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 Abstract—Aggregators of distributed energy resources are 
increasingly encouraged to participate in wholesale market 
bidding. However, the delivery of the power they are awarded 
can result in over-voltage or congestion issues within the 
distribution network (DN). The opportunity to lease energy 
storage from the utility that manages the DN provides the 
aggregator with a means to mitigate these issues, while also 
benefiting the utility in terms of additional lease revenue. 
Nevertheless, this leasing opportunity considerably complicates 
the aggregator's offer-making process, as it requires the 
consideration of market uncertainties, uncertain power injection 
at DN buses, and the strategic interactions between the 
aggregator and the utility. This paper presents a stochastic 
Stackelberg game model that effectively captures the interactions 
between the aggregator and the utility, ensuring DN security 
across all potential uncertainty scenarios. Furthermore, in light 
of the privacy concerns of both the aggregator and the utility, two 
distributed solution methods are proposed. The first method 
follows a traditional predict-then-optimize framework and has 
been validated to achieve the game equilibrium. The second 
method employs an end-to-end framework, which has been 
empirically shown to yield superior economic results. Case 
studies conducted on 69 and 533-bus DNs illustrate the efficacy of 
the proposed methods. 

 
Index Terms—Aggregator, distribution network security, end-

to-end, shared energy storage, stochastic Stackelberg game. 

I. INTRODUCTION 
HE inadequacy of flexibility within modern power 
systems has led to various security challenges. To address 

this issue, wholesale electricity markets that seek flexible 
resources for the transmission network (TN), allowing 
aggregators of distributed energy resources (DERs) within 
distribution networks (DN) to participate in market bidding 
[1]. A notable instance of this is the real-time wholesale 
market in Australia [2]. However, this act has also introduced 
potential risks; specifically, the power that an aggregator is 
awarded from the market and flows through the DN may 
compromise the security of the DN [3].  

The approaches to mitigating DN security concerns can be 
broadly categorized into two primary types: ex-post [4][5] and 

 
This work was supported in part by the National Natural Science 

Foundation of China under Grant 52377107. (Corresponding author: 
Zhengshuo Li).  

The authors are with the School of Electrical Engineering, Shandong 
University, Jinan 250061, China (e-mail: ccliusdu@mail.sdu.edu.cn; 
zsli@sdu.edu.cn). 

ex-ante [6]-[12] approaches. The ex-post approaches typically 
assume that a distribution system operator (DSO), or a utility 
acting in the capacity of a DSO, can directly oversee the 
management of the aggregator's awarded power delivery when 
necessary [4]. Conversely, certain ex-ante approaches, such as 
fixed export/import limits [6], dynamic operating limits [7], 
and dynamic operating envelope as outlined in [8]-[12], 
establish a network-security offer range (NSOR) before or 
concurrently with the offering process. This NSOR delineates 
the acceptable boundaries for power injection/withdrawal by 
the aggregator, thereby ensuring that any power transactions 
conducted within this range remain compliant with DN 
security constraints. However, these approaches can often 
restrict the aggregators' bidding power range, potentially 
undermining their competitiveness and profitability in the 
wholesale market [13]. 

In light of the growing prominence of sharing economies, 
certain utility companies have initiated the provision of a 
service for the leasing of utility-owned shared energy storage 
(SES) [14]. These utility-owned energy storage systems 
typically possess power ratings ranging from several 
megawatts to 50 megawatts and exhibit significantly rapid 
response times [15]. Consequently, it is evident that DER 
aggregators may find leasing and utilizing this SES service 
advantageous for enhancing their competitiveness in the 
wholesale market [13]. Specifically, engaging in SES leasing 
(hereafter referred to as the SES mode) can assist aggregators 
in avoiding potential DN security challenges, as the leased 
SES can be employed to absorb excess power or generate 
power when deficits occur [16][17]. This capability enables 
the aggregators to expand their bidding power range, or 
NSOR, thereby improving their competitive standing in the 
wholesale market. 

However, the inclusion of the SES lease opportunity 
significantly complicates the offer-making process for the 
aggregator. This complexity arises from the necessity of 
accounting for the operational constraints of the aggregated 
DERs, the SES, and the security constraints of the DN. 
Notably, the SES device and the DERs may be situated at 
different DN buses, necessitating the incorporation of DN 
power flow constraints. Furthermore, the SES owner is the 
utility rather than the aggregator; the utility may strategically 
modify the leasing price—an expense for the aggregator—to 
optimize its revenue from the SES lease service. 
Consequently, the aggregator must factor this into its offer-
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making process and devise an optimal leasing strategy to 
maximize expected offer revenue. This scenario introduces a 
strategic interaction, or gaming, between the aggregator and 
the utility, necessitating respect for the privacy concerns of 
both entities 1 . Additionally, for many aggregators, the 
wholesale market clearing prices are uncertain at the time of 
making offers, and similar uncertainty exists regarding power 
injections at specific DN buses. The strategic adjustment to 
the leasing price by the utility further is also uncertain from 
the aggregator's perspective. 

In summary, the aggregator's offer-making process in the 
context of a utility-owned SES lease opportunity, 
encompasses DN security constraints, strategic interactions 
with the utility, and various uncertainties related to electricity 
pricing and power injection, rendering it a complex decision-
making problem. 

The conventional approach to addressing uncertainty in 
decision-making problems is the predict-then-optimize 
framework, wherein the aggregator forecasts unknown prices 
and subsequently optimizes its offer strategies. Existing 
literature has primarily concentrated on enhancing prediction 
accuracy [18]-[20]. However, this approach tends to decouple 
the relationship between prediction and decision-making, 
potentially leading to suboptimal outcomes [21]. To address 
this limitation, recent studies have proposed an end-to-end 
framework [22][23], which has demonstrated superior 
performance across a wide range of uncertain decision-making 
scenarios [23]. Applications of this end-to-end framework in 
power systems include voltage regulation [24], unit 
commitment [25], economic dispatch [26], and optimal 
scheduling [21][27]. Nevertheless, given that the SES-lease-
involved offer-making problem entails strategic interactions 
between the utility and the aggregator, along with privacy 
concerns, the direct application of the existing end-to-end 
methodologies is insufficient. 

This paper introduces a novel network-security informed 
offer-making method for the DER aggregator with a utility-
owned SES lease opportunity. Initially, a stochastic 
Stackelberg game is employed to model the strategic 
interaction between the utility and the aggregator. 
Subsequently, two distributed solution methods are developed, 
based on the predict-then-optimize and end-to-end 
frameworks, respectively, to generate optimal and DN-secure 
offers in the face of uncertainty while safeguarding the privacy 
of both the aggregator and the utility. The contributions of this 
research are twofold: 

1) The proposed stochastic Stackelberg game model 
effectively encapsulates the complex interactions between the 
aggregator and the utility, which arise from concerns related to 
the SES lease and DN security, in the context of uncertainties 
in market clearing price and power injection. This model is 
designed to facilitate mutually beneficial outcomes for both 
the aggregator and the utility, providing an optimal and 

 
1This means that the model of the DN, which is managed by the utility, should 
not be reported to the aggregator; meanwhile, the model of the aggregator is 
not reported to the utility. 

comprehensive DN-secure bidding strategy for the aggregator, 
alongside an appropriate SES leasing price for both entities. In 
contrast to traditional methods that often restrict the range of 
bidding power, the proposed model empowers the aggregator 
to strategically utilize the SES lease opportunity, thereby 
enhancing its competitive position within the wholesale 
market. 

2) Considering that conventional approaches to resolving a 
Stackelberg game model typically necessitate the disclosure of 
the private models of lower-level entities to the upper-level 
entity, we propose two alternative methods for privacy-
preserving distributed solutions. These methods can be 
translated into two distinct distributed and collaborative 
(D&C) decision-making frameworks for the aggregator and 
the utility, allowing for their interactions without the necessity 
of revealing any private models. Specifically, the first D&C 
mode is assured of achieving equilibrium within the 
Stackelberg game model, while the second mode, which is 
based on an end-to-end framework, can yield superior 
economic results. 

The structure of this paper is organized as follows: Section 
II provides a detailed statement of the offer-making problem. 
Section III introduces the stochastic Stackelberg game model 
involving the aggregator and the utility. Section IV outlines 
the two proposed distributed solution methods. Finally, 
Section V presents case studies, followed by conclusions in 
Section VI. 

Ⅱ. PROBLEM DESCRIPTION 

 
Fig. 1. Diagram of the interaction among the wholesale market operator, 
utility, and DER aggregator. 

As illustrated in Fig. 1, the utility-owned SES and DERs 
may be connected to various DN buses. For the sake of 
simplification, we adopt the assumptions presented in [14] and 
[16], positing that the utility-owned SES is situated at the root 
bus. Furthermore, while some existing literature presumes that 
DERs managed by a single aggregator are confined to a single 
DN bus, we relax this assumption, permitting these DERs to 
be distributed across multiple buses. It is also crucial to 
acknowledge that uncertainty may arise in the power injection 
at certain buses, attributable to factors such as the stochastic 
nature of consumer behavior or variations in solar generation. 

