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Abstract
Language mismatch is among the most common and challeng-
ing domain mismatches in deploying speaker verification (SV)
systems. Adversarial reprogramming has shown promising re-
sults in cross-language adaptation for SV. Reprogramming is
implemented by padding learnable parameters on the two sides
of input speech signals. In this paper, we investigate the rela-
tionship between the number of padded parameters and the per-
formance of the reprogrammed models. Sufficient experiments
are conducted with different scales of SV models and datasets.
The results demonstrate that reprogramming consistently im-
proves the performance of cross-language SV, while the im-
provement is saturated or degraded when using larger padding
lengths. The performance is mainly determined by the capacity
of the original SV models instead of the number of padded pa-
rameters. The SV models with larger scales have higher upper
bounds in performance and can endure longer padding without
performance degradation.
Index Terms: speaker verification, domain adaptation, repro-
gramming

1. Introduction
Deep neural network (DNN) models have been adapted widely
in speaker verification (SV) systems with success [1–3]. These
systems often face performance degradation in domain mis-
match scenarios, for instance, when the input language differs
from the training data [4–9]. Various domain adaptation tech-
niques are being attempted to address this problem. Supervised
fine-tuning is a straightforward approach but computationally
heavy and overfitting-prone [10, 11]. In [12], adversarial train-
ing separated language-specific information from speaker em-
beddings. This method can be inefficient due to the need for
full model parameter adjustments. [13, 14] observed that align-
ing the statistical properties of speaker embeddings across lan-
guages improves SV performance in a new language efficiently
without modifying the DNN model. However, these adaptation
methods lack the learning ability to capture new knowledge out-
side the extracted embeddings to improve the performance.

Adversarial reprogramming was first proposed in [15].
Learnable parameters are added at the input level to subse-
quently change the model output for different tasks without
modifying the original pre-trained models. [16] successfully
adopted reprogramming for cross-language adaptation in SV,
in which learnable parameters are padded on the beginning and
end of the input waveform to change its output speaker embed-
ding. As the pre-trained SV models are frozen during repro-
gramming, the information from the new language is supposed
to be learned from the padded parameters. Thus, a question is
raised: does a larger number of padded learnable parameters im-
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prove the reprogrammed models’ performance? In the present
study, we first revisit the use of the reprogramming method
in SV and identify its limitations. A modified input padding
method is proposed to fit the SV task. Then, we investigate
the relationship between the number of padded parameters and
the performance of the reprogrammed models with sufficient
experiments. The experiments are conducted on three SV mod-
els and different scales of datasets. The results indicate that
the performance is boosted by reprogramming effectively. Still,
the primary factor in determining the upper bound of the repro-
grammed results is the capacity of the original SV models. In
other words, increasing the padding learnable parameters does
not persistently improve the performance.

2. Reprogramming for Speaker Verification
The principle of the reprogramming method is to modify the
DNN model output by altering its input without changing the
pre-trained model [15], e.g., padding learnable parameters to
the model input. The typical input modification approach for
audio data is appending learnable parameters to the input wave-
form [16, 17]. Following the settings in [16], the learnable pa-
rameters W = [w1, w2, ..., wn] are concatenated on both sides
of the original speech waveform x = [x1, x2, ..., xl] directly as:

x̃ = [w1, ...wn//2, x1, ..., xl, wn//2+1, ..., wn] (1)

Denote the speaker embedding extraction model as F , and the
reprogrammed embedding is represented as s̃ = F (x̃). A clas-
sifier is added after F to predict the input speaker identities us-
ing s̃ as input. During training, only the following modules are
trained to decrease the classification loss: learnable parameters
W and the back-end classifier.

In the vanilla reprogramming algorithm, the optimization
of W requires knowing the structure of F for gradient calcula-
tion and back-propagation, which is not available for black-box
SV systems. [16] proposed a modified reprogramming method
for cross-language domain adaptation in SV models, which is
suitable for black-box models. Specifically, a lightweight par-
allel neural network is used to estimate gradients, bypassing the
need for full back-propagation through the pre-trained model
F . It has shown that both vanilla and modified reprogramming
achieve significant performance in SV adaptation to a new lan-
guage.

