Classifying finite groups G with three Aut (G) -orbits

Stephen P. Glasby∗1

¹Center for the Mathematics of Symmetry and Computation, University of Western Australia, Perth 6009, Australia. Stephen.Glasby@uwa.edu.au

November 19, 2024

Abstract

We give a complete and irredundant list of the finite groups G for which $Aut(G)$, acting naturally on G , has precisely 3 orbits. There are 7 infinite families: one abelian, one non-nilpotent, three families of non-abelian 2-groups and two families of non-abelian p-groups with p odd. The non-abelian 2-group examples were first classified by Bors and Glasby in 2020 and non-abelian p-group examples with p odd were classified independently by Li and Zhu [\[24\]](#page-17-0), and by the author, in March 2024.

Dedication: To Otto H. Kegel on the occasion of his 90th birthday

Keywords: automorphism group, orbits, rank, Hering's Theorem, solvable group

2020 Mathematics Subject Classification: 20D45, 20D15 20B10.

1 Introduction

This work was presented at the Ischia Group Theory Conference on 8 April 2024.

A group G is called a k-orbit group if $Aut(G)$, acting naturally on G, has precisely k orbits. The cyclic group $C_{p^{k-1}}$, $k \geq 1$, and the generalized quaternion group $Q_{2^{k-1}}$ of order 2^{k-1} , $k \geqslant 5$, are both k-orbit p-groups. Although we assume that G is a *finite* group, many of our examples generalize to infinite groups. (For an infinite group G it is sometimes natural to count orbits under the subgroup of *topological automorphisms*.) Write $\text{ord}(G) := \{ |g| \mid g \in G \}$ for the set of element orders in G. A 2-orbit group G is elementary abelian and $\text{ord}(G)$ equals $\{1,p\}$ where p is a prime. If G is a 3-orbit group, then ord(G) equals $\{1, p\}$, with two orbits of elements of order p, or $\{1, p, p^2\}$ or $\{1, p, r\}$ where p and r are distinct primes. Thus a 3-orbit group is solvable by Burnside's $p^{\alpha}r^{\beta}$ theorem. A complete k-orbit group G has $Aut(G) = \text{Inn}(G) \cong G$ and k equals the number $k(G)$ of G-conjugacy classes. In general, for a (finite) k-orbit group G we have the bounds $|\text{ord}(G)| \leq k \leq \min\{k(G), |G|/p\}$ where p is the smallest prime divisor of $|G|$. The upper bound $|G|/p$ is due to [\[21,](#page-17-1) Theorem 1].

This paper gives a complete and irredundant list of finite 3-orbit groups. Clearly $\{1\}$ is an orbit, and for each characteristic subgroup N of G the set $N^{\#} := N \setminus \{1\}$ is a union of orbits. If a k-orbit group has a chain $G = N_1 > \cdots > N_k = \{1\}$ of k characteristic subgroups, then the sets $N_i \setminus N_{i+1}$ for $1 \leq i \leq k$ and $\{1\}$ are the k non-trivial $Aut(G)$ orbits, see Lemma [2.1](#page-2-0) for more information.

[∗]Supported by the Australian Research Council (ARC) Discovery Project DP190100450

Let G be a 3-orbit group and set $N := \langle G', \Phi(G) \rangle$. Then $N \neq 1$ as G is not elementary abelian, and $N \neq G$ as G is solvable. Hence G/N and N are both 2-orbit groups and thus elementary abelian. We write $V = G/N = \mathbb{F}_r^m$ and $W = N = \mathbb{F}_p^n$ where r, p are primes (possibly equal). Observe that $Aut(G)$ induces on V a linear subgroup $A \n\leq \mathrm{GL}_m(r)$, and induces (via restriction) a linear subgroup $B \n\leq \mathrm{GL}_n(p)$. Furthermore, A is transitive on the set $V \setminus \{0\}$ of non-zero vectors of V, and B is transitive on the set $W \setminus \{0\}$ of non-zero vectors of W. We use Hering's theorem [\[15,](#page-17-2) $\S5$, [\[26,](#page-17-3) p. 512] which classifies the linear subgroups A and B (see Theorem [4.1\)](#page-5-0).

Our main result below agrees with Theorem B of Li and Zhu [\[24,](#page-17-0) Theorem B] as line 7 of Table [1](#page-1-0) corresponds to their families (7) and (8). Hering's theorem is a key tool in [\[2,](#page-16-0) [23,](#page-17-4) [24\]](#page-17-0) and the present paper. Our approach is arguably more geometric than [\[24\]](#page-17-0) motivated by the desire to gain insight into 4-orbit groups. We find it convenient to represent our p -group (and solvable group) examples as Cartesian products of vector spaces, with specified multiplication rules, and linear actions.

Theorem 1.1. Let G be a finite 3-orbit group with $N = \langle G', \Phi(G) \rangle$ and $|N| = p^n$. *Then* 1 < N < G *and* G *is isomorphic to a group in lines* 1− 7 *of Table* [1](#page-1-0)*. Moreover, the values of* $V \cong G/N$, $A = Aut(G)^V$, $W \cong N$, $B = Aut(G)$ ↓ W *are valid, where* $Aut(G)^V$ and $Aut(G)\downarrow W$ denote the groups induced on G/N and N by $Aut(G)$.

G	V	A N		\overline{B}	Comments	Ref.
1. $(C_{p^2})^n$	\mathbb{F}_p^n	$GL_n(p)$	\mathbb{F}_n^n	$GL_n(p)$	$p \geqslant 2$, G abelian	p.4
2. $\mathbb{F}_q^d \rtimes C_r$	\mathbb{F}_r	$GL_1(r)$	\mathbb{F}_a^d	$\Gamma L_d(q)$	$q = p^{r-1}, p \neq r, d = \frac{n}{r-1}$	6.12
3. $A(n, \theta)$	\mathbb{F}_2^n	$\Gamma L_1(2^n)$	\mathbb{F}_2^n	$\Gamma L_1(2^n)$	Def. 3.2(a), $n \neq 2^{\ell}$	6.14
4. $B(n)$	\mathbb{F}_2^{2n}	$\Gamma L_1(2^{2n})$	\mathbb{F}_2^n	$\Gamma L_1(2^n)$	Def. 3.2(b), $n \ge 1$	6.14
5. P	\mathbb{F}_2^6	$C_7 \rtimes C_9$	\mathbb{F}_2^3	$\Gamma L_1(2^3)$	Def. 3.2(c), $n = 3$	6.14
6. \mathbb{F}_q^3 : \mathbb{F}_q^3		\mathbb{F}_q^3 $\Gamma\mathrm{L}_3(q)$ \mathbb{F}_q^3		$\Gamma L_{3}^{+}(q)$	$q=p^{\frac{n}{3}}$ odd, $3 n$	6.9
7. \mathbb{F}_{p^n} : \mathbb{F}_q ^b	$\mathbb{F}_q^{\frac{m}{b}}$	$\mathrm{Sp}_{\frac{m}{2}}(q)\leqslant$	\mathbb{F}_{p^n}	$\Gamma L_1(p^n) \leq$	$q = p^b$ odd, $n b m$	6.2

Table 1: 3-orbit groups G and $V \cong G/N$, $A = \text{Aut}(G)^{G/N}$, $B = \text{Aut}(G) \downarrow N$

The number $\omega(G)$ of Aut(G) orbits on G can sometimes be calculated without knowing all of $Aut(G)$, see Lemma [2.2.](#page-2-1) Nonsolvable k-orbit groups have been classified for $1 \leq k \leq 6$. There are none when $k \leq 3$. If G is finite and S is a composition factor of G, then S is simple and $\omega(G) \geq \omega(S)$. If G is a finite nonsolvable k-orbit group, then $G = A_5$ if $k = 4$ by [\[21\]](#page-17-1), $G \in \{PSL_2(q) | q \in \{7, 8, 9\}\}\$ if $k = 5$ by [\[27\]](#page-17-5), and $G \in \{PSL_3(4), \mathbb{F}_4^2 \rtimes SL_2(4)\}$ if $k = 6$ by [\[6\]](#page-16-1). By contrast, classifying *solvable* korbit groups is extremely difficult. This paper focuses on classifying (solvable) 3-orbit groups while contemplating 4-orbit groups, see Lemma [6.9](#page-13-0) and Section [7.](#page-15-0)

We note that certain permutation groups of 'rank' k give rise to k -orbit groups. A permutation group $G \leq \text{Sym}(\Omega)$ has *rank* k if it is transitive on Ω and the point stabilizer G_{ω} has k orbits including $\{\omega\}$; equivalently G has k orbits on $\Omega \times \Omega$.

Lemma 1.2. If $\text{Aut}(G)$ has k orbits on G, then the subgroup $\text{Hol}(G) = G \rtimes \text{Aut}(G)$ *of the symmetric group* $Sym(G)$ *has rank k and the stabilizer* $Hol(G)_1$ *of* 1 *is* $Aut(G)$ *.*

Although rank 2 permutation groups have been classified, rank 3 groups have only been classified in certain cases e.g. when they are solvable [\[7,](#page-16-2) [10\]](#page-16-3), or quasiprimitive [\[9\]](#page-16-4), or innately transitive [\[1\]](#page-16-5). Sadly for us, the holomorph^{[1](#page-2-2)} Hol(G) of a 3-orbit group G is commonly not solvable, and $Hol(G)$ is never innately transitive as $N = \langle \Phi(G), G' \rangle$ is intransitive and is the unique minimal normal subgroup of $Hol(G) \leqslant Sym(G)$. For a recent history of the classification of certain low rank groups see [\[11,](#page-17-6) pp. 177– 178]. However, if G is a 3-orbit 2-group, then Aut(G) *is* solvable by [\[2,](#page-16-0) Proposition 3.1. Hence is $Hol(G)$ also solvable. This generalizes the result [\[5,](#page-16-6) Theorem 2] of Bryukhanova, and is used to prove Theorem [3.3](#page-4-1) when $p = 2$. The 3-orbit 2-groups G have been classified in [\[23,](#page-17-4) Corollary 1.3] and [\[2,](#page-16-0) Theorem 1.2]. We find it useful to explicitly specify the (linear) action of $\text{Aut}(G)$ on the vector space $N \cong \mathbb{F}_p^n$.

Our proof of Theorem [1.1](#page-1-0) is divided into three cases. Section [2](#page-2-3) outlines our three-case strategy, and verifies lines 1 and 2 of Table [1.](#page-1-0) Section [3](#page-3-1) considers Case 1 which includes $p = 2$, and Sections [4](#page-4-2) and [5](#page-6-0) consider Cases 2 and 3 when p is odd, and G must be a nonabelian group of exponent p . Section [6](#page-10-1) devotes considerable effort to constructing examples of infinite and finite k -orbit groups for small k . The examples in line 6 of Table [1](#page-1-0) generalize to infinite 3- and 4-orbit groups in Lemma [6.9.](#page-13-0) Similarly, Example [6.12](#page-14-0) generalizes line 2 of Table [1](#page-1-0) and Lemmas [5.1,](#page-7-0) [6.2](#page-10-0) generalize line 8. Finally, Section [7](#page-15-0) investigates the feasibility of classifying 4-orbit groups; as there are so few examples, a classification may be feasible.

2 Preparation for a proof of Theorem [1.1](#page-1-0)

In this section G is a finite 3-orbit group. Let $N = \langle G', \Phi(G) \rangle$, and let A, B be the linear groups induced on G/N and N by $Aut(G)$ as in the Introduction. Recall that the *solvable residual* A^{∞} of a finite group A, has the property that A/A^{∞} is the largest solvable factor group of A. We split the proof of Theorem [1.1](#page-1-0) into cases:

Case 1. $A^{\infty} = 1$, Case 2. $B^{\infty} \neq 1$ (so $A^{\infty} \neq 1$), and Case 3. $A^{\infty} \neq 1$ and $B^{\infty} = 1$.

In Case 1, A is solvable, and so too is $Aut(G)$ since the kernel of the epimorphism $\text{Aut}(G) \to A$ is the subgroup $\text{CAut}(G) \cong \text{Hom}(V, W) \cong (\text{C}_p)^{mn}$ of central automor-phisms, see Lemma [2.3.](#page-3-2) In Theorem [3.3,](#page-4-1) A is solvable or $p = 2$.

The following lemmas can sometimes help to compute $Aut(G)$ and $\omega(G)$. It uses the fact: If M is characteristic in G and $G > M > 1$, then $\omega(G) \geq \omega(G/M) + \omega(M) - 1$.

Lemma 2.1. *Suppose* G *is a finite group and* $G = M_1 > \cdots > M_k = \{1\}$ *where each* M_i is characteristic in G. Then $\omega(G) \geq 2 - k + \sum_{i=1}^{k-1} \omega(M_i/M_{i+1}) \geq k$ for $k \geq 1$. If $\omega(G) = k$, then G is solvable and has precisely k characteristic subgroups.

Proof. The inequality $\omega(G) \geq 2 - k + \sum_{i=1}^{k-1} \omega(M_i/M_{i+1})$ follows by induction on k from $\omega(G) \geq \omega(G/M) + \omega(M) - 1$. This show that $\omega(G) \geq k$ since $\omega(M_i/M_{i+1}) \geq 2$ for each i. Suppose that $\omega(G) = k$, i.e. equality holds. Then $\omega(M_i/M_{i+1}) = 2$ for each i, so each section M_i/M_{i+1} is elementary abelian; whence G is solvable. If G has a characteristic subgroup different to the k subgroups M_1, \ldots, M_k , then it will refine the characteristic series $G = M_1 > \cdots > M_k = \{1\}$, so $\omega(G) > k$, a contradiction. \Box

Lemma 2.2. *If we know a lower bound* $\omega(G) \geq \omega_0$ *and a subgroup* A_0 *of* $\text{Aut}(G)$ *with precisely* ω_0 *orbits on G, then* $\omega(G) \leq \omega_0$ *and hence* $\omega(G) = \omega_0$ *.*

A finite nonabelian 3-orbit p-group has $G' \leq \Phi(G)$ so $N = G' = \mathbb{Z}(G) = \Phi(G)$. We now show that $A \le \text{GL}(G/N)$ determines $B \le \text{GL}(N)$, and the A orbits on $V \cong G/N$ determine the Aut(G)-orbits on $G \setminus N$.

