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HAMILTONIAN STATIONARY LAGRANGIAN SURFACES WITH

HARMONIC MEAN CURVATURE IN COMPLEX SPACE FORMS

TORU SASAHARA

Abstract. We completely classify Hamiltonian stationary Lagrangian surfaces
with harmonic mean curvature and constant curvature in complex space forms.

1. Introduction

Let M̃n be a complex n-dimensional Kähler manifold with the complex structure
J and the Kähler metric 〈 , 〉. An n-dimensional submanifold M of M̃n is called
Lagrangian if 〈X,JY 〉 = 0 for all tangent vector fields X and Y of M . A normal
vector field ξ of a Lagrangian submanifold M is called a Hamiltonian variation if
ξ = J∇f for some compactly supported function f on M , where∇ is the gradient on
M . A Lagrangian submanifold is said to be Hamiltonian stationary if it is a critical
point of the volume functional for all deformations with Hamiltonian variation vector
fields. A Lagrangian submanifold M in M̃n is Hamiltonian stationary if and only if
its mean curvature vector H satisfies

(1.1) div(JH) = 0

on M (cf. [7]), where div is the divergence on M . This implies that any Lagrangian
submanifold with parallel mean curvature is Hamiltonian stationary.

It is a fundamental and interesting problem to construct and classify Hamiltonian
stationary Lagrangian submanifolds with non-parallel mean curvature in a specific
Kähler manifold. A Hamiltonian stationary Lagrangian surface in a complex space
form has constant mean curvature if and only if its mean curvature vector is parallel.
Motivated by this fact, we investigate the case where the mean curvature is a non-
constant harmonic function.

In this paper, we completely classify Hamiltonian stationary Lagrangian surfaces
with non-constant harmonic mean curvature and constant curvature in complex
space forms.

2. Preliminaries

Let M̃n(4ǫ) be a complete and simply connected complex space form of complex

dimension n and constant holomorphic sectional curvature 4ǫ, that is, M̃n(4ǫ) is the
complex Euclidean space C

n, the complex projective space CPn(4ǫ) or the complex
hyperbolic space CHn(4ǫ) according as ǫ = 0, ǫ > 0 or ǫ < 0.

Let M be a Lagrangian submanifold of M̃n(4ǫ). We denote the Levi-Civita con-

nections on Mn and M̃n(4ǫ) by ∇ and ∇̃, respectively. The Gauss and Weingarten
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formulas are respectively given by

∇̃XY = ∇XY + h(X,Y ), ∇̃Xξ = −AξX +DXξ

for tangent vector fields X, Y and normal vector field ξ, where h,A and D are the
second fundamental form, the shape operator and the normal connection. The mean
curvature vector field H is defined by H = (1/n)trace h. The function |H| is called
the mean curvature. We have (cf. [5])

DXJY = J(∇XY ),(2.1)

〈h(X,Y ), JZ〉 = 〈h(Y,Z), JX〉 = 〈h(Z,X), JY 〉 .(2.2)

Denote by R the Riemann curvature tensor of ∇. Then the equations of Gauss
and Codazzi are respectively given by

〈R(X,Y )Z,W 〉 = 〈h(Y,Z), h(X,W )〉 − 〈h(X,Z), h(Y,W )〉
+ ǫ(〈Y,Z〉 〈X,W 〉 − 〈X,Z〉 〈Y,W 〉),(2.3)

(∇̄Xh)(Y,Z) =(∇̄Y h)(X,Z),(2.4)

where X,Y,Z,W are vectors tangent to M , and ∇̄h is defined by

(∇̄Xh)(Y,Z) = DXh(Y,Z)− h(∇XY,Z)− h(Y,∇XZ).

3. Hamiltonian stationary Lagrangian surfaces

Let M be a Hamiltonian stationary Lagrangian surface in M̃2(4ǫ), where ǫ ∈
{−1, 0, 1}. Suppose that H 6= 0 everywhere. Denote by K the curvature of M . Let
{e1, e2} be a local orthonormal basis of M such that Je1 is parallel to H. It follows
from (2.2) that second fundamental form takes the form

h(e1, e1) = (a− c)Je1 + bJe2,

h(e1, e2) = bJe1 + cJe2,

h(e2, e2) = cJe1 − bJe2

(3.1)

for some functions a, b and c. Putting ωj
i (ek) = 〈∇ekei, ej〉, by (2.1) and (3.1) we

have

(∇̄e1h)(e2, e2) = (e1c+ 3bω2
1(e1))Je1 − (e1b− 3cω2

1(e1))Je2,

(∇̄e2h)(e1, e2) = {e2b+ (a− 3c)ω2
1(e2)}Je1 + (e2c+ 3bµ)Je2,

(∇̄e1h)(e1, e2) = {e1b+ (a− 3c)ω2
1(e1)}Je1 + (e1c+ 3bω2

1(e1)Je2,

(∇̄e2h)(e1, e1) = {e2(a− c)− 3bω2
1(e2)}Je1 + {e2b+ (a− 3c)µ}Je2.

