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RESOLVING VERLINDE’S FORMULA OF LOGARITHMIC CFT

THOMAS CREUTZIG

Abstract. Verlinde’s formula for rational vertex operator algebras computes the fusion rules from the
modular transformations of characters. In the non semisimple and non finite case, a logarithmic Verlinde
formula has been proposed together with David Ridout. In this formula one replaces simple modules by
their resolutions by standard modules. Here and under certain natural assumptions this conjecture is
proven in generality.

The result is illustrated in the examples of the singlet algebras and of the affine vertex algebra of sl2
at any admissible level, i.e. in particular the Verlinde conjectures of [1, 2] are true. In the latter case it is
also explained how to compute the actual fusion rules from knowledge of the Grothendieck ring.

1. History of Verlinde’s formula for VOAs

Two-dimensional conformal field theories (CFTs) rose to importance in the 1980’s since the world-sheet
quantum field theory of a string is such a conformal field theory. CFT also quickly established itself as a
rich source for new and exciting mathematical structures with monstrous moonshine as a famous example
[3]. Vertex operator algebras (VOAs) are a rigorous notion of the chiral or symmetry algebra of a CFT.
A most influential pair of works have been those of Eric Verlinde [4] and Moore-Seiberg [5]. At that time
one was interested in rational CFTs, that is theories with only a finite number of simple modules for
the underlying VOA V and such that every module is completely reducible. The quantities of interest in
physics are often the correlation functions or conformal blocks, certain meromorphic functions on Riemann
surfaces. In particular a basic constraint of the CFT being well-defined is that torus one-point functions
(characters) span a vector-valued modular form. Verlinde’s celebrated observation is that these modular
transformations seem to govern the fusion rules of modules. For this let V = M0,Mi, . . . ,Mn be the list
of inequivalent simple V -modules and let

ch[Mi](τ, v) = trMi
(o(v)qL0−

c
24 ), q = e2πiτ , v ∈ V

be the character of Mi. Here o(v) is the zero-mode associated to v, τ is in the upper half H of the complex
plane C, L0 is the Virasoro zero-mode and c is its central charge. Modularity means in particular that

ch[Mi]

(

− 1

τ
, v

)

= τh
n
∑

j=0

Si,jch[Mj](τ, v)

with h the conformal weight of v. Verlinde conjectured that this modular S-matrix governs the fusion rules

Mi ⊗V Mj
∼=

n
⊕

k=0

N k
i,j Mk, N k

i,j =
n
∑

ℓ=0

Si,ℓ, Sj,ℓS
∗
ℓ,k

S0,ℓ
.

∗ denotes complex conjugation. Moore and Seiberg were able to formalize the axiomatics of CFT, which
led to the notion of modular tensor categories [6]. A modular tensor category C is a semi-simple, finite,
braided ribbon category for which the categorical S-matrix, defined by the Hopf link

S m

ij := Mi
Mj ∈ C

is non-degenerate. Verlinde’s formula with S replaced by S m is nothing but an exercise.
This development provided a nice route map for researchers in the theory of VOAs. The aim was now to

establish that sufficiently nice VOAs, which are nowadays called strongly rational [7], have modular tensor
1
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categories as representation categories, their characters form vector-valued modular forms and Verlinde’s
conjecture is indeed true. Modularity of characters was settled by Yongchang Zhu [8], a theory of tensor
categories has been developed by Huang-Lepowsky [9–11] for rational VOAs and then been generalized by
Huang-Lepowsky-Zhang [12–19] and rigidity and Verlinde’s formula have been proven by Yi-Zhi Huang
[20, 21]. These results are surely the most influential ones of the theory of rational VOAs.

However, almost all VOAs are not of the rational type. This was already realized by physicists a
long time ago and in particular if the Virasoro zero-mode does not act semi-simply, then logarithmic
singularities might appear in correlation functions [22], hence the name logarithmic CFT. Quickly people
were interested in an analogue of Verlinde’s formula for logarithmic theories. A prime example seemed to
be WZW theories at fractional levels, as they have modules whose characters ”are” meromorphic Jacobi
forms [23]. The VOA of a fractional level WZW theory is an affine VOA at admissible level and it had
been mainly studied in the case of sl2. However a naive application of Verlinde’s formula gave negative
fusion coefficients [24]. Such theories were then unfortunately discarded as physically sick and it took more
than two decades to successfully revisit the problem [1, 25]. Characters are a priori only formal power
series and not meromorphic Jacobi forms and they coincide with the expansion of certain meromorphic
Jacobi forms in an appropriate domain. Moreover the modules that correspond in this way to meromorphic
Jacobi forms are only a very small subset of all modules of the VOA. The idea of [1, 25], motivated from
[26, 27], is to consider modular transformations on an uncountable set of standard modules and then to get
a modular S-kernel for all simple modules by considering resolutions by standard modules. This allowed
then to conjecture a Verlinde formula for the fractional theories of sl2. Since then this standard formalism
to Verlinde’s formula has been applied to examples of many different VOAs [2, 28–39] (and in some variants
as the modular properties are of different flavours, see [40, 41] for early reviews).

With these observations there was now the task to develop a sensible theory of representations for VOAs
that are associated to logarithmic CFT with the proof of the logarithmic Verlinde’s formula as an ultimate
goal. Understanding the representation theory of a given category C of modules of a VOA V amounts to
firstly classifying its simple, injective and projective objects, then to establish existence of vertex tensor
category structure and finally study this structure, e.g. establish its rigidity, compute fusion rules and
maybe more. All of these tasks are quite involved and they only have been completely achieved in the
examples of the triplet VOAs [42, 43], the singlet VOAs [44–46], the βγ-ghosts [47], the Bp-algebras [48, 49],
the affine VOA of gl1|1 [27, 50] and the category of weight modules of affine sl2 at admissible levels [51–54].

In all the studies of non semi-simple categories of VOA modules the existence of a good realization of the
VOA V had always been a great aid. This means that V embeds conformally into another VOA A, whose
representation category is completely known. For example the triplet VOAs embed into lattice VOAs.
This means in particular that every A-module is a V -module, but much more structure can usually be
inferred from this. It had been instrumental for proving Kazhdan-Lusztig correspondences, e.g. between
the representation categories of the singlet VOAs and unrolled small quantum groups of sl2 [55], and it
allows, under certain conditions, to infer rigidity of V -modules from rigidity of A-modules [56]. This work
adds a logarithmic Verlinde formula to this list of powerful implications of good realizations.

In the next section, the main Theorem, that is Theorem 2.7, will be stated and proven. The final section
illustrates the findings in the important examples of the singlet algebras and the affine VOA Lk(sl2) of sl2
at admissible levels k. In particular the Verlinde conjectures of [1, 2] are true. In the case of Lk(sl2) at
admissible level we explain how Verlinde’s formula together with rigidity implies the actual fusion rules.
We demonstrate this for simple and projective modules.

Acknowledgements I am very grateful to David Ridout and Antun Milas for past collaborations on this
topic which formed the foundation of my understanding. I am equally very grateful to Shashank Kanade,
Jinwei Yang and Robert McRae for all the collaborations on vertex tensor categories, which have been
invaluable. Finally I very much appreciate the useful comments of Yi-Zhi Huang and Drazen Adamovic.

The fusion rules of weight modules for Lk(sl2) at admissible levels are computed with VOA techniques
in [54]. We agreed to submit our manuscripts to the arXiv simultaneously.
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2. Standard resolution of Verlinde’s formula

Vertex algebras often have uncountable infinitely many modules and so any Verlinde formula will involve
an integral over the space of objects, i.e. we need to introduce some technicalities to say what we mean by
a Verlinde formula. The Grothendieck ring of a tensor category C with exact tensor product is denoted by
K(C). A vertex tensor category is in particular an abelian braided tensor category. For simplicity we work
with vertex tensor categories, but the argument for vertex tensor supercategories is the same.

A very useful tool in studying vertex algebras V with non semi-simple representation categories are
good realizations, that is conformal embeddings V →֒ A into simpler vertex algebras A; simpler in the
sense that their representation category of interest is semisimple. One usually assumes that A is haploid:
HomC(V,A) = C. In this setting and under the assumption that there is a vertex tensor category C of
V -modules in the sense of [12–19] that contains A as an object one can identify A with a commutative
algebra in C [57] and moreover the subcategory of Cloc

A ⊂ CA is a vertex tensor category of modules of the
VOA A [58]. There are then two functors

F : C → CA, G : CA → C,

the induction and restriction functors. The induction functor is monoidal

F(X)⊗A F(Y ) ∼= F(X ⊗V Y )

for any two objects X,Y in C. Here we denote the tensor product bi functor in C by ⊗V and the one in
CA by ⊗A. The composition G ◦ F is just tensoring with A, G(F(X)) = A⊗V X .

Definition 2.1. Let A be a vertex operator algebra and D a vertex tensor category of A-modules. Assume

(1) D is semisimple and rigid.
(2) T := Irr(D) is a measure space with some measure µ.
(3) There exists a function S : T ×T → C, (X,Y ) 7→ SX,Y , the S-kernel, s.t. SA,Y 6= 0 for any Y ∈ T .

(4) The quantum dimension of the object X is defined to be qAX : T → C, Y 7→ SX,Y

SA,Y
. Let QA be the

linear span of the qAX , QA = spanC{qAX |X ∈ Irr(C)}. Assume that the qAX are linearly independent.