¹A permutation group H with a regular normal subgroup G satisfies $G \triangleleft H \leq \text{Hol}(G) \leq \text{Sym}(G)$.

Lemma 2.3. *For a nonabelian* 3*-orbit* p*-group* G*, the preimage under the natural map* $G \to G/Z(G) \cong V$ *of the nonzero A-orbits on* V are the Aut(G)-*orbits on* $G \setminus Z(G)$. *Further, the homomorphism* ϕ : $Aut(G) \to Aut(G/Z(G))$ *has image A and kernel the central automorphisms* CAut(G) \cong Hom(V, W), and A/K \cong B *for some* K \triangleleft A.

Proof. By definition, $\ker(\phi)$ equals $CAut(G)$ namely the set of all $\alpha \in Aut(G)$ that act trivially on $G/Z(G)$. However, $G/Z(G) \cong V$ and $Z(G) \cong W$, and therefore CAut $(G) \cong \text{Hom}(V, W)$ is the elementary of order $|W|^{dim(V)} = p^{mn}$. Furthermore, each $\alpha \in \text{CAut}(G)$ acts trivially on $G' = Z(G) \cong W$ since

$$
[g_1z_1, g_2z_2]^{\alpha} = [g_1^{\alpha}z_1^{\alpha}, g_2^{\alpha}z_2^{\alpha}] = [g_1^{\alpha}, g_2^{\alpha}] = [g_1, g_2] \qquad (g_1, g_2 \in G, z_1, z_2 \in Z(G)).
$$

Hence the A-action on V induces an action on W . The kernel of this action, namely $K := C_A(W)$, satisfies CAut(G) $\leq K$ and $A/K \cong B$. The first sentence of the lemma is true since $g_1 \in g_2Z(G)$ implies $g_1^{\alpha} = g_2$ for some $\alpha \in \text{CAut}(G)$. \Box

The following straightforward lemma can be a useful tool for computing $Aut(G)$ where G is a non-abelian 3-orbit p-group. If we know that $\mathcal{A}_0 \leq \text{Aut}(G)$ induces a subgroup A_0 of $A = \text{Aut}(G)^V$, $V = G/\Phi(G)$, and we show that $\text{Aut}(G)$ can not induce a larger subgroup of $GL(V)$. Then $A = A_0$, and hence $Aut(G) = CAut(G) \cdot A_0$.

Lemma 2.4. *Suppose we know a subgroup* A_0 *of* $A \leq \mathrm{GL}_m(p)$ *. If* $A_0 = \mathrm{GL}_m(p)$ *or* A_0 *is maximal (proper) subgroup of* $GL_m(p)$ *and* $A \neq GL_m(p)$ *, then* $A_0 = A$ *.*

Let G be a finite 3-orbit group. If G is abelian, then it is easy to see that $\text{ord}(G) \neq$ $\{1, p\}$ or $\{1, p, r\}$ where $p \neq r$, since $p, r \in \text{ord}(G)$ implies $pr \in \text{ord}(G)$. Hence $\text{ord}(G) = \{1, p, p^2\}$ so $G \cong (\mathbb{C}_{p^2})^n \times (\mathbb{C}_p)^k$ where \mathbb{C}_{p^2} denotes a cyclic group of order p^2 and $n \geq 1$. This implies $k = 0$, otherwise $\omega(\overrightarrow{G}) \geq 4$ by Lemma [2.1](#page-2-0) because of the characteristic series $G > \Omega_1(G) = C_p^{n+k} > \mathcal{O}_1(G) = C_p^n > 1$. Thus line 1 of Table [1](#page-1-0) is true. Laffey and MacHale [\[21\]](#page-17-1) characterized the 3-orbit groups G with $\text{ord}(G) = \{1, p, r\}$ where $p \neq r$. These groups are Frobenius groups of the form $W \rtimes V$ where $m = 1$ and $r - 1$ divides n, and they are related to projective geometry and 'uniform generation', see [\[13,](#page-17-7) Theorem 1.1]. This verifies line 2 of Table [1.](#page-1-0) Certain k-orbit group generalizations of line 2 (with $k \geq 3$) are given in Example [6.12.](#page-14-0) The 'only' remaining case is when G is a nonabelian p -group for some prime p . This difficult case is not considered in [\[21\]](#page-17-1), but is covered in Sections [3–](#page-3-1)[5](#page-6-0) and in [\[24\]](#page-17-0).

Hypothesis 2.5. Let G be a finite nonabelian 3-orbit p-group. Let $N = \Phi(G)$ and suppose that $G/N \cong V = (\mathbb{F}_p)^m$ and $N \cong W = (\mathbb{F}_p)^n$ and $\text{Aut}(G)$ induces subgroups $A \leq \mathrm{GL}_m(p)$ and $B \leq \mathrm{GL}_n(p)$ which act naturally and transitively on $V \setminus \{0\}$ and $W \setminus \{0\}$, respectively. Finally, let $K \subseteq A$ be such that $A/K \cong B$ as per Lemma [2.3.](#page-3-2)

We assume Hypothesis [2.5](#page-3-3) in Sections [3–](#page-3-1)[5.](#page-6-0) Thus $r = p$ and $N = G' = Z(G)$ $\Phi(G)$ satisfies $1 < N < G$. Either $\exp(G) = p > 2$, $\text{ord}(G) = \{1, p\}$, and $\text{Aut}(G)$ has two orbits on elements of order p, or $exp(G) = p^2$ and $ord(G) = \{1, p, p^2\}$. Hering's theorem [\[15\]](#page-17-2) classifies the transitive linear subgroups $A \le \text{GL}(V)$ and $B \le \text{GL}(W)$; our version is Theorem [4.1.](#page-5-0) The constraint $B \cong A/K$ (see Lemma [2.3\)](#page-3-2) further restricts the possibilities for B. Our strategy is to compute possibilities for the pair (A, B) and then hopefully use the pair (V, W) of modules to reconstruct a unique 3-orbit group G. Lemma [4.3](#page-5-1) describes how (and why) this is possible when $p > 2$.

3 Case 1 of Theorem [1.1](#page-1-0) when $A^{\infty} = 1$

In this section we determine G, A, B for a finite 3-orbit 2-group G . The only 3-orbit group of order 8 is the quaternion group Q_8 and $Aut(Q_8) \cong S_4$ is solvable. Our classification is accelerated by appealing to [\[2,](#page-16-0) Proposition 3.1] which proves that $Aut(G)$ is solvable for any 3-orbit 2-groups G. This result relies on Theorem [4.1.](#page-5-0)

The possibilities for G when $p = 2$ were determined first in [\[2,](#page-16-0) Theorem 1.1] and then in [\[23,](#page-17-4) Corollary [1](#page-1-0).3]. The values of A and B in lines of 3, 4, 5 of Table 1 of Theorem [3.3](#page-4-1) are proved in Lemma [6.14.](#page-14-1) Certainly A follows from [\[24,](#page-17-0) Table 1]. Cases 2, 3 relate to lines of 6, 7 of Table [1](#page-1-0) and are considered in Sections [4,](#page-4-2) [5.](#page-6-0)

Remark 3.1. Let G be a 3-orbit group. As $[g_1z_1, g_2z_2] = [g_1, g_2]$ for $z_1, z_2 \in Z(G)$, commutation gives rise to a bilinear map $V \times V \to W$: $(q_1 Z(G), q_2 Z(G)) \mapsto [q_1, q_2]$. As $\omega(G) = 3$, this map is surjective, so $|V|^2 \geq |W|$ or $2m \geq n$. We now prove the stronger bound $m \geq n$. If $p = 2$, then the squaring map $Q: V \to W$ is surjective. Therefore $2^m = |V| \geq |W| = 2^n$, and so $m \geq n$. Suppose now that $p > 2$. If $n = 1$, then $m \geq n$ holds, so suppose that $n \geq 2$. Since B is transitive on $W \setminus \{0\}$ we have

 $p^{n} - 1 = |W \setminus \{0\}|$ divides |B| divides |A| divides $|GL_m(p)|$.

Whence $p^{n} - 1$ divides $\prod_{i=1}^{m} (p^{i} - 1)$. Since $n \geq 2$ and $p > 2$, Zsigmondy's theorem implies there exists a primitive prime divisor r of $pⁿ - 1$. As r has order n modulo p and r divides $\prod_{i=1}^{m} (p^i - 1)$, this shows that $m \geq n$, as claimed. \Box

The history of, and properties of, Suzuki 2-groups is summarized in [\[17,](#page-17-8) VIII.7].

Definition 3.2. (a) Let $q = 2^n$ and fix $\theta \in \text{Aut}(\mathbb{F}_q)$ where $|\theta| > 1$ is odd and $n \neq 2^{\ell}$. The set $A(n, \theta) = \mathbb{F}_q \times \mathbb{F}_q$ with multiplication rule $(\lambda_1, \zeta_1)(\lambda_2, \zeta_2) = (\lambda_1 + \lambda_2, \zeta_1 + \zeta_2)$ $\zeta_2 + \lambda_1^{\theta} \lambda_2$ defines a group of order $q^2 = 2^{2n}$ called a *Suzuki* 2*-group of type A*.

(b) Let $q = 2^n$ $q = 2^n$ $q = 2^n$ where $n \geq 1$ and 2 fix $\varepsilon \in \mathbb{F}_{q^2}^{\times}$ of order $q+1$. The set $B(n) = \mathbb{F}_{q^2} \times \mathbb{F}_q$ with multiplication rule $(\lambda_1, \zeta_1)(\lambda_2, \zeta_2) = (\lambda_1^4 + \lambda_2, \zeta_1 + \zeta_2 + \lambda_1 \lambda_2^q)$ ${}_{2}^{q}\varepsilon+(\lambda_{1}\lambda_{2}^{q}% -\lambda_{3}\lambda_{4}^{q})$ $_{2}^{q}\varepsilon)^{q}$ defines a group of order q^3 whose isomorphism type is independent of ε , see [\[7,](#page-16-2) Theorem (v)].

(c) Let $q = 2^3$ and fix $\varepsilon \in \mathbb{F}_{q^2}^{\times}$ of order $q^2 - 1$. The set $P = \mathbb{F}_{q^2} \times \mathbb{F}_q$ with multiplication rule $(\lambda_1, \zeta_1)(\lambda_2, \zeta_2) = (\lambda_1 + \lambda_2, \zeta_1 + \zeta_2 + \lambda_1 \lambda_2^2 \varepsilon + (\lambda_1 \lambda_2^2 \varepsilon)^q)$ defines a group of order $q^3 = 2^9$ with isomorphism type independent of ε , see [\[7,](#page-16-2) p. 705].

Theorem 3.3. Let G be a finite nonabelian 3-orbit p-group with $|\Phi(G)| = p^n$ and let V, A, W, B be as in Hypothesis 2.[5](#page-3-3). If $p = 2$ or $A^{\infty} = 1$, then G, V, A, W, B are as in *lines* 3, 4, 5 *of Table* [1](#page-1-0)*. In particular,* $p = 2$ *and* $\text{Aut}(G)$ *is solvable.*

Proof. If $p = 2$, then Aut(G) is solvable by [\[2,](#page-16-0) Proposition 3.1]. Assume now that $A^{\infty} = 1$, so that A is solvable. Since $\Phi(G) = \mathbb{Z}(G)$, the kernel of the homomorphism $Aut(G) \to A$ is abelian by Lemma [2.3,](#page-3-2) so $Aut(G)$ is solvable. Thus G is listed in [\[7,](#page-16-2) Theorem]. The nonabelian p-groups in this list are in cases (iv)–(viii) of [\[7,](#page-16-2) Theorem]. The groups in cases (vi), (vii) are excluded because $Aut(G)^\infty \neq 1$, see Lemma [6.2.](#page-10-0) The remaining groups in cases (iv), (v), (viii) are those in Definition $3.2(a,b,c)$ $3.2(a,b,c)$ including the quaternion group Q_8 which is $B(1)$. Hence $p = 2$. The values of A, B (and V, W) for the remaining cases follow from Lemma [6.14\(](#page-14-1)a,b,c). \Box

4 Case 2 of Theorem [1.1](#page-1-0) when $B^{\infty} \neq 1$

In this section G is a nonabelian finite 3-orbit p -group where p is odd, and we assume that B is not solvable. Hence the solvable residual B^{∞} of B is nontrivial. Our classification of possible G relies on Hering's theorem [\[15\]](#page-17-2), which is proved in [\[26,](#page-17-3) Appendix A, and classifies the subgroups $A \leq \mathrm{GL}_m(p)$ which act transitively on the nonzero vectors of the natural module $V = \mathbb{F}_p^m$. The following more concise version of Hering's theorem constrains A^{∞} instead of A. It follows easily from [\[26,](#page-17-3) Appendix A], and we let the reader check the details. (We used MAGMA $[3]$ to find H in part (a) .)

²Higman [\[16\]](#page-17-9) had $n > 1$, but we will allow $n = 1$ and $q = 2$ to include the quaternion group Q_8 .