The involvement of a DER aggregator in the wholesale 
market encompasses three primary entities: the wholesale 
market operator (or transmission system operator), the utility 
(or DSO), and the DER aggregators themselves. The specific 
roles and responsibilities of these entities are outlined as 
follows: 



 

 The wholesale market operator is tasked with clearing the 
wholesale market. Upon market closure, the operator 
disseminates trading outcomes, including the market 
clearing price and the awarded power, to all market 
participants. 

 The utility functions as both the DSO and the SES 
operator. It is responsible for addressing DN security 
concerns based on available DN data, which encompasses 
power injection and withdrawal at various buses, as well 
as network topology and parameters. Concurrently, the 
utility aims to optimize its benefits derived from leasing 
SES services. 

 The aggregator acts as a commercial and technical 
intermediary between the wholesale market and DER 
owners, operating under the assumption that it can 
manage the DERs through contractual agreements with 
their owners [9]. The aggregator is responsible for 
formulating offer and SES leasing strategies with the 
objective of maximizing profit. 

Upon the market's opening, the DER aggregator submits its 
offer to the market operator, who subsequently clears the 
market and disseminates the awarded power to the aggregator. 
At the designated delivery time, the awarded power that flows 
through the DN into the TN should not compromise DN 
security. 

It is evident that when the aggregator formulates its offer, 
the private models of the market operator and the utility 
remain unknown due to privacy considerations. Nevertheless, 
the aggregator, with the opportunity to lease SES, aspires to 
formulate an economically optimal and DN-secure offer. This 
issue will be addressed in subsequent sections. 

Ⅲ. STOCHASTIC STACKELBERG GAME MODEL CONSIDERING 
SES MODE AND DN SECURITY 

A. Modeling Assumptions 

 
Fig. 2. Sketch of the proposed stochastic Stackelberg game model. 

Fig. 2 illustrates the proposed stochastic Stackelberg game 
model. The left side of the figure depicts the interactions 
among the three entities discussed in Section II. The offer 
curve of the aggregator may influence the final clearing prices 
[21], yet the absence of a market operator's clearing model 
prevents the aggregator from accurately assessing this effect. 
In accordance with [22], we propose employing a surrogate 
model to approximate the relationship between the wholesale 
market clearing price and the aggregator's offer, stated as 
follows. 

Assumption 1: The influence of the aggregator's offer on the 
market clearing price can be approximated through a data-
driven surrogate model. The training process for this surrogate 
model utilizing historical data is detailed in Section IV.B. 

Then, the incorporation of the surrogate model enables a 
concentrated examination of the interaction between the utility 
and the aggregator. Given the aforementioned gaming in the 
SES mode and uncertainties, we further introduce a stochastic 
Stackelberg game model, as delineated in Assumption 2. 

Assumption 2: A stochastic Stackelberg game model is 
proposed to characterize the strategic interactions between the 
utility and the aggregator. Additionally, consistent with 
established practices in the literature, such as [20], we 
designate the aggregator as the leader and the utility as the 
follower within this framework. 

Assumption 3 (the utility plays fair): Although the utility is 
responsible for both DN security assessments and the leasing 
of SES, we posit that it will not engage in malicious 
manipulation of the security assessment results to coerce 
aggregators into leasing SES that should otherwise be avoided. 
Given that the utility is typically subject to governmental 
oversight, we believe that this fair-play assumption is likely to 
hold in most scenarios. The case of unfair play will be 
addressed in future research. 

Finally, we further simplify the constraints related to the DN 
power flow and security as follows. 

Assumption 4: We assume that the DN operates under 
approximately three-phase balanced conditions, and according 
to [28] that shows that in most cases "the nonlinear terms are 
about 104 smaller compared to the linear terms", a classical 
linearized DistFlow model [29] is adopted in this work.  

However, as will be shown in Section III.D, our Stackelberg 
game model requires only that the constraints be linear, 
thereby ensuring the applicability of the distributed solution 
methods in Section IV. Consequently, our work is compatible 
with any linear three-phase balanced or unbalanced power 
flow models. Given that the pursuit of high linearization 
accuracy has been extensively explored in the literature with 
favorable results [28], we will not focus on this aspect in this 
study. 

The subsequent sections will first elaborate on the detailed 
stochastic Stackelberg game model, followed by a concise 
formulation. Throughout the remainder, a T-time interval 
horizon decision-making problem is considered where the 
time interval index 𝑡𝑡 ∈ {1, … , 𝑇𝑇} , and the time interval is 
presumed to be one time unit for the sake of simplicity. 

B. Upper Level: High-Dimensional Offer Decision Model of 
Aggregator 

In the upper-level optimization problem, the aggregator 𝑏𝑏 
should optimize its offer strategy based on the market clearing 
price and leasing price of the SES.  
1) Objective function 

As explained previously, the clearing price is unknown to 
the aggregator. Considering the inevitable prediction errors, 
we deem its prediction value, denoted as �̃�𝜆𝑡𝑡, as an uncertain 



 

parameter described with the uncertainty set  =
��̃�𝝀�𝜆𝜆𝑡𝑡

𝑒𝑒𝑒𝑒 − Δ𝑚𝑚𝑚𝑚 ≤ �̃�𝜆𝑡𝑡 ≤ 𝜆𝜆𝑡𝑡
𝑒𝑒𝑒𝑒 + Δ𝑚𝑚𝑚𝑚� , where 𝜆𝜆𝑡𝑡

𝑒𝑒𝑒𝑒  and Δ𝑚𝑚𝑚𝑚 
are the expected market clearing price and the possible 
deviation at time interval 𝑡𝑡, respectively. 

The SES leasing cost is divided into two parts. The first is 
the energy and power capacity leasing cost [30], which can be 
strategically adjusted by the utility [31]. Their unit prices are 
denoted by 𝜆𝜆𝐸𝐸 , 𝜆𝜆𝑃𝑃 , respectively. The second is the operation 
and management (O&M) cost of the SES, which is related to 
the charging and discharging profiles required by the 
aggregator 𝑏𝑏. The unit O&M cost 𝑐𝑐𝑂𝑂𝑂𝑂  is typically considered 
as a constant [30].  

The high-dimensional offer2 of the aggregator 𝑏𝑏 is usually a 
series of price-quantity pairs, including the offering price, 
denoted as 𝛼𝛼𝑏𝑏,𝑠𝑠,𝑡𝑡, and awarded power, denoted as 𝑃𝑃𝑏𝑏,𝑠𝑠,𝑡𝑡. 

Then, the objective function of the aggregator 𝑏𝑏  that 
maximizes its profit, i.e., the income from bidding in the 
wholesale market minus the cost of leasing the SES and its 
own operational cost, is formulated as follows: 
max

Φ
min
�̃�𝜆𝑡𝑡∈

� ���̃�𝜆𝑡𝑡𝑃𝑃𝑏𝑏,𝑠𝑠,𝑡𝑡 − 𝑐𝑐𝑏𝑏,𝑠𝑠,𝑡𝑡𝑃𝑃𝑏𝑏,𝑠𝑠,𝑡𝑡�
𝑠𝑠𝑡𝑡

− 𝜆𝜆𝐸𝐸𝐸𝐸𝑏𝑏
max 

−𝜆𝜆𝑃𝑃 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏
max − � 𝑐𝑐𝑂𝑂𝑂𝑂�𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡

𝑐𝑐 + 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡
𝑑𝑑 �

𝑡𝑡
 

(1)   

where the variables set Φ  includes {𝑃𝑃𝑏𝑏,𝑠𝑠,𝑡𝑡, 𝛼𝛼𝑏𝑏,𝑠𝑠,𝑡𝑡, 𝐸𝐸𝑏𝑏
max, 

𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏
max }; 𝑐𝑐𝑏𝑏,𝑠𝑠,𝑡𝑡 is the unit generation cost for the aggregator 𝑏𝑏's 

𝑠𝑠 -th offer pair, respectively, at time interval 𝑡𝑡 ; 𝐸𝐸𝑏𝑏
max  and 

𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏
max  are the energy and power capacities leased by 

aggregator 𝑏𝑏 , respectively; 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡
𝑐𝑐  and 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡

𝑑𝑑  are the 
charging and discharging quantity of the leased SES leveraged 
by aggregator 𝑏𝑏, respectively, at time interval 𝑡𝑡. 

The first item in (1) means the profit from bidding in the 
wholesale market; the second and third are the SES leasing 
cost; and the last term is the SES O&M cost. 