We say that the category D admits a semisimple Verlinde algebra of quantum dimensions if QA is
closed under multiplication, qAXqAY ∈ QA for any X,Y ∈ Irr(D), and the map

K(D) → QA, X 7→ qAX

is a ring homomorphism.

We will give examples of such semisimple Verlinde algebras of quantum dimensions in section 3.1. We
want to lift this semisimple Verlinde algebra to non-semisimple settings. For this we will use resolutions.

2.1. Resolutions and quantum dimensions. We first introduce some vocabulary for resolutions and
quantum dimensions.

Definition 2.2. Let V →֒ A be a conformal embedding of vertex operator algebras such that A is an object
in a vertex tensor category C of V -modules.

(1) A module X in C is said to be standard (with respect to A) if there exists an object Y in CA with
X ∼= G(Y ). We write XA for any object with the property that X ∼= G(XA)

(2) A standard module X in C is said to be basic if X ∼= G(Y ) for a simple object Y in CA. The set of
basic standard modules will be denoted by T .

(3) Let M typ be the linear Z-span of basic standard modules. Basic standard modules are said to be
linearly independent if the map M typ → K(C), X 7→ [X ] is injective.

(4) A composition series 0 = X0 ⊂ X1 ⊂ · · · ⊂ Xn = X of an object X in C is called standard if each
composition factor Xi/Xi−1 is basic standard.

(5) A resolution

· · · f4−→ X3
f3−→ X2

f2−→ X1
f1−→ X0

f0−→ X → 0

s. t. each Xi is standard, is called standard. The associated standard chain complex is X• = · · · f4−→
X3

f3−→ X2
f2−→ X1

f1−→ X0. If X is already standard then one can take X• = · · · 0 → 0 → 0 → X.
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(6) A standard resolution is said to have finite multiplicity if for all basic standard modules Y

mX•
(Y ) :=

∞
∑

i=0

[Xi : Y ] < ∞.

(7) The index of a basic standard module Y in a standard finite multiplicity resolution X• is

IX•
(Y ) :=

∞
∑

i=0

(−1)i[Xi : Y ] ∈ Z.

The contragredient dual of a V -module X is denoted by X ′. If C is rigid, then V ∼= V ′ and the
contragredient dual and dual of a module coincide.

Assumption 2.3. Let V →֒ A be a conformal embedding of vertex operator algebras such that A is Z-
graded by conformal weight, haploid and an object in a vertex tensor category C of V -modules. Set D = Cloc

A .
Assume

(1) C is locally finite, has enough projectives and is rigid.
(2) D is semisimple and admits a semisimple Verlinde algebra of quantum diemsions.
(3) Irr(CA) = Irr(D).
(4) There is a one-to-one correspondence τ : Irr(C) → Irr(D), such that the top of G(τ(X)) is X. And

there exists a simple standard module X, such that both X and X ′ are projective.
(5) Basic standard modules are linearly independent.
(6) Assume that D is graded by some abelian group G, that is

D ∼=
⊕

g∈G

Dg, X ⊗A Y ∈ Dgh for X ∈ Dg, Y ∈ Dh

and assume that there is a group homomorphism ρ : G → (R,+).

By Theorem 3.14 of [56] these assumptions imply that CA is rigid. Let X,Y be basic standard objects,
that is there exists objects XA, Y A in D with G(XA) = X,G(Y A) = Y . Set SX,Y := SXA,Y A and simlarly

qAX := qA
XA . Extend this definition linearly to direct sums and then to objects X in CA by choosing a

standard compositon series of X and setting qAX to be the sum of the quantum dimensions of standard
composition factors. We will later show that all standard compositon series of X are equivalent, Prop.
2.10.

Definition 2.4. Under the Assumption.

(1) Let Y be a finite length object in CA. Then by point (3) of the assumption it has a finite composition
series with composition factors basic standard modules. Let supp(Y ) := {g ∈ G| there exists X ∈
T ∩ Dg with [Y : X ] 6= 0} ⊂ G and let d(Y ) := min{ρ(g)|g ∈ supp(Y )}. Define d on standard
modules via d(G(Y )) := d(Y ).

(2) Y is called homogeneous if |supp(Y )| = 1. Let z be a formal variable, define qAY (z) := zρ(Y )qAY for
homogeneous objects Y and extend linearly.

(3) Consider a standard resolution of Y

Y• = · · ·Y3 → Y2 → Y1 → Y0 → Y → 0.

such a resolution is called ρ-ordered if mY•
(Z) 6= 0 implies that ρ(Z) = d(Y0) mod 1 and the

sequence (d(Yi))i∈Z≥0
is monotonously increasing and never stabilizes. It is called strictly ρ-ordered

if (d(Yi))i∈Z≥0
is strictly monotonously increasing.

(4) A ρ-ordered standard resolution is said to admit a quantum dimension if

qAY•
(t, z) := z−d(Y0)

∞
∑

i=0

(−t)iqAYi
(z) ∈ QA[z][[t]]

and if qAY•
(t, z) converges point-wise for |t|, |z| < 1 to a rational function fY•

(t, z) ∈ QA(t, z), such
that there is a set E ⊂ T , such that the limits lim

z→1−
lim
t→1−

fY•
(M)(t) and lim

t→1−
lim

tz→1−
fY•

(M)(t)
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exist and coincide, lim
z→1−

lim
t→1−

fY•
(M)(t) = lim

t→1−
lim

tz→1−
fY•

(M)(t), for all M in T \E. The limit is

denoted by qAY•
and called the quantum dimension of the resolution Y•.

Remark 2.5. Since a ρ-ordered standard resolution never stabilizes it must be of finite multiplicity and
hence qAY•

(t, z) is in QA[z][[t]] as indicated.

Let X• → X → 0 be a standard resolution of X and let Xtriv
• = . . . 0 → 0 → 0 → X , so that

Xtriv
• → X → 0 is the trivial resolution of X (it is not standard unless X is standard). Clearly there

is a quasi-isomorphism X• → Xtriv
• and hence if basic standard modules are linearly independent then

the Index IX•
(Y ) does not depend on a choice of finite multiplicity resolution. Similar we need that the

quantum dimension, if it exists, not to depend on a choice of ρ-ordered standard resolution.

Proposition 2.6. Retain assumption 2.3. Let Y•, Ỹ• be two ρ-ordered standard resolutions of Y , then
qAY•

= qA
Ỹ•
.

Proof. Consider R(t, z) := qAY•
(t, z)− zd(Ỹ0)−d(Y0)qA

Ỹ•
(t, z), since both Y• and Ỹ• are resolutions of the same

object Y the difference has to be of the form

R(t, z) = (1 − t)

∞
∑

i=0

tiqi(z)

for certain polynomials qi(z) ∈ QA[z]. Since qAY•
(t, z), qA

Ỹ•
(t, z) both converge to rational functions in

QA(t, z) for |t|, |z| < 1, the same is true for R(t, z) and hence for
∑∞

i=0 t
iqi(z). We have to make sure that

∑∞
i=0 t

iqi(z) in reduced form can’t have a factor of the form 1
1−t

=
∑∞

i=0 t
n.

Let ni = min{d(Yi), d(Ỹi)}, then qi(z) ∈ zniQA[z]. Since both sequences (d(Yi))i∈Z≥0
, (d(Ỹi))i∈Z≥0

are
monotonously increasing and never stabilizing the same is true for (ni)i∈Z≥0

. It follows that R(t, z) is of
the form

R(t, z) = (1− t)

∞
∑

i=0

zipi(t) ∈ QA[t][[z]]

for certain polynomials pi(t) in QA[t]. Hence limt→1−
∑∞

i=0 t
iqi(z) =

∑∞
i=0 z

ipi(1) ∈ QA[[z]] and so
∑∞

i=0 t
iqi(z) in reduced form cannot have a factor of the form 1

1−t
=

∑∞
i=0 t

n. In particular limt→1− R(t, z) =

0 for all z with |z| < 1. Hence limz→1− limt→1− R(t, z) = limt→1− limz→1− R(t, z) = 0. �

2.2. Resolving Verlinde’s formula. We retain assumption 2.3.
Let ch[X ] = trX(qL0−

c
24 ) the character of X ∈ T (and if necessary also graded in addition by some

Jacobi variable). It defines a function on T × H, which is assumed to be in L1(T, µ) for all τ ∈ H. For an
object Y that is not in T , choose a standard finite multiplicity resolution (if it exists)

Y• = · · ·Y3 → Y2 → Y1 → Y0 → Y → 0.

and set its character to be ch[Y ] =
∑∞

i=0(−1)ich[Yi]. It takes values in the algebraic completion of the
vector space of characters of objects in T . As the index is independent of the choice of standard resolution,
the same is true for the character. If the S-kernel is ”unitary” (S∗

X,Y is the complex conjugate of SX,Y )
∫

T

µ(Y )

(
∫

T

µ(Z) S∗
X,Y SY,Zch[Z]

)

= ch[X ] =

∫

T

µ(Y )

(
∫

T

µ(Z)SX,Y S
∗
Y,Zch[Z]

)

(1)

then the Verlinde algebra of characters is defined to be for X,Y in T

ch[X ]×V ch[Y ] :=

∫

T

µ(Z)

(
∫

T

µ(W )
SX,ZSY,ZS

∗
W,Z

SV,Z

ch[W ]

)

.

and for X,Y in C, such that X,Y both admit standard finite multiplicity resolutions, by

ch[X ]×V ch[Y ] :=

∞
∑

i,j=0

(−1)i+jch[Xj ]×V ch[Yi].