Theorem 4.1 (Hering [\[15\]](#page-17-2)). Let $A \leq \mathrm{GL}_m(p)$ act transitively on the nonzero vectors *of the natural module* \mathbb{F}_p^m *. Then the solvable residual* A^{∞} *of* A *lies in the list:*

(a) $A^{\infty} = 1$ *if* $A \leq \Gamma L_1(p^m)$ *or if* $m = 2$, $Q_8 \leq A \leq (Q_8.S_3) \circ C_{p-1}$ *and* $p \in$ $\{5, 7, 11, 23\}$ *or if* $(m, p) = (4, 3), A = (D_8 \circ Q_8)$. *H* where $H \in \{C_5, D_{10}, F_{20}\}$,

$$
\text{SL}_{m/b}(p^b) \quad \text{if } 2 \leq m/b \leq m \text{ and } (m/b, p^b) \neq (2, 3),
$$

(b)
$$
A^{\infty} = \begin{cases} \text{Sp}_{m/b}(p^b) & \text{if } m/b \ge 4 \text{ is even,} \\ \text{G}_2(2^b)' & \text{if } (m, p) \ne (6b, 2), \end{cases}
$$

(c) $A^{\infty} = SL_2(5)$ *where* $(m, p) \in \{(4, 3), (2, 11), (2, 19), (2, 29), (2, 59)\},\$

(d)
$$
A^{\infty} = A = \begin{cases} A_6 \text{ or } A_7 & \text{if } (m, p) = (4, 2), \\ SL_2(13) & \text{if } (m, p) = (6, 3). \end{cases}
$$

Corollary 4.2. If $A \leq \mathrm{GL}_m(p)$ *is not solvable and acts transitively on the nonzero vectors of the natural module* \mathbb{F}_p^m , then $A^{\infty}/\mathbb{Z}(A^{\infty})$ *is a nonabelian simple group. Furthermore, if* B *is not solvable and acts transitively on the nonzero vectors of the natural module* \mathbb{F}_p^n , then $B^{\infty}/\mathbb{Z}(B^{\infty}) \cong A^{\infty}/\mathbb{Z}(A^{\infty})$ *is nonabelian and simple.*

Proof. By Theorem [4.1,](#page-5-0) $A^{\infty}/\mathbb{Z}(A^{\infty})$ is a nonabelian simple group. By Lemma [2.3,](#page-3-2) B is a quotient of A, so B^{∞} is a quotient of A^{∞} . If $B^{\infty} \neq 1$ then $A^{\infty} \neq 1$. If $B^{\infty} \neq 1$ is transitive on $\mathbb{F}_p^n \setminus \{0\}$, then $B^{\infty}/\mathbb{Z}(B^{\infty}) \cong A^{\infty}/\mathbb{Z}(A^{\infty})$ follows from Theorem [4.1.](#page-5-0)

Lemma 4.3. *Suppose* G, p, V, A, W, B *are as in Hypothesis* [2](#page-3-3).5 *where* p *is odd. Then*

- (a) G has exponent p and hence is a factor group of group $V \ltimes \Lambda^2 V$ and $n \leq \binom{m}{2}$.
- (b) *The center* $Z(A)$ *is cyclic,* $|Z(A)|$ *divides* $p^{e_A}-1$ *where* $e_A | m$ *and* $|Z(A) \cap K| \leq 2$ *.*
- (c) If $B^{\infty} \neq 1$, then $|Z(A^{\infty})|$ *is odd.*

Proof. (a) By Hypothesis [2](#page-3-3).5, G is an m-generated nonabelian 3-orbit p-group. If G has exponent p^2 , then $Aut(G)$ is transitive on the elements of order p. Since $p > 2$, G is abelian by a deep result of Shult $[29, Corollary 3]$. This contradiction shows that G has exponent p. Thus G is a factor group of the (universal) m-generated exponent-p class 2 group, the elements of which may be viewed as ordered pairs $(v, w) \in V \times \Lambda^2 V$ with multiplication rule $(v_1, w_1)(v_2, w_2) = (v_1 + v_2, w_1 + w_2 + v_1 \wedge v_2)$. Thus $n \leq \binom{m}{2}$.

(b) As A acts irreducibly on V , results of Schur and Wedderburn imply that the ring End_{F_pA(V) of \mathbb{F}_pA -endomorphisms is a finite field, say \mathbb{F}_q where $q = p^{e_A}$ depends} on A. Further, $\mathcal{Z}(A) \leq \mathbb{F}_q^{\times}$ is cyclic and $|\mathbb{F}_q^{\times}| = p^{e_A} - 1$ where $e_A | n$. Hence matrices in $Z(A)$ are scalars over $\dot{\mathbb{F}}_q$ and $\lambda I_n \in K$ precisely when $\lambda^2 = 1$, so $|Z(A) \cap K| \leq 2$.

(c) Since $B^{\infty} \neq 1$ and $A/K \cong B$ (Lemma [2.3\)](#page-3-2), we have $A^{\infty} \neq 1$. Hence $A^{\infty}/Z(A^{\infty}) \cong B^{\infty}/Z(B^{\infty})$ is the unique nonabelian simple composition factor of A and B by Corollary [4.2.](#page-5-2) If $|Z(A^{\infty})|$ is even, then $-1 \in Z(A^{\infty})$ by part (b). However -1 acts trivially on $\Lambda^2 V$ and hence on $W = \Lambda^2 V/U$. Therefore $B^{\infty} \neq A^{\infty}$, a contradiction. Thus $|Z(A^{\infty})|$ is odd. \Box

We remark that constructing 3-orbit p-groups of (odd) exponent p is the same as finding maximal A-submodules of the exterior square of an A-module.

Remark 4.4. In Lemma [4.3\(](#page-5-1)a), A acts on V and hence on $\Lambda^2 V$. As G is a 3orbit group, A acts irreducibly on $\Lambda^2 V/U$ of $\Lambda^2 V$, so U is a maximal A-submodule; and B acts faithfully on $\Lambda^2 V/U$. The group $\mathcal{G} := V \times \Lambda^2 V$ has center $\{0\} \times \Lambda^2 V$, hence $U \triangleleft \mathcal{G}$ and $G \cong \mathcal{G}/U$. Thus $G \cong V \times (\Lambda^2 V/U)$ where $(v_1, w_1 + U)(v_2, w_2 +$ U) = $(v_1 + v_2, w_1 + w_2 + v_1 \wedge v_2 + U)$. If $\alpha \in A$ and $\alpha K \in B$, then α acts as $(v_1, w_1 + U)^{\alpha} = (v_1^{\alpha}, (w_1 + U)^{\alpha K})$. Thus a 3-orbit group G gives rise to a maximal A-submodule U of $\Lambda^2 V$. Conversely, A may not be transitive on the nonzero vectors

of $\Lambda^2 V/U$ where U is a maximal A-submodule of $\Lambda^2 V$. Interestingly, this is not the case, see Remark [5.6.](#page-9-0) \Box

The following fact, follows from [\[26,](#page-17-3) Line 2, Table 3] when $d \geq 3$.

(1) If $V = \mathbb{F}_q^d$ is the natural module for $SL_d(q)$, then $\Lambda^2 V$ is irreducible.

Now dim $(\Lambda^2 \mathcal{V}) = \binom{d}{2}$ $\binom{d}{2}$, so $\Lambda^2 \mathcal{V}$ is a 1-dimensional trivial module if $d=2$. If $d=3$, then $\Lambda^2 \mathcal{V}$ is isomorphic to the dual module \mathcal{V}^* of \mathcal{V} . If $q = p^b$, then the b Galois conjugate modules \mathcal{V}^{θ} , $\theta \in \text{Gal}(\mathbb{F}_q/\mathbb{F}_p)$, all give rise to the same irreducible db-dimensional $\mathbb{F}_pSL_d(q)$ -module by [\[17,](#page-17-8) VII.1.16]. This process of changing from V to $V = \mathcal{V} \downarrow F =$ \mathbb{F}_p^{bd} is sometimes called 'blowing up the dimension' or 'restricting to a subfield'.

Theorem 4.5. *Let* G *,* p *,* m *,* V *,* A *,* n *,* W *,* B *be as in Hypothesis* [2](#page-3-3).5*. If* $B^{\infty} \neq 1$ *, then* p *is an odd prime,* $m = n$ *is divisible by* 3 *and* $A^{\infty} \cong B^{\infty} \cong SL_3(p^{n/3})$ *where* A^{∞} *acts* as an $(\mathbb{F}_{p^{n/3}})^3$ -module, and B^{∞} acts as its dual. Furthermore, G is isomorphic to the *class* 2 *factor group in Lemma* 6.[9](#page-13-0) *with* $F = F_0 = \mathbb{F}_{n^{n/3}}$ *, as on line* 6 *of Table* [1](#page-1-0)*.*

Proof. By Corollary [4.2,](#page-5-2) $B^{\infty}/\mathbb{Z}(B^{\infty}) \cong A^{\infty}/\mathbb{Z}(A^{\infty})$ is a nonabelian simple group. Recall that G is nonabelian by Hypothesis [2](#page-3-3).5. Theorem [3.3](#page-4-1) implies that $p \neq 2$ otherwise $A^{\infty} = B^{\infty} = 1$. Thus $n \leq \binom{m}{2}$ by Lemma [4.3\(](#page-5-1)a). This shows that $m \neq 2$, otherwise $n = 1$ and $B^{\infty} = 1$ as $GL_1(p)$ is cyclic. Hence $m \ge 3$ and $p > 2$. We can rule out case (a) of Theorem [4.1,](#page-5-0) and $G_2(2^b)'$ in case (b) as $p \neq 2$.

Now $|Z(A^{\infty})|$ is odd by Lemma [4.3\(](#page-5-1)c), so $A^{\infty} \notin \{SL_2(5), SL_2(13), Sp_{m/b}(p^b)\}\$ in Theorem [4.1.](#page-5-0) This rules out cases (c) and (d) of Theorem 4.1. Thus $A^{\infty} = SL_{m/b}(p^{b})$ and m/b is odd because $|Z(\mathrm{SL}_{m/b}(p^b))| = \gcd(m/b, p^b - 1)$ is odd. Hence $A^{\infty} \cong B^{\infty}$ by Theorem [4.1,](#page-5-0) so $m = n$. Let V be the natural m-dimensional A^{∞} -module over \mathbb{F}_p , and let V be the *d*-dimensional A^{∞} -module over \mathbb{F}_q where $q = p^b$. The exterior square $\Lambda^2 \mathcal{V}$ has dimension $\binom{d}{2}$ ^d₂) over the field $\mathbb{F}_q \cong \text{End}_{\mathbb{F}_p A} \otimes \mathcal{V}$ of endomorphisms. However, V is irreducible and so too is $\Lambda^2 V$ by [\(1\)](#page-6-1). Hence by [\[17,](#page-17-8) VII.1.16(e)] (see also Remark [5.6\)](#page-9-0), we have $\binom{m/b}{2} = n/b = m/b$, so $m/b = 3$ and $m = 3b = n$.

In summary, $A^{\infty} \cong SL_3(p^b)$ acts faithfully on the 3-space $\mathcal V$ and $B^{\infty} \cong SL_3(p^b)$ acts faithfully and irreducibly on the 3-space $\Lambda^2 \mathcal{V}$. Adapting the argument in Re-mark [4.4,](#page-5-3) G is isomorphic to the group $V \times \Lambda^2 V$. Alternatively, we may identify G with the set $\mathbb{F}_q^3 \times \mathbb{F}_q^3$ with multiplication given in Lemma [6.9](#page-13-0) (by ignoring the third coordinate). Setting $F = F_0 = \mathbb{F}_q$ in Lemma [6.9](#page-13-0) shows that A contains $\mathrm{FL}_3(\mathbb{F}_q) = \mathrm{GL}_3(\mathbb{F}_q) \rtimes \mathrm{Aut}(\mathbb{F}_q)$. If $q = p^b$, then $\mathrm{TL}_3(\mathbb{F}_q)$ is a maximal proper subgroup of $GL_{3b}(\mathbb{F}_p)$ if $b > 1$, so Lemma [2.4](#page-3-0) implies that $A = \Gamma L_3(\mathbb{F}_q)$ for $b \geq 1$. A similar argument shows that $B = \Gamma L_3^+(\mathbb{F}_q) = \{g \in GL_3(\mathbb{F}_q) \mid \det(g) \in (\mathbb{F}_q^{\times})^2\} \rtimes \text{Aut}(\mathbb{F}_q)$ by Remark [6.8](#page-13-1) and Lemma [6.9.](#page-13-0) This verifies line 6 of Table [1.](#page-1-0) \Box

Nonabelian p-groups with precisely 3 characteristic subgroups were called UCS groups (Unique Characteristic Subgroup) by Taunt and were studied in [\[14\]](#page-17-11). A 3 orbit p-group G is a UCS group which is a special group as $Z(G) = G' = \Phi(G)$. The structure of a special group G is strongly influenced by the two $Aut(G)$ -modules $V = G/Z(G)$ and $W = Z(G)$, see [\[14,](#page-17-11) Theorem 6]. The group G_4 in [14, Theorem 8] is an exponent- p^2 cousin (with $B = SO_2(p)$) of the exponent-p groups in Theorem [4.5.](#page-6-2)

5 Case 3 of Theorem [1.1:](#page-1-0) $A^{\infty} \neq 1$ and $B^{\infty} = 1$

In this section G is a 3-orbit p-group where p is odd, and $A^{\infty} \neq 1$ and $B^{\infty} = 1$ hold. A prototypical example is an extraspecial p-group as hinted by the following lemma. It is worth examining this case before considering more general examples.

The 3-orbit group Q_8 was considered in Section [3.](#page-3-1) We show that extraspecial 2-groups are a rich source of 4-orbit groups. We focus primarily on the case $p > 2$.

