)

where:






















a(u, v) =

∫

Ω

(µ∇u · ∇v + ~βv · ∇u+ σuv)dx ∀u, v ∈ V,

〈l, v〉 =

∫

Ω

fvdx ∀v ∈ V.

(4.6)

Let us define time step ∆t and a parameter θ ∈ (0, 1). Consider standard
Lebesque scalar product (w, q) :=

∫

Ωwqdx Using components (4.6), and
approach from [3] we can formulate now one-step recurrent scheme for semi-
discretization in time of non-stationary problem (2.2):

{

(u̇j+ 1

2

, v) + θ∆ta(u̇j+ 1

2

, v) = 〈l, v〉 − a(uj , v)

uj+1 = uj +∆tu̇j+ 1

2

, j = 0, 1, ...,
(4.7)
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where uj is an approximation to the function u(x, tj), tj = j∆t.

5. Semi-discretization splitting

Let us substitute formula (3.4) into bilinear form a. Let us rewrite it in the
following way:

a(u, v) := s(u, v) +m(u, v), (5.8)

where























s(u, v) :=

∫

Ω

(µ(~bT∇xu)(~b
T∇xv) + v‖~β‖~bT∇xu+ σuv)dx

m(u, v) :=

∫

Ω

µ(~pT∇xu)(~p
T∇xv)dx

(5.9)

We propose to use instead of recurrent scheme (4.7) the following two-step
scheme:



























(u̇j+ 1

4

, v) + θ∆ts(u̇j+ 1

4

, v) = 〈l, v〉 − s(uj , v)

uj+ 1

2

= uj +∆tu̇j+ 1

4

,

(u̇j+ 3

4

, v) + θ∆tm(u̇j+ 3

4

, v) = −m(uj+ 1

2

, v)

uj+1 = uj+ 1

2

+∆tu̇j+ 3

4

, ∀v ∈ V, j = 0, 1, ...,

(5.10)

The general idea behind that splitting is to decouple diffusion component,
that is orthogonal to the direction of advection. We will show in the next
section, that such splitting lead us to effective way of solving obtained vari-
ational problems in parallel. The idea of operator splitting is known in the
literature. For example we can recall Chorin’s projection method for Navier-
Stokes equations where computations of the velocity and the pressure fields
are decoupled. Proposed approach of splitting in its root is similar to general
splitting approach based on the application of Baker–Campbell–Hausdorff
formula, which gives us the possibility of switching from one time step into
two steps with individual terms of original operator (with asymptotically
quadratic error in time step length).

Note, that if we wish to solve original stationary problem with domi-
nated advection, we should consider corresponding non-stationary counter-
part with u0 ∈ V calculated as a solution of the following equation:

s(u0, v) = 〈l, v〉 ∀v ∈ V (5.11)
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since in that way we will obtain ”from start” good approximation to the
initial equation, since the dynamic of the processes will be mainly directed
by advection in that case.

6. One-dimensional reduction of semi-

discretization substeps

We denote by ~n(x) the vector of the unit outward normal to the boundary
∂Ω in point x. Let us consider the sets:

Γ~β
:= {x ∈ ∂Ω|~n(x) · ~β(x) < 0}

Γ~γ := {x ∈ ∂Ω|~n(x) · ~γ(x) < 0}
(6.12)

Consider the functions x = x(t, ξ) and y = y(t, η), x, y ∈ Ω, t ≥ 0, ξ, η ∈
[0, 1], such that x(0, ξ) = ρ(ξ) ∈ Γ~β

and y(0, η) = τ(ξ) ∈ Γ~γ are parametriza-
tions of curves Γ~β

and Γ~γ correspondingly. Consider the Cauchy problems
for those functions:

{

x′t =
~β(x),

x(0, ξ) = ρ(ξ)
(6.13)

and
{

y′t = ~γ(y),

y(0, η) = τ(ξ).
(6.14)

Those problems define the families of integral curves of ~β and ~γ covering the
domain Ω. Consider now some finite sets of those curves B = {x(t, ξi)}

n
i=1

and G = {y(t, ηi)}
m
i=1

We now reduce the substeps of (5.10) to those sets of curves. Let use
rewrite the forms from (5.9) using the mentioned earlier notion of directional
derivative:























s(u, v) :=

∫

Ω

(µu′~bv
′

~b
+ ‖~β‖u′~bv + σuv)dx

m(u, v) :=

∫

Ω

µu′~pv
′

~pdx

(6.15)

Consider for example some curve Li ∈ B. Let us set v(x) =
wi(x)δ(dist(x,Li)), where wi ∈ H1

0 ([0, |Li|]) and δ is a Dirac δ-function.
Taking into account the integration by parts formula and the fact, that
Dirac δ-function can be expressed as weakly convergent sequence of smooth
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functions, we can express the first two equations from (5.10) for the curve
Li in the following way:






(u̇i
j+ 1

4

, wi) + θ∆tsi(u̇
i
j+ 1

4

, wi) = 〈li, wi〉 − si(u
i
j , wi)

ui
j+ 1

2

= uij +∆tu̇i
j+ 1

4

, ∀wi ∈ H1
0 ([0, |Li|]), j = 0, 1, ..., i = 1..n

(6.16)

where


























si(u, v) :=

∫

Li

(µu′v′ + ‖~β‖u′v + σuv)dl

〈li, v〉 =

∫

Li

fvdl ∀u, v ∈ H1
0 ([0, |Li|]).