The right-hand side is in the algebraic completion of the space of characters provided that the total complex
of the tensor product X• ⊗V Y• is finite multiplicity.
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Theorem 2.7. Retain assumption 2.3. in particular let V be a vertex operator algbera and C a vertex
tensor category of V -modules with D := Cloc

A . Assume that V has a standard strict ρ-ordered resolution
V• → V → 0, V• = · · ·V3 → V2 → V1 → V0, admitting a quantum dimension. Then

(1) Every indecomposable object Y in C has a ρ-ordered standard resolution Y• that admits a quantum
dimension. The total complex of X•⊗V Y• for any two ρ-ordered resolutions X•, Y• is also ρ-ordered.

Set qAY := qAY•
, qY :=

qAY
qAV

and SY,M := qAY (M)SA,M . Let Q = spanC{qY |Y ∈ Obj(C)}. Extend

the definitions linearly, that is qX⊕Y = qX + qY et cetera.
These definitions do not depend on the choice Y• by Proposition 2.6.

(2) The quantum dimension factors through the Grothendieck ring of C, that is for any short exact
sequence 0 → X → Y → Z → 0 in C one has qAY = qAX + qAZ .

(3) The category C admits a Verlinde algebra of quantum dimensions, that is Q is closed under
multiplication, qXqY ∈ Q for any X,Y ∈ Irr(C), and the map

K(C) → Q, X 7→ qX

is a ring homomorphism.
(4) If the S-kernel is unitary in the sense of (1) and if ch[X ] = trX(qL0−

c
24 ) for X ∈ T is in L1(T, µ),

then the Verlinde algebra of characters satisfies Verlinde’s formula, that is

ch[X ]×V ch[Y ] = ch[X ⊗V Y ]

for all objects X,Y in C.

Proof. The rest of this section is devoted to the proof of this main Theorem.

Proposition 2.8. [55, Lemma 2.8] Let V →֒ A be a conformal embedding of vertex operator algebras such
that A is an object in a vertex tensor category C of V -modules. Let X be an object in C and Y one in CA.
Then there exists a multiplication mX⊗Y : A⊗V (X⊗V G(Y )) → X⊗V G(Y )), such that (X⊗V G(Y ),mX⊗Y )
is an object in CA and as such (X ⊗V G(Y ),mX⊗Y ) ∼= F(X)⊗A Y .

Applying G to (X ⊗V G(Y ),mX⊗Y ) ∼= F(X)⊗A Y shows that standard modules form a tensor ideal:

Corollary 2.9. Let V →֒ A be a conformal embedding of vertex operator algebras such that A is an object
in a vertex tensor category C of V -modules. Let X,Y be objects in C and Y be standard, then so is X⊗V Y .

Let X in C and Y in T .
We show that statements (1) and (3) of the Theorem imply statement (4): First (1) tells us that there

exist ρ-ordered standard resolutions for any object Y in C. These are automatically of finite multiplicity,
Remark 2.5, and so the character can be defined using ρ-ordered resolutiuon. Since the tensor product is
also ρ-orderd the Verlinde algebra of characters is well-defined.

Assume now that C admits a Verlinde algebra of quantum dimensions, then in particular

SX,ZSY,Z

SV,Z

= SX⊗V Y,Z .

Denote the classes of X,Y in K(C) by [X ], [Y ] and let

[X ] · [Y ] =
∑

R∈T

N R
X,Y [R]

be the decomposition into objects in T , which it has by Corollary 2.9 and Assumption 2.3 point (3).

ch[X ]×V ch[Y ] =

∫

T

µ(Z)

(
∫

T

µ(W )
SX,ZSY,ZS

∗
W,Z

SV,Z

ch[W ]

)

=

∫

T

µ(Z)

(
∫

T

µ(W ) SX⊗V Y,ZS
∗
W,Zch[W ]

)

=
∑

R∈T

N R
X,Y

∫

T

µ(Z)

(
∫

T

µ(W ) SR,ZS
∗
W,Zch[W ]

)

=
∑

R∈T

N R
X,Y ch[R].

The formula for X,Y ∈ C follows from exactness of ⊗V .
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Proposition 2.10. G(X) for X in Obj(CA) has up to equivalence a unique standard composition series.

Proof. Let X be an object in CA. Since C is of finite length, CA has to be of finite length as well. The
assumption Irr(CA) = Irr(D) implies that X has a finite composition series with local composition factors.
The restriction functor is the identity on modules and morphisms and simply forgets the algebra action
on A. It is in particular an exact functor and so a Jordan-Hölder series of X maps under the restriction
functor to a composition series of G(X) where all composition factors are standard modules. Let Y1 be a
simple direct summand of the top of W0 := G(X) and set Z1 := G(τ(Y1)). By assumption Y1 is the top of
Z1 and Z1 is the only simple object of D with this property. Thus the only possible standard composition
factor having Y1 as top is Z1. Let Y2 be a simple direct summand of the top of W1 := ker(G(X) → Z1)
and proceed inductively. This provides a standard composition series. Since in each step top(Wi)/Yi+1 is
contained in the top of Wi+1 and since each standard composition factor is uniquely determined by its top
this procedure is unique up to ordering. �

The restriction functor maps the set Irr(D) to the set of basic standard modules. By assumption 2.3
point (4) this map needs to be injective and by definition of basic standard this map is surjective, hence

Corollary 2.11. Let X,Y ∈ Obj(CA), s.t. G(X) ∼= G(Y ), then X,Y have equivalent Jordan-Hölder series.

Let K(Ctyp) be the Z-span of basic standard modules and define a map from standard modules to
K(Ctyp), mapping X to [X ]typ where [X ]typ is the sum of basic standard composition factors of X . By
Proposition 2.10 this is well-defined and by Corollary 2.9 the tensor product in C induces a ring structure
on it.

LetK(D) be the Grothendieck ring ofD. For an objectN inD define a new product ·N : K(D)×K(D) →
K(D), ([X ], [Y ]) 7→ [N ⊗A X ⊗A Y ]. Denote K(D, N) the ring K(D) with product ·N .

For the remainder of the proof we set N := F(A).

Proposition 2.12. The map

ϕ : K(Ctyp) → K(D, N), [G(X)]typ 7→ [X ]

is a ring isomorphism.

Proof. Recall that Theorem 3.14 of [56] applies thanks to assumption 2.3 and thus CA is rigid.
Let X,Y be objects in CA, such that G(X) ∼= G(Y ), then by Corollary 2.11 X and Y have equivalent

Jordan-Hölder series and in particular their images in K(D) coincide [X ] ∼= [Y ]. This map is a ring
homomorphism from the split Grotehndieck ring of CA to K(D), since CA is rigid. Since basic standard
modules are in one-to-one correspondence with simple objects in D, the map ϕ is bijective. We need to
show that it is a homomorphism of rings.

We apply Proposition 2.8 several times. First note that the case X = A says that G(F(G(Z))) ∼=
A⊗V G(Z) ∼= G(F(A)⊗A Z) = G(N ⊗A Z) for any object Z in CA. Hence [F(G(Z))] ∼= [N ⊗A Z]. Consider
two standard modules G(X),G(Y ) as well as G(X)⊗V G(Y ) ∼= G(F(G(X)) ⊗A Y ). Hence

[G(X)⊗V G(Y )]typ ∼= [G((G(X) ⊗V G(Y ),mG(X)⊗Y ))]typ ∼= [G(F(G(X)) ⊗A Y )]typ

∼= ϕ−1 ([F(G(X))⊗A Y ]) ∼= ϕ−1 ([N ⊗A X ⊗A Y ]) ∼= [G (N ⊗A X ⊗A Y )]typ. �

Proposition 2.13. ρ(g) in Z for g ∈ supp(N).

Proof. Since C is of finite length and A is an object in C also A⊗V A is an object in C and hence of finite
length. Especially N must be of finite length in CA and thus supp(N) is finite. Assume that the statement
of the Proposition is false. We will see that this is impossible. That is assume there exists g ∈ supp(N)
with ρ(g) /∈ Z and choose g minimal with that property, that is h ∈ supp(N) with ρ(h) /∈ Z implies that
ρ(h) ≥ ρ(g).

Apply the induction functor (it is exact since ⊗V is exact) to the strictly ρ-ordered resolution V• of V
to get a resolution of A in CA.

· · ·F(V3) → F(V2) → F(V1) → F(V0) → A → 0.
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Let V A
i be such that G(V A

i ) = Vi. Applying the restriction functor and recalling that G(F(Vi)) ∼= G(N ⊗A

V A
i ) gives a standard resolution A• of A

A• = · · ·G(N ⊗A V A
3 ) → G(N ⊗A V A

2 ) → G(N ⊗A V A
1 ) → G(N ⊗A V A

0 ) → A → 0. (2)

Since d(N ⊗A V A
i ) = d(N)+d(Vi) and d(Vi+1) > d(Vi) also d(N ⊗A V A

i+1) > d(N ⊗A V A
i ). In particular A•

must be of finite multiplicity. Since it is a resolution of A the index satisfies IA•
(X) = 0 for X ∈ T \ {A}.