3. Methodology
3.1. Limitations in current methods

Let l denote the number of learnable parameters W padded to
the input waveform x. The padded waveform is denoted as x̃.
Larger l brings greater learning ability for the model to learn
new information from the target domain. In [15, 17], the size
of padded learnable parameters is even larger than the original
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Figure 1: The proposed representation pipeline for (a) Training,
(b) Inference

model input. However, in [16], using a larger l did not improve
the performance and even caused degradation. When W with
a large size is padded on two different input waveforms, x and
y, a large portion of the two transformed x̃ and ỹ are identical,
which makes them more similar. In reality, an identical wave-
form indicates a replay, i.e., the same speaker speaking with the
same content. Thus, SV models have difficulty distinguishing
different speakers in two very similar inputs. In other words,
using a large padding is against the purpose of SV. The perfor-
mance of reprogramming with different sizes of W is evaluated
in our experiments in Section 5.1.

3.2. Augmentation of input representation

To alleviate the “identical problem” discussed in the previous
section, we propose an augmentation in the padding method
of reprogramming. [18] has shown that random masking input
spectrum in training SV models can reduce the risk of overfit-
ting and verification errors. This can be seen as a variation of
dropout [19] applied to the input level instead of hidden layers.
Inspired by [18], we adopt a similar idea of random masking to
alleviate the problem discussed in Section 3.1.

The total length of learnable parameters W is denoted as l.
In each training step, a segment W̃ with a length of n = l/k
is randomly cropped from W , where k is a predefined positive
integer in the range [1, l//2]. The W̃ is divided into two halves,
i.e., W̃L and W̃R. Each half is padded to one side of the input
waveform as shown in Fig. 1(a). The case of k = 1 corresponds
to the original padding method as in Section 3.1.

During inference, the padding method operates as illus-
trated in Fig. 1(b). W is equally split into k segments,
{W1,W2, ...,Wk}. The single input waveform x replicates
into k copies and each copy is padded with one of the seg-
ments Wi on two sides forming the transformed inputs X̃ =
{x̃1, x̃2, .., x̃k}. k embeddings are extracted from X̃ . When
comparing x with another input speech, y, the cosine similarity
between all pairs of embedding from X̃ and Ỹ will be calcu-
lated, giving the score matrix S ∈ k × k. The average value of
S is utilized as the criteria to verify x and y. Sij is calculated
between x̃i and ỹj with different padded parameters, except for
the diagonal elements (where i = j), which alleviates the “iden-
tical problem” discussed in Section 3.1.

We can use a large l of W to ensure the learning ability of
the reprogrammed models and increase the diversity of the test
waveforms in the evaluation. The padded W̃ is cropped short

in training, which keeps the computation cost low. Moreover,
a random crop of W augments the model input during training,
decreasing the risk of overfitting.

4. Experimental Settings
4.1. Network structures

4.1.1. Embedding extraction models

Three pre-trained models are utilized in this work: ECAPA-
TDNN-512 [3], WavLM-Large [20], and Wav2Vec2.0-XLSR-
53 [21, 22]. They are popular deep networks for speaker em-
bedding extraction with state-of-the-art performance. The di-
mension of extracted speaker embedding is 256 for all models.

The ECAPA-TDNN-512 model is pre-trained by ourselves
on the development set of VoxCeleb2 [23], achieving the Equal
Error Rate (EER) of 1.12% on the evaluation set of Vox-
Celeb1 [24](Vox1.O). The number of parameters in this model
is around 5.95 million (M ).

WavLM and Wav2Vec2.0 are two large-scale self-
supervised networks that were successfully adopted
in the SV task [25, 26]. The number of parameters
in these two models is 316.62M and 315M , respec-
tively. We retrieve their pre-trained models directly from
https://github.com/microsoft/UniSpeech/
tree/main/downstreams/speaker_verification
without making any modification. They achieve the EERs of
0.431% and 0.564% on Vox1.O, respectively.