(6.17)

In the same way we can consider arbitrary curve Ki. Let us set v(x) =
wi(x)δ(dist(x,Ki)), where wi ∈ H1

0 ([0, |Ki|]). Now, we can express the
second two equations from (5.10) for the curve Ki in the following way:







(u̇i
j+ 3

4

, wi) + θ∆tmi(u̇
i
j+ 3

4

, wi) = −mi(u
i
j+ 1

2

, wi)

uij+1 = ui
j+ 1

2

+∆tu̇i
j+ 3

4

, ∀wi ∈ H1
0 ([0, |Ki|]), j = 0, 1, ..., i = 1..m

(6.18)
where

mi(u, v) :=

∫

Ki

µu′v′dl. (6.19)

In the (6.16) and (6.18) all functions with the upper index i are exactly
equal on corresponding curves to the appropriate functions without that
index.

To solve approximately the obtained 1D problem we can use finite ele-
ment method.

So, we transformed our two steps from (5.10) into two sets of BVPs
on the sets of orthogonal curves. In that way we need to have a way to
interpolate the values from one set to another one, to be able to substitute
the values from uj+ 1

2

into the second step in (5.10). In ideal case it will

be good to have the corresponding intersection points of those orthogonal
curves, but in practice finding such points is not so effective. We propose
here the similar way as in [2], which we recall here.

Let us define bounding box for domain as:

P = [ min
(x,y)∈Ω

x, max
(x,y)∈Ω

x]× [ min
(x,y)∈Ω

y, max
(x,y)∈Ω

y] (6.20)
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Let us cover this bounding box by the rectangular mesh of cells, defined by
M horizontal and N vertical lines. To obtain the value in grid point we do
the following. First, using elementary geometry, we find points of intersec-
tions between out integral curve segment and the grid lines. We can keep in
memory data structure with lines and their segments with all needed data
and update that structure on the fly, when we found the next FE approx-
imation on certain integral curve. For each point we found, we use linear
interpolation to compute interpolated value of corresponding function (for
example u) in that point. For each line segment we can keep two pair of
values. First pair will correspond to intersection point with minimal co-
ordinate with appropriate function value. The second pair will correspond
to maximum intersection coordinate on that segment. After we found all
FE approximations to 1D problems, we will have populated arrays of lines
and their segments. Each segment will contain min/max intersection points.
Now we can identify for the point of the grid two closest points on corre-
sponding horizontal line and two on a vertical line. They will be corre-
sponding min/max points from the segment data structures. Now we can
use linear interpolation on horizontal line to interpolate value of function in
the grid point using closest point on that line. The same thing we can do
on vertical line. Now to obtain final result we just take average two values
which we found and treat that average as an appropriate approximation to
the solution in the grid node.

6.1. Bilinear interpolation

Now, when we interpolated values into rectangular grid, we need to have
possibility to recover the value in arbitrary point, to be able to map values
generated on ~β integral curves onto appropriate ~γ curves and vice versa. For
that we can use bilinear interpolation on each grid cell to find approximate
values in all other points. Suppose we have point (x, y) ∈ Ω, corresponding
bounding box P = [a, b]× [c, d] and we have grid with kx and ky cells in row
and column respectively. If we enumerate cells along the coordinate axes
using two indexes (ix, iy), then we can find trivially the cell indexes for the
point:

ix =

⌈

x− a

b− a
kx

⌉

, iy =

⌈

x− c

d− c
ky

⌉

(6.21)

Suppose, that we have the following corner values of u0 for cell:
p11, p12, p21, p22 (bottom left, bottom right, top left, top right). Then,
we can interpolate those values to find approximate value of target function
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in the point (x, y):

I(x, y) = (1−λy)(1−λx)p11+(1−λy)λxp12+λy(1−λx)p21+λyλxp22, (6.22)

where:

λx =

{

x− a

b− a
kx

}

, λy =

{

x− c

d− c
ky

}

(6.23)

and by {} we denote fractional part of a number.

7. Numerical experiment

Let us consider 2D stationary problem with the following data:

Ω = (0, 1)2, µ = 1, ~β(x, y) = (−5(y+1), 5(x+1))T , σ = 1, f(x, y) = 5 (7.24)

We used parameter θ = 0.5, which, in fact, defines classic Crank–Nicolson
scheme.

We solved this problem by using corresponding non-stationary problem
with u0 selected as a solution of equation (5.11) and executing 50 time
iterations with ∆t = 0.001. Obtained solution was coinciding with the one,
obtained using finite element method with FEniCS library on the uniform
triangular mesh with 450 elements. We calculated relative error with respect
to the solution by FEniCS library in L∞ and L1 norms, which was 5% and
2% respectively. Plot of obtained approximation is depicted on Fig. 7.1.

Figure 7.1: Approximate solution of problem with data 7.24, obtained by
the proposed method.

Note, that proposed method can be implemented with the great level
of parallelism with small number synchronization points. We can obviously
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solve in parallel all obtained 1D problems and, as mentioned in [2], such
interpolation scheme with intermediate grid can be implemented also in
parallel way.

8. Conclusions

In this article we constructed splitting method for advection-diffusion-
reaction model, which can be used to transform the two-dimensional problem
to the set of one-dimensional problems and solve them with a high level of
parallelism.

Note, that it looks like, that for singularly perturbed problems, we can
simply use in parallel any adaptive or stabilization scheme for each one of
obtained one-dimensional problems along advection field. This approach
was not implemented yet and it is considered for further research.

Also one of the improvements of the constructed scheme is to get rid
of that bilinear interpolation part by mapping somehow intersection nodes
between two sets of integral curves. It seems reasonable to leverage the fact,
that in each intersection point the segments of lines are orthogonal. One
idea is to construct the set of ”buckets” containing groups of segments with
close ”azimuthal angles”. In that way we can quickly find the segments
of the opposite curve group which are intersecting with the given segment
(from the other set of orthogonal curves). This idea is also not implemented
yet and it is considered for further research/improvement.
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