Since CA is rigid X ⊗A Y is non-zero for any two non-zero objects X,Y in CA. It follows that N ⊗A V A
i

has a standard (non-zero) composition factor, call it Zi, with ρ(Z) = d(Vi) + ρ(g) ∈ ρ(g) + Z and by the
minimality assumption on g any other composition factor Yi of N⊗AVi with d(Yi) ∈ ρ(g)+Z has to satisfy
d(Yi) ≥ ρ(g). In particular Z0 cannot be a composition factor of N ⊗A V A

i for i > 0. Thus IA•
(Z0) 6= 0, a

contradiction. �

Corollary 2.14.

(1) For X,Y in T , supp(X ⊗V Y ) ⊂ d(X) + d(Y ) + Z.
(2) For X in Irr(C) and Y in T , supp(X ⊗V Y ) ⊂ d(τ(X)) + d(Y ) + Z.
(3) For X in Irr(C) and Y in T , supp(PX ⊗V Y ) ⊂ d(τ(X)) + d(Y ) + Z, where PX is the projective

cover of X.
(4) For X in Irr(C) and Y in T , supp(M ⊗V Y ) ⊂ d(τ(X)) + d(Y ) +Z, where M is in the same block

as X.

Proof. The first statement follows from the previous proposition together with G(X)⊗V G(Y ) ∼= G(N ⊗A

X ⊗A Y ).
The second statement follows from the first one and exactness of ⊗V , that is G(τ(X))⊗V Y → X⊗V Y →

0 is exact.
For the third statement choose an Z ∈ T that is projective as an object in C and Z ′ is as well. Then

Z ⊗V Z ′ ⊗V X is projective and surjects onto PX . The claim follows since supp(Z ⊗V ⊗Z ′ ⊗V X) ⊂
d(Z) + d(Z ′) + d(τ(X)) + Z = d(τ(X)) + Z.

For the last statement consider 0 → Z → M → X → 0 non-split and X,Z simple in C. Since
HomC(PX , •) is exact there must be a non-zero morphism from PX to M and since Z has to embed into
the image one has supp(Z⊗V Y ) ⊂ d(τ(X))+d(Y )+Z for any Y in T . By exactness also supp(M⊗V Y ) ⊂
d(τ(X)) + d(Y ) + Z for any Y in T . The claim follows. �

We prove the first statement of our Theorem.

Proposition 2.15. Every indecomposable object Y in C has a ρ-ordered standard resolution Y• that admits
a quantum dimension. The total complex of X• ⊗V Y• for any two ρ-ordered resolutions X•, Y• is also ρ-
ordered.

Proof. Let Y be an indecomposable object in C. We then have the resolution Y• = Y ⊗V V• of Y .
Since standard modules form a tensor ideal, Corollary 2.9, this is a standard resolution. The terms of the
resolution are Yi = Y ⊗V Vi and since Y ⊗V Vi

∼= G(F(Y )⊗AV A
i ) one has d(Yi) = d(F(Y ))+d(Vi) and hence

d(Yi+1) > d(Yi). The support of each Yi lies in d(Y ) +Z by Corollary 2.14. Since G(F(Yi)) ∼= G(N ⊗A Y A
i )

and since qA
N⊗AY A

i

= qANqAYi
it follows that zY0qAY•

(t, z) = qN (z)qV0qV•
(r, z) and so Y• admits a quantum

dimension.
The last statement is clear since Xi⊗V Yj

∼= G(N ⊗AXA
i ⊗A Y A

j ) implies d(Xi⊗V Yj) = d(N)+d(Xi)+
d(Yj). �

The second statment of the Theorem follows.

Corollary 2.16. The quantum dimension factors through the Grothendieck ring of C, that is for any short
exact sequence 0 → X → Y → Z → 0 in C one has qAY = qAX + qAZ .

Proof. Consider a non-split short exact sequence 0 → X → Y → Z → 0. Tensoring this with V• of V
gives a short exact sequence of standard resolutions 0 → X• → Y• → Z• → 0, where X• = X ⊗V V•, Y• =
Y ⊗V V•, Z• = Z ⊗V V•. Hence qY•

(t, z) = qX•
(t, z) + qZ•

(t, z) and in particular qY = qZ + qZ . �
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Via the ring homomorphism ϕ, qANqAXqAY = qAX⊗V Y for standard indecomposable modules X,Y . In
general for two ρ-ordered standard resolutions X•, Y• that admit quantum dimensions

qAN (z)qAX•
(t, z)qAY•

(t, z) = qATot(X•⊗V Y•)
(t, z) (3)

and in particular Tot(X• ⊗V Y•) admits a quantum dimension as well. The resolution (2) satisfies all the
assumptions of Proposition 2.6 and so

1 = qAA = lim
t→1−

lim
z→1−

qANqAV•
= qANqAV .

This and taking the limits t, z → 1− of (3) gives

Corollary 2.17.

(1) qANqAV = 1, in particular qAV (M) 6= 0 for all M ∈ T \ E.
(2) For X,Y in Obj(C), qANqAXqAY = qAX⊗V Y .

Set qX =
qAX
qA
V

then the algebra of quantum dimension follows

qXqY =
qAX
qAV

qAY
qAV

=
qANqAXqAY

qAV
=

qAX⊗V Y

qAV
= qX⊗V Y . �

3. Examples

In this section we discuss the two main examples of the logarithmic Verlinde formula in the literature,
namely the cases of the singlet algebras and of the affine VOA of sl2 at admissible levels. In order to do so
we first need to discuss some semisimple examples.

3.1. Semisimple Examples.

3.1.1. The Virasoro algebra. Let V = Virk be the simple Virasoro vertex algebra at central charge ck =
13 − 6

k+2 − 6(k + 2) and let k = −2 + u
v
be a non-degenerate principal admissible level for sl2, that is

u, v ∈ Z>1 and (u, v) = 1. Then Virk is rational [59] and its simple modules are denoted by Lr,s with
1 ≤ r ≤ u− 1, 1 ≤ s ≤ v− 1 and Lr,s

∼= Lr′,s′ if and only if either (r′, s′) = (r, s) or (r′, s′) = (u− r, v− s).

Set N
Vir (r′′,s′′)
(r,s)(r′,s′) = N

u r′′

r,r′ N
v s′′

s,s′ , where

N
w t′′

t,t′ =

{

1 if |t− t′|+ 1 6 t′′ 6 min { t+ t′ − 1, 2w − t− t′ − 1 } and t+ t′ + t′′ is odd,

0 otherwise.

Then the Virasoro fusion rules are given by the formula

Lr,s ⊗ Lr′,s′
∼=

u−1
⊕

r′′=1

v−1
⊕

s′′=1

N
Vir (r′′,s′′)
(r,s)(r′,s′) Lr′′,s′′

The modular S-matrix coefficients are

S(r,s)(r′,s′) = −2

√

2

uv
(−1)

rs′+r′s
sin

vπrr′

u
sin

uπss′

v

and Verlinde’s formula in this instance is

N
Vir (r′′,s′′)
(r,s)(r′,s′) =

∑

(R,S)

S(r,s)(R,S)S(r′,s′)(R,S)S
∗
(r′′,s′′)(R,S)

S(1,1)(R,S)

where the sum is over the set that labels inequivalent simple modules.
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3.1.2. The Heisenberg VOA and their extensions. The vertex tensor category structure of the Heisenberg
VOA has been first stated as a Theorem in [60, Thm.2.3]. By now [61, Thm. 3.6][62, Thm.2.3] immediately
gurantee this. Consider a rank n Heisenberg vertex algebra and choose generators h1, . . . , hn. Then their
OPE

hi(z)hj(w) =
Mi,j

(z − w)2

defines a symmetric n×n-matrixM , which we assume to be non-degenerate. We then denote the Heisenberg
VOA by πM to indicate our choice, but of course πM ∼= πM ′

for any other non-degenerate symmetric n×n-
matrix M ′. Let v1, . . . , vn be a standard basis of Cn with inner product (vi, vj) = δi,j . Then we define
the Cn-valued Heisenberg field h(z) = h1(z)v1 + · · · + hn(z)vn. Fix an element b ∈ Cn, then b defines a
Virasoro field

L(z) =
1

2
: (h(z),M−1h(z)) : +

(

b,M−1 d

dz
h(z)

)

of central charge c = n − 12(b,M−1b). The simple modules of πM are Fock modules. Let λ ∈ Cn. Then
the Fock module πM

λ is generated by a highest-weight vector vλ on which the zero-mode of hi acts by
multiplication with λi. The conformal weight of the top level of πM

λ is

hλ =
1

2
(λ,M−1λ) + (b,M−1λ).