4.1.2. Adaptation models

In accordance with the experimental setup delineated in [16],
we architect our adaptation model with some minor modifi-
cations. The gradient estimation network used in [16] is a
lightweight ECAPA-TDNN-512 [3], which is a convolution-
based network. Convolution operations are adept at process-
ing adjacent feature neighborhoods, while their capacity for
global information integration is inherently restricted. To better
consolidate the global information for verification, three self-
attention [27] blocks are added preceding each Res2Net block.
The three self-attention blocks share weights to decrease the
total number of additional parameters. The channel C of the
gradient estimation network in [16] is set to 32. This type
of reprogramming is denoted as gradient estimated reprogram-
ming (Grad.Est.Reprog.), in contrast to vanilla reprogram-
ming (V anilla Reprog.).

The two-layer fully-connected layers at the output stage of
the fixed pre-trained backbone [16] are replaced with one single
linear projection layer for better classification and simplicity.

4.2. Datasets

The embedding extraction models described in Section 4.1.1
are pre-trained or fine-tuned from VoxCeleb, where most of the
speech utterances are in English [23]. To perform the cross-
language SV adaptation and evaluation, CN-Celeb1 [28] is uti-
lized, which is a challenging Chinese dataset. Domain adapta-
tion is performed using the training set of CN-Celeb1 and evalu-
ated on the evaluation set of it. The training and test set contain
800 and 200 speakers, respectively.

4.3. Training settings

For training, the batch size is set to 128. In each training step,
a 2-second segment is randomly cropped from each utterance.

https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_verification
https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_verification


Table 1: Performances on CN-Celeb with different n using different methods. n denotes the number of learnable parameters padded to
each speech utterance.

Model w/o Adaptation w Adaptation n = 0 n = 3, 200 n = 6, 400 n = 9, 600 n = 16, 000 n = 24, 000

ECAPA-TDNN-512 17.78
V anilla
Reprog.

9.33 8.63 9.06 9.56 N/A N/A
WavLM-Large 14.62 8.61 8.25 8.27 8.24 8.37 8.51
Wav2Vec2.0-XLSR-53 14.23 9.05 8.46 9.09 9.10 9.18 9.67

ECAPA-TDNN-512 17.78
Grad.Est.
Reprog.

9.58 9.14 9.42 9.67 N/A N/A
WavLM-Large 14.62 8.89 8.31 8.01 7.83 7.83 8.10
Wav2Vec2.0-XLSR-53 14.23 8.53 8.35 8.32 8.15 8.21 8.23

The raw waveforms of the cropped segments are reprogrammed
based on Section 4.1.2 and transformed into 64-dimension log
Mel-filterbanks (FBank) as model inputs. The learnable pa-
rameters W are initialized following a Gaussian distribution.
The adaptation model is trained by the Adam optimizer with a
weight decay of 1e−4. The learning rate is initialized as 1e−3
and reduced by a ratio of 10 at the 10th, 15th epoch, respec-
tively. The total training epoch is set to 20. AAM-Softmax [29]
is utilized as the loss function during training.

5. Results and Analysis
Different numbers of learnable parameters and padded lengths
per segment are evaluated in our experiments. The padded
length ranges from 0.2s to 1.5s duration of a waveform, i.e.,
the value of n being 3, 200 to 24, 000 for 16k Hz input audio.

5.1. Baselines

The results of reprogramming with the raw padding method
on the three pre-trained models are shown in Table 1 and
Fig. 2. The results present the relationship between the adapta-
tion model’s performance, which is measured by EER, and the
number of padded parameters n. An initial decrease in EER is
observed as n increasing from 0 to 3, 200, indicating the contri-
bution of model reprogramming. n = 0 refers to the case where
no learnable parameters are padded, and only the SV backend
is trained during training.