Lemma 5.1. A finite extraspecial p-group G is a 3-orbit group precisely when $G \cong Q_8$ *or* $G \cong p_+^{1+m}$ *has odd exponent* p. In these cases Aut(G) *induces on* $\mathcal{Z}(G)$ *the cyclic* $subgroup B \cong C_{p-1}$ *. An extraspecial* 2*-group* G with $G \not\cong Q_8$ *is a* 4*-orbit group.*

Proof. A finite extraspecial p-group G satisfies $G' = Z(G) = \Phi(G) \cong C_p$. Suppose that G is a 3-orbit group and the notation in Hypothesis [2.5](#page-3-3) holds. If $G \setminus Z(G)$ contains elements of orders p and p^2 , then $Aut(G)$ has at least 4 orbits on G. This is the case if G has odd exponent p^2 , or $p = 2$ and $G \not\cong Q_8$. However, if $G \cong Q_8$, then Aut(G) induces $GL_2(2)$ on $V = G/Z(G) \cong (C_2)^2$, and acts trivially on $Z(G) \cong C_2$. Hence Q_8 is a 3-orbit group. It follows from [\[30\]](#page-17-12) that an extraspecial p-group of odd exponent p is a 3-orbit group. This is also proved in Lemma 6.2 which also applies to infinite 3-orbit groups. In our case $B \cong GL_1(p) \cong C_{p-1}$ holds by Lemma [6.2.](#page-10-0)

Suppose now that G_{ε} is the extraspecial 2-group $2^{\frac{1}{\varepsilon}m}$ of order 2^{m+1} and type $\varepsilon \in \{-,+\}$ where m is even. In G_{ε} , squaring induces a (well-defined) quadratic form Q_ε on the vector space $V_\varepsilon = G_\varepsilon / \mathbb{Z}(G_\varepsilon) \cong \mathbb{F}_2^m$. The preimage in G_ε of singular vectors in V_{ε} are the noncentral involutions of G_{ε} , and the preimage of nonsingular vectors in V_{ε} are the elements of order 4 in G_{ε} . It is well known that the outer automorphism group $Out(G_{\varepsilon})$ is isomorphic to the full orthogonal group $O(Q_{\varepsilon}) \cong O_m^{\varepsilon}(2)$, see [\[12\]](#page-17-13) or [\[4,](#page-16-8) §2.2.6]. For even $m \ge 2$ and $\varepsilon \in \{-, +\}$ the space V_{ε} has nonsingular vectors, and it has singular vectors except when $(\varepsilon, m) = (-, 2)$. By Witt's theorem $O_m^{\varepsilon}(2)$ is transitive on the (possibly empty) set of singular vectors and the set of nonsingular vectors. Clearly $\{1\}$ and $Z(G_{\varepsilon})\setminus\{1\}$ are $Aut(G_{\varepsilon})$ -orbits, so that G_{ε} is a 3-orbit group if $(\varepsilon, m) = (-, 2)$, and a 4-orbit group otherwise. The elements of order 4 form one Aut (G_{ε}) -orbit, and the involutions form two orbits if $(\varepsilon, m) \neq (-, 2)$ (the central involution is fixed). \Box

The following fact from representation theory will guide our proof of Theorem [5.7.](#page-9-1)

Remark 5.2. The symmetric group S_n acts on \mathbb{F}_q^n by permuting the elements of a basis $\{v_1, \ldots, v_n\}$. Further, the augmentation map $\phi: V \to \mathbb{F}_q: \sum_{i=1}^n \lambda_i v_i \mapsto \sum_{i=1}^n \lambda_i$ is an S_n -epimorphism, and S_n fixes the submodules

$$
W = \ker(\phi) = \left\{ \sum_{i=1}^{n} \lambda_i v_i \mid \sum_{i=1}^{n} \lambda_i = 0 \right\} \text{ and } D = \left\langle \sum_{i=1}^{n} v_i \right\rangle.
$$

The equation $\sum_{i=1}^{n} i(v_i - v_{i+1}) = (\sum_{i=1}^{n-1} v_i) - (n-1)v_n$ shows that $D \subseteq W$ if $p | n$ where $p = \text{char}(\mathbb{F}_q)$, and $D \cap W = \{0\}$ otherwise. We call $W/(D \cap W)$ the fully deleted permutation module. It can be written over \mathbb{F}_p , and it is absolutely irreducible. \Box

Remark 5.3. Let $V = \mathbb{F}_q^{2\ell}$ be a symplectic space preserving the nondegenerate alternating bilinear form $f: \mathcal{V} \times \mathcal{V} \to \mathbb{F}_q$. Let \mathcal{V} be the natural module for $\text{Sp}(\mathcal{V}) \cong \text{Sp}_{2\ell}(q)$ where $q = p^b$, with basis $e_1, \ldots, e_{2\ell}$. The map $\phi \colon \Lambda^2 \mathcal{V} \to \mathbb{F}_q$ with $\sum \lambda_{ij} e_i \wedge e_j \mapsto$ $\sum \lambda_{ij} f(e_i, e_j)$ is a Sp(V)-module epimorphism. Hence $W := \text{ker}(\phi)$ is an Sp(V)invariant hyperplane. Let $\langle e_1, e_2 \rangle, \ldots, \langle e_{2\ell-1}, e_{2\ell} \rangle$ be pairwise orthogonal hyperbolic planes. Then $\phi(\sum_{i\leq j}\lambda_{ij}e_i\wedge e_j)=\sum_{i=1}^{\ell}\lambda_{2i-1,2i}$ and the stabilizer $Sp_2(q)\wedge S_{\ell}$ of the decomposition $\langle e_1, e_2 \rangle \oplus \cdots \oplus \langle e_{2l-1}, e_{2l} \rangle$ is a maximal subgroup of $Sp_{2l}(q)$ which preserves the submodules $W = \ker(\phi)$ and $\mathcal{D} = \langle \sum_{i=1}^{\ell} e_{2i-1} \wedge e_{2i} \rangle$ $\mathcal{D} = \langle \sum_{i=1}^{\ell} e_{2i-1} \wedge e_{2i} \rangle$ $\mathcal{D} = \langle \sum_{i=1}^{\ell} e_{2i-1} \wedge e_{2i} \rangle$ in Figure 1 by Re-mark [5.2.](#page-7-1) A symplectic transvection not in $Sp_2(q) \wr S_\ell$ also preserves these submodules. Hence \mathcal{D} and \mathcal{W} are invariant under all of $Sp_{2\ell}(q)$.

We show that D and W are A-invariant for A satisfying $Sp(\mathcal{V}) \leq A \leq \Gamma Sp(\mathcal{V})$. The notation $CSp(\mathcal{V})$ and $\Gamma Sp(\mathcal{V})$ is described in Remark [6.1.](#page-10-2) First, $CSp_{2\ell}(q)$ =

Figure 1: The A-submodules of $\Lambda^2 \mathcal{V}$ where $\mathcal{V} = \mathbb{F}_{n^b}^{2\ell}$ $_{p^{b}}^{2\ell}$ and $\text{Sp}(\mathcal{V}) \leqslant A \leqslant \Gamma \text{Sp}(\mathcal{V})$

 $\langle g_\mu, \text{Sp}_{2\ell}(q) \rangle$ where $\mathbb{F}_q^{\times} = \langle \mu \rangle$ and g_μ satisfies $e_{2i-1}g_\mu = \mu e_{2i-1}$ and $e_{2i}g_\mu = e_{2i}$ for $i \leq$ ℓ . Also $\phi(ug_\mu) = \mu \phi(u)$ for $u \in \Lambda^2 \mathcal{V}$, so $CSp_{2\ell}(q)$ fixes $\mathcal{W} = \text{ker}(\phi)$ and \mathcal{D} . Second, if g_{θ} satisfies $\left(\sum_{i=1}^{2\ell} \lambda_i e_i\right)g_{\theta} = \sum_{i=1}^{2\ell} \lambda_i^{\theta} e_i$ for $\theta \in \text{Aut}(\mathbb{F}_{p^b})$, then $\phi(ug_{\theta}) = \phi(u)^{\theta}$ for $u \in \Lambda^2 \mathcal{V}$. Hence $\Gamma \text{Sp}_{2\ell}(p^b)$ fixes $\mathcal W$ and $\mathcal D$ and induces $\Gamma L_1(p^b)$ on $\mathcal D$. Finally, the only Sp(V)-submodules of Λ^2 V are $\{0\}$, W, D, Λ^2 V by [\[26,](#page-17-3) Table 5], see also [\[19,](#page-17-14) Hauptsatz 1 when $p = 2$. In summary, we have justified Figure [1.](#page-8-0) \Box

Remark 5.4. Let $V = F^m$ be an m-dimensional vector space over a field F where char(F) \neq 2. Then $T^2(V) = A^2(V) \oplus S^2(V)$ where $T^2(V) = V \otimes V$, $A^2(V)$ and $S^2(V)$ are called the tensor, alternating, and symmetric squares of V, respectively. Set $A²(V) := \{v_1 \otimes v_2 - v_2 \otimes v_1 \mid v_1, v_2 \in V\}$ and $S²(V) := \{v_1 \otimes v_2 + v_2 \otimes v_1 \mid v_1, v_2 \in V\}.$ The identity $v_1 \otimes v_2 = \frac{1}{2}$ $\frac{1}{2}(v_1 \otimes v_2 - v_2 \otimes v_1) + \frac{1}{2}(v_1 \otimes v_2 + v_2 \otimes v_1)$ for $v_1, v_2 \in V$ implies that $T^2(V) = A^2(V) \oplus S^2(V)$ holds. The exterior square is isomorphic to the alternating square via $\Lambda^2(V) \to A^2(V)$: $v_1 \wedge v_2 \mapsto \frac{1}{2}(v_1 \otimes v_2 - v_2 \otimes v_1)$. The symmetric square is normally defined to be the quotient $T^2(V)/A^2(V)$ (in all characteristics), and similarly $\Lambda^2(V)$ is defined to be $T^2(V)/S^2(V)$ in all characteristics. The isomorphism $T^2(V)/A^2(V) \to S^2(V)$ with $v_1 \otimes v_2 + A^2(V) \mapsto v_1 \otimes v_2 + v_2 \otimes v_1$ holds for all F.

Remark 5.5. Let p be an odd prime and set $q = p^b$, $E = \mathbb{F}_q$, $F = \mathbb{F}_p$, $\mathcal{V} = E^d$ where $d = 2\ell$ is even and V is an A-module where $Sp(\mathcal{V}) \leq A \leq \Gamma Sp(\mathcal{V})$. We view $V = \mathcal{V} \downarrow F = F^{bd}$ as the A-module $\mathcal{V} = E^d$ written over F using the inclusions $A \leqslant \Gamma \operatorname{Sp}_d(E) \leqslant \operatorname{GL}_{bd}(F)$. The bd-dimensional EA-module $V \otimes_F E$ is $\bigoplus_{i=0}^{b-1} \mathcal{V}^{(i)}$ where $\mathcal{V}^{(i)}$ it the Galois conjugate of \mathcal{V} by θ^i where $Gal(E : F) = \langle \theta \rangle$ by [\[17,](#page-17-8) VII.1.16(a)]. We shall prove the decomposition $A^2(V \otimes E) = \bigoplus_i A^2(V^{(i)}) \oplus \bigoplus_{i < j} A_{ij}$ where $0 \leq i < b$, $0 \leqslant i < j < b$, and \mathcal{A}_{ij} is defined below. First, $T^2(V) \otimes E \cong T^2(V \otimes E)$ equals

$$
\left(\bigoplus_i \mathcal{V}^{(i)}\right)\otimes\left(\bigoplus_j \mathcal{V}^{(j)}\right)=\bigoplus_i T^2(\mathcal{V}^{(i)})\oplus\bigoplus_{i
$$

However, $\mathcal{V}^{(i)} \otimes \mathcal{V}^{(j)} \oplus \mathcal{V}^{(j)} \otimes \mathcal{V}^{(i)}$ is a direct sum of submodules say $\mathcal{A}_{ij} \oplus \mathcal{S}_{ij}$ where

$$
\mathcal{A}_{ij} = \left\{ v_i \otimes v_j - v_j \otimes v_i \mid v_i \in \mathcal{V}^{(i)}, v_j \in \mathcal{V}^{(j)} \right\},
$$

$$
\mathcal{S}_{ij} = \left\{ v_i \otimes v_j + v_j \otimes v_i \mid v_i \in \mathcal{V}^{(i)}, v_j \in \mathcal{V}^{(j)} \right\},
$$

 $\mathcal{A}_{ij} \leqslant A^2(V \otimes E)$ and $\mathcal{S}_{ij} \leqslant S^2(V \otimes E)$ by Remark [5.4.](#page-8-1) Hence

$$
T^2(V \otimes E) = \bigoplus_i A^2(\mathcal{V}^{(i)}) \oplus \bigoplus_i S^2(\mathcal{V}^{(i)}) \oplus \bigoplus_{i < j} A_{ij} \oplus \bigoplus_{i < j} S_{ij}.
$$

Since $\mathcal{A}_{ij} \cong \mathcal{V}^{(i)} \otimes \mathcal{V}^{(j)} \cong \mathcal{S}_{ij}$ for $i < j$, the claimed decomposition follows:

$$
A^{2}(V \otimes E) = \bigoplus_{i} A^{2}(V^{(i)}) \oplus \bigoplus_{i < j} A_{ij} \cong \bigoplus_{i} A^{2}(V^{(i)}) \oplus \bigoplus_{i < j} V^{(i)} \otimes V^{(j)}.
$$

(The containment \geq holds, and the dimension agree as $\binom{bd}{2}$ $\binom{bd}{2} = b \binom{d}{2}$ $\binom{d}{2} + \binom{b}{2}$ $_{2}^{b})d^{2}.$ \Box Recall that $A^{\infty} \neq 1$ and $B^{\infty} = 1$ hold in this section.

Remark 5.6. Assume, as in Remark [5.5,](#page-8-2) that $p > 2$ is prime, $q = p^b$, $E = \mathbb{F}_q$, $F = \mathbb{F}_p, V = E^d, d = 2\ell$ is even, $V = V \downarrow F = F^{bd}$ where V is an A-module and $Sp(V) \leq A \leq \text{PSp}(V)$. By Remark [5.3,](#page-7-2) E is a b-dimensional FA-module which is irreducible if $C\text{Sp}(\mathcal{V}) \leq A$ and is trivial if $A = \text{Sp}(\mathcal{V})$. Let U be a maximal FAsubmodule of $A^2(V \otimes E) \downarrow F$. This remark proves that the quotient FA-module $(A^2(V \otimes E) \downarrow F)/U$ is isomorphic to a subfield of E containing F (really a quotient FA-module). As $B^{\infty} = 1$, we see that $A^{\infty} = Sp(V)$ acts trivially on this quotient. In the next paragraph, we consider EA-submodules rather than FA-submodules.

Let U be a maximal EA-submodule of $A^2(V \otimes E)$ such that $A^{\infty} = Sp(V)$ acts trivially on $A^2(V \otimes E)/U$. Remark [5.5](#page-8-2) shows that $A^2(V \otimes E) = X \oplus Y$ where $\mathcal{X} \,=\, \bigoplus_i A^2(\mathcal{V}^{(i)})$ and $\mathcal{Y} \,=\, \bigoplus_{i < j} \mathcal{V}^{(i)} \otimes \mathcal{V}^{(j)}$. We shall show that $\mathcal{Y} \, \subseteq \, \mathcal{U}$. Let $W = \text{ker}(\phi)$ be as in Remark [5.3](#page-7-2) where $\Lambda^2(V)/W$ is a 1-dimensional EA-module. If $i < j$, then $\mathcal{V}^{(i)} \otimes \mathcal{V}^{(j)}$ is a faithful A^{∞} -module which is irreducible if $j \neq d/2 + i$ by [\[20,](#page-17-15) §5.4], and is a sum of (two isomorphic) faithful irreducible submodules if $j = d/2 + i$. Also, the uniserial proper A^{∞} -submodule W in Figure [1](#page-8-0) of $\Lambda^2(\mathcal{V}^{(i)})$ of dimension $2\ell^2 - \ell - 1$ is nontrivial. Since A^{∞} acts trivially on the simple factor module $A^2(V \otimes E)/\mathcal{U}$, we see that \mathcal{U} contains $\mathcal{Z} := \bigoplus_i \mathcal{W}^{(i)} \oplus \mathcal{Y}$, as claimed.