The fusion product of two Fock modules is πM
λ ⊗ πM

µ
∼= πM

λ+µ, which follows from [63] as πM is the affine
vertex algebra of the abelian Lie algebra Cn at non-degenerate level. The Fock modules are simple and
the only extensions that they admit are self-extensions. Since any Fock module is C1-cofinite, since any
self-extension is of finite length and since they are closed under the contragredient dual, the category of C1-
cofinite modules of πM form a vertex tensor category [61, Thm. 3.6][62, Thm.2.3]. We are only interested
in the semisimple vertex tensor subcategory of Fock modules, which we now denote by Cπ, i.e. we don’t

consider the self-extensions. This category is just VecQ
Cn where Q = (·,M−1·). In particular this means

that the braiding of πM
λ ⊗ πM

µ is just eπi(λ,M
−1µ) times the identity on πM

λ+µ. The choice of b is really a

choice of duality structure on Cπ, see [64], and if we set b = 0, then this duality is in fact a ribbon structure.
In particular in this case one can take the trace of the double braiding, i.e. the Hopf link and this is just

e2πi(λ,M
−1µ). This can also be recovered from modular transformations of characters. The character of a

Fock module is

ch[πM
λ ](q, z) = trπM

(

qL0−
c
24 e

2πi(u,h0)
)

=
q

1
2 (λ+b,M−1(λ+b))zλ

η(q)n

with zλ = e2πi(u,λ) and u ∈ C, τ ∈ H. We assume that M is positive definite. The general Gaussian
integral says that for such a matrix M and d ∈ Cn

∫

Rn

e−
α
2 (w,M−1w)+(d,w)dnw =

√

(2π)n

α detM−1
e

1
2α (d,Md)

for α ∈ C with ℜ(α) > 0. Note the modular transformation of the Dedekind eta-function
√
−iτη(τ) =

η(−1/τ). Assume that b ∈ Rn. From this one computes
∫

Rn

ch[πM
λ ](q, z)e−2πi(λ+b,M−1(µ+b))dλ =

e−2πi(u,b)

η(τ)n

∫

Rn

eπiτ(λ+b,M−1(λ+b))e2πi(λ+b,u+M−1(µ+b))dλ

=
e−2πi(u,b)

η(−1/τ)n

√
detMe−

πi
τ (u−M−1(µ+b),Mu−(µ+b))

= e−
πi
τ
(u,Mu)e−2πi(u,b)e

2πi
τ

(u,b)
√
detMch[πM

µ ]

(

− 1

τ
,
u

τ

)

so up to the usual automorphy factor e−
πi
τ
(u,Mu)e−2πi(u,b)e2πi(u,b) for the Jacobi-like variable z the modular

S-transformation is described by the S-kernel

Sλ,µ :=
e−2πi(λ+b,M−1(µ+b))

√
detM

.
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The above transformation formula holds for any λ ∈ Rn, µ ∈ Cn. The quantum dimension is

qλ(ρ) :=
Sλ,ρ

S0,ρ
= e−2πi(λ,M−1(ρ+b))

Let Cπ
R
be the subcategory of Fock modules that have real weight. Let Q be the linear span of the functions

{qλ(ρ)|λ ∈ Rn}. Clearly the qλ(ρ) are linearly independent. Q satisfes the quantum dimension algebra

qλ(ρ)qµ(ρ) =
Sλ,ρ

S0,ρ

Sµ,ρ

S0,ρ
= e−2πi(λ+µ,M−1(ρ+b)) =

Sλ+µ,ρ

S0,ρ
= qλ+µ(ρ)

that is for each ρ, the normalized S-kernel defines a one-dimensional representation of the tensor ring of
Cπ
R
, i.e. the map πM

λ 7→ qλ(ρ) is a ring homomorphism from K(Cπ
R
) to Q. We call Q the algebra of quantum

dimensions. We can analytically continue the qλ for all λ ∈ Cn by setting qλ(ρ) = e−2πi(λ,M−1(ρ+b)) and
then our ring isomorphism extends to one between the complete Grothedieck ring and the analytically
extended algebra of quantum dimensions.

For each λ, the S-kernel qλ(ρ) =
Sλ,ρ

S0,ρ
defines a function in the variable ρ and these are clearly linear

independent and so the map πM
λ 7→ qλ(ρ) is an isomorphism of algebras.

Let now both λ, µ ∈ Rn and fix z ∈ Cn, q ∈ H and view the characters ch[πM
λ ] = ch[πM

λ ](q, z) as
functions in the variable λ. Since q is in the unit disc these are clearly L1-integrable functions. The
S-kernel is unitary in the following sense

∫

Rn

dν

(
∫

Rn

dµ S∗
λ,νSν,µch[π

M
µ ]

)

=
1

detM

∫

Rn

dν

(
∫

Rn

dµ e2πi(ν+b,M−1(µ−λ))ch[πM
µ ]

)

=
1√

detM

∫

Rn

dν F (ch[πM
−(ν+b)])e

−2πi(ν+b,M−1λ) = ch[πM
λ ]

∫

Rn

dν

(
∫

Rn

dµSλ,νS
∗
ν,µch[π

M
µ ]

)

=
1

detM

∫

Rn

dν

(
∫

Rn

dµe−2πi(ν+b,M−1(µ−λ))ch[πM
µ ]

)

=
1√

detM

∫

Rn

dν F (ch[πM
ν+b])e

−2πi(ν+b,M−1λ) = ch[πM
λ ]

with F the Fourier transform, F (f)(µ) =
∫

Rn dν f(ν)e−2πiµν . The Verlinde algebra of characters follows,

ch[πM
λ ]×V ch[πM

µ ] =

∫

Rn

dρ

(
∫

Rn

dν
Sλ,ρSµ,ρS

∗
ν,ρ

S0,ρ
ch[πM

ν ]

)

=

∫

Rn

dρ

(
∫

Rn

dν e−2πi(ρ+b,M−1(λ+µ−ν))ch[πM
µ ]

)

= ch[πM
λ+µ].

Next we turn to a case where M is still non-degenerate, but not positive definite anymore. This vertex
algebra is called Π(0), we reformulate [65].

We start with the rank two Heisenberg vertex algebra associated to the matrix M =
(

0 2
2 0

)

and denote

the generators by c(z), d(z). One also introduces the fields µ, ν defined via c = 2
k
(µ − ν), d = µ + ν and

here k ∈ C \ {0} is a parameter that will be used to define a family of Virasoro fields on Π(0). The fields
µ, ν are orthogonal on each other and have OPEs

µ(z)µ(w) =
k/2

(z − w)2
, ν(z)ν(w) = − k/2

(z − w)2
.

The conformal vector is chosen to be

L =
1

2
: c(z)d(z) : −1

2

d

dz
d(z) +

k

4

d

dz
c(z).

It has central chatrge c = 6k + 2. Let πa,b be the Fock module on which the zero-mode of c acts by
multiplication with a and the one of d by multiplication with b. Π(0) is then defined as the simple current
extension

Π(0) =
⊕

n∈2Z

π0,n.
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Let D be the category of Π(0)-modules that are objects in the direct limit completion of Cπ, see [66] for the
notion of direct limit completions of vertex tensor categories. This category can be described using vertex
algebra extensions [57, 58, 66, 67], which is particularly simple for simple current extensions. See [49] for a
comparable example. The point is that there is an induction functor F, which maps the Fock-module πa,b

to the not necessarily local Π(0)-module
⊕

n∈2Z

πa,b+n.

Locality is decided by the monodromy with the π0,n. This monodromy is eπian and so one gets a local
module for any b ∈ C while a needs to be an integer. It is convenient for applications to label these modules

Πℓ(λ) =
⊕

n∈2Z

πa,b+n, a = ℓ, b = 2λ+
k

2
.

The induction functor F is monoidal and hence the fusion rules

Πℓ(λ)⊗Πℓ′(λ
′) = Πℓ+ℓ′(λ+ λ′)

hold. Also note the periodicity Πℓ(λ + 1) ∼= Πℓ(λ). Set h = −2µ1 and define the character of Πℓ(λ) as
usual. It is computed in [65, Prop. 4.5] for ℓ = −1 and the general computation is basically the same.

ch[Π−ℓ−1(λ)] = trΠ−ℓ−1(λ)(q
L0−

c
24 zh0) = q

ℓ
2 (k−2λ)+ kℓ2

4 zk−2λ+kℓ δ(z
2qℓ − 1)

η(q)2

with δ(x− 1) =
∑

n∈Z
xn the formal delta distribution. Assume that k = −2 + u

v
for u, v ∈ Z>1 co-prime.

This character relates to the character of the module σℓ(Eλ,∆r,s
) of the affine VOA of sl2 at admissible

level k as

σℓ(Ek−2λ,∆r,s
) = ch[Π−ℓ−1(λ)]ch[L

k
r,s].

Modular transformations of this is quite subtle and were obtained for the σℓ(Ek−2λ,∆r,s
) in [25, Section

3.1] [1, Thm. 6] by interpreting the delta distribution in a suitable way (recall that z = e2πiu, q = e2πiτ )

δ(z2qℓ − 1) =
∑

m∈Z

δ(2u+ ℓτ −m)

where δ(2u + ℓτ −m) is a formal distribution satisfying δ(2u + ℓτ −m)f(u, τ) = δ(2u + ℓτ −m)f((m −
ℓτ)/2, τ) = δ(2u + ℓτ − m)f(u, (m − 2u)/ℓ) (the last identity of course only if ℓ 6= 0). In this way one
interpretes ch[πℓ(λ)] as a power series in formal distributions with coefficients functions on τ, u and the
parameters ℓ, λ. Explicitely

ch[Π−ℓ−1(λ)] = q
ℓ
2 (k−2λ)+ kℓ2

4 zk−2λ+kℓ δ(z
2qℓ − 1)

η(q)2
=

q
ℓ
2 (k−2λ)+kℓ2

4 zk−2λ+kℓ

η(q)2

∑

m∈Z

δ(2u+ ℓτ −m)

=
q

kℓ2

4 zkℓ

η(q)2

∑

m∈Z

q
ℓ
2 (k−2λ)zk−2λδ(2u+ ℓτ −m) =

q
kℓ2

4 zkℓ

η(q)2

∑

m∈Z

eπim(k−2λ)δ(2u+ ℓτ −m).