However, as discussed in Section 3.1, this performance en-
hancement does not persist as n continues to rise beyond 3, 200
to 9, 600. A critical threshold is encountered, beyond which the
EER starts to increase. For ECAPA-TDNN-512, The vanilla re-
programming and gradient estimated reprogramming both have
the peak performance at n = 3, 200, which subsequently dete-
riorates as n continues to increase.

WavLM-Large and Wav2Vec2.0-XLSR-53 are much larger
than ECAPA-TDNN-512. Additionally, they are pre-trained
with much more data during self-supervised learning, which
gives them more robust learning and generalization abilities.
They outperform ECAPA-TDNN-512 when using the same
padding length n, and they can process a larger number of
padded parameters without performance degradation. However,
they also demonstrate the same phenomenon when n keeps
increasing. As the value of n exceeds a specific value, e.g.,
n = 9, 600 for Wav2Vec2.0-XLSR-53 and n = 16, 000 for
WavLM-Large, the performance of reprogrammed adaptation
models starts to decrease.

5.2. Results on the augmented padding

The augmented input representation method is evaluated, and
the results are shown in Table 2 in comparison with the raw
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Figure 2: Performance of reprogrammed models (EER) v.s.
number of padded learnable parameters (n)

padding method. The EER is used to measure the performance
of the adaptation model, and different settings of n, l, and k
defined in Section 3.2 are evaluated on their effects on the per-
formance.

Improvements can be observed among the three differ-
ent pre-trained models. For Grad.Est. Reprog. on ECAPA-
TDNN-512, utilizing the augmented input with n = 3, 200,
l = 6, 400, and k = 2 can decrease the EER compared to
cases where l = 3, 200 or l = 6, 400 but k = 1. Introduc-
ing the augmentation to V anilla Reprog. on WavLM-Large
and Wav2Vec2.0-XLSR-53 also demonstrates the effectiveness
where lower EER cannot be achieved with larger n, i.e., the
number of parameters padded during training.

The improvement is not consistent across all different set-
tings. Augmentation brings better performance than k = 1,
given the same value of n or l, but it does not give the optimal
performance under the specific range of numbers of learnable
parameters introduced. From the trend shown in the table, the
performance is primarily brought by the more advanced model
architecture or larger model scale.

The augmented input representation is considered to allevi-
ate the “identical problem” brought by a larger portion of the
same content, but the results show that the improvement is lim-
ited despite the reduced parameters during training. It is indi-
cated that the performance is still limited by l, i.e., the total pa-
rameters introduced. Learning ability is primarily determined
by the capacity of the pre-trained model, which can handle a
fixed range of learnable parameters for model reprogramming.



Table 2: Performances of models on the test set of CN-Celeb. n denotes the number of learnable parameters appended to each copy of
a speech utterance. l denotes the total number of parameters padded. k = l/n is the number of replicated copies of speech utterances.
Above the horizontal rules are the results of the raw padding method, i.e., k = 1, while below them corresponds to the augmented
padding method, i.e., k > 1.

ECAPA-TDNN-512 WavLM-Large Wav2Vec2.0-XLSR-53

Adaptation EER (%) n (×103) l (×103) k EER (%) n (×103) l (×103) k EER (%) n (×103) l (×103) k

V anilla
Reprog.

8.63 3.2 3.2 1 8.25 3.2 3.2 1 8.46 3.2 3.2 1
9.06 6.4 6.4 1 8.27 6.4 6.4 1 9.09 6.4 6.4 1
9.56 9.6 9.6 1 8.24 9.6 9.6 1 9.1 9.6 9.6 1

9.11 2.4 4.8 2 8.35 3.2 6.4 2 8.31 3.2 6.4 2
9.19 3.2 6.4 2 8.24 6.4 12.8 2 8.64 6.4 12.8 2
9.15 3.2 9.6 3 8.27 9.6 19.2 2 8.91 9.6 19.2 2

Grad.Est.
Reprog.