Without loss of generality, objective (1) can be equivalently 
reformulated as (2) [33]: 

max 
Φ,𝑧𝑧

𝑧𝑧 − � � 𝑐𝑐𝑏𝑏,𝑠𝑠,𝑡𝑡𝑃𝑃𝑏𝑏,𝑠𝑠,𝑡𝑡
𝑠𝑠𝑡𝑡

− 𝜆𝜆𝐸𝐸𝐸𝐸𝑏𝑏
max − 𝜆𝜆𝑃𝑃 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏

max  

             −∑ 𝑐𝑐𝑂𝑂𝑂𝑂�𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡
𝑐𝑐 + 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡

𝑑𝑑 �𝑡𝑡 , 
(2)   

and the auxiliary variable 𝑧𝑧 ≤ ∑ ∑ �̃�𝜆𝑡𝑡𝑃𝑃𝑏𝑏,𝑠𝑠,𝑡𝑡𝑠𝑠𝑡𝑡 , ∀�̃�𝜆𝑡𝑡 ∈. 
2) Operational model of leased SES 

The constraints related to the leased SES are as follows: 
0 ≤ 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡

𝑐𝑐 ≤ 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏
max , 0 ≤ 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡

𝑑𝑑 ≤ 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏
max      ∀𝑡𝑡 (3)   

𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡
𝑐𝑐 ≤ 𝑘𝑘𝑐𝑐𝐸𝐸𝑏𝑏

max, 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡
𝑑𝑑 ≤ 𝑘𝑘𝑑𝑑𝐸𝐸𝑏𝑏

max   ∀𝑡𝑡 (4)   
𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡 = 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡

𝑑𝑑 − 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡
𝑐𝑐    ∀𝑡𝑡 (5)   

𝐸𝐸𝑏𝑏,𝑡𝑡 = 𝐸𝐸𝑏𝑏,𝑡𝑡−1 + 𝜂𝜂+𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡
𝑐𝑐 − 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡

𝑑𝑑 /𝜂𝜂−  ∀𝑡𝑡 (6)   
𝐸𝐸𝑏𝑏

min ≤ 𝐸𝐸𝑏𝑏,𝑡𝑡 ≤ 𝐸𝐸𝑏𝑏
max   ∀𝑡𝑡,    𝐸𝐸𝑏𝑏,0 = 𝐸𝐸𝑏𝑏,𝑇𝑇  (7)   

0 ≤ 𝐸𝐸𝑏𝑏
max ≤ 𝐸𝐸max, 0 ≤ 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏

max ≤ 𝑃𝑃𝐸𝐸𝐸𝐸
max (8)   

𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏
max ≤ 𝑘𝑘𝐸𝐸𝑏𝑏

max (9)   

 
2 In electricity markets, a high-dimensional offer is defined as a set of price-
quantity pairs arranged in a monotonically increasing order. The term “high-
dimensional” means the dimension of the offer, which is the sum of the price 
and quantity dimensions [32]. 

where 𝑘𝑘𝑐𝑐 , 𝑘𝑘𝑑𝑑 , and 𝑘𝑘  are the energy storage charging, 
discharging, and leasing limiting coefficients, respectively; 
𝐸𝐸𝑏𝑏,𝑡𝑡, 𝐸𝐸𝑏𝑏,0, and 𝐸𝐸𝑏𝑏,𝑇𝑇  are the energy at time interval 𝑡𝑡, initial, 
and the final energy state of the leased SES, respectively; 𝜂𝜂+ 
and 𝜂𝜂−  are the charging and discharging efficiencies, 
respectively; and 𝐸𝐸max  and 𝑃𝑃𝐸𝐸𝐸𝐸

max  are the energy and power 
capacities of the SES, respectively. 

Constraint (3) is the upper and lower limits of the charging 
and discharging power, and do not exceed the power capacity 
of the leased SES. Constraint (4) limits the charging and 
discharging power to not exceed the power limit of the leased 
SES, which is typically proportional to the energy capacity. 
Constraint (5) represents the power output of the leased SES. 
Constraint (6) describes the energy dynamics. Constraint (7) is 
the capacity limit of the leased SES for preventing 
overcharging and over-discharging, and limits the initial 
energy to the same value as that at the final energy. We 
assume that the initial energy is half of the energy capacity 
and is supplied by the utility [30]. Constraints (8) and (9) 
represent the energy capacity, power capacity, and 
proportionality constraints of the leased SES, respectively. 
3) Constraints for aggregate power from DERs 

Let 𝑃𝑃𝐴𝐴𝐴𝐴,𝑏𝑏,𝑡𝑡  denote the aggregate power from DERs of 
aggregator 𝑏𝑏 , including distributed generation 𝑃𝑃𝐷𝐷𝐷𝐷,𝑗𝑗,𝑏𝑏,𝑡𝑡 , 
demand response 𝑃𝑃𝐷𝐷𝐷𝐷,𝑗𝑗,𝑏𝑏,𝑡𝑡 , and distributed energy storage 
𝑃𝑃𝐷𝐷𝐸𝐸𝐸𝐸,𝑗𝑗,𝑏𝑏,𝑡𝑡, where the subscript 𝑗𝑗 denotes the connection bus. 

𝑃𝑃𝐴𝐴𝐴𝐴,𝑏𝑏,𝑡𝑡 = �(𝑃𝑃𝐷𝐷𝐷𝐷,𝑗𝑗,𝑏𝑏,𝑡𝑡 + 𝑃𝑃𝐷𝐷𝐷𝐷,𝑗𝑗,𝑏𝑏,𝑡𝑡 + 𝑃𝑃𝐷𝐷𝐸𝐸𝐸𝐸,𝑗𝑗,𝑏𝑏,𝑡𝑡)
𝑗𝑗

 ∀𝑡𝑡 (10)   

𝑃𝑃𝐷𝐷𝐷𝐷,𝑗𝑗,𝑏𝑏,𝑡𝑡 ∈ Ω𝐷𝐷𝐷𝐷,𝑗𝑗,𝑏𝑏,𝑡𝑡, 𝑃𝑃𝐷𝐷𝐷𝐷,𝑗𝑗,𝑏𝑏,𝑡𝑡 ∈ Ω𝐷𝐷𝐷𝐷,𝑗𝑗,𝑏𝑏,𝑡𝑡, 
𝑃𝑃𝐷𝐷𝐸𝐸𝐸𝐸,𝑗𝑗,𝑏𝑏,𝑡𝑡 ∈ Ω𝐷𝐷𝐸𝐸𝐸𝐸,𝑗𝑗,𝑏𝑏,𝑡𝑡    ∀𝑡𝑡, 

(11)   

where Ω𝐷𝐷𝐷𝐷,𝑗𝑗,𝑏𝑏,𝑡𝑡, Ω𝐷𝐷𝐷𝐷,𝑗𝑗,𝑏𝑏,𝑡𝑡, and Ω𝐷𝐷𝐸𝐸𝐸𝐸,𝑗𝑗,𝑏𝑏,𝑡𝑡 are the sets of the 
operational constraints of 𝑃𝑃𝐷𝐷𝐷𝐷,𝑗𝑗,𝑏𝑏,𝑡𝑡, 𝑃𝑃𝐷𝐷𝐸𝐸𝐸𝐸,𝑗𝑗,𝑏𝑏,𝑡𝑡, and 𝑃𝑃𝐷𝐷𝐷𝐷,𝑗𝑗,𝑏𝑏,𝑡𝑡 
at bus 𝑗𝑗, respectively. Ω𝐷𝐷𝐷𝐷,𝑗𝑗,𝑏𝑏,𝑡𝑡 , Ω𝐷𝐷𝐷𝐷,𝑗𝑗,𝑏𝑏,𝑡𝑡  include the upper 
and lower limits of power. Ω𝐷𝐷𝐸𝐸𝐸𝐸,𝑗𝑗,𝑏𝑏,𝑡𝑡  includes the limits of 
power and energy, and the state of charge constraints. The 
detailed formula can be referred to [9][34]. 

The generation cost of the aggregator 𝑏𝑏  is typically 
considered equivalent to the cost of the aggregated DERs: 
� 𝑐𝑐𝑏𝑏,𝑠𝑠,𝑡𝑡𝑃𝑃𝑏𝑏,𝑠𝑠,𝑡𝑡

𝑠𝑠
= �(𝑐𝑐𝐷𝐷𝐷𝐷,𝑏𝑏𝑃𝑃𝐷𝐷𝐷𝐷,𝑗𝑗,𝑏𝑏,𝑡𝑡

𝑗𝑗
 

+𝑐𝑐𝐷𝐷𝐷𝐷,𝑏𝑏𝑃𝑃𝐷𝐷𝐷𝐷,𝑗𝑗,𝑏𝑏,𝑡𝑡 + 𝑐𝑐𝐷𝐷𝐸𝐸𝐸𝐸,𝑏𝑏𝑃𝑃𝐷𝐷𝐸𝐸𝐸𝐸,𝑗𝑗,𝑏𝑏,𝑡𝑡) ∀𝑡𝑡 
(12)   

where 𝑐𝑐𝐷𝐷𝐷𝐷,𝑏𝑏, 𝑐𝑐𝐷𝐷𝐷𝐷,𝑏𝑏, and 𝑐𝑐𝐷𝐷𝐸𝐸𝐸𝐸,𝑏𝑏 represent the cost coefficients 
associated with distributed generation, demand response, and 
distributed energy storage, respectively. 
4) Constraints for high-dimensional offer curve 

Typically, the aggregator's offer curve should be incremental 
and higher than its operational cost at the same pair: 

𝛼𝛼𝑏𝑏,𝑠𝑠,𝑡𝑡 ≤ 𝛼𝛼𝑏𝑏,𝑠𝑠+1,𝑡𝑡, 𝛼𝛼min ≤ 𝛼𝛼𝑏𝑏,𝑠𝑠,𝑡𝑡 ≤ 𝛼𝛼max  ∀𝑠𝑠, ∀𝑡𝑡 (13)   
𝛼𝛼𝑏𝑏,𝑠𝑠,𝑡𝑡 ≥ 𝑐𝑐𝑏𝑏,𝑠𝑠,𝑡𝑡   ∀𝑠𝑠,∀𝑡𝑡 (14)   

where 𝛼𝛼max  and 𝛼𝛼min  are the upper and lower limits of the 
offer price, respectively, determined by market rules. 

