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Abstract

We conduct an investigation of the differentiability and continuity of reward functionals

associated to Markovian randomized stopping times. Our focus is mostly on the differen-

tiability, which is a crucial ingredient for a common approach to derive analytic expres-

sions for the reward function.

2020 MSC: Primary 60G40; secondary 60J35, 60J55

key words: reward functional, Markovian randomized stopping times, linear diffusion, regularity, differ-

entiability

1. Introduction

A common problem in stochastic calculus is to derive analytic expressions for reward func-

tionals

J�(x) ∶= Ex[e−r�g(X�)],
with a given stopping time �. In the literature this problem has been discussed extensively for

a variety processes X , functions g and stopping times �, see e.g. [8, 11, 12, 14]. Here, let us first
consider the case where X = (Xt)t∈[0,∞) is a linear diffusion with values in an interval I , r ≥ 0
is a discount factor and g a Hölder continuous payoff function. �e solution to our problem is

most well know if � is a first exit time of some open interval (a, b) ⊂ I , see e.g. [12, Section 9].

Due to their connection to subgame perfect Nash equilibria, so calledMarkovian randomized

stopping times1 are of particular interest in the context of games of stopping and were recently

considered in [2, 3, 5, 6, 9, 16]. �is class of stopping times will be formally introduced in

Section 2 and contains, among others, all stopping times of the form

� = inf {t ≥ 0 ∶ ∫t
0  (Xs)ds ≥ E or Xt ∉ (a, b)} (1)
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with a < b ∈ I , a Hölder continuous function  ∶ I → [0,∞) and an exponentially distributed

random variable E. Here,  plays the role of an infinitesimal stopping rate. Note that first exit

times of open intervals are a contained as a special case. For � given by (1) the corresponding

reward function J� is typically determined as the unique solution to the ordinary differential

equation

(A − r −  )J� = −g (2)

on (a, b) with boundary conditionsJ�(a) = g(a), J�(b) = g(b) (3)

where A denotes the differential generator of the diffusion X , see [8, �eorem 13.16]. Pro-

vided that the coefficients of the differential operator A are sufficiently nice, this allows to to

determine an analytic expression for J� .
However, if  is merely piecewise Hölder continuous J� must no longer be C2 in the jumps . �us (2) cannot hold as a second order ODE on (a, b) in the classical sense. �is situation

is encountered in [3], where equilibrium stopping rates  are piecewise Hölder continuous by

the nature of the problem. Generally, discontinuous stopping rates  could be considered in

any kind of stopping game in which Markovian randomized stopping times are equilibrium

candidates, such as [2] or [4].

Now let only satisfyHölder conditions on (x0, x1), (x1, x2), (x2, x3), ..., (xn−1, xn), x0 ∶= a, xn ∶=
b. General theory still provides that on each interval (xi−1, xi), i = 1, ..., n the function J� is twice
continuously differentiable and satisfies (2), see �eorem 1, (ii). To salvage the approach and

recover an analytic expression for J� from (2) posed on (xi−1, xi), i = 1, ..., nwe need appropriate
boundary conditions on each interval. Since (2) is a second order differential equation, as a rule

of thumb, we need two boundary conditions for each interval (xi−1, xi), i = 1, ..., n. Taking into
account (3) we still need 2n−2 conditions. It is comparatively simple to show that J� is contin-

uous on (a, b) which yields the first n−1 conditions, see �eorem 1, (i). �e challenging part is

to show that J� is even differentiable on (a, b) which gives the remaining n − 1 conditions, see
�eorem 1, (iii).

In fact it is surprisingly simple to put that idea in more precise terms. For that let �(a,b) ∶=inf{t ≥ 0 ∶ Xt ∉ (a, b)} and assume Ex[�(a,b)] < ∞. Now, if J̃ is C0 on [a, b], C1 on (a, b), C2 on⋃i∈{1,...,n}(xi−1, xi) and satisfies (2) on (xi−1, xi), i = 1, ..., n as well as (3), then J̃ = J� . �is follows

from the subsequent computation, which will by justified step by step below. We have

J̃ (x) =Ex[e−r�(a,b)−∫ �(a,b)0  (Xt )dtJ (X�(a,b))]
− Ex [∫�(a,b)

0 1{Xt∉{x1,...,xn−1}}e−r t−∫ t0  (Xs)ds(A − r −  )J̃ (Xt)dt]
=Ex[e−r�(a,b)−∫ �(a,b)0  (Xt )dtg(X�(a,b))] + Ex [∫�(a,b)

0 e−r t−∫ t0  (Xs)ds (Xt)g(Xt)dt]
=J�(x).
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In the first step we use a version of Dynkin’s formula based on the generalized Itô formula

[15, Chapter IV, �eorem 71]. �is formula requires that J̃ is C1 with absolutely continuous

derivative. Here, the absolute continuity of J̃ is implied by the piecewise C2 assumption. Note

that Dynkin’s formula also involves the assumption Ex[�(a,b)] < ∞. Besides that we use thatEx[∫ t0 1{Xs∈{x1,...,xn−1}}ds] = 0 for all t ≥ 0. In the second step we apply (2) and (3). �e last equality

follows from (19) which will be shown later on.