Therefore, the equation (2.4) of Codazzi implies

e1c+ 3bω2
1(e1) = e2b+ (a− 3c)ω2

1(e2),(3.2)

− e1b+ 3cω2
1(e1) = e2c+ 3bω2

1(e2),(3.3)

e2(a− c)− 3bω2
1(e2) = e1b+ (a− 3c)ω2

1(e1).(3.4)

Combining (3.3) and (3.4) yields

(3.5) e2a− aω2
1(e1) = 0.

The Hamiltonian stationary condition (1.1) is equivalent to

(3.6) e1a+ aω2
1(e2) = 0.
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Using (3.5) and (3.6), we obtain

[a−1e1, a
−1e2] = 0.

Therefore, there exists a local coordinate system {u, v} such that e1 = a∂u, e2 = a∂v.
Hence, the metric tensor is given by

(3.7) g = a−2(du2 + dv2),

which implies that

ω2
1(e1) = av, ω2

1(e2) = −au,(3.8)

K = −(au)
2 − (αv)

2 + a(auu + avv).(3.9)

Equations (3.2) and (3.3) are rewritten as

acu + 3bav = abv − (a− 3c)au,(3.10)

−abu + 3cav = acv − 3bau.(3.11)

Put G = ǫ−K. Then the equation (2.3) of Gauss and (3.1) yield that

(3.12) G = 2b2 − ac+ 2c2.

Remark 3.1. From (2.1), (3.8) and (3.9), it follows that if M has constant mean
curvature, then its mean curvature vector is parallel and K ≡ 0.

4. Main theorem

Let C3
1 be the complex 3-space endowed with the inner product

〈(z1, z2, z3), (w1, w2, w3)〉 = Re(−z1w̄1 + z2w̄2 + z3w̄3).

Put H5
1 (−1) = {z ∈ C

3
1 : 〈z, z〉 = −1}. Let π : H5

1 (−1) ⊂ C
3
1 → CH2(−4) be the

Hopf fibration.
The main result of this paper is the following classification theorem.

Theorem 4.1. Let M be a Hamiltonian stationary Lagrangian surface in M̃2(4ǫ),
where ǫ ∈ {−1, 0, 1}. Suppose that H is nowhere vanishing. If M has non-constant

harmonic mean curvature and constant curvature K, then K = ǫ = −1 and M is

locally congruent to the image of π ◦ φ, where φ : M → H5
1 (−1) ⊂ C

3
1 is given by

one of the following immersions:
(1)

φ(x, y) =

(

mey +
e−y + 2im2xey

2m
,meix+y,

e−y + 2im2xey

2m

)

;

(2)

φ(x, y) =

(

1− i(1 +m2)

m2x+ y
,
m
√
1 +m2eix

m2x+ y
,

√
1 +m2eiy

m2x+ y

)

,

where m is a positive real number.

Proof. We shall use the same notation as in Section 3. Suppose that |H| is a
harmonic function on M . Then by (3.7) we have

(4.1) auu + avv = 0.

Moreover, suppose that |H| is non-constant and K is constant. Then, combining
(3.9) and (4.1) shows that K < 0 and

(4.2) au =
√
−K cos θ, av =

√
−K sin θ.
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for some function θ on M . Substituting (4.2) into (4.1), we have

(4.3) −(sin θ)θu + (cos θ)θv = 0.

On the other hand, since auv − avu = 0 holds, by (4.2) we obtain

(4.4) (cos θ)θu + (sin θ)θv = 0.

It follows (4.3) from (4.4) that θu = θv = 0, that is, θ is constant. Solving (4.2), we
conclude that up to translations, a is given by

(4.5) a =
√
−K{(cos θ)u+ (sin θ)v}.