The awarded power of the aggregator's 𝑠𝑠-th offer pair should 



 

be within the pair capacity limit [𝑃𝑃𝑏𝑏,𝑠𝑠,𝑡𝑡
min , 𝑃𝑃𝑏𝑏,𝑠𝑠,𝑡𝑡

max]:  
𝑃𝑃𝑏𝑏,𝑠𝑠,𝑡𝑡

min ≤ 𝑃𝑃𝑏𝑏,𝑠𝑠,𝑡𝑡 ≤ 𝑃𝑃𝑏𝑏,𝑠𝑠,𝑡𝑡
max   ∀𝑠𝑠, ∀𝑡𝑡 (15)   

The awarded power 𝑃𝑃𝐴𝐴,𝑏𝑏,𝑡𝑡  of the aggregator 𝑏𝑏  should be 
located within the NSOR �𝑃𝑃𝐴𝐴,𝑏𝑏,𝑡𝑡

min , 𝑃𝑃𝐴𝐴,𝑏𝑏,𝑡𝑡
max� and it is equal to the 

sum of all pairs' awarded power. Further, 𝑃𝑃𝐴𝐴,𝑏𝑏,𝑡𝑡 is the sum of 
the aggregate power 𝑃𝑃𝐴𝐴𝐴𝐴,𝑏𝑏,𝑡𝑡 and the leased SES 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡 (when 
the SES is in charging state, 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡  is negative, otherwise 
positive), as shown below.  

𝑃𝑃𝐴𝐴,𝑏𝑏,𝑡𝑡 = � 𝑃𝑃𝑏𝑏,𝑠𝑠,𝑡𝑡
𝑠𝑠

   ∀𝑡𝑡 (16)   

𝑃𝑃𝐴𝐴,𝑏𝑏,𝑡𝑡
min ≤ 𝑃𝑃𝐴𝐴,𝑏𝑏,𝑡𝑡 ≤ 𝑃𝑃𝐴𝐴,𝑏𝑏,𝑡𝑡

max   ∀𝑡𝑡 (17)   
𝑃𝑃𝐴𝐴,𝑏𝑏,𝑡𝑡 = 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡 + 𝑃𝑃𝐴𝐴𝐴𝐴,𝑏𝑏,𝑡𝑡   ∀𝑡𝑡 (18)   

C. Lower Level: Decision-Making Model of Utility 
In the lower-level problem, the utility has two tasks: to 

ensure DN security in the presence of uncertain bus power 
injection, and to maximize its profit by setting proper SES 
lease price, i.e., 𝜆𝜆𝐸𝐸 , 𝜆𝜆𝑃𝑃  as explained previously.  
1) Objective function 

The objective function is as follows, 
max
𝜆𝜆𝐸𝐸,𝜆𝜆𝑃𝑃

��𝜆𝜆𝐸𝐸𝐸𝐸𝑏𝑏
max + 𝜆𝜆𝑃𝑃 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏

max �
𝑏𝑏

+ � �̃�𝜆𝑡𝑡𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡
𝑡𝑡

+ � � 𝑐𝑐𝑂𝑂𝑂𝑂�𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡
𝑐𝑐 + 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡

𝑑𝑑 �
𝑏𝑏𝑡𝑡

− � 𝑐𝑐𝑂𝑂𝑂𝑂�𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡
𝑐𝑐 + 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡

𝑑𝑑 �
𝑡𝑡

 

(19)   

where 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡  is the power output of the utility utilizing the 
remaining capacity to participate in the electricity market; and 
𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡

𝑐𝑐  and 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡
𝑑𝑑  are the charging and discharging quantities of 

the SES at time interval 𝑡𝑡, respectively. 
The first item in (18) represents the profit from leasing 

energy storage to aggregators. The second means the profit 
from bidding in the market by utilizing the remaining capacity. 
The third and fourth are the O&M fee obtained from the 
aggregators and the actual O&M cost of the SES.  

The SES is usually leased to one or more aggregators. 
Specifically, when multiple aggregators have different 
charging/discharging strategies, there is a charge and 
discharge offset, and the offset portion of the electricity does 
not incur the O&M cost. Meanwhile, the utility needs to 
participate in the market to release this offsetting power. 
2) Cost constraints of the leasing prices 

The leasing prices of energy and power capacity should be 
higher than the investment cost, satisfying: 

𝜆𝜆𝐸𝐸 ≥ 𝑘𝑘𝑟𝑟𝑐𝑐𝐸𝐸, 𝜆𝜆𝑃𝑃 ≥ 𝑘𝑘𝑟𝑟𝑐𝑐𝑃𝑃 , and 𝑘𝑘𝑟𝑟 = 𝑟𝑟(1+𝑟𝑟)𝑦𝑦

365[(1+𝑟𝑟)𝑦𝑦−1] (20)   
where 𝑘𝑘𝑟𝑟  is the cost coefficient; 𝑟𝑟 is the discount rate; 𝑦𝑦 is the 
lifetime of the energy storage devices; and 𝑐𝑐𝐸𝐸  and 𝑐𝑐𝑃𝑃  are the 
unit investment costs of the energy and power capacities for 
the SES, respectively. 
3) Operational constraints of SES 

The related constraints of SES are similar to the constraints 
(5)-(9) in the upper-level model. 

𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡
𝑑𝑑 − 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡

𝑐𝑐 = � 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡
𝑏𝑏

+ 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡 (21)   

𝐸𝐸𝑡𝑡 = 𝐸𝐸𝑡𝑡−1 + 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡
𝑐𝑐 − 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡

𝑑𝑑 − 𝑃𝑃𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠,𝑡𝑡 (22)   
𝐸𝐸min ≤ 𝐸𝐸𝑡𝑡 ≤ 𝐸𝐸max, 𝐸𝐸0 = 𝐸𝐸𝑇𝑇  (23)   

0 ≤ 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡
𝑐𝑐 ≤ 𝑃𝑃𝐸𝐸𝐸𝐸

max, 0 ≤ 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡
𝑑𝑑 ≤ 𝑃𝑃𝐸𝐸𝐸𝐸

max (24)   
The power loss 𝑃𝑃𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠,𝑡𝑡 of the SES (25) can be transformed 

into (26) based on [35]. 
𝑃𝑃𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠,𝑡𝑡 = max{(1/𝜂𝜂− − 1)𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡

𝑑𝑑 , (1 − 𝜂𝜂+)𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡
𝑐𝑐 } (25)   

𝑃𝑃𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠,𝑡𝑡 ≥ (1/𝜂𝜂− − 1)𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡
𝑑𝑑 , 𝑃𝑃𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠,𝑡𝑡 ≥ (1 − 𝜂𝜂+)𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡

𝑐𝑐  (26)   
where 𝐸𝐸𝑡𝑡  is the loss and energy state of the SES at time 
interval 𝑡𝑡. 
4) DistFlow model under uncertainty  

The root bus voltage and power injection 𝑃𝑃�̃�𝑖𝑖𝑖𝑗𝑗,𝑗𝑗,𝑡𝑡
Ori  in the DN 

are uncertain, and the awarded power of the aggregator is not 
determined. Therefore, we need to model the DN power flow 
under uncertainty, that is, the DistFlow model under 
uncertainty. First, we model the DN uncertainty into a set. The 
uncertainty set 𝒖𝒖� = [[𝑃𝑃�̃�𝑖𝑖𝑖𝑗𝑗,𝑗𝑗,𝑡𝑡

Ori ]; 𝑣𝑣�̃�𝑠𝑒𝑒𝑡𝑡; 𝑢𝑢�̃�𝑃 ,𝑏𝑏] is constrained by the 
following polyhedron : 

�= �𝒖𝒖��
𝑃𝑃𝑖𝑖𝑖𝑖𝑗𝑗,𝑗𝑗,𝑡𝑡

𝑒𝑒𝑒𝑒 − Δ𝐴𝐴,𝑗𝑗 ≤ 𝑃𝑃�̃�𝑖𝑖𝑖𝑗𝑗,𝑗𝑗,𝑡𝑡
Ori ≤ 𝑃𝑃𝑖𝑖𝑖𝑖𝑗𝑗,𝑗𝑗,𝑡𝑡

𝑒𝑒𝑒𝑒 + Δ𝐴𝐴,𝑗𝑗

𝑣𝑣𝑠𝑠𝑒𝑒𝑡𝑡
min ≤ 𝑣𝑣�̃�𝑠𝑒𝑒𝑡𝑡 ≤ 𝑣𝑣𝑠𝑠𝑒𝑒𝑡𝑡

max, 0 ≤ 𝑢𝑢̃𝑃𝑃,𝑏𝑏 ≤ 1
� (27)   

where 𝑃𝑃�̃�𝐴,𝑏𝑏,𝑡𝑡 = 𝑃𝑃𝐴𝐴,𝑏𝑏,𝑡𝑡
min + 𝑢𝑢�̃�𝑃 ,𝑏𝑏�𝑃𝑃𝐴𝐴,𝑏𝑏,𝑡𝑡

max − 𝑃𝑃𝐴𝐴,𝑏𝑏,𝑡𝑡
min � 

for any 𝑢𝑢̃𝑃𝑃,𝑏𝑏 ∈ [0,1] 
(28)   

where 𝑃𝑃𝑖𝑖𝑖𝑖𝑗𝑗,𝑗𝑗,𝑡𝑡
𝑒𝑒𝑒𝑒  and Δ𝐴𝐴,𝑗𝑗  are the expected active power 

injection and the possible deviation at bus 𝑗𝑗, respectively; 𝑣𝑣�̃�𝑠𝑒𝑒𝑡𝑡 
is the square of the voltage at root bus, whose range is 
[𝑣𝑣𝑠𝑠𝑒𝑒𝑡𝑡

min, 𝑣𝑣𝑠𝑠𝑒𝑒𝑡𝑡
max], which can be known through historical data; and 

𝑢𝑢̃𝑃𝑃,𝑏𝑏 is an uncertain variable that varies between [0,1]. 
Consequently, for any point 𝒖𝒖�  within the uncertainty set 

(27)(28), the following model (29) holds. Thus, there exists a 
set of feasible solutions, that is, a set of power-flow 
calculation results within security.  