�e main contribution of the present paper is a proof of the C1 property of J� with � given

by (1), but with  being merely piecewise Hölder continuous, which is a crucial part of the

previous argument. Additionally, we show continuity of J� for general Markovian randomized

stopping times � under very mild conditions. Both results are stated in �eorem 1 next to a

known result which provides sufficient conditions for J� to be C2.
2. General framework

We consider a regular linear Itô diffusion X = (Xt)t∈[0,∞) taking values in an interval I ⊂ ℝ
and defined on a filtered probability space (Ω, , (t )t∈[0,∞),ℙ) satisfying the usual hypotheses.
Generally we assume that the behavior of X in the interior I ◦ of I is governed by the stochastic
differential equation

dXt = �(Xt)dt + �(Xt)dWt , X0 = x ∈ I ◦ (4)

with an (t)t∈[0,∞)-adapted, real valued standard Brownian motion W = (Wt)t∈[0,∞) and Lip-

schitz continuous coefficients � ∶ I → ℝ, � ∶ I → (0,∞). A jointly continuous version of the

local time process of X at y ∈ I will be denoted by (lyt )t∈[0,∞). �e existence of such a version

follows e.g. from [17, �eorem (44.2)]. Let E ∼ Exp(1) be a random variable on (Ω, ,ℙ)
which is independent from X . We set X∞ ∶= �(Xt ∶ t ≥ 0) and denote the canonical shi�

operator associated to X by �. If Y is any random variable on (Ω, , (t )t∈[0,∞),ℙ) with values

in somemetric space, we denote its distribution by ℙY . As usual, we writeℙx for the conditional
distribution of ℙ given X0 = x and Ex for the corresponding expectation operator. We writeE ∙ [...] for the function I ∋ x ↦ Ex[...].

For open or closed D ⊂ I we denote the Borel �-algebra on D by (D), the space of Radon

measures on D by RM(D) and set B(D) ∶= {f ∶ D → ℝ ∶ f is bounded and measurable},

C0(D) ∶= {f ∶ D → ℝ ∶ f is continuous}, Cm(D) ∶= {f ∶ D → ℝ ∶ f is m times continuously

differentiable}. If f ∶ D → [0,∞) is Lebesgue integrable, we denote the measure that maps

Γ ∈ (D) to ∫Γ f dx by f dx. For D′ ⊂ D ⊂ I and functions f ∶ D → ℝ or measures � ∈ RM(D)

we denote the restrictions of f and � to D′ by f |D′ and �|D′ respectively. We call f ∶ D → ℝ
piecewise Hölder continuous, if there are inf D = x0 < x1 < ... < xn = supD, n ∈ ℕ such that

f |D∩(xi−1,xi) is Hölder continuous (possibly with different exponents) for each i ∈ {1, ..., n}.

We denote the first exit time from open D ⊂ I by

�D ∶= inf{t ≥ 0 ∶ Xt ∉ D}

For D ⊂ I open (in I ) and � ∈ RM(D). We set the additive functional AD,� = (AD,�t )t∈[0,∞)
generated by X,D and � to be given by

AD,�t (!) ∶= ∫
D
l
y
t (!)�(dy) + ∞1{�D(!)≤t}, t ≥ 0. (5)
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We define the Markovian randomized (stopping) time generated by D, � and E as�D,� ∶= inf{t ≥ 0 ∶ AD,�t ≥ E}. (6)

�e space of all Markovian randomized stopping times based on the random variable E is de-

noted by

 ∶= (E) ∶= {�D,� ∶ D ⊂ I open (in I ), � ∈ RM(D)}.
Markovian randomized stopping times � ∈  feature a Markov property of the following

type: With a natural extension of the shi� operator � it holds that
1{�≥�}� = 1{�≥�}�� ◦ � + �

in distribution for all X∞ -measurable �, see [3]. More detailed discussions can be found in [6,

Section 3].

We fix a measurable function g ∶ I → ℝ and a constant r ≥ 0. Based on that define the

reward functional corresponding to � ∈  viaJ�(x) ∶= J (x, �) ∶= Ex[e−r�g(X�)], x ∈ I
whenever the right hand side exists possibly taking value ±∞. Note that

J�D,�(x) = g(x)
for all �D,� ∈  and all x ∈ I ⧵ D, so the behavior of J�D,� on I ⧵ D is predetermined by g . �us,

in the following we are only concerned with differentiability on D and with continuity on the

closure D of D (in I ).
3. Main result

�eorem 1. Let � = �D,� ∈ , A ∶= AD,� and inf I ≤ a < b ≤ sup I such that (a, b) ⊂ D andEx[�(a,b)] < ∞ for all x ∈ (a, b).
(i) If g is bounded on (a, b), �((a, b)) < ∞ and J�(y) ∈ ℝ for all y ∈ I ∩ {a, b} then J� |[a,b] ∈

C0([a, b]).
(ii) Let  ∶ (a, b) → [0, ∞) be Hölder continuous. Suppose that �|(a,b) =  

�dx, that g is Hölder

continuous on (a, b) and that J�(y) ∈ ℝ for all y ∈ I ∩ {a, b}. �en J� |(a,b) ∈ C2((a, b)).
(iii) Let  ∶ (a, b) → [0,∞) be piecewise Hölder continuous. Suppose that �|(a,b) =  

� dx, thatg is Hölder continuous on (a, b) and that J�(y) ∈ ℝ for all y ∈ I ∩ {a, b}. �en J� |(a,b) ∈
C1((a, b)).

Remark. In fact our main contribution is (iii). �e other two statements are mostly for com-

pleteness, with (i) being less involved on our part and (ii) a direct consequence of a result from

[8]. Continuity of the functional J as well as related functionals including those treated in
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Lemma 2 has been studied extensively, e.g. by [7, 8, 10]. Assembling suitable results from the

various sources already leads us most of the way towards (i).