Suppose now that U is a maximal FA-submodule of $A^2(V \otimes E) \downarrow F$ such that A^{∞} acts trivially on $(A^2(V \otimes E) \downarrow F)/U$. Choose a maximal EA-submodule U of $A^2(V \otimes E)$ where U contains $\mathcal{U} \downarrow F$. Then A^{∞} acts trivially on $A^2(V \otimes E)/\mathcal{U}$. By the previous paragraph, $A^2(V \otimes E)/\mathcal{U}$ is a factor of $A^2(V \otimes E)/\mathcal{Z} = \bigoplus_i (\Lambda^2(V)/\mathcal{W})^{(i)}$. Now $(A^2(V \otimes E) \downarrow F)/U$ is an irreducible FA-module and a factor FA-module of $(A^2(V \otimes E)/\mathcal{U}) \downarrow F \cong (A^2(V \otimes E) \downarrow F)/(\mathcal{U} \downarrow F)$. The irreducible factor FA-modules are isomorphic to a subfield \mathbb{F}_{p^n} of $E = \mathbb{F}_{p^b}$ for some divisor n of b by [\[17,](#page-17-8) VII.1.16(e)]. As A varies, any divisor n of b can arise, see Lemma [6.2.](#page-10-0) \Box

Theorem 5.7. *Let* G *be a finite nonabelian* 3*-orbit* p*-group and let* V *,* A*,* W*,* B *be as in Hypothesis* [2](#page-3-3).5*. If* $A^{\infty} \neq 1$ *and* $B^{\infty} = 1$ *, then* p *is odd and* G, V, A, W, B *are as in line* 7 *of Table* [1](#page-1-0) *with* $|\Phi(G)| = p^n$ *as described in Lemma* [6](#page-10-0).2*.*

Proof. If $p = 2$, then $Aut(G)$ is solvable by Theorem [3.3](#page-4-1) and so $A^{\infty} = 1$, a contradiction. Hence $p > 2$. If $n = 1$, then m must be even and G is the extraspecial group of order p^{1+m} p^{1+m} p^{1+m} , and exponent p which appears on line 7 of Table 1 with $b = 1$. Since $p > 2$, we have $n \leq \binom{m}{2}$ by Lemma [4.3\(](#page-5-1)a). Hence $m = 2$ implies $n = 1$. Suppose now that $m \ge 3$ and $n \ge 2$. Since $A^{\infty} \ne 1$ and $B^{\infty} = 1$, we have $A^{\infty} \le K$. If $H = N_{GL(V)}(A^{\infty})$, then $H/A^{\infty} \geqslant A/A^{\infty} \geqslant A/K \cong B$. We argue using Theorem [4.1](#page-5-0) that $A^{\infty} \cong Sp_{m/b}(p^b)$. Since p^n-1 divides $|B|$, we see that $B \neq 1$. Hence A is strictly larger that A^{∞} , so case (d) of Theorem [4.1](#page-5-0) cannot hold, nor can case (a) as $A^{\infty} \neq 1$. In case (c), we have $A^{\infty} = SL_2(5)$ and $V = \mathbb{F}_3^4$ is an A^{∞} -module. The maximal A^{∞} submodules of $\Lambda^2 V$ have codimension 1 and $\binom{4}{2}$ $2⁴$) – 1 = 5 by Remark [5.3.](#page-7-2) Therefore $n = 1, 5$ by Lemma [4.4.](#page-5-3) But $n \neq 1$, so $n = 5$ and $242 = p^{n} - 1$ divides |B|. A direct calculation with MAGMA [\[3\]](#page-16-7) shows that $|H/A^{\infty}| = 8$. This rules out case (c). Hence we have $A^{\infty} \in {\{SL_{m/b}(p^b), Sp_{m/b}(p^b)\}}$. Suppose $A^{\infty} \cong SL_{m/b}(p^b)$ and $\mathcal{V} = \mathbb{F}_{p^b}^{m/b}$ $\frac{m}{p^b}$ is its natural module. As V is irreducible, so too is $\Lambda^2 V$ by [\(1\)](#page-6-1). Let $V = V \downarrow \mathbb{F}_p = \mathbb{F}_p^m$. We claim that $\Lambda^2 V$ is is a direct sum of faithful irreducible $\mathbb{F}_p A^\infty$ -modules. The claim follows from Remark [5.5](#page-8-2) as $\Lambda^2(V\otimes\mathbb{F}_{p^b}) = \bigoplus_i \Lambda^2(V)^{(i)}\oplus \bigoplus_{i< j} \mathcal{V}^{(i)}\otimes\mathcal{V}^{(j)}$ and $\Lambda^2(V)^{(i)}$ is faithful and irreducible by [\(1\)](#page-6-1), and $\mathcal{V}^{(i)} \otimes \mathcal{V}^{(j)}$ is either a faithful and irreducible $SL_{m/b}(p^b)$ -modules or a direct sum of two such by [\[20,](#page-17-15) Theorem 5.4.5]. This implies that $B^{\infty} \cong SL_{m/b}(p^{b}) \neq 1$, a contradiction. The only remaining possibility in The-orem [4.1](#page-5-0) is $A^{\infty} \cong Sp_{m/b}(p^b)$ where $m/b \geq 4$ is even. In this case, $A \leqslant \Gamma Sp_{m/b}(p^b)$

since the normalizer of $\text{Sp}_{m/b}(p^b)$ in $\text{GL}_m(p)$ is $\text{PSp}_{m/b}(p^b)$. In summary, we have shown that $\text{Sp}_{m/b}(p^b) = A^{\infty} \leqslant A \leqslant \Gamma \text{Sp}_{m/b}(p^b) \leqslant \text{GL}_m(p)$.

We now apply Theorem [4.1\(](#page-5-0)a) to $B \leq \mathrm{GL}_n(p)$. First, $B^{\infty} = 1$ and $B = A/K$ implies $\text{Sp}_{m/b}(p^b) = A^{\infty} \leqslant K$. Thus B is a section of $\text{PSp}_{m/b}(p^b)/\text{Sp}_{m/b}(p^b) \cong$ $\Gamma L_1(p^b)$, and so B is metacyclic. Since $B^{\infty} = 1$, the choices for B are constrained by Theorem [4.1\(](#page-5-0)a). The extraspecial group $D_8 \circ Q_8 = 2^{1+4}$ is not metacyclic, and therefore $(n, p) \neq (4, 3)$, as subgroups of metacyclic groups are metacyclic. Suppose that $n = 2$ and $p \in \{5, 7, 11, 23\}$. A calculation using MAGMA [\[3\]](#page-16-7) shows that the subgroups of $GL_2(p)$ with $p \in \{5, 7, 11, 23\}$ that are both metacyclic and transitive on nonzero vectors, all lie in $\Gamma L_1(p^2)$. Therefore $B \leq \Gamma L_1(p^n)$ as in line 7 of Table [1.](#page-1-0)

By Lemma [4.3\(](#page-5-1)a) the 3-orbit group G is isomorphic to $(V \rtimes \Lambda^2(V))/U$ where $V = \mathbb{F}_p^m$ is the natural A-module, and U is a maximal submodule of $\Lambda^2(V)$ by Remark [4.4.](#page-5-3) The simple quotient A-modules $\Lambda^2(V)/U$ of $\Lambda^2(V)$ are the subfields of \mathbb{F}_{p^b} by Remark [5.6,](#page-9-0) and each subfield gives rise to a 3-orbit group G. Thus G is as described on line 7 of Table [1.](#page-1-0) Large subgroups of A and B are described in Lemma [6.2.](#page-10-0) Indeed, $A \leqslant \Gamma \text{Sp}_{m/b}(p^b)$ and $B \leqslant \Gamma \text{L}_1(p^b)$ as in line 7 of Table [1.](#page-1-0) \Box

6 Examples of k -orbit groups

In this section we give examples of k -orbit groups for small k . We focus on 3-orbit groups. Extraspecial p-groups provide examples of both 3-orbit and 4-orbit groups.

If G is a finite extraspecial p-group, or an infinite Heisenberg group, then viewing the elements of G as ordered pairs facilitates a geometric method to construct $Aut(G)$. This method, was not used by Winter in [\[30\]](#page-17-12), but is used in Lemma [6.2](#page-10-0) below.

Remark 6.1. We first describe $\Gamma \text{Sp}(\mathcal{V})$ and $\text{CSp}(\mathcal{V})$. Let $f: \mathcal{V} \times \mathcal{V} \to F$ be a nondegenerate symplectic bilinear form on $\mathcal{V} = F^d$ where $d \geq 2$ is even. Let $\text{PSp}(\mathcal{V})$ be the group of bijective semilinear symplectic similarities on $\mathcal V$. These satisfy

$$
(\lambda v)g = \lambda^{\sigma(g)}(vg), (v_1 + v_2)g = v_1g + v_2g, \text{ and } f(v_1g, v_2g) = \delta(g)^{\sigma(g)}f(v_1, v_2)^{\sigma(g)},
$$

for $g \in \Gamma \text{Sp}(\mathcal{V}), v, v_1, v_2 \in \mathcal{V}, \ \lambda \in F$, where $\delta(g) \in F^\times$ and $\sigma(g) \in \text{Aut}(F)$ depend on g. The map $\sigma: \Gamma \text{Sp}(\mathcal{V}) \to \text{Aut}(F)$ is an epimorphism. Comparing $f(v_1(gh), v_2(gh))$ to $f((v_1g)h, (v_2g)h)$ gives the the 1-cocycle condition $\delta(gh) = \delta(g)\delta(h)^{\sigma(g^{-1})}$. The *conformal symplectic group* denoted by $CSp(\mathcal{V})$ is the kernel of σ *c.f.* [\[4,](#page-16-8) Def. 1.6.14].

We view the elements of $\mathrm{TL}_1(F)$ as products $\delta\sigma$ with $(\delta,\sigma) \in F^\times \times \mathrm{Aut}(F)$ and multiplication rule $(\delta_1 \sigma_1)(\delta_2 \sigma_2) = \delta_1 \delta_2^{\sigma_1^{-1}} \sigma_1 \sigma_2$. It follows from the previous paragraph that $\Gamma \text{Sp}_d(F) = \text{Sp}_d(F) \rtimes \Gamma \text{L}_1(F)$, see [\[20,](#page-17-15) Table 2.1.C] and Remark [5.3.](#page-7-2) \Box

If $F: F_0$ is a Galois extension of the subfield F_0 , then $\Gamma L_1(F_0)$ is a factor group of $\Gamma L_1(F)$, and hence $\Gamma L_1(F_0)$ is a factor group of $\Gamma Sp_d(F) \cong Sp(V) \rtimes \Gamma L_1(F)$.

Lemma 6.2. Let $F : F_0$ be a finite Galois field extension where $char(F) = p \ge 0$. Let $f: \mathcal{V} \times \mathcal{V} \rightarrow F$ *be a non-degenerate alternating* F-bilinear form on $\mathcal{V} = F^d$ where d *is even. Let* Tr *be the trace map* $F \to F_0$: $\lambda \mapsto \sum_{\sigma \in \text{Gal}(F:F_0)} \lambda^{\sigma}$. The set $G = \mathcal{V} \times F_0$ *with the multiplication rule* $(v_1, \zeta_1)(v_2, \zeta_2) = (v_1 + v_2, \zeta_1 + \zeta_2 + \text{Tr}(f(v_1, v_2)))$ *defines a group.* If $p \neq 2$, then $G = G_{F,F_0}$ is a 3-orbit group and

$$
\operatorname{Sp}_d(F) \rtimes (F_0^\times \rtimes \operatorname{Aut}(F)) \leqslant \operatorname{Aut}(G)^{G/G'} \qquad \text{and} \qquad \operatorname{GL}_1(F_0) \leqslant \operatorname{Aut}(G) \downarrow G'.
$$

If $F = F_0 = \mathbb{F}_p$, where p is an odd prime, then $A = \text{CSp}_d(p)$ and $B = \text{GL}_1(p)$.

Proof. Since the map $V \times V \to F_0$: $(v_1, v_2) \mapsto \text{Tr}(f(v_1, v_2))$ is biadditive, the multiplication on G is associative. Hence G is a group where $(0,0)$ is the identity element and $(v,\zeta)^{-1} = (-v,-\zeta)$ as $f(v,v) = 0$. If $p > 0$, then the exponent of G is p since $(v,\zeta)^k = (kv,k\zeta)$ for $k \in \mathbb{Z}$. The commutator $[(v_1,\zeta_1),(v_2,\zeta_2)]$ equals $(0, 2\text{Tr}(f(v_1, v_2))$. Thus G is abelian if $p = 2$. Suppose now that $p \neq 2$. As f and Tr are surjective functions, it follows that $G' = \{0\} \times F_0$.

Let A be the subgroup of $\text{PSp}(\mathcal{V})$ (see Remark [6.1\)](#page-10-2) comprising all g satisfying $f(v_1g, v_2g) = \delta(g)f(v_1, v_2)^{\sigma(g)}$ with $\delta(g) \in F_0^{\times}$. Then the structure of A is $\text{Sp}_d(F) \rtimes$ $(F_0^{\times} \rtimes \text{Aut}(F))$. Using $\text{Tr}(\delta \lambda^{\sigma}) = \delta \text{Tr}(\lambda)$ for $\delta \in F_0$, $\lambda \in F$, $\sigma \in \text{Aut}(F)$, we show below that $(v, \zeta)^g = (vg, \delta(g)\zeta)$ defines an action of $g \in \mathcal{A}$ on G:

$$
(v_1, \zeta_1)^g (v_2, \zeta_2)^g = (v_1g, \delta(g)\zeta_1)(v_2g, \delta(g)\zeta_2)
$$

= $(v_1g + v_2g, \delta(g)\zeta_1 + \delta(g)\zeta_2 + \text{Tr}(\delta(g)f(v_1, v_2)^{\sigma(g)}))$
= $((v_1 + v_2)g, \delta(g)(\zeta_1 + \zeta_2 + \text{Tr}(f(v_1, v_2))))$
= $(v_1 + v_2, \zeta_1 + \zeta_2 + \text{Tr}(f(v_1, v_2))^g = ((v_1, \zeta_1)(v_2, \zeta_2))^g$.