⎩
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��
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��
⎧ 𝑃𝑃𝑖𝑖𝑖𝑖𝑗𝑗,𝑗𝑗,𝑡𝑡 = 𝑃𝑃�̃�𝑖𝑖𝑖𝑗𝑗,𝑗𝑗,𝑡𝑡

Ori + ∑ (𝑃𝑃𝐷𝐷𝐷𝐷,𝑗𝑗,𝑏𝑏,𝑡𝑡𝑏𝑏
+𝑃𝑃𝐷𝐷𝐷𝐷,𝑗𝑗,𝑏𝑏,𝑡𝑡 + 𝑃𝑃𝐷𝐷𝐸𝐸𝐸𝐸,𝑗𝑗,𝑏𝑏,𝑡𝑡)

𝑃𝑃𝑖𝑖𝑖𝑖𝑗𝑗,𝑗𝑗,𝑡𝑡 = ∑ 𝑃𝑃𝑗𝑗𝑗𝑗,𝑡𝑡𝑗𝑗∈(𝑗𝑗) − ∑ 𝑃𝑃𝑖𝑖𝑗𝑗,𝑡𝑡𝑖𝑖∈(𝑗𝑗)

𝑄𝑄𝑖𝑖𝑖𝑖𝑗𝑗,𝑗𝑗,𝑡𝑡 = ∑ 𝑄𝑄𝑗𝑗𝑗𝑗,𝑡𝑡𝑗𝑗∈(𝑗𝑗) − ∑ 𝑄𝑄𝑖𝑖𝑗𝑗,𝑡𝑡𝑖𝑖∈(𝑗𝑗)

𝑣𝑣𝑖𝑖,𝑡𝑡 − 𝑣𝑣𝑗𝑗,𝑡𝑡 = 2�𝑟𝑟𝑖𝑖𝑗𝑗𝑃𝑃𝑖𝑖𝑗𝑗,𝑡𝑡 + 𝑥𝑥𝑖𝑖𝑗𝑗𝑄𝑄𝑖𝑖𝑗𝑗,𝑡𝑡�
𝑣𝑣1,𝑡𝑡 = 𝑣𝑣�̃�𝑠𝑒𝑒𝑡𝑡

𝑣𝑣𝑗𝑗
min ≤ 𝑣𝑣𝑗𝑗,𝑡𝑡 ≤ 𝑣𝑣𝑗𝑗
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 (29)   

where 𝑃𝑃𝑖𝑖𝑖𝑖𝑗𝑗,𝑗𝑗,𝑡𝑡  and 𝑄𝑄𝑖𝑖𝑖𝑖𝑗𝑗,𝑗𝑗,𝑡𝑡  are the total active and reactive 
power injection/withdrawals at bus 𝑗𝑗, respectively, and it is 
positive when injecting, otherwise negative; (𝑗𝑗) and (𝑗𝑗) are 
the sets of the parent and child buses of bus 𝑗𝑗, respectively; 
𝑃𝑃𝑖𝑖𝑗𝑗,𝑡𝑡  and 𝑄𝑄𝑖𝑖𝑗𝑗,𝑡𝑡  are the active and reactive power flowing 
through branch (𝑖𝑖, 𝑗𝑗) , respectively; 𝑟𝑟𝑖𝑖𝑗𝑗  and 𝑥𝑥𝑖𝑖𝑗𝑗  are the 
resistance and impedance of branch (𝑖𝑖, 𝑗𝑗), respectively; and 
𝑣𝑣𝑗𝑗,𝑡𝑡  is the square of the voltage at bus 𝑗𝑗, whose operational 
limits are 𝑣𝑣𝑗𝑗

max and 𝑣𝑣𝑗𝑗
min.  

Note that, this paper focuses only on the active power range. 
To simplify the optimization problem, we assume that the 
reactive power injection/withdrawals of all buses in the above 



 

model are held constant. This assumption does not affect the 
conclusions reached in this study. 

D. Compact Model and All-Scenario-Security Guarantee 
We denote the optimization variables for the aggregator 𝑏𝑏 

optimization problem (2)-(18) and the utility optimization 
problem (19)-(29) by 𝒙𝒙𝑏𝑏  and 𝒚𝒚 , respectively, where 𝒙𝒙𝑏𝑏 =
[�𝑃𝑃𝑏𝑏,𝑠𝑠,𝑡𝑡�; �𝛼𝛼𝑏𝑏,𝑠𝑠,𝑡𝑡�; �𝑃𝑃𝐴𝐴,𝑏𝑏,𝑡𝑡

min �; �𝑃𝑃𝐴𝐴,𝑏𝑏,𝑡𝑡
max�; �𝑃𝑃𝐴𝐴,𝑏𝑏,𝑡𝑡�; �𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡�; �𝑃𝑃𝐴𝐴𝐴𝐴,𝑏𝑏,𝑡𝑡�; 

𝐸𝐸𝑏𝑏
max; 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏

max ; �𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡
𝑑𝑑 �; �𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡

𝑐𝑐 �; 𝑧𝑧], 𝒚𝒚 = [�𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡
𝑑𝑑 �; �𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡

𝑐𝑐 �; 
𝜆𝜆𝐸𝐸; 𝜆𝜆𝑃𝑃 ; �𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡�]T. The compact form of the above stochastic 
Stackelberg game model is  

min
𝒙𝒙𝑏𝑏

𝑓𝑓(𝒙𝒙𝑏𝑏, 𝒚𝒚) = 𝒄𝒄1
T𝒙𝒙𝑏𝑏 − 𝒄𝒄2

T𝒙𝒙𝑏𝑏 + 𝒚𝒚T𝒙𝒙𝑏𝑏 (30a)   
𝑠𝑠. 𝑡𝑡.                    𝑨𝑨1𝒙𝒙𝑏𝑏 ≤ 𝒃𝒃, 𝑩𝑩𝒙𝒙𝑏𝑏 = 𝒅𝒅 (30b)   

𝒄𝒄2
T𝒙𝒙𝑏𝑏 ≤ �̃�𝝀T𝒙𝒙𝑏𝑏   ∀�̃�𝝀 ∈ (30c)   

𝒚𝒚 = argmin
𝒚𝒚

⎩
��
�
⎨
��
�
⎧(𝒄𝒄3

T − �̃�𝝀T)𝒚𝒚 − 𝒙𝒙𝑏𝑏
T𝒚𝒚 − 𝒄𝒄4

T𝒙𝒙𝑏𝑏
𝑠𝑠. 𝑡𝑡.  𝑪𝑪𝒚𝒚 ≤ 𝒈𝒈1, 𝑫𝑫𝒚𝒚 = 𝒉𝒉1(𝒙𝒙𝑏𝑏)

∀𝒖𝒖� ∈ ,∃𝒛𝒛 �𝑬𝑬𝒖𝒖� + 𝑭𝑭𝒛𝒛 ≤ 𝒈𝒈2
𝑮𝑮𝒖𝒖� + 𝑯𝑯𝒛𝒛 = 𝒉𝒉2

={𝒖𝒖�|𝑹𝑹𝒖𝒖�≤𝒓𝒓}

 (30d)   

The bold uppercase letters denote the coefficient matrices, 
and the bold small letters denote the vectors in the constraints. 

The model is a bilevel optimization problem with multiple 
uncertainties. The upper-level problem contains the 
uncertainty parameter �̃�𝝀 , which includes uncertain market 
clearing price that is affected by the offer-decision variable. 
The lower level includes DN constraints under uncertainty. 

Despite that the above price and DN uncertainties imply an 
infinite number of scenarios should be considered, the 
following Proposition 1 indicates that only a limited number 
of scenarios being involved can yield an all-scenario feasible 
solution, which means all-scenario DN security. 

Proposition 1: If there exist feasible solutions to (30a)-(30d) 
for all selected vertex scenarios of the uncertainty set, the 
feasibility of the solutions to all possible realizations of the 
uncertainty set is then guaranteed.  

The proof of Proposition 1 is similar to that in [36] and thus 
omitted to save space. Hence, we can select vertex scenarios 
′ and ′ from the vertices of the uncertainty sets  and , 
respectively, and replace   with ′  and   with ′ . 
Subsequently, (30c) and (30d) can be formulated as (30e) and 
(30f) respectively.  