�e proof of (iii) consists of two major parts. �e first one is to show that J� is in the domain

of the characteristic operator of X (defined according to [7]). �e second part is to put this

togetherwith (i) and (ii) to prove the claim. �e first part follows a line of arguments from [7, 8].

Lemma 3, Lemma 4 and Lemma 5 are adaptations of theorems from [7, 8] that accommodate

for our deviating general assumptions, in particular that we allow discontinuity of  .
In the following we use the terms infinitesimal operator, weak infinitesimal operator, char-

acteristic operator, resolvent, potential, standard process, continuous homogeneous multi-

plicative functional, (standardized) �-subprocess, canonical diffusion and weak convergence

according to the definitions in [7]. We merely note that for open D ⊂ I this means weak

convergence of a sequence (fn)n∈ℕ in B(D) to some f ∈ B(D) is defined via the property∫ fnd� → ∫ f d� for all finite measures � on D. We denote the domain of a (weak) infinites-

imal operator A by A. Similarly, for the characteristic operator A of a Markov process with

values in J ⊂ I we denote the set of all measurable functions such that Af (x) exists for a

fixes x ∈ J by A(x). Moreover, the domain of A, i.e. the set of all measurable functions

such that Af (y) exists for all y ∈ J , is denoted by A. We will also use the notation for

Markov processes from [7, Subsection 3.1]. �ere, a Markov process is denoted as a quadruple

Y = (Yt , � ,t , Qx) = ((Yt )t∈[0,∞), � , (t)t∈[0,∞), (Qx)x∈) consisting of paths (Yt)t∈[0,∞), lifetime

� , filtration at lifetime (t)t∈[0,∞), i.e. t is a �-algebra on {! ∈ Ω ∶ � (!) > t} with A ∈ s

implying A∩{� > s′} ∈ s′ for all s ≤ s′ and transition probabilitiesQx , x ∈  with  denoting

the state space of Y . In particular, the process X from Section 2 is a standard process which

reads X = (Xt ,∞,t ,ℙx).
�e next lemma is concerned with the continuity of two expectations which are closely

related to J� from �eorem 1. It will not only lead us most of the way towards the proof of

�eorem 1 (i) but also be used to show that Lemma 3 can be applied in the proofs of Lemma 4

and Lemma 5.

Lemma 2. Let �D,� ∈ , A ∶= AD,� the corresponding additive functional given by (5), �̃ ∈

RM(D), Ã ∶= AD,�̃ the functional corresponding to D, � given by (5), J ⊂ D an open interval,

� ∶= �J and ℎ ∶ I → ℝ a bounded measurable function. Additionally, we set Ãt− ∶= lims↗t Ãs
with convention Ã0− ∶= 0.

(i) If � < ∞ ℙx-a.s. for all x ∈ J , then the function f ∶ I → ℝ,
x ↦ Ex[e−A�ℎ(X�)]

is continuous on the closure J of J (in I ).

(ii) If Ex[�] < ∞ for all x ∈ J , �|J , �|J are bounded and �̃(J ) < ∞, then the function F ∶ I → ℝ,
x ↦ Ex [∫�

0 e
−Atℎ(Xt)dÃt]

is continuous on I . We use the convention ∫ �0 ∶= ∫[0,�).
5



Proof. (i) Since ℎ is bounded, f is clearly well defined. Set J ∶= (a, b) for a < b ∈ [−∞,∞]. Note

that a, b are not necessarily in I .

For y ∈ ℝ let �y ∶= inf{t ≥ 0 ∶ Xt = y}, with convention inf ∅ ∶= ∞. �e strong Markov

property yields

f (x) = Ex[1{�y≤�}e−(��y ◦A�+A�y )ℎ(X��y ◦A�+A�y )] + Ex[1{�y>�}e−A�ℎ(X�)]
= Ex[1{�y≤�}e−A�yEx[e−��y ◦A�ℎ(X��y ◦A�+A�y )|�y ]] + Ex[1{�y>�}e−A�ℎ(X�)]
= Ex[1{�y≤�}e−A�yEX�y [e−A�ℎ(X�)] + Ex[1{�y>�}e−A�ℎ(X�)]
= Ex[1{�y≤�}e−A�y ]Ey[e−A�ℎ(X�)] + Ex[1{�y>�}e−A�ℎ(X�)]
= Ex[1{�y≤�}e−A�y ]f (y) + Ex[1{�y>�}e−A�ℎ(X�)]

for all x, y ∈ I . �us|f (x) − f (y)| = |Ex[1{�y≤�}e−A�y ]f (y) + Ex[1{�y>�}e−A�ℎ(X�)] − f (y)|≤ |f (y)|(1 − Ex[1{�y≤�}e−A�y ]) + ( sup
z∈I |ℎ(z)|)Ex[1{�y>�}] (7)

for all x, y ∈ I . By symmetry it suffices to show that both summands on the right hand side of

(7) go to 0, whenever J ∋ x → y ∈ J .

We start with the first summand. Since X is a regular diffusion, limJ∋x→y ℙx(�y < ") = 1

for all " > 0, cf. [10, Section 3.3, 10c)]. By continuity of paths ℙx(� > 0) = 1 for all x ∈ J . By

construction t ↦ At is continuous on [0, �
D) with A0 = 0. Pu�ing that together we find thatEx[1{�y≤�}e−A�y ] J∋x→y⟶ 0.