Case (i): b = 0 on an open subset U . In this case, (3.10) and (3.11) reduce
respectively to

(a− 3c)au + acu = 0,(4.6)

3cav − acv = 0.(4.7)

Differentiating (3.12) with respect to v, we have

(4.8) cav + (a− 4c)cv = 0.

Combining (4.7) and (4.8) gives

(a− c)cv = 0.

If cv 6= 0 on an open subset in U , then a = c on that open subset. From (3.12) we
see that a is constant, which contradicts our assumption. Hence we have cv = 0 on
U . Thus, by (4.7) we get

cav = 0.

Case (i.1): c = 0 on an open subset U1 ⊂ U . In this case, from (3.12) we have
K = ǫ = −1. It follows from (4.6) that au = 0 on U1. Hence, using (4.5) andK = −1
yields that a2 = v2. Applying the coordinate transformation: y = −

∫

v−1dv, we see
that the metric tensor (3.7) becomes

g = m2e2ydu2 + dy2

for some positive constant m, and the second fundamental form satisfies

h(∂u, ∂u) = J∂u, h(∂u, ∂y) = h(∂y, ∂y) = 0.

Rewriting u with x and according to [2, page 3475], we conclude that U1 is congruent
to the Lagrangian surface obtained from (1).

Case (i.2): av = 0 on an open subset U2 ⊂ U . In this case, au 6= 0. Differentiating
(3.12) with respect to u leads to

(4.9) cau + (a− 4c)cu = 0.

Eliminating cu from (4.6) and (4.9) gives

(a− 2c)(a − 6c)au = 0.

If a 6= 2c on an open set in U2, then a = 6c and it follows from (3.12) that a is
constant, which contradicts our assumption. Hence a = 2c, which together with
(3.12) implies K = ǫ = −1. Thus, by (4.5) we obtain a2 = u2. Applying the
coordinate transformation: x = (u+ v)/2 and y = (u− v)/2, we see that the metric
tensor (3.7) becomes

g =
2

(x+ y)2
(dx2 + dy2)
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and the second fundamental form satisfies

h(∂x, ∂x) = J∂x, h(∂x, ∂y) = 0, h(∂y , ∂y) = J∂y.

According to [3, page 124], U2 is congruent to the Lagrangian surface obtained from
(2) with m = 1.

Case (ii): b 6= 0 on an open subset V. We put A = au and B = av, which are
constants. Differentiating (3.12) with respect to u and v, we obtain

bu =
cA+ (a− 4c)cu

4b
,(4.10)

bv =
cB + (a− 4c)cv

4b
.(4.11)

Substituting (4.10) and (4.11) into (3.10) and (3.11) yields

4abcu − a(a− 4c)cv = 4b(3c − a)A− (12b2 − ac)B,(4.12)

a(a− 4c)cu + 4abcv = (12b2 − ac)A+ 12bcB.(4.13)

Solving (4.12) and (4.13) for cu and cv, we have

cu =
Af1 +Bf2

a(a2 + 16b2 − 8ac+ 16c2)
,(4.14)

cv =
Af3 +Bf4

a(a2 + 16b2 − 8ac+ 16c2)
,(4.15)

where

f1 = −4ab2 − a2c+ 4ac2,

f2 = −48b3 + 16abc− 48bc2,

f3 = 4a2b+ 48b3 − 32abc+ 48bc2,

f4 = 12ab2 − a2c+ 4ac2.

Substituting (4.14) and (4.15) into (4.10) and (4.11) gives

bu =
Ag1 +Bg2

a(a2 + 16b2 − 8ac+ 16c2)
,(4.16)

bv =
Ag3 +Bg4

a(a2 + 16b2 − 8ac+ 16c2)
,(4.17)

where

g1 = −a2b+ 8abc,

g2 = −12ab2 + 4a2c+ 48b2c− 28ac2 + 48c3,

g3 = a3 + 12ab2 − 12a2c− 48b2c+ 44ac2 − 48c3,

g4 = 3a2b− 8abc.