𝒄𝒄2
T𝒙𝒙𝑏𝑏 ≤ �̃�𝝀T𝒙𝒙𝑏𝑏   ∀�̃�𝝀 ∈′ (30e)   

𝒚𝒚 = argmin
𝒚𝒚

⎩
��
⎨
��
⎧(𝒄𝒄3

T − �̃�𝝀T)𝒚𝒚 − 𝒙𝒙𝑏𝑏
T𝒚𝒚 − 𝒄𝒄4

T𝒙𝒙𝑏𝑏
𝑠𝑠. 𝑡𝑡.  𝑪𝑪𝒚𝒚 ≤ 𝒈𝒈1, 𝑫𝑫𝒚𝒚 = 𝒉𝒉1(𝒙𝒙𝑏𝑏)

∀𝒖𝒖� ∈ ′,∃𝒛𝒛 �𝑬𝑬𝒖𝒖� + 𝑭𝑭𝒛𝒛 ≤ 𝒈𝒈2
𝑮𝑮𝒖𝒖� + 𝑯𝑯𝒛𝒛 = 𝒉𝒉2

 (30f)   

The final model (30) to solve includes (30a), (30b), (30e), 
and (30f). 

IV. DISTRIBUTED SOLUTIONS (D&C MODES) 
As for the above Stackelberg game model, conventional 

solution methods typically require disclosing the lower-level 
utility's private model to the upper-level aggregator, violating 

the privacy requirement of the entities. In response to this 
issue, this section proposes two distribution methods that can 
protect the privacy of all entities, and can be translated into 
two D&C decision-making modes for the utility and 
aggregator. 

A. D&C Mode 1 
In this first solution method, or D&C mode 1, the model (30) 

is decomposed into two sub-problems: the upper-level 
problem (30a), (30b), and (30e) related to the aggregator and 
the lower-level problem (30f) related to the utility. We denote 
𝒙𝒙𝑏𝑏

∗, 𝒚𝒚′ and 𝒙𝒙𝑏𝑏
′ , 𝒚𝒚∗ as the optimal solutions of the upper-level 

and lower-level problems, respectively. Further, we denote the 
set of data passed by the aggregator to utility and the utility to 
aggregator as Ψ𝑏𝑏 and Ψ𝑢𝑢, respectively.  

Consider the sum of the objective functions of the upper-
level and lower-level optimization problems in (30) as a new 
objective function, and then stack the constraints together. 
Then obtain an auxiliary model (31): 

min
𝒙𝒙𝑏𝑏,𝒚𝒚

� 𝐹𝐹𝐴𝐴𝐴𝐴,𝑏𝑏
𝑏𝑏

+ 𝐹𝐹𝑈𝑈  

where 𝐹𝐹𝐴𝐴𝐴𝐴,𝑏𝑏 = ∑ ∑ 𝑐𝑐𝑏𝑏,𝑠𝑠,𝑡𝑡𝑃𝑃𝑏𝑏,𝑠𝑠,𝑡𝑡𝑠𝑠𝑡𝑡 − 𝑧𝑧, 

       𝐹𝐹𝑈𝑈 = ∑ 𝑐𝑐𝑂𝑂𝑂𝑂�𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡
𝑐𝑐 + 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡

𝑑𝑑 �𝑡𝑡 − ∑ �̃�𝜆𝑡𝑡𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡𝑡𝑡  
            −∑ ∑ 𝑐𝑐𝑂𝑂𝑂𝑂�𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡

𝑐𝑐 + 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡
𝑑𝑑 �𝑏𝑏𝑡𝑡  

𝑠𝑠. 𝑡𝑡.            𝑃𝑃𝐴𝐴,𝑏𝑏,𝑡𝑡 = ∑ 𝑃𝑃𝑏𝑏,𝑠𝑠,𝑡𝑡𝑠𝑠    ∀𝑏𝑏, ∀𝑡𝑡 ∶ 𝜑𝜑𝑏𝑏,𝑡𝑡 
𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡

𝑑𝑑 − 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡
𝑐𝑐 = � 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡

𝑏𝑏
+ 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡   ∀𝑡𝑡 ∶ 𝜋𝜋𝑡𝑡 

(30b), (30e), (30f) 

(31)   

where 𝜑𝜑𝑏𝑏,𝑡𝑡  and 𝜋𝜋𝑡𝑡  are the dual variables of equation 
constraints. Let 𝒙𝒙����𝑏𝑏 and 𝒚𝒚̅ be the optimal solution of (31).  

We have the following proposition: 
Proposition 2: If a stochastic Stackelberg game equilibrium 

is reached under Ψ𝑏𝑏 and Ψ𝑢𝑢 [31], we have 
𝒙𝒙𝑏𝑏

∗(Ψ𝑏𝑏;Ψ𝑢𝑢) = 𝒙𝒙𝑏𝑏
′ (Ψ𝑏𝑏; Ψ𝑢𝑢) = 𝒙𝒙����𝑏𝑏 

𝒚𝒚′(Ψ𝑏𝑏; Ψ𝑢𝑢) = 𝒚𝒚∗(Ψ𝑏𝑏; Ψ𝑢𝑢) = 𝒚𝒚̅ 
(32)   

To save space, the detailed proof of proposition 2 is given in 
our online supplementary material [34]. 

This proposition implies that the solution of the optimization 
model (31) can reach stochastic Stackelberg game equilibrium. 
Based on this, the classical alternating direction method of 
multipliers (ADMM) [37] or its variant can be adopted to 
solve the model (31), which can be seen as a distributed, 
collaborative, and privacy-protected decision-making mode 
for the aggregator and the utility. 

 
Fig. 3. Diagram of D&C mode 1. 

The steps of this D&C mode 1 are summarized in Algorithm 
1 and its diagram is shown in Fig. 3. Here, the aggregator 
determines an offer scheme, that is, the offer and SES leasing 
strategies, and submits it to the utility. The utility then 



 

analyzes the network security, updates the SES leasing price, 
and feeds it back to the aggregator. This interaction process is 
repeated until convergence is achieved.  
Algorithm 1 D&C mode 1 
Step 1: With regard to (31), form the augmented Lagrangian function. 

𝐿𝐿(𝒙𝒙𝑏𝑏, 𝒚𝒚)=� 𝐹𝐹𝐴𝐴𝐴𝐴,𝑏𝑏
𝑏𝑏

+ 𝐹𝐹𝑈𝑈 − � �𝜑𝜑𝑏𝑏,𝑡𝑡 �𝑃𝑃𝐴𝐴,𝑏𝑏,𝑡𝑡 − � 𝑃𝑃𝑏𝑏,𝑠𝑠,𝑡𝑡
𝑠𝑠

�
𝑏𝑏𝑡𝑡

 

−�𝜋𝜋𝑡𝑡 �𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡
𝑑𝑑 − 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡

𝑐𝑐 − � 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡
𝑏𝑏

− 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡�
𝑡𝑡

 

+𝜌𝜌
2

� ��𝑃𝑃𝐴𝐴,𝑏𝑏,𝑡𝑡 − �𝑃𝑃𝑏𝑏,𝑠𝑠,𝑡𝑡
𝑠𝑠

�
2

𝑏𝑏𝑡𝑡
 

+𝜌𝜌
2

� �𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡
𝑑𝑑 − 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡

𝑐𝑐 − � 𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡
𝑏𝑏

− 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡�
𝑡𝑡

2

 

(33)   

Step 2: Set the maximum iteration number 𝑘𝑘max, a penalty factor 𝜌𝜌, error 
tolerances 𝜀𝜀𝑚𝑚𝑟𝑟𝑖𝑖 , 𝜀𝜀𝑑𝑑𝑢𝑢𝑑𝑑𝑑𝑑  for the primal and dual feasibility conditions. 
Initialize variables 𝒙𝒙𝑏𝑏

0, 𝒚𝒚0 and dual variables 𝜑𝜑𝑏𝑏,𝑡𝑡
0 , 𝜋𝜋𝑡𝑡

0 and let 𝑘𝑘 = 1.  
Step 3: In the (𝑘𝑘 + 1)-th iteration, the aggregator 𝑏𝑏 solves the following 
subproblem: 

𝒙𝒙𝑏𝑏
𝑗𝑗+1 ≔ argmin

𝒙𝒙𝑏𝑏

𝐿𝐿�𝒙𝒙𝑏𝑏
𝑗𝑗, 𝒚𝒚𝑗𝑗, 𝜑𝜑𝑏𝑏,𝑡𝑡

𝑗𝑗 , 𝜋𝜋𝑡𝑡
𝑗𝑗� (34)   

Then, the optimal solution 𝒙𝒙𝑏𝑏
𝑗𝑗+1  can be derived and is delivered to the 

utility. 
Step 4: After receiving 𝒙𝒙𝑏𝑏

𝑗𝑗+1, the utility solves the following subproblem: 
𝒚𝒚𝑗𝑗+1 ≔ argmin

𝒚𝒚
𝐿𝐿�𝒙𝒙𝑏𝑏

𝑗𝑗+1,𝒚𝒚𝑗𝑗, 𝜑𝜑𝑏𝑏,𝑡𝑡
𝑗𝑗 , 𝜋𝜋𝑡𝑡

𝑗𝑗� (35)   
Then, the optimal solution 𝒚𝒚𝑗𝑗+1 can be derived. 
Step 5: With 𝒙𝒙𝑏𝑏

𝑗𝑗+1  and 𝒚𝒚𝑗𝑗+1 , the aggregator calculates 𝜑𝜑𝑏𝑏,𝑡𝑡
𝑗𝑗+1  and 𝜋𝜋𝑡𝑡

𝑗𝑗+1 
based on the following equation. 