We treat the second summand next. If y ∈ {a, b}, then Ey[1{�y>�}] = 0 and we are done. For

y ∈ (a, b) we have Ex[1{�y>�}] = ℙx(�y > �b) if y ≤ x ≤ b and Ex[1{�y>�}] = ℙx(�y > �a) if a ≤
x ≤ y. By [10, Section 4.4] the functions [y, b] ∋ x ↦ ℙx(�y > �b) and [a, y] ∋ x ↦ ℙx(�y > �a)

are continuous with ℙx(�x > �b) = 0 and ℙx(�x > �a) = 0, which proves the claim.

(ii) Let  ∶ J → ℝ, x ↦ �̃((a, x]) and Ψ ∶ J → ℝ, x ↦ ∫ x0  (y)dy. Note that �̃(J ) < ∞ implies

that  is bounded and Ψ is continuous and bounded. For x ∈ J and t < �D the Itô-Meyer

formula, cf. [15, Chapter 3, �eorem 70], provides

Ãt = ∫
J
l
y
t �̃(dy) = 2(Ψ(Xt) − Ψ(x) − ∫ t

0  (Xs)dXs)
= 2Ψ(Xt) − 2Ψ(x) − ∫ t

0 2 (Xs)�(Xs)ds − ∫ t

0 2 (Xs)�(Xs)dWs .

ℙx-a.s. By continuity of the paths of A on [0, �D) in particular

Ãt− = 2Ψ(Xt) − 2Ψ(x) − ∫t

0 2 (Xs)�(Xs)ds − ∫t

0 2 (Xs)�(Xs)dWs (8)

ℙx-a.s. for all x ∈ J and all t ≤ �D. We find that

F (x) ≤ ( sup
z∈I |ℎ(z)|)Ex[∫�

0 dÃ�] = ( sup
z∈I |ℎ(z)|)Ex[Ã�−]

=( sup
z∈I |ℎ(z)|)(Ex[2Ψ(X�)] − 2Ψ(x) − 2Ex [∫�

0 2 (Xs)�(Xs)ds] − Ex [∫�

0 2 (Xs)�(Xs)dWs])
6



for all x ∈ I . Since ℎ,  ,Ψ, �|J and �|J are bounded and Ex[�] < ∞ the function F is well defined.

For all x, y ∈ I the strong Markov property yields

F (x) =Ex [1{�y≤�} ∫�y

0 e−Atℎ(Xt)dÃt] + Ex [1{�y≤�}Ex [∫��y ◦�
��y ◦�y e−Atℎ(Xt)dÃt

||||�y]]
+ Ex [1{�y>�} ∫�

0 e
−Atℎ(Xt)dÃt]

=Ex [1{�y≤�} ∫�y

0 e−Atℎ(Xt)dÃt] + Ex [1{�y≤�}EX�y [∫�y

0 e−Atℎ(Xt)dÃt]]
+ Ex [1{�y>�} ∫�

0 e
−Atℎ(Xt)dÃt]

=Ex[1{�y≤�}]F (y) + Ex [1{�y≤�} ∫�y

0 e−Atℎ(Xt)dÃt]
+ Ex [1{�y>�} ∫�

0 e
−Atℎ(Xt)dÃt] . (9)

Applying (8) to (9) we obtain|F (x) − F (y)|
=
||||F (y)(1 − Ex[1{�y≤�}]) + Ex [1{�y≤�} ∫�y

0 e−Atℎ(Xt)dÃt] + Ex [1{�y>�}∫�

0 e
−Atℎ(Xt)dÃt] ||||≤|F (y)|(1 − Ex[1{�y≤�}]) + ( sup

z∈I |ℎ(z)|)Ex[1{�y≤�}Ã�y−] + ( supz∈I |ℎ(z)|)Ex[1{�y>�}Ã�−]≤|F (y)|(1 − ℙx(�y ≤ �)) + ( sup
z∈I |ℎ(z)|)Ex[Ã(�y∧�)−] + ( sup

z∈I |ℎ(z)|)Ex[Ã(�y∧�)−]
=|F (y)|(1 − ℙx(�y ≤ �)) + 2( sup

z∈I |ℎ(z)|)(2Ex[Ψ(X�y∧�)] − 2Ψ(x))
− 2( sup

z∈I |ℎ(z)|)Ex[∫�y∧�
0 2 (Xs)�(Xs)ds − ∫�y∧�

0 2 (Xs)�(Xs)dWs]≤|F (y)|(1 − ℙx(�y ≤ �)) + 4( sup
z∈I |ℎ(z)|)|Ex[Ψ(X�y∧�)] − Ψ(x)|

+ 4( sup
z∈I |ℎ(z)|)Ex[�y ∧ �]( supz∈J | (z)�(z)|). (10)

for all x ∈ J and all y ∈ I . For the last step note that Y = (Yt)t∈[0,∞), Yt ∶= ∫ t0 1{s<�y∧�} (Xs)�(Xs)dWs ,

t ≥ 0 is a true martingale. �us, invoking Ex[�] < ∞ the expectation vanishes by the optional

sampling theorem.