9.14 3.2 3.2 1 8.31 3.2 3.2 1 8.35 3.2 3.2 1
9.42 6.4 6.4 1 8.01 6.4 6.4 1 8.32 6.4 6.4 1
9.67 9.6 9.6 1 7.83 9.6 9.6 1 8.15 9.6 9.6 1

9.43 2.4 4.8 2 7.94 3.2 6.4 2 8.39 3.2 6.4 2
9.06 3.2 6.4 2 7.97 6.4 12.8 2 8.46 6.4 12.8 2
9.12 3.2 9.6 3 7.84 9.6 19.2 2 8.40 9.6 19.2 2

Table 3: Performances on CN-Celeb with different training data
sizes.

Model Adaptation No. of
speakers n = 0

n = 3, 200

k = 1 k = 2

ECAPA-
TDNN-
512

V anilla
Reprog.

20 12.52 12.57 12.45
50 12.21 12.03 11.99

100 12.21 11.96 11.77

Grad.Est.
Reprog.

20 12.50 12.48 12.59
50 12.18 12.13 12.17

100 12.17 12.13 12.00

WavLM-
Large

V anilla
Reprog.

20 11.15 11.09 11.09
50 10.92 10.88 10.87

100 10.75 10.81 10.83

Grad.Est.
Reprog.

20 11.14 10.93 10.93
50 10.91 10.78 10.79

100 10.81 10.80 10.67

5.3. Results on different scales of data

Domain adaptation with a limited quantity of data is challeng-
ing but common in practical applications. The effectiveness
of the proposed method with different scales of data is evalu-
ated on ECAPA-TDNN-512 and WavLM-Large in this section.
The datasets are constructed in three scales: 20, 50, and 100
speakers. The speakers are randomly sampled from CN-Celeb
1. A minimum of 20 and a maximum of 50 utterances are ran-
domly selected from each speaker. During training, the model
is adapted to the constructed dataset for 100 epochs, and the
learning rate is reduced by a ratio of 10 at the 60th and 80th

epoch. The fully-connected layer at the output stage of the fixed
pre-trained models is dropped to reduce overfitting and achieve
higher efficiency. A fixed setting of n = 3, 200 is utilized in
the experiments. Each scale of the dataset is randomly gener-
ated five times, and the average results are reported in Table 3.

The results show that the performance for all four settings
increases as the training data sizes increase. Introducing learn-

able parameters leads to a decrease in EER. As the results have
shown, the proposed augmentation can achieve comparable or
surpassing performance as compared to the raw padding method
across different models and settings.

Despite the removal of the fully-connected layer, the adap-
tation models are more inclined to overfitting when available
training data is limited [30]. The results indicate that the over-
fitting is alleviated in adaptation model training when the aug-
mented input representation is applied, which can be useful in
practical resource-constrained scenarios.

5.4. Limitations and future work

The experimental results demonstrate that reprogramming can
enhance cross-language adaptation in SV systems, but certain
limitations remain. We focus primarily on model reprogram-
ming without comparing it with the fully finetuning method and
other advanced model tuning methods like adapter or prompt
tuning. Although sharing some similarities with prompt tuning,
reprogramming focuses on language adaptation, while prompt
tuning is generally utilized in task adaptation [31]. Neverthe-
less, future work can explore the effectiveness of model re-
programming compared to other advanced adaptation methods
or the fully finetuning method. The problem found when the
padded length becomes huge may be due to the potential over-
fitting since the data size remains unchanged. Future work can
explore better ways of input transformation for SV.

6. Conclusions
In this work, we revisit the use of the reprogramming method
for cross-language domain adaptation in SV and investigate its
limitations. The experiments demonstrate that reprogramming
is an effective adaptation method in different scales of SV mod-
els and datasets. However, the performance of reprogrammed
outputs is mainly determined by the pre-trained models, and in-
creasing the padded learnable parameters does not contribute
to the improvement after a criteria value. Larger scales of SV
models have more powerful capacities to process longer padded
parameters and give better results.
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