𝜑𝜑𝑏𝑏,𝑡𝑡
𝑗𝑗+1 ≔ 𝜑𝜑𝑏𝑏,𝑡𝑡

𝑗𝑗 − 𝜌𝜌 �𝑃𝑃𝐴𝐴,𝑏𝑏,𝑡𝑡
𝑗𝑗+1 − � 𝑃𝑃𝑏𝑏,𝑠𝑠,𝑡𝑡

𝑗𝑗+1

𝑠𝑠
� (36)   

𝜋𝜋𝑡𝑡
𝑗𝑗+1 ≔ 𝜋𝜋𝑡𝑡

𝑗𝑗 − 𝜌𝜌 �𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡
𝑑𝑑,𝑗𝑗+1 − 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡

𝑐𝑐,𝑗𝑗+1 − �𝑃𝑃𝐸𝐸𝐸𝐸,𝑏𝑏,𝑡𝑡
𝑗𝑗+1

𝑏𝑏
− 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡

𝑗𝑗+1 � (37)   

Step 6: The aggregator calculates the primal and dual residuals, whose 
formulas are 

�||𝑟𝑟𝑗𝑗||2 = ��|𝝋𝝋𝑗𝑗+1 − 𝝋𝝋𝑗𝑗|�22 + �|𝝅𝝅𝑗𝑗+1 − 𝝅𝝅𝑗𝑗|�22

||𝑠𝑠𝑗𝑗||2 = ||𝒚𝒚𝑗𝑗+1 − 𝒚𝒚𝑗𝑗||2
 (38)   

If the residuals are enough small, i.e., 
||𝑟𝑟𝑗𝑗||2 ≤ 𝜀𝜀𝑚𝑚𝑟𝑟𝑖𝑖, ||𝑠𝑠𝑗𝑗||2 ≤ 𝜀𝜀𝑑𝑑𝑢𝑢𝑑𝑑𝑑𝑑 (39)   

terminate the iteration, otherwise 𝑘𝑘 = 𝑘𝑘 + 1. 
Step 7: If 𝑘𝑘 < 𝑘𝑘max, go to step 3. Otherwise, stop the algorithm. 

Optimality and convergence guarantee: With Proposition 
1 and because 𝐹𝐹𝐴𝐴𝐴𝐴,𝑏𝑏 and 𝐹𝐹𝑈𝑈  are closed, proper, and convex, 
model (31) is convex, so based on the property of the ADMM 
[37], Algorithm 1 converges to the optimal solution. Then, 
based on Proposition 2, this optimal solution can reach 
stochastic Stackelberg game equilibrium. 

However, it should be noted that in this D&C mode 1, the 
aggregator-side problem (34) adopts a conventional predict-
then-optimize to make a decision. In other words, it neglects 
the latent relation between the aggregator's offer decision and 
the clearing prices, and is likely to reduce the aggregator's 
benefit [21]. The following D&C mode 2 will resolve this 
issue by leveraging the end-to-end method. 

B. D&C Mode 2 
Drawing upon [23] and [27], this D&C mode 2 transforms 

the above aggregator-side problem (34) into an end-to-end 
framework, by introducing a surrogate model to approximate 
the above latent relation. The procedures are outlined as 
follows.  

The compact form of the aggregator optimization problem in 

(34) can be expressed as follows: 
𝑓𝑓(𝒙𝒙𝑏𝑏) = min

𝒙𝒙𝑏𝑏
𝒄𝒄T𝒙𝒙𝑏𝑏 − �̃�𝝀T𝒙𝒙𝑏𝑏 

𝑠𝑠. 𝑡𝑡.                      𝑨𝑨𝒙𝒙𝑏𝑏 ≤ 𝒃𝒃, 𝑩𝑩𝒙𝒙𝑏𝑏 = 𝒅𝒅 
(40)   

where �̃�𝝀 is the clearing price vector, and we define 𝑓𝑓∗��̃�𝝀� as 

the optimal objective value with respect to cost vector �̃�𝝀. 

 
Fig. 4. End-to-end offer optimization process. 
As shown in Fig. 4, the aggregator that has access to a 

period of historical offer strategies and clearing price data has 
the historical dataset  ={�𝒙𝒙𝑑𝑑,1, 𝝀𝝀1�, … , (𝒙𝒙𝑑𝑑,𝑖𝑖, 𝝀𝝀𝑖𝑖)}, i.e., the 
training set. Then, the aggregator can train a surrogate model 
�̂�𝝀 = 𝑔𝑔(𝒙𝒙𝑑𝑑, 𝜽𝜽) related to the uncertain market clearing price, 
with the model parameters denoted by 𝜽𝜽 . Utilizing the 
predicted clearing price vector �̂�𝝀 , the aggregator solves its 
optimization problem to develop an optimal offer strategy, 
denoted as 𝒙𝒙∗��̂�𝝀� = argmin𝒙𝒙∈𝒄𝒄T𝒙𝒙 − �̂�𝝀T𝒙𝒙 , where  
denotes the variable feasible region. 

Moreover, the traditional predict-then-optimize framework 
does not consider the decision error when training the 
surrogate model of the clearing price. Conversely, as shown in 
Fig. 4, D&C mode 2, which operates within an end-to-end 
framework, is developed to minimize the decision error in the 
training process. The decision error is represented by a loss 
function, denoted as 𝑙𝑙��̂�𝝀, �̃�𝝀� = 𝒄𝒄T𝒙𝒙∗��̂�𝝀� − �̃�𝝀T𝒙𝒙∗��̂�𝝀� −
𝑓𝑓∗��̃�𝝀�.  

To integrate the optimization model with the surrogate 
model, the aggregator can utilize a backpropagation algorithm, 
which passes the gradient 𝜕𝜕𝑑𝑑��̂�𝝀,�̃�𝝀�

𝜕𝜕𝜽𝜽  of the loss function back to the 
surrogate model to update the parameters 𝜽𝜽. 

Finally, the process is repeated until the loss function error 
is within the allowed range. The detailed steps are explained in 
Sub-algorithm 1 below.  

Sub-algorithm 1 Solution to (34) with embedded end-to-end framework 
Input: feasible region , coefficient vector 𝒄𝒄, historical data set , batch, 
and epochs 
1: Initialize parameters 𝜽𝜽 of prediction model 
2: for each epoch do 
3:     for each batch of training data  do 
4:         Sample batch �𝒙𝒙𝑑𝑑, �̃�𝝀� 
5:         �̂�𝝀 = 𝑔𝑔(𝒙𝒙𝑑𝑑, 𝜽𝜽) 
6:         𝒙𝒙∗��̂�𝝀� = argmin𝒙𝒙∈𝒄𝒄T𝒙𝒙 − �̂�𝝀T𝒙𝒙 
7:         𝑙𝑙��̂�𝝀, �̃�𝝀� = 𝒄𝒄T𝒙𝒙∗��̂�𝝀� − �̃�𝝀T𝒙𝒙∗��̂�𝝀� − 𝑓𝑓∗��̃�𝝀� 

8:         𝜕𝜕𝑑𝑑��̂�𝝀,�̃�𝝀�
𝜕𝜕𝜽𝜽 = 𝜕𝜕𝑑𝑑��̂�𝝀,�̃�𝝀�

𝜕𝜕�̂�𝝀
𝜕𝜕�̂�𝝀
𝜕𝜕𝜽𝜽 = 𝜕𝜕𝑑𝑑��̂�𝝀,�̃�𝝀�

𝜕𝜕𝒙𝒙∗��̂�𝝀�
𝜕𝜕𝒙𝒙∗��̂�𝝀�

𝜕𝜕�̂�𝝀
𝜕𝜕�̂�𝝀
𝜕𝜕𝜽𝜽 = 𝜕𝜕𝑑𝑑��̂�𝝀,�̃�𝝀�

𝜕𝜕𝒙𝒙∗��̂�𝝀�
𝜕𝜕𝒙𝒙∗��̂�𝝀�

𝜕𝜕�̂�𝝀
𝜕𝜕𝐴𝐴(𝒙𝒙𝑑𝑑,𝜽𝜽)

𝜕𝜕𝜽𝜽  

9:         Update parameters 𝜽𝜽 with the gradient 
10:     end for 
11: end for 



 

End-to-end embedded D&C offering-making mode: Its 

algorithm is similar to Algorithm 1 except that step 3 is 

replaced with Sub-algorithm 1 to consider the impact of offer 

decisions on the forecasted clearing price. The remaining steps 

are performed to obtain the optimal solution of (31). However, 

it should be noted that since the forecasted clearing price with 

a decision error cannot be formulated explicitly, it is difficult 

to provide rigorous proof of the convergence of this D&C 

mode 2, and we verify its validity through case studies. 

Lastly, since the focus of this study is on the decision-

making of the aggregator, we assume that the utility’s 

decision-making still adopts a traditional predict-then-

optimize framework to simplify the subsequent 

implementation and tests. In principle, the decision-making of 

the utility can also be replaced with an end-to-end framework, 

which will be left for future study.  