Differentiating (4.14) and (4.15) with respect to v and u respectively, using (4.14)-
(4.17), we get

cuv =
A2h1 +ABh2 +B2h3

a2(a2 + 16b2 − 8ac+ 16c2)2
,(4.18)

cvu =
A2h4 +ABh5 +B2h6

a2(a2 + 16b2 − 8ac+ 16c2)2
,(4.19)
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where

h1 =− 12a4b− 144a2b3 + 160a3bc+ 768ab3c− 656a2bc2 + 768abc3,

h2 =− 108a3b2 − 960ab4 + 18a4c+ 1168a2b2c+ 2304b4c− 252a3c2

− 3840ab2c2 + 1296a2c3 + 4608b2c3 − 2880ac4 + 2304c5,

h3 =− 96a2b3 + 768b5 − 384ab3c+ 32a2bc2 + 1536b3c2 − 384abc3 + 768bc4,

h4 =− 8a4b− 96a2b3 − 768b5 + 128a3bc+ 1152ab3c− 608a2bc2

− 1536b3c2 + 1152abc3 − 768bc4,

h5 =− 92a3b2 − 192ab4 + 18a4c+ 784a2b2c+ 2304b4c− 252a3c2

− 3072ab2c2 + 1296a2c3 + 4608b2c3 − 2880ac4 + 2304c5,

h6 =− 240a2b3 + 80a3bc+ 768ab3c− 496a2bc2 + 768abc3.

Since cuv − cvu=0 holds, from (4.18), (4.19) and b 6= 0, it follows that

(4.20) A2k1 +ABk2 +B2k3 = 0,

where

k1 =a4 + 12a2b2 − 192b4 − 8a3c+ 96ab2c+ 12a2c2

− 384b2c2 + 96ac3 − 192c4,

k2 =4a3b+ 192ab3 − 96a2bc+ 192abc2,

k3 =− 36a2b2 − 192b4 + 20a3c+ 288ab2c

− 132a2c2 − 384b2c2 + 288ac3 − 192c4.

Using (4.14)-(4.17), we get

(A2k1 +ABk2 +B2k3)u =
4(A3P1 +A2BP2 +AB2P3 +B3P4)

a(a2 + 16b2 − 8ac+ 16c2)
,(4.21)

(A2k1 +ABk2 +B2k3)v =
8(A3P5 +A2BP6 +AB2P7 +B3P8)

a(a2 + 16b2 − 8ac+ 16c2)
,(4.22)

where

P1 =− a5 − 24a3b2 − 192ab4 + 12a4c+ 168a2b2c+ 384b4c

− 56a3c2 − 576ab2c2 + 168a2c3 + 768b2c3 − 384ac4 + 384c5,

P2 =− 2a4b− 72a2b3 − 1920b5 + 24a3bc+ 1344ab3c

− 264a2bc2 − 3840b3c2 + 1344abc3 − 1920bc4,

P3 =32a3b2 + 960ab4 − 14a4c− 888a2b2c− 2688b4c+ 224a3c2

+ 4032ab2c2 − 1272a2c3 − 5376b2c3 + 3072ac4 − 2688c5,

P4 =24a2b3 + 1152b5 − 8a3bc− 960ab3c

+ 216a2bc2 + 2304b3c2 − 960abc3 + 1152bc4,

P5 =a4b+ 60a2b3 + 576b5 − 32a3bc− 672ab3c

+ 252a2bc2 + 1152b3c2 − 672abc3 + 576bc4,

P6 =− a5 − 38a3b2 − 192ab4 + 24a4c+ 444a2b2c+ 1344b4c− 218a3c2

− 2016ab2c2 + 924a2c3 + 2688b2c3 − 1824ac4 + 1344c5,
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P7 =− 4a4b− 180a2b3 − 960b5 + 96a3bc+ 1248ab3c

− 564a2bc2 − 1920b3c2 + 1248abc3 − 960bc4,

P8 =6a3b2 − 5a4c− 84a2b2c− 192b4c+ 50a3c2

+ 288ab2c2 − 180a2c3 − 384b2c3 + 288ac4 − 192c5.

Thus, it follows from (4.20), (4.21) and (4.22) that

A3P1 +A2BP2 +AB2P3 +B3P4 = 0,(4.23)

A3P5 +A2BP6 +AB2P7 +B3P8 = 0.(4.24)

Using a computer algebra system, we check that the resultant of the left-hand
sides of (4.23) and (4.24) with respect to A is, up to a constant factor,

(4.25) B9(2b2 − ac+ 2c2)3(a2 + 16b2 − 8ac+ 16c2)7(a2 + 48b2 − 24ac + 48c2)2Q,

where

Q =5a6 + 120a4b2 + 720a2b4 + 2304b6 − 60a5c− 720a3b2c

− 3456ab4c+ 300a4c2 + 3168a2b2c2 + 6912b4c2 − 1008a3c3

− 6912ab2c3 + 2448a2c4 + 6912b2c4 − 3456ac5 + 2304c6.