Modular properties of these distributions are studied in [1]. One gets a projective SL(2,Z)-action due to
the appearance of a phase corresponding to the argument of τ . This phase however cancels in quantum
dimensions and Verlinde’s formula and so we will ignore it. Translated to our notation [1, Thm. 6] gives
the S-kernel and normalized S-kernel, i.e. quantum dimension,

SΠℓ(λ),Πℓ′ (λ
′) = e−iπ(kℓℓ′−k+2λ′(ℓ+1)+2λ(ℓ′+1)) and qℓ,λ(ℓ

′, λ′) =
SΠℓ(λ),Πℓ′ (λ

′)

SΠ(0),Πℓ′(λ
′)

= e−iπ(kℓℓ′+2λ′ℓ+2λ(ℓ′+1))

The algebra of quantum dimension holds

qℓ,λ(ℓ
′, λ′)qm,µ(ℓ

′, λ′) = e−iπ(kℓℓ′+2λ′ℓ+2λ(ℓ′+1))e−iπ(kmℓ′+2λ′m+2µ(ℓ′+1))

= e−iπ(k(ℓ+m)ℓ′+2λ′(ℓ+m)+2(λ+µ)(ℓ′+1)) = qℓ+m,λ+µ(ℓ
′, λ′)

(4)

1Here we choose a different sign then [65]. The reason is that with our convention formulae match with [1, 25]
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and we get a Verlinde formula by observing that with our interpretation (4) the characters are power
series with coefficients functions in u, τ, λ, ℓ and they are one-periodic in λ. With this interpretation one
can compute the unitarity of the S-kernel and the Verlinde algebra of characters. We only compute the
Verlinde algebra of characters

ch[Πℓ(λ)]×V ch[Πm(µ)] =
∑

n∈Z

∫ 1

0

dν
∑

r∈Z

∫ 1

0

dρ
SΠℓ(λ),Πr(ρ)SΠm(µ),Πr(ρ)S

∗
Πn(ν),Πr(ρ)

SΠ(0),Πr(ρ)
ch[Πn(ν)]

=
∑

n∈Z

∫ 1

0

dν
∑

r∈Z

∫ 1

0

dρ e−iπ(kr(ℓ+m−n)+2ρ(ℓ+m−n)+2(λ+µ−ν)(r+1))ch[Πn(ν)]

=
∑

n∈Z

∫ 1

0

dν
∑

r∈Z

δℓ+m,ne
−2πi(λ+µ−ν)(r+1)ch[Πn(ν)]

=
∑

n∈Z

∫ 1

0

dν δℓ+m,nδ(λ + µ− ν)e−2πi(λ+µ−ν)ch[Πn(ν)]

=
∑

n∈Z

δℓ+m,nch[Πn(λ+ µ)] = ch[Πℓ+m(λ+ µ)].

Here we used that the delta-distribution for one-periodic functions is δ(x) =
∑

r∈Z

e2πirx.

3.2. Non-semisimple Examples. Presently there aren’t many examples of non-semisimple categories of
VOAs that are well-understood and here the singlet algebras and the affine VOA of sl2 at admissible levels
will be discussed. Besides those, the well-studied VOAs of non semi-simple type are the triplet algebras
[42, 43], the affine VOA of gl1|1 [27, 50], the βγ-VOA [47] and the Bp-algebras [48, 49]. All these are simple
current extensions of a singlet algebra, respectively of a singlet algebra times a Heisenberg VOA.

In our following discussion, we have to restrict weights so that expressions converge. It turns out that
the S-kernel for resolutions converge as long as the imaginary part of weights is not positive and then for
integration against S-kernels we in addition need to require (as before) that weights are real.

3.2.1. Singlet Algebras. The singlet algebrasM(p) for p ∈ Z≥2 have the realizationM(p) →֒ π with π a rank
one Heisenberg VOA. Note that the conformal vector of the singlet algebra coincides with a non-standard
conformal vector of the singlet algebra, see e.g. [2]. This algebra is studied in [2, 44–46, 55]. In particular
the existence of vertex tensor category, rigidity, being locally finite and having enough projectives are all
shown in [45, 46]. Fock modules of the Heisenberg VOA allow for two interesting vertex tensor categories.
We will consider the category D whose objects are direct sums of Fock modules of real weight. One can
enlarge this category to the category of finite-length C1-cofinite modules, which then also includes self-
extensions of arbitrary length of Fock modules. Correspondingly the singlet algebra has two categories and
we consider the category C whose analogue for complex weights is denoted by OT (M(p)) in [46]. Maybe
the simplest precise way to describe C is as the category that is equivalent to the category of real weight

modules of the small unrolled quantum group of sl2 at q = e
πi
p via the logarithmic Kazhdan-Lusztig

correspondence of [55]. This is precisely the category, so that Cloc
π

∼= D. We already discussed that D

is semisimple and admits a semisimple Verlinde algebra of quantum dimensions. That Irr(CA) = Irr(D)
is shown in [55]. The remaining assumptions are easily extracted from the literature. Firstly the Fock
modules are parameterized by its highest-weight, a complex number λ. We denote this by πλ and write
G(πλ) = Fλ. The Fλ are the basic standard modules. Set α+ =

√
2p, α− = −

√

2/p, α0 = α+ + α−. Set

αr,s =
1− r

2
α+ +

1− s

2
α−, Fr,s := Fαr,s

, πr,s := παr,s

for r ∈ Z and s = 1, . . . , p. The modules Fλ for λ /∈ {αr,s|r ∈ Z, s = 1, . . . , p− 1} are projective, injective
and simple and hence the same is true for their duals. Otherwise they satisfy a non-split exact sequence

0 → Mr−1,p−s → Fr−1,p−s → Mr,s → 0

and Mr,s for r ∈ Z and s = 1, . . . , p − 1 are the only simple modules that are not standard. From this it
is clear that basic standard modules are linearly independent. In addition the map τ : Irr(C) → Irr(D) is
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defined by τ(Fλ) = πλ on simple standard modules Fλ and τ(Mr,s) = πr−1,p−s. The singlet VOA is the
module M(p) = M1,1 and the algebra object is A = F1,1 = G(π). Splicing the exact sequences one gets a
resolution in terms of standard modules

· · · → Fr−5,p−s → Fr−4,s → Fr−3,p−s → Fr−2,s → Fr−1,p−s → Mr,s → 0. (5)

Since πα ⊗π πβ
∼= πα+β , it is obvious that the category of Fock modules with real weight is R-graded and

ρ : R → R, λ 7→ − 2

α−
λ

is a group homomorphism for which Fr,s has degree s − 1 − p(r − 1). In particular the degree of the
n-th term of the chain complex corresponding to (5) has degree −(s + 1) + p(n + 3 − r) if n is even and
s− 1 + p(n+ 2− r) if n is odd, that is these are strict ρ-ordered standard resolutions.

The singlet algebra has more modules, denoted by F r,s and fitting into the non-split exact sequence (see
equation (34) of [55])

0 → Mr,s → F r,s → Mr−1,p−s → 0.

Point (9) of Lemma 8.5 of [55] for λ = α2,p−1 = α− says that F(F 2,p−1) is a single indecomposable module
with Loewy diagram

π0 → πα−
→ π2α−

→ · · · → π(p−1)α−
.

Since induction is exact (since C is rigid) and since F(M1,1) = π0 it follows that F(M2,p−2) has Loewy
diagram

πα−
→ π2α−

→ π3α−
→ · · · → π(p−1)α−

.

Frobenius reciprocity says that

HomCA
(F(F1,1), πr,s) = HomC(F1,1, Fr,s) =

{

C (r, s) ∈ {(1, 1), (2, p− 1)

0 otherwise

since F1,1 hasM1,1 as submodule andM2,p−1
∼= F1,1/M1,1 and by exactness of induction the only possibility

is that N = F(F1,1) = π0 ⊕ F(M2,p−1).
Due to the unusual conformal vector (see [2] for details), the S-kernel of the Heisenberg VOA is Sλ,µ :=

Sπλ,πµ
= e−2πi(λ−α0

2 )(µ−α0
2 ), in particular S(r,s),µ := Sπr,s,πµ

= e−2πi(rα++sα−)(µ−α0
2 ). Set ζµ := e−πiα+µ,

so that qA(r−1−i,p−s)(µ + α0

2 ) = ζiµζ
3−r
µ ζ

− s+1
p

µ and qA(r−1−i,s)(µ + α0

2 ) = ζiµζ
2−r
µ ζ

s−1
p

µ . Then for |t| < 1 and

recall that µ ∈ R the resolution (5) tells us that

qAMr,s•(µ+
α0

2
)(t, z) =

∞
∑

i=0
i even

tizpiζ
i+3−r− s+1

p
µ −

∞
∑

i=0
i odd

tiz2s+p(i−1)ζ
i+2−r+ s−1

p
µ =

ζ
3−r− s+1

p
µ

1− ζ2µz
2pt2

− tz2sζ
3−r+ s−1

p
µ

1− ζ2µt
2z2p

= ζ
3−r− 1

p
µ

ζ
− s

p
µ − tz2sζ

s
p
µ

1− ζ2µt
2z2p

.