Thus q is a bijective endomorphism of G, i.e. an automorphism of G. Moreover, A acts on G since $((v,\zeta)^g)^h = (v,\zeta)^{gh}$. Therefore Aut(G) has 3 orbits on G, namely $\{(0,0)\},\{0\}\times F_0^{\times},\{V\setminus\{0\}\}\times F_0$, that is $1,G'\setminus\{1\},G\setminus G'$. We have therefore shown that $A \leq \text{Aut}(G)^{G/G'}$ and $\text{GL}_1(F_0) \leq \text{Aut}(G) \downarrow G'$, as claimed.

Finally, suppose that $F = F_0 = \mathbb{F}_p$, where p is an odd prime. In this case G is an extraspecial p-group of order p^{1+d} and exponent p. It follows from [\[30\]](#page-17-12) that $\text{Out}(p^{1+d}) = \text{CSp}_d(p)$ and hence $A = \text{CSp}_d(p)$ and $B = \text{GL}_1(p)$ as claimed. \Box

Remark 6.3. The subgroup U in Remark [4.4](#page-5-3) is the kernel of the map $\Lambda^2 V \to F_0$ defined by $v_1 \wedge v_2 \mapsto \text{Tr}(f(v_1, v_2))$ where f and Tr are as in Lemma [6.2.](#page-10-0)

Lemma 6.4. *The group* B(n) *in Definition* [3.2\(](#page-4-0)b) *is isomorphic to the Suzuki* 2*-group* $B(n, 1, \xi)$ *defined by* [\[16,](#page-17-9) *Column III*] where $\xi \neq \tau + \tau^{-1}$ for all $\tau \in \mathbb{F}_{2^n}^{\times}$.

Proof. Let $q = 2^n$. The polynomial $t^2 + \xi t + 1$ is irreducible in $\mathbb{F}_q[t]$ since $\tau + \tau^{-1} = \xi$ has no solutions for $\tau \in \mathbb{F}_q^{\times}$. Let ε be a root of $t^2 + \xi t + 1$. Then $\varepsilon + \varepsilon^q = \xi$ and $\varepsilon^{q+1} = 1$. Hence $\mathbb{F}_q[\varepsilon] = \mathbb{F}_{q^2}$ and the norm map $\mathbb{F}_{q^2}^{\times} \to \mathbb{F}_q^{\times}$ sends $\alpha + \beta \varepsilon \in \mathbb{F}_{q^2}^{\times}$ to $(\alpha + \beta \varepsilon)(\alpha + \beta \varepsilon^q) = \alpha^2 + \xi \alpha \beta + \beta^2$. The Suzuki 2-group $B(n, 1, \xi)$ can, by Higman [\[16,](#page-17-9) Column V, be identified with the set \mathbb{F}_q^3 with the following multiplication rule

 $(\alpha_1, \beta_1, \zeta_1)(\alpha_2, \beta_2, \zeta_2) = (\alpha_1 + \alpha_2, \beta_1 + \beta_2, \zeta_1 + \zeta_2 + \alpha_1\alpha_2 + \xi\alpha_1\beta_2 + \beta_1\beta_2).$

The third coordinate is related to the 'bilinearized' form of the norm map

$$
(\alpha_1 + \beta_1 \varepsilon)(\alpha_2 + \beta_2 \varepsilon)^q = (\alpha_1 + \beta_1 \varepsilon)(\alpha_2 + \beta_2 \varepsilon^{-1}) = \alpha_1 \alpha_2 + \xi \alpha_1 \beta_2 + \beta_1 \beta_2.
$$

Therefore, $(\alpha_1 + \beta_1 \varepsilon)(\alpha_2 + \beta_2 \varepsilon)^q \in \mathbb{F}_q$ and hence

$$
(\alpha_1 + \beta_1 \varepsilon)(\alpha_2 + \beta_2 \varepsilon)^q \varepsilon + ((\alpha_1 + \beta_1 \varepsilon)(\alpha_2 + \beta_2 \varepsilon)^q \varepsilon)^q = (\alpha_1 \alpha_2 + \xi \alpha_1 \beta_2 + \beta_1 \beta_2)(\varepsilon + \varepsilon^q).
$$

Since $\varepsilon + \varepsilon^q = \xi$, the map $B(n, 1, \xi) \to B(n)$ defined by $(\alpha, \beta, \zeta) \mapsto (\alpha + \beta \varepsilon, \zeta \xi)$ is an isomorphism. Consequently, the isomorphism type of $B(n, 1, \xi)$ is independent of the choice of ξ for which $t^2 + \xi t + 1$ is irreducible. \Box

We will construct examples of 3- and 4-orbit groups using the exterior algebra $\Lambda(\mathcal{V})$ of a vector space V. If $\dim(\mathcal{V}) = d$, then $\Lambda(\mathcal{V}) = \bigoplus_{k=0}^{\dim(V)} \Lambda^k(\mathcal{V})$ is a graded algebra with $\dim(\Lambda^k(\mathcal{V})) = \binom{d}{k}$ ^d_k) and hence $\dim(\Lambda(V)) = 2^d$. The following preliminary lemma exploits the action of $GL(V)$ on $\Lambda^k(V)$, see [\[22,](#page-17-16) XIX].

Lemma 6.5. Let $V = F^d$ be an d-dimensional vector space over a field F. Suppose *that* $1 < k \leq d$ *and* $n = \binom{d}{k}$ \mathcal{L}_k^{d}). The action of $\text{GL}(\mathcal{V})$ on $\Lambda^k(\mathcal{V})$ induces a homomorphism $\phi_{d,k} : GL_d(F) \to GL_n(F)$ *of matrix groups. The kernel of* $\phi_{d,k}$ *is* $GL_d(F)$ *if* $k > d$, $SL_d(F)$ *if* $k = d$, and $\{\lambda I_d \mid \lambda \in F$ and $\lambda^k = 1\}$ *if* $k < d$.

Proof. If $k > d$, then $\Lambda^k(\mathcal{V}) = \{0\}$ so ker $\phi_{d,k} = GL_d(F)$. Let $\mathcal{V} = \langle e_1, \ldots, e_d \rangle$. If $k = d$, then $\Lambda^d(\mathcal{V}) = \langle e_1 \wedge \cdots \wedge e_d \rangle$ and $g\phi_{d,d} = \big(\det(g)\big)$, so that ker $\phi_{d,d} = SL_d(F)$.

Let $\langle v_1, \ldots, v_k \rangle$ be a typical k-subspace of V where $k < d$. As $g \in \text{ker } \phi_{d,k}$ fixes $v_1 \wedge \cdots \wedge v_k$, it also fixes the k-subspace $\langle v_1, \ldots, v_k \rangle$ by [\[28,](#page-17-17) Lemma 12.6]. As $k < d$ we may choose a vector v_{k+1} in $\mathcal{V} \setminus \langle v_1, \ldots, v_k \rangle$. Since g fixes the k-subspaces $\langle v_1, \ldots, v_k \rangle$ and $\langle v_2, \ldots, v_{k+1} \rangle$, it fixes their intersection, *viz.* $\langle v_2, \ldots, v_k \rangle$. Thus g fixes all $(k-1)$ subspaces. By induction, g fixes all 1-subspaces of V and hence g is a scalar matrix. However, $\lambda I_d \in \text{ker } \phi_{d,k}$ precisely when $\lambda^k = 1$. This completes the proof. \Box

Remark 6.6. If $F = \mathbb{F}_q$, then $\{\lambda \in \mathbb{F}_q^{\times} \mid \lambda^k = 1\}$ is cyclic of order $gcd(k, q - 1)$.

Lemma 6.7. Let $\Lambda(V)$ be the exterior algebra of the F-vector space $V = F^3$ where $char(F) \neq 2$. Then the set $G = G_F = V \times \Lambda^2 V \times \Lambda^3 V$ with the multiplication rule

$$
(v_1, w_1, x_1)(v_2, w_2, x_2) = (v_1 + v_2, w_1 + w_1 + v_1 \wedge v_2, x_1 + x_2 + v_1 \wedge w_2 + w_1 \wedge v_2)
$$

defines a 4*-orbit group.* Also $Aut(G)$ *induces on* $G/\gamma_2(G)$, $\gamma_2(G)/\gamma_3(G)$ *and* $\gamma_3(G)$ *subgroups* A, B, C respectively where $\Gamma L(\mathcal{V}) \leq A$, $\{g \wedge g \mid g \in \Gamma L(\mathcal{V})\} \leq B$ and ${g \wedge g \wedge g \mid g \in \Gamma\mathbb{L}(\mathcal{V})} \leq C$ *. In particular,* $\gamma_3(G) = \mathbb{Z}(G)$ *,* $\gamma_2(G) = C_G(\gamma_2(G))$ *and* $G/\gamma_3(G)$ *is a* 3*-orbit group.* If $|F| = q$ *is odd, then* $|G| = q^7$ *and* $|G/\gamma_3(G)| = q^6$ *.*

Proof. The exterior algebra $\Lambda(V)$ equals $\bigoplus_{i=0}^{3} \Lambda^{i}(V)$ where $\dim(\Lambda^{i}(V)) = \binom{3}{i}$ i). A basis (e_1, e_2, e_3) for $\Lambda^1(\mathcal{V}) = \mathcal{V}$ gives bases $(e_2 \wedge e_3, e_3 \wedge e_1, e_1 \wedge e_2)$ for $\Lambda^2(\mathcal{V})$ and $(e_1 \wedge e_2 \wedge e_3)$ for $\Lambda^3(\mathcal{V})$. Relative to these bases a 3×3 matrix $g \in GL(\mathcal{V})$ induces the 3×3 matrix $\det(g)g^{-T} = g \wedge g \in GL(\Lambda^2 \mathcal{V})$ and the 1×1 matrix $(\det(g)) = g \wedge g \wedge g \in GL(\Lambda^3 \mathcal{V})$. Hence the action of $GL(V)$ on $\Lambda^2(V)$ is different from the 'natural' and 'dual' actions.

The group of units $\Lambda(\mathcal{V})^{\times}$ a has normal subgroup $M = \{1\} \times \mathcal{V} \times \Lambda^2 \mathcal{V} \times \Lambda^3 \mathcal{V}$, and

$$
(1 + v1 + w1 + x1) \wedge (1 + v2 + w2 + x2)
$$

= 1 + (v₁ + v₂) + (w₁ + v₁ \wedge v₂ + w₂) + (x₁ + w₁ \wedge v₂ + v₁ \wedge w₂ + x₂).

Therefore the stated multiplication rule of triples in $G = V \times \Lambda^2 V \times \Lambda^3 V$ defines an isomorphism $G \to M$: $(v, w, x) \mapsto 1 + v + w + x$. In particular, G is a group.

The identity element of G is $(0,0,0)$ and $(v,w,x)^{-1} = (-v,-w,-x)$ since \wedge is antisymmetric and $w \wedge v + v \wedge w = 0$. Since $(v, w, x)^k = (kv, kw, kx)$ for $k \in \mathbb{Z}$ it follows that G is torsion free if $char(F) = 0$, and has (odd) exponent $p = char(F)$ otherwise. In both cases $\gamma_2(G) = \{0\} \times \Lambda^2 \mathcal{V} \times \Lambda^3 \mathcal{V}$ holds because

(2)
$$
[(v_1, w_1, x_1), (v_2, w_2, x_2)] = (0, 2v_1 \wedge v_2, 2(v_1 \wedge w_2 + w_1 \wedge v_2)).
$$

Setting $[(v_1, w_1, x_1), (v_2, w_2, x_2)] = (0, w', x')$ in [\(2\)](#page-12-0) where $w' = 2v_1 \wedge v_2$ gives that

 $[[(v_1, w_1, x_1), (v_2, w_2, x_2)], (v_3, w_3, x_3)] = (0, 0, 2w' \wedge v_3) = (0, 0, 4v_1 \wedge v_1 \wedge v_3).$

Hence $\gamma_3(G) = \{0\} \times \{0\} \times \Lambda^3 \mathcal{V}$ as $char(F) \neq 2$. Observe that if $v \in \mathcal{V}$ satisfies $v \wedge w = 0$ for all $w \in \Lambda^2 \mathcal{V}$, then $v = 0$. Hence [\(2\)](#page-12-0) implies that $\gamma_3(G) = Z(G)$, and $C_G(\gamma_2(G)) = \gamma_2(G).$

Now $g \in GL(V)$ acts on G is via $(v, w, x)^g = (vg, w(g \wedge g), x(g \wedge g \wedge g))$ as described above. Hence G is transitive on the nonzero vectors of $G/\gamma_2(G) = V$, $\gamma_2(G)/\gamma_3(G) =$ $\Lambda^2 V$, $\gamma_3(G)/\gamma_4(G) = \Lambda^3 V$, so G is a 4-orbit group. Further, $\sigma \in \text{Aut}(F)$ acts to G via (v, w, x) ^{σ} = $(v^{\sigma}, w^{\sigma}, x^{\sigma})$ by applying σ to the coordinates of v, w, x relative the stated bases. This shows that $\Gamma\mathsf{L}(\mathcal{V})$ is a subgroup of $\text{Aut}(G)$ which induces $\Gamma\mathsf{L}(\mathcal{V}) \leq A$, ${g \land g \mid g \in \Gamma\mathbb{L}(\mathcal{V})} \leq B$ and ${g \land g \land g \mid g \in \Gamma\mathbb{L}(\mathcal{V})} \leq C$ as claimed. \Box **Remark 6.8.** The group G_F in Lemma [6.7](#page-12-1) is abelian if $char(F) = 2$. If $g \in GL_3(F)$, then $g \wedge g = \det(g)g^{-T}$ so that $\det(g \wedge g) = \det(g)^3 \det(g^{-T}) = \det(g)^2 \in (F^{\times})^2$. The homomorphism $GL(V) \to GL(\Lambda^2 V)$ has kernel $\langle -1 \rangle$, and $GL(V) \to GL(\Lambda^3 V)$ has kernel $SL(V)$ by Lemma [6.5.](#page-12-2) \Box

Lemma 6.9. Let $F : F_0$ be a finite separable field extension where $char(F) \neq 2$. *Then the trace map* $\text{Tr}: F \to F_0$ *is surjective, and the set* $G = G_{F,F_0} = F^3 \times F^3 \times F_0$ *endowed with the multiplication rule*

 $(v_1, w_1, x_1)(v_2, w_2, x_2) = (v_1 + v_2, w_1 + w_1 + v_1 \wedge v_2, x_1 + x_2 + \text{Tr}(v_1 \wedge w_2 + w_1 \wedge v_2))$

defines a group. Let $H = \{g \in GL_3(F) \mid \det(g) \in F_0^{\times}\}\$ and let H^+ be the subgroup $H^+ = \{g \in GL_3(F) \mid \det(g) \in (F^\times)^2\}$. If $\text{Aut}(G)$ *induces on* $G/\gamma_2(G)$, $\gamma_2(G)/\gamma_3(G)$ *and* $\gamma_3(G)$ *subgroups* A, B, C respectively, then $H \rtimes \text{Aut}(F) \leq A$, $H^+ \rtimes \text{Aut}(F) \leq B$ and $F_0^{\times} \leq C$. Moreover, G is a 4-orbit group and $G/\gamma_3(G)$ is a 3-orbit group.