By symmetry it suffices to show that all the summands on the right hand side of (10) go to

0, whenever J ∋ x → y ∈ J . �e first summand has already been dealt with.
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We denote the scale function of X by s. We have

Ex[Ψ(X�y∧�)] =
{
Ψ(y)ℙx(X�y∧� = y) + Ψ(a)ℙx(X�y∧� = a), if a ≤ x ≤ y,

Ψ(y)ℙx(X�y∧� = y) + Ψ(b)ℙx(X�y∧� = b), if y ≤ x ≤ b

=

{
Ψ(y) s(x)−s(a)s(y)−s(a) + Ψ(a) s(y)−s(x)s(y)−s(a) , if a ≤ x ≤ y

Ψ(y) s(b)−s(x)
s(b)−s(y) + Ψ(b) s(x)−s(z)s(b)−s(y) , if y ≤ x ≤ b

for all x ∈ J . s is continuous, cf. [10, Section 4.2]. �us, the function J ∋ x ↦ Ex[Ψ(X�y∧�)]
is continuous with limJ∋x→y Ex[Ψ(X�y∧�)] = Ψ(y), i.e. limJ∋x→y Ex[Ψ(X�y∧�)] − Ψ(x) = 0 by

continuity of Ψ. �is means the second summand in (10) vanishes for J ∋ x → y.

For x ∈ J and y ∈ J we either have Ex[�y ∧ �] = Ex[�y ∧ �a] or Ex[�y ∧ �] = Ex[�y ∧ �b]
depending on whether y ≤ x ≤ b or a ≤ x ≤ y. �e mappings [y, b] ∋ x ↦ Ex[�y ∧ �a] and
[a, y] ∋ x ↦ Ex[�y ∧ �a] are continuous with Ey[�y ∧ �a] = 0 and Ey[�y ∧ �a] by [10, Section

4.2, 20a), 20b)] since X is a regular diffusion. �us the second and third summand vanish for

y → x which proves the claim.

Lemma 3. Let Y = (Yt)t∈[0,∞) be a standard process with continuous paths and values in an

interval J ⊂ ℝ. Let A be the weak infinitesimal operator of Y and  ∶ J → [0,∞) a bounded

measurable function with the propertyE ∙ [ (Yt)] →  weakly for t ↘ 0. We set ' ∶= ('t)t∈[0,∞),
't ∶= ∫t

0  (Ys)ds, t ≥ 0.

Let Ã denote the weak infinitesimal operator of the transition function ℙ̃ given by

ℙ̃(t, x, Γ) ∶= Ex[1Γ(Yt)e−'t ], t ≥ 0, x ∈ J , Γ ∈ (J ).

Now

Ã ∩ C
0(J ) ∩ B(J ) = A ∩ C

0(J ) ∩ B(J )
and

Ãf = Af −  f

for all f ∈ Ã ∩ C
0(J ) ∩ B(J ).

Remark. �is lemma is an adaptation of [7, �eorem 9.7] in the weak formulation outlined

in subsequent remark, cf. [7, p. 299]. �e original weak formulation of the theorem yields

Ã = A provided that the additional condition (9.62) from [7, p. 299] is satisfied.

Proof. Clearly supx∈J Ex['t] → 0 for t ↘ 0. �us the weak formulation of [7, �eorem 9.6]

from the subsequent Remark 1, [7, p. 297] yields

cE − Ã = (c id −A)(id +Sc) (11)
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for some c > 0, where id denotes the identity operator and Sc maps a measurable functionf ∶ J → ℝ to the function Scf (x) ∶= Ex[∫∞0 e−ctf (Yt) (Yt)dt], x ∈ J , whenever the right hand
side is well defined and finite. We denote the resolvent operator of the semigroup generated

by (the transition function of) Y by Rc, c > 0, cf. [7, Subsection 5.1]. Now by definitionScf (x) = Rc(f  )(x), x ∈ J .
Together with (11) this implies

Ã = {f ∈ B(J ) ∶ f + Rc(f  ) ∈ A}. (12)

Let f C0(J ) ∩ B(J ). By [7, �eorem 1.7] Rc(f  ) ∈ A if E ∙ [f (Yt) (Yt)] → f  weakly for

t ↘ 0. However, for each x ∈ J|Ex[f (Yt) (Yt )] − f (x) (x)| ≤ |Ex[(f (Yt) − f (x)) (Yt )]| + |f (x)(Ex[ (Yt)] −  (x))|≤( sup
y∈I  (y))Ex[(f (Yt) − f (x))] + |f (x)(Ex [ (Yt)] −  (x))| t↘0⟶ 0

by dominated convergence using f ∈ C0(J ) ∩ B(J ) and due to the assumption on  . As f and  

are both bounded, dominated convergence also yields E ∙ [f (Yt) (Yt)] → f  weakly for t ↘ 0

as desired.

If f ∈ Ã∩C
0(J )∩B(J ), then f +Rc(f  ) ∈ A by (12). Rc(f  ) ∈ A has already been shown

and so by linearity f = (f + Rc(f  )) − Rc(f  ) ∈ A.

If f ∈ A ∩ C
0(J ) ∩ B(J ), then since Rc(f  ) ∈ A also f + Rc(f  ) ∈ A. By (12) this implies

f ∈ Ã.

To prove the final claim let f ∈ Ã ∩ C
0(J ) ∩ B(J ). Once again by [7, �eorem 9.6]

(c id −Ã)f = (c id −A)(id +Sc)f = (c id−A)f + (c id −A)Rc( f ) = (c id −A)f +  f ,
i.e. Ãf = Af −  f .

Lemma 4. LetA denote the characteristic operator ofX . Moreover, let J ⊂ I be an open interval

with �J < ∞ ℙx-a.s. for all x ∈ J and  ∶ J → [0,∞) a bounded measurable function. Assume

that E ∙ [ (Xt∧�J )]|J →  weakly for t ↘ 0. We extend  to I by 0 outside of J , set � ∶= �J and

f (x) ∶= Ex [e− ∫ �0  (Xs)dsg(X�)]
for all x ∈ I . �en f is continuous with

Af (x) −  (x)f (x) = 0

and in particular f ∈ A(y) for all y ∈ J .