Thus for µ /∈ E := 1
α+

Z

qAMr,s
(µ+

α0

2
) = lim

t→1−
lim

z→1−
qAMr,s•(µ+

α0

2
)(t, z) = lim

z→1−
lim
t→1−

qAMr,s•(µ+
α0

2
)(t, z) = −ζ

2−r− 1
p

µ
sin (πsα−µ)

sin (πα+µ)
.

It follows that (recall that V = M(p) = M1,1)

qFλ
(µ+

α0

2
) =

qAFλ
(µ+ α0

2 )

qAV (µ+ α0

2 )
= − sin(πα+µ)

sin(πα−µ)
e−2πiλµζ

1
p
−1

µ

qMr,s
(µ+

α0

2
) =

qAMr,s
(µ+ α0

2 )

qAV (µ+ α0

2 )
=

sin(πsα−µ)

sin(πα−µ)
ζ1−r
µ

These can be analytically continued from functions on R \ E to C \ E. Set µ = iǫ and qǫ = eπǫ, then

qFλ
(µ+

α0

2
) = − sin(πα+µ)

sin(πα−µ)
q2λ−α0
ǫ and qMr,s

(µ+
α0

2
) =

sin(πsα−µ)

sin(πα−µ)
q−α+(r−1)
ǫ . (6)
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Jointly with Antun Milas, we studied Verlinde’s formula of the singlet algebra in the analytic setting as
follows [2]. The characters of the simple modules Mr,s are false theta functions. These don’t have good
modular properties and so we introduced a regularization parameter ǫ and studied modular transformations
of these deformed characters. We were able to use those to define a ring structure, the Verlinde algebra,
on the linear span of regularized characters and conjectured that this ring structure coincides with the one
of the Grothendieck ring [2, Conjecture 26].

We then introduced regularized quantum dimensions as the limit as the modular parameter τ approaches
zero of the quotient of the regularized character of the module M by the regularized one of the VOA M(p),

qdim[M ǫ] = lim
τ→0+

ch[M ǫ]

ch[M ǫ
1,1]

.

These are functions of the parameter ǫ and form an algebra under multiplication. We observed that this
algebra is isomorphic to the Verlinde algebra that we defined [2, Theorem 28].

The regularized quantum dimensions are [2, Proposition 27]

qdim[F ǫ
λ] = − sin(πα+µ)

sin(πα−µ)
q2λ−α0
ǫ and qdim[M ǫ

r,s] =
sin(πsα−µ)

sin(πα−µ)
q−α+(r−1)
ǫ

Comparing with (6) we observe that with µ = iǫ

qdim[F ǫ
λ] = qFλ

(µ+
α0

2
) and qdim[M ǫ

r,s] = qMr,s
(µ+

α0

2
).

Corollary 3.1. The Verlinde conjecture [2, Conjecture 26] holds for the category C of M(p).

Remark 3.2. The category of weight modules of the singlet algebra and of the small unrolled quantum

group of sl2, u
H
q (sl2), at q = e

πi
p are braided tensor equivalent [55]. The quantum group uH

q (sl2) has been
studied in [68]. Open Hopf links on simple modules provide one-dimensional representations of the tensor
ring in ribbon categories. Taking traces of open Hopf links then gives the usual Hopf links in the case of
modular tensor categories. The trace on almost all simple modules of uH

q (sl2) vanishes and one replaces

the usual trace by a modified trace on the ideal of negligible objects. This has been done for uH
q (sl2) in

[69] and the resulting modified Hopf links coincide with the regularized quantum dimension of [2].

3.2.2. The affine VOA of sl2 at admissible levels. Let Lk(sl2) be the simple affine VOA of sl2 at level
k. k is non-integral admissible if it is of the form k = −2 + u

v
with u, v ∈ Z>1 co-prime. It has been

studied extensively [1, 25, 51–53, 65, 70–74]. In particular its category of weight modules is a vertex
tensor category [52], it is rigid [53], there is a complete classification of indecomposable modules that
implies that the category of weight modules is locally finite and has enough projectives [51] and there is
a good realization [65]. Most importantly for this work, the standard formalism for Verlinde’s formula
has appeared in this case in [1, 25]. As in the singlet case, we restrict to the subcategory of real weight
modules, denote it by C. Since every intertwiner of Lk(sl2)-modules is in particular one of modules for the
Heisenberg subalgebra corresponding to the Cartan subalgebra of sl2. Since real weight modules of the
Heisenberg VOA close under tensor product the same must be true for C.

Let us first list some modules. The generic modules σℓ(Eλ;∆r,s
) are parameterized by triples (ℓ, λ,∆r,s)

where ℓ ∈ Z is called the spectral flow index. λ ∈ C/Z is a (relaxed-highest) weight and (r, s) are integers
with 1 ≤ r ≤ u− 1, 1 ≤ s ≤ v − 1 and ∆r,s is a conformal weight associated to these labels, that is

∆r,s =
(vr − us)

2 − v2

4uv
,

The special weight labels are

λr,s = r − 1− u

v
s

and there are a few relations λu−r,v−s = −λr,s − 2 and ∆u−r,v−s = ∆r,s. If λ /∈ {λr,s, λu−r,v−s}, then
σℓ(Eλ;∆r,s

) is simple, projective and injective and hence the same is true for its dual. If λ = λr,s, then

there are two modules σℓ(E+
r,s) and σℓ(E−

u−r,v−s) satisfying the non split exact sequences

0 −→ σℓ(D±
r,s) −→ σℓ(E±

r,s) −→ σℓ(D∓
u−r,v−s) −→ 0. (7)
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The non-generic simple modules are denoted by σℓ(D±
r,s) and σℓ(Lr,0) and there are quite a few identifica-

tions

σℓ+1(Lr,0) = σℓ(D+
u−r,v−1), σℓ−1(Lr,0) = σℓ(D−

u−r,v−1), σℓ−1(D+
r,s) = σℓ(D−

u−r,v−1−s), s 6= v − 1.

In particular a complete list of inequivalent simple non-generic modules is given by σℓ(D−
r,s). The affine

VOA itself is L1,0 = σ(D−
u−1,v−1). The short exact sequence (8) for σℓ(E+

r,s) in terms of the σℓ(D−
r,s) is

0 −→ σℓ+1(D−
u−r,v−s−1) −→ σℓ(E+

r,s) −→ σℓ(D−
u−r,v−s) −→ 0, s 6= v − 1

0 −→ σℓ+2(D−
r,v−1) −→ σℓ(E+

r,v−1) −→ σℓ(D−
u−r,1) −→ 0,

(8)

From this it is clear that basic standard modules are linearly independent. Drazen Adamovic introduced
the very important realization of Lk(sl2), namely an embedding ι : Lk(sl2) →֒ A = Virk ⊗Π(0).

The category of Π(0) is a category of Z×S1-graded vector spaces and in particular Virk⊗Π(0)-modules
inherit this grading. Define the morphism ρ by ρ(Lr,s ⊗ Πℓ(λ)) = −ℓ, i.e. in particular every object is
integer graded in this instance.

Let ω be the automorphism of sl2 corresponding to the Weyl reflection. It lifts to an automorphism of
the affinization of sl2 and also of Lk(sl2). It satisfies ω ◦ σℓ = σ−ℓ ◦ ω and if we consider modules twisted
by ω then one gets the following relations

ω(σℓ(D+
r,s)) = σ−ℓ(D−

r,s), ω(σℓ(E−
r,s)) = σ−ℓ(E+

r,s), ω(σℓ(Eλ;∆r,s
)) = σ−ℓ(E−λ;∆r,s

)

We consider the embedding ι ◦ ω of Lk(sl2). In terms of the realization this means that we consider the
embedding of Lk(sl2) given by the formulae (compare with Proposition 3.1 of [65])

e(z) 7→
(

(k + 2)L(z)− : ν(z)ν(z) : −(k + 1)
d

dz
ν(z)

)

e−
2
k
(µ−ν), h(z) 7→ −2µ(z), f(z) 7→ e

2
k
(µ−ν).

The identification of modules is

G(Lr,s ⊗Π−ℓ−1(λ)) ∼=











σℓ(E−2λ+k,∆r,s
) else

σℓ(E+
u−r,v−s) λ = νr,s

σℓ(E+
r,s) λ = νu−r,v−s

for νr,s :=
1

2
(r − 1− u

v
(s− 1)).

The modules σℓ(D−
r,s) appear as both submodules and quotients of simple modules in D, e.g.

G(Lr,s ⊗Π−ℓ−1(νr,s)) ∼= σℓ(E+
u−r,v−s) ։ σℓ(D−

r,s).

Thus every simple module of Lk(sl2) appears exactly once as the top of a simple module of the VOA A.
That all irreducible objects in CA are local is proven in [53].

The only reason that we use ι ◦ ω instead of ι is that [1] used resolutions in terms of the σℓ(E+
r,s) and

we want to reproduce exactly those results. The resolution of the identity is obtained by splicing (8)

· · · −→ σ3v−1(E+
r,v−1) −→ · · · −→ σ2v+2(E+

r,2) −→ σ2v+1(E+
r,1)

−→ σ2v−1(E+
u−r,v−1) −→ · · · −→ σv+2(E+

u−r,2) −→ σv+1(E+
u−r,1)

−→ σv−1(E+
r,v−1) −→ · · · −→ σ2(E+

r,2) −→ σ(E+
r,1) −→ Lr,0 −→ 0.