V. CASE STUDIES 

To illustrate the effectiveness of the proposed approach, 

case studies are performed on 69-bus [10] and modified 533-

bus DNs [38]. In the 69-bus DN, there are 200 end users 

dispersed at buses 50, 58-65. Each user at buses 58-65 is 

installed with a 5 kW rooftop PV and 5 kW/10 kWh battery, 

whose round-trip efficiency is  [10]. The user at 

bus 50 was installed with only a 5 kW rooftop PV. The 

aggregator aggregates the demand for buses 58-65 with all the 

end users, where the minimum and maximum demands were 

70% and 150% of the forecasted demand, respectively. We 

use anonymized solar and demand data from consumers in 

Tasmania, Australia [3], applying the same generation on a 

per-capacity basis. The variation range of the root bus voltage 

of the DN is [0.99,1.01] p.u., and the variation range of the 

uncertainty of the PV output is . When the power output 

of the aggregator is negative/positive, the aggregator functions 

as a demand/generation source, and energy flows from the 

grid to the aggregator or reversely. The demands of the other 

buses are uncontrollable. 

We assume that the operational cost coefficients of the PV 

generation and energy storage systems are zero and 0.01 

$/kWh [30], respectively. The clearing price for the PJM 

market in May 2022 is selected as the training set. The 

predicted price and initial offer range are shown in Fig. 5. The 

SES owned by the utility is a 10 MW/20 MWh battery whose 

round-trip efficiency is . It is located in the root 

bus of DN, and its O&M cost coefficient is 0.01 $/kWh. The 

penalty parameter  is set as 0.01. Finally, we use the Gurobi 

solvers in MATLAB 2020a and Python 3.7 to solve the 

optimization problem. 

 
Fig. 5. Predicted clearing price interval and the initial offer range of 

aggregator.  

A. Impact of SES Mode on the Aggregator's Trading Results  

To verify the effect of the SES mode on the trading results 

of the aggregator, we simulate the following two cases: 

⚫ CASE A1: The aggregator optimizes the offer strategy 

by solving the DN-security informed offer-making 

model (30). The model is solved using D&C mode 1. 

⚫ CASE A2: Similar to A1 except that the SES lease 

opportunity is absent.  

Table I presents the trading results without and with SES 

mode. It can be seen that in CASE A1 with SES mode, the 

profit of the aggregator increases, where the aggregator earns 

$641.80 more by leasing SES. Meanwhile, the utility earns 

$1264.11 in revenue, which is the SES leasing fee paid by the 

aggregator. This indicates that the SES mode can improve the 

profits of both entities, namely a mutually beneficial outcome. 
TABLE I 

RESULTS OF CASES A1-A2 

Case CASE A1 CASE A2 

Profit ($) 5512.04 4870.24 

Energy trading (MWh) 51.80 54.73 

Energy sold (MWh) 72.81 56.22 

Energy bought (MWh) 21.01 1.49 

Leasing energy capacity (MWh) 20 - 

Leasing power capacity (MW) 8.68 - 

Leasing cost ($) 1264.11 - 

 
Fig. 6. Aggregator's awarded power and its NSOR without and with SES.  

 
Fig. 7. Aggregator's offer curve at time intervals 4 and 17. 

Fig. 6 and Fig. 7 further illustrate the awarded power and the 

offer curve related to a SES lease opportunity. In both CASE 

A1 and A2, the optimized NSORs are distinct from the initial 

one shown in Fig. 5. This divergence arises due to the 

incorporation of DN security constraints in both cases, which 

is also illustrated in Fig. 8. Here, during time interval 17, with 

the initial offer range, the DN faces a voltage violation issue 

for a certain realization of uncertain power injection. This 

security concern is effectively addressed in CASE A1 and A2. 

Then, it is evident that in CASE A1, the SES mode enhances 

the aggregator's ability to bid in the wholesale market with 

greater flexibility: transition between a generator and a 



 

demand source according to the market clearing price profile. 
In particular, the NSOR and awarded power in CASE A1 are 
negative for time interval 4, as the SES is charged then. This 
facilitates the aggregator earning more profits during time 
interval 17 by discharging the SES at this high-price period. In 
a nutshell, an aggregator can leverage the SES lease 
opportunity to enhance its competitiveness in high-price 
situations. 

 
Fig. 8. The delivery of the awarded power during time interval 17; the similar 
condition also occurs for the intervals 1, 5, 11-14, 18, and 24. 

B. Comparison of Different D&C Offering-Making Modes 
This part considers the following three cases on a 69-bus DN 

to compare two D&C offer-making modes. Here, the historical 
clearing price is generated based on a common wholesale 
market clearing program [39]. 
 CASE B1: Solve (30) using D&C mode 1. In this model, 

the price interval is obtained via the historical data. 
 CASE B2: Solve (30) using D&C mode 2. The 

hyperparameters for training the surrogate model 
include a learning rate of 0.01 and a batch size of 32. 

 CASE B3: Similar to CASE B2, but the model is solved 
by a centralized method in [39]. 

TABLE II 
RESULTS OF CASES B1-B3 

Case CASE B1 CASE B2 CASE B3 
Profit ($) 3250.71 3258.29 3258.30 

Energy trading (MWh) 50.56 49.04 49.04 
Energy sold (MWh) 80.20 87.49 87.49 

Energy bought (MWh) 29.86 38.45 38.45 

 
Fig. 9. Awarded power and NSOR in cases B1-B2.  

Table II shows the trading results, indicating that CASE B2 
yields higher profitability than CASE B1. The reason is that 
D&C mode 2 employs an end-to-end framework that 
incorporates the impact of the aggregator's offer strategy on 
the electricity price. This mode enables the optimization of the 

offer strategy through a more accurate prediction of the 
clearing price. In contrast, D&C mode 1 adopts the robust 
approach to address the price uncertainty, which results in a 
conservative offer range. This is particularly noticeable in the 
NSOR at time intervals 8 and 9, as depicted in Fig. 9. 
Therefore, optimizing the offer strategy with an end-to-end 
framework can enhance profitability. 

Finally, a comparison between CASE B2 and B3 reveals that 
the trading results are nearly identical, with a variance of less 
than 0.1%. This finding supports the claim that the proposed 
D&C mode 2 achieves convergence and optimality that is 
comparable to the traditional centralized solution method.  

C. Solution Efficiency of two D&C Offer-Making Modes 
To validate the solution efficiency of the two D&C modes, 

both modes are evaluated on the 69-bus and modified 533-bus 
DN for a 24-time interval horizon decision-making problem. 
In the 533-bus DN, 120 end users dispersed at buses 50, 133-
135, 386-387, and 522-524. The optimality gap is defined as 
the percentage of the optimality value of the D&C mode with 
regard to that obtained by the centralized method [36].  

The solution efficiency results are summarized in Table III. 
The optimality gap of D&C mode 2 is less than 0.01%, but 
that of D&C mode 1 is slightly larger.  

For the 69-bus DN, the computation time of D&C mode 1 is 
17.34 seconds; D&C mode 2 requires 236.71 seconds, 
including 224 seconds to train the parameters of the surrogate 
model. However, it should be noted that the computation time 
exhibits a slight increase with the increasing size of the DN.  

In summary, D&C mode 1 has a shorter solution time, while 
D&C mode 2 is more economic and appropriate for scenarios 
where the computation time requirement is less stringent, e.g., 
offer in the day-ahead market. Moreover, both D&C modes 
preserve data privacy for both the aggregator and the utility by 
eliminating the need for data sharing between two entities. 

TABLE III 
COMPUTATIONAL PERFORMANCE OF TWO D&C MODES 

Case 69-bus DN, 
D&C mode 1 

553-bus DN, 
D&C mode 1 

Iteration number 2 2 
Optimality gap (%) 0.0104 0.0728 

Computation Time (second) 17.34 18.10 

Case 69-bus DN, 
D&C mode 2 

553-bus DN, 
D&C mode 2 

Iteration number 2 3 
Optimality gap (%) 0.0003 0.0007 

Computation Time (second) 236.71 261.02 

VI. CONCLUSION 
This paper introduces a network-security informed offer-

making method for DER aggregators participating in the 
wholesale market. An aggregator-utility stochastic Stackelberg 
game model is formulated to facilitate the dependable delivery 
of awarded power for aggregators amidst uncertainties related 
to the DN and the market clearing price. The proposed model 
describes the interactions between aggregators and the utility, 
enabling the identification of optimal strategies for both 
entities. Furthermore, two distributed solution modes are 
established to efficiently solve the model, while ensuring the 
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data privacy of both the aggregator and the utility. 
Case studies are conducted to validate that the proposed 

method yields a mutually beneficial outcome for the 
aggregator and utility. It significantly enhances the 
aggregator's competitiveness and increases its profit under the 
SES mode, while enabling the utility to earn the leasing fee. 
Additionally, the proposed D&C offer-making modes 
effectively avoid data sharing, where D&C mode 2 based on 
the end-to-end framework demonstrates superior economic 
performance with longer computation time.  

Several potential directions for future research are presented 
below. The first is the exploration of the optimality proof of 
D&C mode 2 based on the end-to-end framework. The second 
is to extend our research to a three-phase unbalanced DN. 
Lastly, a more efficient training algorithm needs to be studied 
to reduce the training time in the D&C mode 2. 
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