Remark. �e proof of this result is analogous to the proof of [8, �eorem 13.11] up to the part

where we apply Lemma 3 instead of its counterpart [7, �eorem 9.7].
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Proof. Note that f is continuous by Lemma 2 (i).

Let X̂ = (X̂t)t∈[0,∞), be given by X̂t(!) ∶= Xt∧�(!)(!), t ∈ [0,∞). By [7, �eorem 10.3]

X̂ = (X̂t ,∞,t ,ℙx) is a standard process. Let � = (�t)t∈[0,∞) be given by

�t ∶= e− ∫ t0  (X̂)ds , t ≥ 0.

Clearly� is a continuous homogeneousmultiplicative functional of X̂ . We let X̃ = (X̃t , �̃ , ̃t , ℙ̃x)
denote the standardized �-subprocess of X̂ , cf. [7, Subsection 10.10, Subsection 10.12, Subsec-

tion 10.17]. In particular this means that X̃ is a process on (Ω × [0,∞], ̃ ⊗ ([0,∞])) with ̃

denoting the �-algebra generated by ̃t , t ≥ 0, �̃ (!, t) ∶= t, X̃t ∶= X̂t(!), t < � (!, t) and ℙ̃x are
such that

ℙ̃x(X̃t ∈ Γ) = Ex[1Γ(X̂t)�t] (13)

for all Γ ∈ (I ). Moreover, X̃ is a standard process, cf. [7, �eorem 10.7]. Now let F ∶ I → ℝ
be bounded and measurable and x ∈ J . We denote the expectation corresponding to ℙ̃x by Ẽx .
Now (13) extends to

Ẽx[F (X̃t)] = Ex[F (X̂t)�t].
Using X̂t = Xt∧� and �t = �t∧� for all t ≥ 0 since  = 0 outside of J , we find that

Ẽx[F (X̃t)] = Ex[1{t<�}F (X̂t)�t] + Ex[1{t≥�}F (X�)��].
Since we assumed � < ∞ ℙx-a.s. and that F is bounded, dominated convergence yields

lim
t→∞ Ẽx[F (X̃t)] = Ex[F (X�)��]. (14)

From now on let F be bounded and measurable such that F = g on the boundary )J ⊂ I of J .

By definition of f , followed by dominated convergence applied to (14) we infer

f (x) = Ex[g(X�)��] = lim
t→∞ Ẽx[F (X̃t)].

�us, for the weak infinitesimal generator Ã of X̃ we have Ãf = 0 and in particular f ∈ Ã.

We denote the weak infinitesimal operator of X̂ by Â. Note that X̂ is a standard process with

continuous paths and sinceEy[ (Xt∧�)] =  (y) for all y ∈ I⧵(a, b)we still haveE ∙ [ (Xt∧�)] →  

weakly for t ↘ 0 despite extending  . Due to (13), Lemma 3 can be applied to the process X̂ , ℙ̃x
and the extension of  to provide ÃG = ÂG− G for allG ∈ Ã∩C

0(I )∩B(I ) = Â∩C
0(I )∩B(I ).

In particular since f is continuous,

Âf −  f = Ãf = 0 (15)

and f ∈ Â. If we denote the characteristic operator of X̂ by Â, [7, Lemma 5.6] provides

f ∈ Â(x) and Âf (x) =  (x)f (x) due to (15). As J is open, by definition of the characteristic

operator
Â
(x) = A(x) and Âf (x) = Af (x). In particular f ∈ A andAf (x)− (x)f (x) = 0,

which proves the claim.
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Lemma 5. Let A denote the characteristic operator of X . Moreover, let J ⊂ I be an open

interval with Ex[�J ] < ∞ for all x ∈ J ,  ∶ J → [0,∞) bounded and measurable and ℎ ∶

J → ℝ bounded and measurable. Assume that E ∙ [ (Xt∧�J )]|J →  weakly for t ↘ 0 andE ∙ [ℎ(Xt∧�J )e− ∫ t∧�0  (Xs)ds]|J → ℎ weakly for t ↘ 0 respectively. We extend the functions  , ℎ to I

by 0 outside of J , set � ∶= �J and

F (x) ∶= Ex [∫�

0 e
− ∫ s0  (Xs)dsℎ(Xs)dt]

for all x ∈ I . �en F is continuous with

AF (x) −  (x)F (x) = −ℎ(x)

and in particular F ∈ A(y) for all x ∈ J .

Remark. Once again, the proof of this lemma is mostly analogous to its counterpart [8, �eo-

rem 13.12]. �e first difference is that here Ẽ ∙ [ℎ(X̃t)] → ℎ weakly for t ↘ 0 is assumed directly

and not inferred from continuity. �e other is that, just as for Lemma 4, we rely on Lemma 3

instead of its counterpart [8, �eorem 9.7].

Proof. Note that F is continuous by Lemma 2 (ii).

Let X̂ = (X̂t ,∞,t ,ℙx), � = (�t)t∈[0,∞) and X̃ = (X̃t , �̃ , ̃t , ℙ̃x) be the processes constructed
in the proof of Lemma 4, Â, Ã their weak infinitesimal generators and Â, Ã their characteristic

operators.