(9)

These resolutions are obviously strictly ρ-ordered. The resolutions of other simple objects follow recursively
from Corollary 9 of [1]. The object N is computed in [53] it is A ⊕ M , where M fits into the non-split
exact sequence 0 → L1,1 ⊗Π2(−u

v
) → M → L1,2 ⊗Π1(− u

2v ) → 0.
The resolution 9 tells us that for |t|, |z| < 1

qALr,0•(ℓ
′, λ′, r′, s′) = eπi(k−2λ′)

v−1
∑

s=1

(−1)s−1
∞
∑

ℓ=0

(

ts−1+2ℓ(v−1)z2vℓ+se−πi((kℓ′+λ′)(2vℓ+s)+ℓ′λr,s)−

t2(ℓ+1)(v−1)−sz2v(ℓ+1)−se−πi((kℓ′+λ′)(2v(ℓ+1)−s)−ℓ′λr,s)
) SVir

(r,s),(r′,s′)

SVir
(1,1),(r′,s′)

=

v−1
∑

s=1

(−1)s−1 t
s−1zse−πi((kℓ′+λ′)s+ℓ′λr,s) − t2(v−1)−sz2v−se−πi((kℓ′+λ′)(2v−s)−ℓ′λr,s)

1− t2(v−1)z2ve−2πiv(kℓ′+λ′)

SVir
(r,s),(r′,s′)

SVir
(1,1),(r′,s′)

(10)
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so this is a nice rational function in t, z. The limit t, z → 1− doesn’t depend on the order and is a rational
function in trigonometric functions. Using Lemma 10 of [1] this can be simplified as in the proof of Theorem
11 of [1]. The answer is

qALr,0
(ℓ′, λ′, r′, s′) =

e−πiℓ′(k+r−1)

2 cos(πλ′) + 2(−1)r cos(kπs′)

SVir
(r,s),(r′,s′)

SVir
(1,1),(r′,s′)

.

Since all assumptions of our main Theorem hold, we have verified that

Corollary 3.3. The Verlinde formula of [1, 25] for the category of real weight modules of Lk(sl2) holds.

It is not difficult to get the actual fusion rules from Verlinde’s formula together with exactness of the
tensor product. We demonstrate this for simple and projective modules.

Let k be admissible with v > 1. The Verlinde fusion rules of standard modules are [1, Proposition 13]

[

σℓ(Eλ;∆r,s
)
]

×V

[

σℓ′(Eλ′;∆r′,s′
)
]

=
∑

r′′,s′′

N
Vir (r′′,s′′)
(r,s)(r′,s′)

([

σℓ+ℓ′+1(Eλ+λ′−k;∆r′′,s′′
)
]

+

[

σℓ+ℓ′−1(Eλ+λ′+k;∆r′′,s′′
)
])

+
∑

r′′,s′′

(

N
Vir (r′′,s′′)
(r,s)(r′,s′−1) + N

Vir (r′′,s′′)
(r,s)(r′,s′+1)

) [

σℓ+ℓ′(Eλ+λ′;∆r′′,s′′
)
]

.

In this and the following formulae
[

σℓ(Eλ;∆r,s
)
]

=
[

σℓ(E+
r,s)

]

if λ = λr,s. Also recall that ∆r,s = ∆u−r,v−s.

Since C is rigid, the tensor product of a module with a projective module is projective. The standard
projective modules are the σℓ(Eλ;∆r,r

), for λ /∈ {λr,sλu−r,v−s} The projective modules at non-generic weight

labels are denoted by σℓ(Sr,s) and satisfy the relations
[

σℓ(Sr,s)
]

=
[

σℓ(E+
r,s)

]

+
[

σℓ+1(E+
r,s+1)

]

for s 6=

v − 1 and
[

σℓ(Sr,v−1)
]

=
[

σℓ(E+
r,v−1)

]

+
[

σℓ+2(E+
r,v−1)

]

in K(C). Let KProj(C) be the subring of K(C)

spanned by elements [P ] for P projective in C. Clearly two projective modules in C are isomorphic if and
only if they have the same standard modules (the σℓ(E+

r,s)) as composition factors. Thus there is a well-

defined map P : KProj(C) → Obj(C) assigning to each element in KProj(C) its unique projective object.
Explicitly:

P :
[

σℓ+1(Eλ−k;∆R,S
)
]

+
[

σℓ(Eλ;∆R,S−1)
]

7→ σℓ(SR,S−1), for λ− k = λR,S and S 6= 1

P :
[

σℓ+1(Eλ−k;∆R,1)
]

+
[

σℓ−1(Eλ;∆R,1)
]

7→ σℓ−1(Su−R,v−1), for λ− k = λR,1

P :
[

σℓ−1(Eλ+k;∆R,S
)
]

+
[

σℓ(Eλ;∆R,S+1)
]

7→ σℓ(SR,S+1), for λ+ k = λR,S and S 6= v − 1

P :
[

σℓ(Eλ;∆R,S
)
]

7→ σℓ(Eλ;∆R,S
), for λ /∈ {λR,S , λu−R,v−S}

We thus get the following actual fusion rules (see [75, Conjecture] for a nice presentation)

σℓ(Eλ;∆r,s
)⊗V σℓ′(Eλ′ ;∆r′,s′

) = P
([

σℓ(Eλ;∆r,s
)
]

×V

[

σℓ′(Eλ′;∆r′,s′
)
])

, λ /∈ {λr,s, λu−r,v−s}

σℓ(Sr,s)⊗V σℓ′(Eλ′ ;∆r′,s′
) = P

([

σℓ(Sr,s)
]

×V

[

σℓ′(Eλ′ ;∆r′,s′
)
])

σℓ(Sr,s)⊗V σℓ′(Sr′,s′) = P
([

σℓ(Sr,s)
]

×V

[

σℓ′(Sr′,s′)
])

Note that Corollary 2.9 tells us that standard modules form a tensor ideal and so the fusion product
σℓ(E+

r,s) ⊗V σℓ′(E+
r′,s′) can only be a direct sum of projective and modules whose composition factors are

of type σℓ′′(E+
r′′,s′′). Together with exactness of tensor product it is then also easy to obtain those fusion

products. The same reasoning also applies to the modules of type σℓ(E−
r,s), simply by using the second

realization of Lk(sl2), where the standard modules are the σℓ(E−
r,s) together with the σℓ(Eλ;∆r,s

). In

particular σℓ(E+
r,s)⊗V σℓ′(E−

r′,s′) is projective.
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We turn to the astandard simple modules. The Grothendieck fusion rules involving the σℓ(D+
r,s) are

(Proposition 18 [1])
[

σℓ(Eλ;∆r,s
)
]

×V

[

σℓ′(D+
r′,s′)

]

=
∑

r′′,s′′

N
Vir (r′′,s′′)
(r,s)(r′,s′+1)

[

σℓ+ℓ′(Eλ+λr′ ,s′ ;∆r′′,s′′
)
]

+
∑

r′′,s′′

N
Vir (r′′,s′′)
(r,s)(r′,s′)

[

σℓ+ℓ′+1(Eλ+λr′ ,s′+1;∆r′′,s′′
)
]

,

[

σℓ(D+
r,s)

]

×V

[

σℓ′(D+
r′,s′)

]

=















































∑

r′′,s′′

N
Vir (r′′,s′′)
(r,s)(r′,s′)

[

σℓ+ℓ′+1(Eλr′′ ,s+s′+1;∆r′′,s′′
)
]

+
∑

r′′

N
Vir (r′′,1)
(r,1)(r′,1)

[

σℓ+ℓ′(D+
r′′,s+s′)

]

, if s+ s′ < v,

∑

r′′,s′′

N
Vir (r′′,s′′)
(r,s+1)(r′,s′+1)

[

σℓ+ℓ′+1(Eλr′′ ,s+s′+1;∆r′′,s′′
)
]

+
∑

r′′

N
Vir (r′′,1)
(r,1)(r′,1)

[

σℓ+ℓ′+1(D+
u−r′′,s+s′−v+1)

]

, if s+ s′ > v.

we verify that the σℓ+ℓ′+1(Eλr′′ ,s+s′+1;∆r′′,s′′
) appearing in the decomposition of

[

σℓ(D+
r,s)

]

×V

[

σℓ′(D+
r′,s′)

]

are all projective and simple and so one gets

σℓ(Eλ;∆r,s
)⊗V σℓ′(D+

r′,s′) = P
([

σℓ(Eλ;∆r,s
)
]

×V

[

σℓ′(D+
r′,s′)

])

, λ /∈ {λr,s, λu−r,v−s}

σℓ(D+
r,s)⊗V σℓ′(D+

r′,s′) =















































⊕

r′′,s′′

N
Vir (r′′,s′′)
(r,s)(r′,s′) σℓ+ℓ′+1(Eλr′′ ,s+s′+1;∆r′′,s′′

)

+
⊕

r′′

N
Vir (r′′,1)
(r,1)(r′,1) σℓ+ℓ′(D+

r′′,s+s′), if s+ s′ < v,

⊕

r′′,s′′

N
Vir (r′′,s′′)
(r,s+1)(r′,s′+1) σℓ+ℓ′+1(Eλr′′ ,s+s′+1;∆r′′,s′′

)

+
⊕

r′′

N
Vir (r′′,1)
(r,1)(r′,1) σℓ+ℓ′+1(D+

u−r′′,s+s′−v+1), if s+ s′ > v.
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