Proof. If $\sigma_1, \ldots, \sigma_{|F:F_0|}$ are the F_0 -linear embeddings $F \to \overline{F}$ into the algebraic closure \overline{F} of F, then $\text{Tr}(x) = \sum_{i=1}^{|F:F_0|} \sigma_i(x)$. Since $\sigma_1, \ldots, \sigma_n$ are linearly independent over F_0 , the F_0 -linear map Tr is nonzero, and hence is surjective. Let M be the kernel of the trace map Tr: $F \to F_0$. The First Isomorphism Theorem gives $F^+ / M \cong F_0^+$. We will show that G_{F,F_0} is a factor group of the group G_F in Lemma [6.7.](#page-12-1) Indeed, the map $\phi: G_F \to G_{F,F_0}: (v, w, x) \mapsto (v, w, x + M)$ preserves multiplication and has kernel $\{(0,0,x) \mid x \in M\} \leq Z(G_F)$ where $x + M$ is viewed as an element of F_0 via the isomorphism $F^+/M \cong F_0^+$. Therefore $G_F/M \cong G_{F,F_0}$.

The epimorphism ϕ maps $\gamma_i(G_F)$ to $\gamma_i(G_{F,F_0})$ for $1 \leq i \leq 3$. Further, if $g \in H$, then $g \wedge g \in H^+$ by Remark [6.8.](#page-13-1) The remaining claims follow from Lemma [6.7.](#page-12-1) \Box

Subgroups $G_1, G_2 \leq \text{Sym}(\Omega)$ with the same orbits on Ω are called *orbit-equivalent*.

Lemma 6.10. Let F be a division ring, and $C \leq F^{\times}$ a finite subgroup. Suppose *that* $A \leq \text{Aut}(F)$ *fixes* C *setwise and is orbit equivalent to* $\text{Aut}(C) \leq \text{Sym}(C)$ *. Let* $\mathcal{V} = F^d$ be a d-space over F. Then the set $G = C \times V$ endowed with the multiplication *rule* $(\lambda, v)(\mu, w) = (\lambda\mu, \mu v + w)$ *defines a group. Further,* Aut(G) *has one more orbit on* G than Aut(C) has on C, i.e. $\omega(G) = \omega(C) + 1$.

Proof. We now show that the set $G = C \times V$ is a group. Associativity holds as

$$
((\lambda, v)(\mu, w))(\nu, x) = (\lambda \mu \nu, \mu \nu v + \nu w + x) = (\lambda, v)((\mu, w)(\nu, x))
$$

holds for all $(\lambda, v), (\mu, w), (\nu, x) \in C \times V$. The identity element of G is (1,0). Also (λ, v) has inverse $(\lambda^{-1}, -\lambda^{-1}v)$ and $(\lambda, v)^n = (\lambda^n, (\lambda^{n-1} + \cdots + \lambda + 1)v)$ for $n \ge 0$.

We now show that $M := \{1\} \times V$ is characteristic in G. If char(F) = 0, then this follows since elements of $G \setminus M$ have finite order (as $\lambda^n = 1$ implies $(\lambda, v)^n = (1, 0)$), while nontrivial elements of M have infinite order. If $char(F) > 0$, then C is contained in the multiplicative group of a finite field by the proof of $[18,$ Theorem 6. Hence M is a normal Sylow p-subgroup of G and thus characteristic in G . We next show that $\omega(G) = \omega(C) + \omega(M) - 1$. Clearly $G/M \cong C$. First, Aut (M) has two orbits on M. Note that an invertible F-linear map $g \in Aut_F(\mathcal{V})$ acts on G via $(\mu, v)^g = (\mu, vg)$. Hence ${\rm Aut}_F(V)$ has one nontrivial orbit on M, so $\omega(M) = 2$. Also $\alpha \in A \leq {\rm Aut}(F)$ acts coordinatewise on $M \cong F^d$, and hence A acts on G via $(\lambda, v)^\alpha = (\lambda^\alpha, v^\alpha)$. Since A is orbit-equivalent to $Aut(C) \leqslant Sym(C)$, both A and $Aut(C)$ have $\omega(C)$ orbits on C. These two types of automorphisms of G generate a subgroup of $Aut(G)$ with $\omega(C) + 1$ orbits. This proves that $\omega(G) = \omega(C) + 1$ by Lemma [2.1.](#page-2-0) \Box **Example 6.11.** Let $F = \mathbb{H}$ be the real quaternions. Then \mathbb{H}^{\times} contains the quaternion subgroup $C = {\pm 1, \pm i, \pm j, \pm k} \cong Q_8$. Set $r = \frac{i+j}{\sqrt{2}}, s = \frac{1+i+j+k}{2}$ $\frac{+j+k}{2}$ and $t = \frac{1+i}{\sqrt{2}}$ $\frac{1}{2}$. The binary octahedral group $BO = \langle r, s, t \mid r^2 = s^3 = t^4 = rst \rangle$ satisfies $|BO| = 48$, $Z(BO) = \langle rst \rangle = \langle -1 \rangle$, and $C \leqslant BO$. The subgroup A of Aut(F) comprising the inner automorphisms $F \to F: \lambda \mapsto \alpha^{-1} \lambda \alpha, \alpha \in BO$, fixes $BO' = Q_8 = C$ setwise. Furthermore $\overline{A} \cong \overline{BO}/\langle -1 \rangle \cong S_4 \cong \text{Aut}(Q_8)$, so \overline{A} is orbit-equivalent to $\text{Aut}(C)$. Lemma [6.10](#page-13-2) shows that $G = C \times \mathbb{H}^d$ satisfies $\omega(G) = \omega(Q_8) + 1 = 4$ for $d \ge 1$. \Box

Example 6.12. Let p, r be distinct primes. Set $e = r^{\ell}$ where $\ell \geq 1$. Then $p \nmid e$ and the cyclotomic polynomial $\Phi_e(t)$ is irreducible over the finite field \mathbb{F}_p precisely p has order deg($\Phi_e(t)$) = $\phi(e)$ modulo e by [\[25,](#page-17-19) Ex. 3.42, p. 124]; in this case \mathbb{F}_q where $q = p^{\phi(e)}$ is the splitting field of $\Phi_e(t)$ over \mathbb{F}_p . Hence $C_e \leq \mathbb{F}_q^{\times}$ and $Gal(\mathbb{F}_q/\mathbb{F}_p)$ $C_{\phi(e)} \cong \text{Aut}(C_e)$. Set $C = C_e$, $F = \mathbb{F}_q$ and $A = \text{Gal}(\mathbb{F}_q/\mathbb{F}_p)$ in Lemma [6.10](#page-13-2) noting that the orbits of $\text{Aut}(C)$ and A on C are the elements of C of the same order. Thus the set $G = C_e \times V$ is a group $C_e \ltimes \mathbb{F}_q^d$ with $\omega(G) = \omega(C_{r^{\ell}}) + 1 = \ell + 2$. Setting $\ell = 1$ gives $e = r$, $q = p^{r-1}$, $G = C_r \ltimes (C_p)^{d(r-1)}$, and $\omega(G) = 3$ as in line 2 of Table [1.](#page-1-0)

Lemma 6.13. If $p \neq r$ are prime and G is an $(\ell + 2)$ -orbit group with $|G| = p^m r^{\ell}$, $G' \cong C_p^m$ and $G/G' \cong C_{r^{\ell}}$, then G is isomorphic to the group in Example 6.[12](#page-14-0).

Proof. By assumption, $Aut(G)$ has precisely $\ell + 2$ orbits on G. As $|ord(G)| = \ell + 2$, these orbits are the sets $O_1, O_p, O_r, \ldots, O_{r^{\ell}}$ where $O_n = \{g \in G \mid |g| = n\}$. Let R be a Sylow r-subgroup, and let $P = G'$ be the normal p-subgroup. Now $Z(G) \cap P$ is trivial, otherwise G has at least $\ell + 3$ orbits. Hence R acts fixed-point-freely on P. By Maschke's theorem $P = P_1 \oplus \cdots \oplus P_d$ where each P_i is an irreducible R-module. The P_i must be pairwise isomorphic R-modules, otherwise Aut(G) has at least 3 orbits on P, a contradiction. Let $|P_1| = \cdots = |P_d| = p^b = q$. Hence each $\lambda \in R$ may be viewed as acting as a $d \times d$ scalar matrix over \mathbb{F}_q . Thus $G \cong \mathbb{F}_q^d \rtimes C_{r^{\ell}}$ in Example [6.12.](#page-14-0)

Lemma 6.14. Let $q = 2^n$ and let $\text{Tr}: \mathbb{F}_{q^2} \to \mathbb{F}_q: \mu \mapsto \mu + \mu^q$ denote the trace map.

- (a) *If* $\theta \in \text{Gal}(\mathbb{F}_q/\mathbb{F}_2)$ *has* $|\theta| > 1$ *odd, then* $n \neq 2^{\ell}$ *and the group* $A(n, \theta)$ *in Definition* [3](#page-4-0).2(a) *is a* 3*-orbit* 2*-group of order* q^2 *with* $A \cong B \cong \Gamma L_1(q)$ *.*
- (b) If $n \geq 1$ and $\varepsilon \in \mathbb{F}_{q^2}^{\times}$ have order $q + 1$, then $B(n) = B_{\varepsilon}(n)$ in Definition [3](#page-4-0).2(b) *is a* 3*-orbit* 2*-group of order* q^3 *with* $A \cong \Gamma L_1(q^2)$ *and* $B \cong \Gamma L_1(q)$ *.*
- (c) Let $q = 8$ and $\mathbb{F}_{q^2}^{\times} = \langle \varepsilon \rangle \cong C_{63}$ $\mathbb{F}_{q^2}^{\times} = \langle \varepsilon \rangle \cong C_{63}$ $\mathbb{F}_{q^2}^{\times} = \langle \varepsilon \rangle \cong C_{63}$. The group $P = P(\varepsilon)$ in Definition 3.2(c) is *a* 3*-orbit* 2*-group isomorphic to* SmallGroup(2 9 ,10 494 213) *in* Magma [\[3\]](#page-16-7) *with* $A \cong C_7 \rtimes C_9 < \Gamma L_1(\mathbb{F}_{64})$ *of order* 63 *and* $B = \Gamma L_1(\mathbb{F}_8)$ *of order* 21*.*

Proof. (a) A simple calculation shows that $G := A(n, \theta)$ defined by Definition [3.2\(](#page-4-0)a) is a group with $Z(G) = G' = \Phi(G) = \{0\} \times \mathbb{F}_q$, see also [\[7,](#page-16-2) Theorem (iv), p. 704]. The group $\Gamma L_1(q)$ acts faithfully on G via $(\mu, \zeta)^{(\alpha, \lambda)} = (\mu^{\alpha} \lambda, \zeta^{\alpha} \lambda \lambda^{\theta})$. Hence G is a 3-orbit 2-group of order q^2 with $m = n$ and $\Gamma\mathrm{L}_1(q) \leqslant A$ and $\Gamma\mathrm{L}_1(q) \leqslant B$. No solvable group of $GL_n(2)$ properly contains $\Gamma L_1(2^n)$ by Theorem [4.1\(](#page-5-0)a). Therefore $A = \Gamma L_1(2^n)$. It follows from [\[16\]](#page-17-9) that $\Gamma L_1(q) \leq B$. Similar reasoning shows that $B = \Gamma L_1(2^n)$, so line 3 of Table [1](#page-1-0) is valid.

(b) The group $B_{\varepsilon}(n)$ appears in [\[7,](#page-16-2) Theorem (v)]. Since $B_{\varepsilon}(n) \cong B_{\varepsilon'}(n)$ when $\langle \varepsilon \rangle = \langle \varepsilon' \rangle$ has order $q+1$ we write $B(n)$ instead of $B_{\varepsilon}(n)$. The multiplication rule in [\[7,](#page-16-2) Theorem (v)] can be rewritten as $(\mu_1, \zeta_1)(\mu_2, \zeta_2) = (\mu_1 + \mu_2, \zeta_1 + \zeta_2 + \text{Tr}(\varepsilon \mu_1 \mu_2^q))$ $\binom{q}{2}$) since $\varepsilon^q = \varepsilon^{-1}$. The group $\Gamma L_1(q^2)$ acts faithfully on $B(n)$ via $(\mu, \zeta)^{(\alpha, \lambda)} = (\mu^{\alpha} \lambda, \zeta^{\alpha} \lambda \lambda^{\theta})$. Arguing as in part (a) we have $A \cong \Gamma L_1(q^2)$ and $B \cong \Gamma L_1(q)$ as in line 4 of Table [1.](#page-1-0)

(c) The group $P(\varepsilon)$ appears in [\[7,](#page-16-2) Theorem (vi)]. If $\mathbb{F}_{q^2}^{\times} = \langle \varepsilon \rangle = \langle \varepsilon' \rangle$, then $P(\varepsilon) \cong P(\varepsilon')$ so we write P rather than $P(\varepsilon)$. The maps $\psi, \phi: P \to P$ defined by

$$
(\alpha, \zeta)^{\psi} = (\varepsilon^3 \alpha, \varepsilon^9 \zeta)
$$
 and $(\alpha, \zeta)^{\phi} = (\varepsilon \alpha^4, \zeta^4)$

can be shown to be homomorphisms of P that satisfy $\psi^{21} = \phi^9 = 1$, $\psi^{\phi} = \psi^4$ and $\psi^7 = \phi^3$. Hence $\psi, \phi \in \text{Aut}(P)$ and $\langle \psi, \phi \rangle = \langle \psi^3, \phi \rangle = C_7 \rtimes C_9$. A computation with MAGMA [\[3\]](#page-16-7) shows that $|\text{Aut}(P)| = 2^{18} \cdot 63$. There are 2^{18} central automorphisms so $A \cong C_{21} \cdot C_3 \cong C_7 \rtimes C_9 < \Gamma L_1(\mathbb{F}_{64})$ and $B = C_7 \rtimes C_3 = \Gamma L_1(\mathbb{F}_8)$ as $\mathbb{F}_8^{\times} = \langle \varepsilon^9 \rangle$.