Let x ∈ I . Once again, we denote the expectation corresponding to ℙ̃x by Ẽx . Using the

definitions of X̃t and X̂t , [7, �eorem 10.5, (10.20)] and the assumption ℎ = 0 outside of J we

obtain

Ẽx[ℎ(X̃t)] = Ẽx[ℎ(X̂t)1{�̃>t}] = Ex[ℎ(X̂t)�t] = Ex[1{�>t}ℎ(Xt)�t]. (16)

for all t ≥ 0. Let R̃ denote the potential of X̃ . Using the definition of the potential in the first

step, (16) in the second, Fubini’s theorem in the third and the definition of F is the last step we

obtain

R̃ℎ(x) = ∫∞
0 Ẽx[ℎ(X̃t)]dt = ∫∞

0 Ex[1{�>t}ℎ(Xt)�t]dt = Ex [∫∞
0 1{�>t}ℎ(Xt)�tdt]

= Ex [∫�

0 ℎ(Xt)�tdt] = F (x).

�us, since x ∈ I was arbitrary, R̃ℎ = F .

We have Ẽy[ℎ(X̃t)] = Ey[ℎ(X̂t)�t] = 0 for all t ≥ 0 and all y ∈ I ⧵ J since ℎ = 0 outside J

and X̂t = y ℙy-a.s. Combined with Ẽ ∙ [ℎ(X̃t)] = E ∙ [ℎ(X̂t)�t] = E ∙ [ℎ(Xt∧�J )e− ∫ t∧�0  (Xs)ds] and the

assumption on ℎ, this implies Ẽ ∙ [ℎ(X̃t)] → ℎ weakly for t ↘ 0. Now [7, �eorem 1.7′] provides
F ∈ Ã and ÃF = −ℎ.
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As mentioned in the proof of Lemma 4, X̃ is a standard process and due to (13), the pre-

conditions of Lemma 3 are met for X̂ , ℙ̃x and  . �e lemma yields ÃG = ÂG −  G for all

G ∈ Â ∩ C
0(I ) ∩ B(I ) = Ã ∩ C

0(I ) ∩ B(I ). In particular since F is continuous

ÂF −  F = ÃF = −ℎ (17)

and F ∈ Â.

[7, Lemma 5.6] provides F ∈ Â(x) and ÂF (x) =  (x)F (x) − ℎ(x) due to (17). As J is open,

by definition of the characteristic operator 
Â
(x) = A(x) and ÂF (x) = AF (x). In particular

F ∈ A and AF (x) −  (x)f (x) − ℎ(x) = 0 which proves the claim.

Proof. (of �eorem 1)

(i) We first calculate the conditional distribution of � under ℙx given X∞ . Since At is X∞ -
measurable and E is independent from X we have

ℙx(�2 > t |X∞ ) = ℙx(At < E|X∞ ) = e−At .
for all t ≥ 0. �us d(−e−A ∙ ) (i.e. the Markov kernelΩ×([0,∞]) ∋ (!, (a, b]) ↦ e−Aa(!)−e−Ab(!))
is a regular version of the conditional distribution of � givenX∞ . Applying a change of variables
for finite variation processes, cf. [15, p. 42], and using that A only jumps in �D, we find

e−Aa(!) − e−Ab(!) = ∫(a,b∧�D) e−As−dA ∙ (s) + e−A�D− − e−A�D .
With the distribution of �, the fact �(a,b) ≤ �D and the Markov property we obtainJ�(x)

=Ex[1{�(a,b)>�}e−r�g(X�)] + Ex[1{�(a,b)≤�}e−r(��(a,b) ◦�+�(a,b))g(X�
�(a,b) ◦�+�(a,b))]

=Ex[Ex[1{�(a,b)>�}e−r�g(X�)|X∞ ]] + Ex[1{�(a,b)≤�}e−r�(a,b)Ex[e−r��(a,b) ◦�g(X�
�(a,b) ◦�+�(a,b))|�(a,b)]]

=Ex [∫[0,�(a,b)) e−r tg(Xt)d(−e−At )] + Ex[1{�(a,b)≤�}e−r�(a,b)EX�(a,b) [e−r�g(X�)]]
=Ex [∫[0,�(a,b)) e−r tg(Xt)e−At dAt] + Ex[1{�(a,b)≤�}e−r�(a,b)J�(X�(a,b))]
=Ex [∫[0,�(a,b)) e−r t−Atg(Xt)dAt] + Ex[e−r�(a,b)J�(X�(a,b))Ex[1{�(a,b)≤�}|X∞ ]]
=Ex [∫[0,�(a,b)) e−r t−Atg(Xt)dAt] + Ex[e−r�(a,b)J�(X�(a,b))e−A�(a,b)−]
=Ex [∫[0,�(a,b)) e−r t−Atg(Xt)dAt] + Ex[e−r�(a,b)−A�(a,b)−(1{a,b}J�)(X�(a,b))] (18)

for all x ∈ [a, b]. With that the claim follows from Lemma 2.
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(ii) By the occupation density formula [17, p. 104], �|(a,b) =  
�dx implies At = ∫ t0  (Xs)ds for

all t ∈ [0, �(a,b)), ℙx-a.s. for all x ∈ I . Se�ing  ̃ ∶=  + r by (18) we infer

J�(x) = Ex [∫[0,�(a,b)) e−r t−∫ t0  (Xs)ds (Xt)g(Xt)dt] + Ex[e−r�(a,b)−∫ �(a,b)0  (Xs)ds(1{a,b}J�)(X�(a,b))]
= Ex [∫[0,�(a,b)) e− ∫ t0  ̃(Xs)ds (Xt)g(Xt)dt] + Ex[e− ∫ �(a,b)0  ̃(Xs)ds(1{a,b}J�)(X�(a,b))] (19)

for all x ∈ (a, b). Whenever a, b ∈ I , the functions  ̃ and  ⋅ g |(a,b) are Hölder continuous on
(a, b) and the dynamics of X on [a, b] coincide with the dynamics of a canonical diffusion. Ifa ∉ I or b ∉ I , we cover (a, b) by subintervals that are bounded away from the boundary of I
and argue separately for each subinterval. Now the claim follows from [8, �eorem 13.16].