Combining (3.12) and (4.25), we find that (4.25) can be simplified to

(4.26) B9G3(a2 + 8G)7(a2 + 24G)2(5a6 + 60a4G+ 180a2G2 + 288G3),

which must vanish on V. Taking into account ∇a 6= 0, we have

BG = 0.

If G 6= 0, then B = 0, which implies that (4.20) and (4.24) reduce respectively to

a4 + 12a2b2 − 192b4 − 8a3c+ 96ab2c+ 12a2c2

− 384b2c2 + 96ac3 − 192c4 = 0,(4.27)

a4 + 60a2b2 + 576b4 − 32a3c− 672ab2c

+ 252a2c2 + 1152b2c2 − 672ac3 + 576c4 = 0.(4.28)

Subtracting (4.27) from (4.28), we derive

(4.29) 24(2b2 − ac+ 2c2)(a2 + 16b2 − 8ac+ 16c2) = 0.

Combining (3.12) and (4.29) implies

a2 + 8G = 0,

which contradicts ∇a 6= 0. Hence G = 0, that is, K = ǫ = −1.
From (3.12) we see that c 6= 0. Changing the sign of e1 if necessary, we may

assume that c > 0. Put

f =

√

b2 + c2 − b
√
b2 + c2√

2(b2 + c2)
, k =

√

b2 + c2 + b
√
b2 + c2√

2(b2 + c2)
,(4.30)

which are non-zero and unequal everywhere. It follows from (3.12) and (4.30) that

a =

√

f2 + k2

fk
, b =

k2 − f2

(f2 + k2)
3

2

, c =
2fk

(f2 + k2)
3

2

.(4.31)
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We make the following change of the basis:

ẽ1 =
k

√

f2 + k2
e1 +

f
√

f2 + k2
e2, ẽ2 =

f
√

f2 + k2
e1 −

k
√

f2 + k2
e2.(4.32)

Then, using (3.1), (4.31) and (4.32), we find

h(ẽ1, ẽ1) = f−1Jẽ1, h(ẽ1, ẽ2) = 0, h(ẽ2, ẽ2) = k−1Jẽ2.

Therefore, according to [3, Theorem 4.1], there exists a local coordinate system
{x, y} such that ∂x = f ẽ1 and ∂y = kẽ2, where f and k satisfy

fy
k

=
kx
f
,

(fy
k

)

y
+

(kx
f

)

x
= fk.(4.33)

The Hamiltonian stationary condition (1.1) is equivalent to (cf. [6])

(4.34)
(k

f

)

x
+

(f

k

)

y
= 0.

By Theorem 3.1 of [1], up to translations and sign, the exact solutions of the over-
determined PDE system (4.33)-(4.34) are given by

f = λm csch
(λ(m2x+ y)√

1 +m2

)

, k = λ csch
(λ(m2x+ y)√

1 +m2

)

;(4.35)

f = λm sec
(λ(m2x+ y)√

1 +m2

)

, k = λ sec
(λ(m2x+ y)√

1 +m2

)

;(4.36)

f =
m
√
1 +m2

m2x+ y
, k =

√
1 +m2

m2x+ y
,(4.37)

where λ and m are positive real numbers.
We note that f = mk. By the first equation of (4.31) we have

a =

√
1 +m2

mk
.

Furthermore, it follows from (4.32) that

∂u =
1

1 +m2
(∂x +m2∂y), ∂v =

m

1 +m2
(∂x − ∂y).

Since au and av are constant, the solutions (4.35) and (4.36) are excluded. Consid-
ering also that a2u + a2v = 1 and f 6= k, we see that f and g are given by (4.37) with
m 6= 1. In [4, Section 7], it is proved that the corresponding surface is congruent
to the Lagrangian surface obtained from case (2) with m 6= 1. This completes the
proof.

In view of Remark 3.1, it is interesting to investigate the possible values of K for
Hamiltonian stationary Lagrangian surfaces with non-constant mean curvature and
constant curvature K in M̃2(4ǫ). There are no known examples of such surfaces
with K 6= ǫ. Hence, we pose the following problem:

Problem 4.1. Does there exist a Hamiltonian stationary Lagrangian surface with

non-constant mean curvature and constant curvature K 6= ǫ in M̃2(4ǫ) ?
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