7 Examples of 4-orbit groups

"A good stock of examples, as large as possible, is indispensable for a thorough understanding of any concept, and when I want to learn something new, I make it my first job to build one." PAUL HALMOS

In this section, we consider the feasibility of classifying finite k-orbit groups for $k \leq 6$. The nonsolvable k-orbit groups have been classified for $k = 4, 5, 6$, see §1 for details. To assess the feasibility of classifying the solvable k-orbit groups for $k =$ 4, 5, 6, we employ Halmos' strategy, and seek a large stock of examples, particularly when $k = 4$. Using MAGMA [\[3\]](#page-16-7), we studied the 1265679 groups of order less than 2^{10} excluding 2^9 . Only 86 of these are nonabelian solvable 4-orbit groups! It appears that these groups belong to a small number of infinite (and finite) families. For brevity, we list (without proof of correctness) most of these below and in Table [2.](#page-15-1) Given the difficulty of computing automorphism groups, classifying the solvable 4-orbit groups may just be feasible. The most difficult case will be when G does not have four 'obvious' characteristic subset (e.g. determined by element orders or characteristic subgroups). For $k = 5, 6$ a complete classification may involve too many possibilities.

The Aut(G) orbit lengths for a 3-orbit group G follow from Theorem [1.1.](#page-1-0) They are $1, p^{n} - 1, p^{n}(r^{m} - 1)$ $1, p^{n} - 1, p^{n}(r^{m} - 1)$ where $p = r$ except for line 2 of Table 1, and the respective orbitelement orders are $1, p, p^2$ in lines $1, 3, 4, 5$ and $1, p, r$ otherwise. For k-orbit groups with $k \geq 4$ the orbit lengths and orders are less obvious. Clearly the sum of the orbit lengths is $|G|$ and some orders in $\text{ord}(G)$ may be be duplicated, see Table [2.](#page-15-1) If G is a solvable 4-orbit group with precisely 4 characteristic subgroups, arranged as \diamondsuit or $\frac{1}{2}$, then the four Aut(G) orbits are obvious. As minimal characteristic subgroups are elementary abelian, the *abelian* 4-orbit groups are $(C_{p^3})^m$; $(C_{p^2})^k \times (C_p)^{m-k}$ for $1 \leq k < m$ and $(\mathrm{C}_{pr})^m$ where $p \neq r$ are prime and $m \geq 1$. The Aut(G) orbit lengths are obvious, and the orders are $1, p, p^2, p^3$; $1, p, p, p^2$ and $1, p, r, pr$ respectively.

By Lemma [2.1,](#page-2-0) a nonabelian solvable 4-orbit group G either has four characteristic subgroups $G > M_1 > M_2 > 1$ where $G', Z(G) \in \{M_1, M_2\}$, or is a UCS group (see [\[14\]](#page-17-11)) with $G > G' = \mathbb{Z}(G) > 1$. Hence a nilpotent 4-orbit group is a p-group of

	$ G $ G $Aut(G)$ orbit lengths	Orders Conditions, action
	$3p \t C_p \rtimes C_3 \t 1, p-1, p, p$	$1, p, 3, 3 \quad p \equiv 1 \pmod{6}$, cubing
	$3p^2$ $(C_p)^2 \rtimes C_3$ $1, p^2-1, p^2, p^2$	$1, p, 3, 3 \quad p \equiv 1 \pmod{6}, \left(\begin{smallmatrix} \omega & 0 \\ 0 & \omega \end{smallmatrix}\right)$
	$3p^2$ $(C_p)^2 \rtimes C_3$ $1, 2(p-1), (p-1)^2, 2p^2$	$1, p, p, 3 \quad p \equiv 1 \pmod{6}, \left(\begin{smallmatrix} 0 & 1 \\ -1 & -1 \end{smallmatrix}\right)$
	$3p^4$ $(C_{p^2})^2 \rtimes C_3$ $1, q-1, q^2-q, 2q^2; q=p^2$	$1, p, p^2, 3 \quad p \equiv 2 \pmod{3}, \left(\begin{smallmatrix} 0 & 1 \\ -1 & -1 \end{smallmatrix}\right)$
	$2p^4$ $(C_{p^2})^2 \rtimes C_2$ $1, p-1, p^4-p, p^4$	$1, p, p^2, 2 \quad p \geqslant 2$, inversion
	$2p^2$ $C_{p^2} \rtimes C_2$ $1, p-1, p^2-p, p^2$	$1, p, p^2, 2 \quad p \geqslant 2$, inversion D_{2p^2}
	$8p^2$ $(C_p)^2 \rtimes Q_8$ $1, p^2-1, p^2, 6p^2$	$1, p, 2, 4 \quad p \in \{3, 5, 7, 11, 23\}$

Table 2: Examples of solvable (non-nilpotent) 4-orbit groups where p is a prime

exponent dividing p^3 and class at most 3. We list below some infinite families of 4orbit p -groups. Some 4-orbit solvable non- p -groups are listed in Table [2;](#page-15-1) the first three lines are UCS groups. Dornhoff $[8]$ studies groups N for which $Aut(N)$ has a solvable subgroup, say A, with four orbits on N (i.e. three orbits on $N \setminus \{1\}$). He lists N in [\[8,](#page-16-9) Theorems 1.1, 2.1] and constrains the structure of N in [8, Theorems 3.1, 4.1]. (No constraints are given in the case that N has exponent p .) The permutation groups $N \rtimes A \leq \text{Sym}(N)$ are not always guaranteed to have rank 4. Hence obtaining complete and irredundant list of 4-orbit groups G may be quite difficult, especially in the case that each *solvable* subgroup of $Aut(G)$ has more than 4 orbits on G.

There are many infinite families of 4-orbit p-groups. First, if H is a nonabelian 3-orbit p-group, and E is an elementary abelian p-group, then $G = H \times E$ is a 4-orbit group. Next, if p is an odd prime and $q = p^b$, then the group $G = \mathbb{F}_q^3 \times \mathbb{F}_q \times \mathbb{F}_q$ in Example [6.7](#page-12-1) is a 4-orbit group of exponent p with $\text{Aut}(G)$ orbit lengths $1, q-1, q^4$ – $q, q^7 - q^4$. Also, the extraspecial 2-groups 2^{1+2k}_ε with $\varepsilon = \pm$ and $(k, \varepsilon) \neq (1, +)$ are 4-orbit groups of exponent 4 by Lemma [5.1.](#page-7-0) These have automorphism orbit lengths $1, 1, q(q - \varepsilon), q^2 + \varepsilon q - 2$ and element orders 1, 2, 2, 4, and Aut(G) is not solvable.

Nonabelian solvable 4-orbit groups that are not p-groups are listed in Table [2.](#page-15-1) This list omits some families such as the groups $(C_p)^{d(r-1)} \rtimes C_{r^2}$ with p, r distinct primes, and $\text{ord}_{r^2}(p) = \phi(r^2) = r(r-1)$, see Example [6.12.](#page-14-0) See also [\[21,](#page-17-1) Theorem 4].

References

- [1] Anton A. Baykalov, Alice Devillers and Cheryl E. Praeger, Rank three innately transitive permutation groups and related 2-transitive groups, *Innov. Incidence Geom.* 20 (2023), no. 2-3, 135–175. [3](#page-2-4)
- [2] Alexander Bors and S.P. Glasby, Finite 2-groups with exactly three automorphism orbits, <https://arxiv.org/abs/2011.13016> (2020). [2,](#page-1-1) [3,](#page-2-4) [5](#page-4-4)
- [3] Wieb Bosma, John Cannon and Catherine Playoust, The Magma algebra system. I. The user language. Computational algebra and number theory (London, 1993). *J. Symbolic Comput.* 24 (1997), no. 3-4, 235–265. [5,](#page-4-4) [10,](#page-9-2) [11,](#page-10-3) [15,](#page-14-2) [16](#page-15-2)
- [4] J.N. Bray, D.F. Holt and C.M. Roney-Dougal, *The Maximal Subgroups of the Low-Dimensional Finite Classical Groups*, Cambridge University Press (London Mathematical Society Lecture Note Series, 407), Cambridge, 2013. [8,](#page-7-3) [11](#page-10-3)
- [5] E. G. Bryukhanova, Automorphism groups of 2-automorphic 2-groups. (Russian) *Algebra i Logika* 20(1) (1981), 5–21, 123; (English) *Algebra and Logic* 20(1) (1981), 1–12. [3](#page-2-4)
- [6] Alex Carrazedo Dantas, Martino Garonzi and Raimundo Bastos, Finite groups with six or seven automorphism orbits. *J. Group Theory* 20(5) (2017), 945–954. [2](#page-1-1)
- [7] Larry Dornhoff, On imprimitive solvable rank 3 permutation groups. *Illinois J. Math.* 14 (1970), 692–707. [2,](#page-1-1) [5,](#page-4-4) [15](#page-14-2)
- [8] Larry Dornhoff, Some highly homogeneous groups. *Trans. Amer. Math. Soc.* 182 (1973), 275–301. [17](#page-16-10)
- [9] Alice Devillers, Michael Giudici, Cai Heng Li, Geoffrey Pearce and Cheryl E. Praeger, On imprimitive rank 3 permutation groups. *J. Lond. Math. Soc.* 84(3) (2011), 649–669. [2](#page-1-1)
- [10] David A. Foulser, Solvable primitive permutation groups of low rank. *Trans. Amer. Math. Soc.* 143 (1969), 1–54. [2](#page-1-1)
- [11] Michael Giudici, Luke Morgan and Jin-Xin Zhou, On primitive 2-closed permutation groups of rank at most four. *J. Combin. Theory Ser. B* 158(2) (2023), 176–205. [3](#page-2-4)
- [12] S.P. Glasby, On the faithful representations, of degree $2ⁿ$, of certain extensions of 2-groups by orthogonal and symplectic groups, *J. Austral. Math. Soc. Ser. A* 58 (1995), no. 2, 232–247. [8](#page-7-3)
- [13] S. P. Glasby, Classifying uniformly generated groups, *Comm. Algebra* 48 (2020), 101–104. [4](#page-3-4)
- [14] S. P. Glasby, P. P. Pálfy and Csaba Schneider, p-groups with a unique proper non-trivial characteristic subgroup. *J. Algebra* 348 (2011), 85–109. [7,](#page-6-3) [16](#page-15-2)
- [15] C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order. II, *J. Algebra* 93(1):151–164, 1985. [2,](#page-1-1) [4,](#page-3-4) [5,](#page-4-4) [6](#page-5-4)
- [16] G. Higman, Suzuki 2-groups, *Illinois J. Math.* 7(1):79–96, 1963. [5,](#page-4-4) [12,](#page-11-0) [15](#page-14-2)
- [17] Bertram Huppert and Norman Blackburn, *Finite groups. II*. Grundlehren der Mathematischen Wissenschaften, 242. Springer-Verlag, Berlin-New York, 1982. xiii+531 pp. [5,](#page-4-4) [7,](#page-6-3) [9,](#page-8-3) [10](#page-9-2)
- [18] I. N. Herstein, Finite multiplicative subgroups of division rings, *Pacific J. Math.* 3 (1953), 121–126. [14](#page-13-3)
- [19] Gerhard Hiss, Die adjungierten Darstellungen der Chevalley-Gruppen. [The adjoint representations of the Chevalley groups] *Arch. Math.* (Basel) 42(5) (1984), 408–416. [9](#page-8-3)
- [20] Peter Kleidman and Martin Liebeck, *The subgroup structure of the finite classical groups.* London Mathematical Society Lecture Note Series, 129. Cambridge University Press, Cambridge, 1990. x+303 [10,](#page-9-2) [11](#page-10-3)
- [21] T.J. Laffey and D. MacHale, Automorphism orbits of finite groups, *J. Austral. Math. Soc. (Ser. A)* 40:253–260, 1986. [1,](#page-0-0) [2,](#page-1-1) [4,](#page-3-4) [17](#page-16-10)
- [22] Serge Lang, Algebra. Revised third edition. Graduate Texts in Mathematics, 211. Springer-Verlag, New York, 2002. xvi+914 pp. [12](#page-11-0)
- [23] Cai Heng Li and Yan Zhou Zhu, A Proof of Gross' Conjecture on 2-Automorphic 2-Groups, <https://arxiv.org/abs/2312.16416> (2023). [2,](#page-1-1) [3,](#page-2-4) [5](#page-4-4)
- [24] Cai Heng Li and Yan Zhou Zhu, The finite groups with three automorphism orbits, <https://arxiv.org/abs/2403.01725v1> (2023). [1,](#page-0-0) [2,](#page-1-1) [4,](#page-3-4) [5](#page-4-4)
- [25] Rudolf Lidl and Harald Niederreiter, *Finite fields*. With a foreword by P. M. Cohn. Second edition. Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997. xiv+755 pp. [15](#page-14-2)
- [26] M.W. Liebeck, The affine permutation groups of rank three, *Proc. London Math. Soc. (3)* 54:477–516, 1987. [2,](#page-1-1) [5,](#page-4-4) [7,](#page-6-3) [9](#page-8-3)
- [27] Marcus Stroppel, Locally compact groups with many automorphisms, *J. Group Theory* 4(4) (2001), 427–455. [2](#page-1-1)
- [28] Donald E. Taylor, The geometry of the classical groups. Sigma Series in Pure Mathematics, 9. Heldermann Verlag, Berlin, 1992. xii+229 pp. [13](#page-12-3)
- [29] E.E. Shult, On finite automorphic algebras, *Illinois J. Math.* 13(4):625–653, 1969. [6](#page-5-4)
- [30] David L. Winter, The automorphism group of an extraspecial p-group. *Rocky Mountain J. Math.* 2(2) (1972), 159–168. [8,](#page-7-3) [11,](#page-10-3) [12](#page-11-0)