(iii) We denote the characteristic operator of X by A. By (i) J� |(a,b) ∈ C0([a, b]). By (ii)J� |(xi−1,xi) ∈ C2((xi−1, xi)) for all i ∈ {1, ..., n}. Set x ∶= xi for some i ∈ {1, ..., n − 1} and �ℎ ∶=

�(x−ℎ,x+ℎ). By a generalized Itô formula, cf. [13], we obtain

Ex[J�(X�ℎ)] − J�(x)Ex[�ℎ]
=
Ex[ ∫ �ℎ0 1{Xs≠x}J�(Xs)ds + 12 ∫ �ℎ0 )xJ�(x+) − )xJ�(x−)dl

x
s ]Ex[�ℎ]

=
Ex[ ∫ �ℎ0 1{Xs≠x}J�(Xs)ds]Ex[�ℎ] +

1

2
()x J�(x+) − )xJ�(x−))

Ex[lx�ℎ]Ex[�ℎ] (20)

for all ℎ ∈ (0, (x − xi−1) ∧ (xi+1 − x)) with )xJ�(x+) and )xJ�(x−) denoting the right- and le�

derivative of J� at x. By (19), Lemma 4 and Lemma 5

AJ�(y)

=AEy [∫[0,�(xi−1 ,x)) e− ∫ t0  ̃(Xs)ds (Xt)g(Xt)dt] + AEy[e− ∫ �(xi−1 ,x)0  ̃(Xs)ds(1{xi−1,x}J�)(X�(xi−1 ,x))]
= (y)Ey [∫[0,�(xi−1 ,x)) e− ∫ t0  ̃(Xs)ds (Xt)g(Xt)dt] − g(y)

+  (y)Ey[e− ∫ �(xi−1 ,x)0  ̃(Xs)ds(1{xi−1,x}J�)(X�(xi−1 ,x))]
= (y)J�(y) − g(y)

for all y ∈ (xi−1, x). Due to the Hölder conditions on g,  and continuity of J� we find that

limy↗x AJ�(y) is finite. Analogously we obtain that limy↘x AJ�(y) is finite. �us by [3, Lemma

A.4] the first summand of the right hand side of (20) has a finite limit for ℎ ↘ 0. By [2, Lemma

26] we have limℎ↘0 Ex [Lx�ℎ ]Ex [�ℎ] = ∞. �us, the right hand side has a finite limit for ℎ ↘ 0 if and only

if )xJ�(x+) − )xJ�(x−) = 0. We finish the proof by showing that limℎ↘0 Ex [J�(X�ℎ )]−J�(x)Ex [�ℎ] exists inℝ. For that set
 ̂(y) =

 ̃(y+) +  ̃(y−)

2
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for all y ∈ (a, b). By [1, Lemma 5.5] and dominated convergence

|Ey[1{�(a,b)>t} ̂(Xt)] −  ̂(y)| = ||||Ey[1{�(a,b)>t} ̂(Xt)] −  (y+) +  (y−)

2

||||≤|Ey[1{�(a,b)>t} ̂(Xt)] − Ey[ ̂(Xt)]| + |Ex[1{Xt>y}( ̂(Xt) −  (y+))]|
+ |Ey[1{Xt<y}( ̂(Xt) −  (x−))]| + |||| (y+)(Ey[1{Xt>y}] − 1

2)||||
+
|||| (y−)(Ey[1{Xt<y}] − 1

2)|||| t↘0⟶ 0.

�us also ∫(a,b) Ey[1{�(a,b)>t} ̂(Xt)]d�(y) → ∫(a,b)  ̂(y)d�(y) for all finite measures � on (a, b), i.e.E ∙ [1{�(a,b)>t} ̂(Xt)] →  ̂ weakly for t ↘ 0. Using Ey[∫ t0 1{Xs∈{x1,...,xn−1}}ds] = 0 for all t ≥ 0, (19)

implies

J�(y) = Ey [∫[0,�(a,b)) e− ∫ t0  ̂(Xs)dsg(Xt)dt] + Ey[e− ∫ �(a,b)0  ̂(Xs)ds(1{a,b}J�)(X�(a,b))]
for all y ∈ (a, b). �us by Lemma 4 and Lemma 5 we have J� ∈ A(y) for all y ∈ (a, b). By

definition this means that limℎ↘0 Ex [J�(X�ℎ )]−J�(x)Ex [�ℎ] exists, which finishes the proof.
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[4] S. Christensen and K. Lindensjö. On time-inconsistent stopping problems andmixed strat-

egy stopping times. Stochastic Processes and their Applications, 130(5):2886–2917, 2020.

[5] S. Christensen and B. Schultz. On the existence of markovian randomized equilibria in

dynkin games of war-of-a�rition-type. arXiv:2406.09820v1, 2024.

[6] J.-P. Décamps, F. Gensbi�el, and T. Mario�i. �e war of a�rition under uncertainty: �e-

ory and robust testable implications. CESifo Working Paper, 2023.

[7] E. Dynkin. Markov Processes: Volume 1. Grundlehren der mathematischen Wis-

senscha�en. Springer-Verlag, Berlin Gö�ingen Heidelberg, 1965.
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