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NODAL COUNTS FOR THE ROBIN PROBLEM ON LIPSCHITZ

DOMAINS

KATIE GITTINS, ASMA HASSANNEZHAD, CORENTIN LÉNA, AND DAVID SHER

Abstract. We consider the Courant-sharp eigenvalues of the Robin Laplacian for bounded,
connected, open sets in Rn, n ≥ 2, with Lipschitz boundary. We prove Pleijel’s theorem
which implies that there are only finitely many Courant-sharp eigenvalues in this setting as
well as an improved version of Pleijel’s theorem, extending previously known results that
required more regularity of the boundary. In addition, we obtain an upper bound for the
number of Courant-sharp Robin eigenvalues of a bounded, connected, convex, open set in
Rn with C2 boundary that is explicit in terms of the geometric quantities of the set and the
norm sup of the negative part of the Robin parameter.

1. Introduction

Let Ω ⊂ Rn be a bounded, connected, open set with Lipschitz boundary. Let h ∈
L∞(∂Ω,R). We consider the eigenvalue problem for the Robin Laplacian

{
∆u = µu in Ω,

∂νu+ hu = 0 on ∂Ω,
(1)

where ∆ = − div grad is the positive Laplacian and ν is the unit outward-pointing normal
along ∂Ω. The eigenvalues of the Robin Laplacian on L2(Ω), counted with multiplicity, can
be written as

µ1(Ω, h) ≤ µ2(Ω, h) ≤ · · · ≤ µk(Ω, h) ≤ · · · ր +∞.

We use the notation ∆R,h
Ω to refer to the Robin Laplacian in (1). The case where h ≡ 0

corresponds to the Neumann Laplacian and the case where h → +∞ corresponds to the
Dirichlet Laplacian.

Let uk be an eigenfunction of ∆R,h
Ω corresponding to the k-th eigenvalue µk(Ω, h). The

connected components of Ω \ {x ∈ Ω : uk(x) = 0} are called nodal domains of uk. Courant’s
Nodal Domain theorem asserts that any eigenfunction uk corresponding to the k-th eigenvalue
µk(Ω, h) has at most k nodal domains. In the case where µk(Ω, h) has an eigenfunction with
exactly k nodal domains, we say that µk(Ω, h) is a Courant-sharp eigenvalue and uk is a
Courant-sharp eigenfunction.

Let N h
Ω(k) denote the number of nodal domains of the eigenfunction of ∆R,h

Ω corresponding
to the k-th eigenvalue (counted with multiplicities). Pleijel’s theorem [Ple56, BM82] asserts
that for a bounded, connected, open set Ω ⊂ Rn,

lim sup
k→∞

N+∞
Ω (k)

k
≤ γ(n), (2)

where γ(n) := (2π)n/ω2
nj

n
n−2
2

< 1, ωn is the Lebesgue measure of a ball in Rn of radius 1

and jn−1
2

is the smallest positive zero of the Bessel function Jn−2
2
. Pleijel’s theorem for the

Dirichlet Laplacian also holds in the Riemannian setting, see [Pee57, BM82].
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It has been shown that the upper bound in (2) is not sharp. Improved versions of Pleijel’s
theorem that obtain a smaller constant (depending only on n) in the right-hand side of (2)
have been obtained in [Don14, Ste14, Bou15]. Pleijel’s theorem implies that there are only
finitely many Courant-sharp Dirichlet eigenvalues of Ω. This result, called the weak Pleijel
theorem, holds for any open set Ω ⊂ Rn of finite Lebesgue measure (see, e.g., [vdBG16]).

The extension of Pleijel’s theorem to the Neumann and Robin eigenvalue problems, as well
as investigating geometric bounds on Courant-sharp eigenvalues and the number of them, has
been the subject of several studies summarised below over the last few years. In this paper,
we further these developments by focusing on the Robin eigenvalue problem on a Lipschitz
domain Ω with an arbitrary Robin parameter h ∈ L∞(∂Ω).

De Ponti, Farinelli, and Violo [DFV24] proved Pleijel’s theorem in the setting of metric-
measure spaces, in particular, for the Neumann problem on a so-called uniform domain in
the non-smooth setting of RCD spaces. Since Lipschitz domains are examples of uniform
domains in Rn , see e.g. [Jon81, MS79, Väi88], their results imply Pleijel’s theorem for the
Neumann problem on Lipschitz domains in Rn. Pleijel’s theorem for the Neumann problem
was first proved for compact surfaces with piecewise real-analytic boundary [Pol09] and then
extended to bounded domains in Rn with C1,1 boundary [Lén19]. In [BCM24], Pleijel’s
theorem was shown to hold for chain domains (roughly speaking, a collection of bounded,
disjoint, planar domains and a collection of thin necks joining these domains) and it was
shown that the Courant-sharp Neumann eigenvalues are bounded uniformly in terms of the
geometric quantities of a family of such domains. Pleijel’s theorem for the Robin problem on
C1,1 domains in Rn in the case where h ≥ 0 was proven in [Lén19], while in [HS24] it was
shown that an improved version of Pleijel’s theorem for the Robin problem on C1,1 domains
holds for any h ∈ L∞(∂Ω).

We extend the result in [DFV24] for the Neumann problem on Lipschitz domains to the
Robin problem on Lipschitz domains for any h ∈ L∞(Ω) (see Theorem 3.1), relaxing the
boundary regularity required in [HS24].

The proof of Pleijel’s theorem for the Dirichlet Laplacian relies on two main ingredients:
the Faber-Krahn inequality and Weyl’s law. The primary challenge in extending this proof to
other boundary conditions lies in adapting the argument involving the Faber-Krahn inequal-
ity. A key step in the proof is to obtain an upper bound for the Neumann Rayleigh quotient
of a Robin eigenfunction on a nodal domain in terms of the corresponding eigenvalue, the
geometry of the underlying domain and the Robin parameter. To obtain such a bound, we
make use of the fact that any Lipschitz domain has an outward-pointing vector field (see
Section 2). Moreover, in this setting, we improve the upper bound in Pleijel’s theorem (see
Theorem 3.3). The proof of an improved version of Pleijel’s theorem for the Robin problem on
a Lipschitz domain is rather intricate and requires first establishing a quantitative version of
certain results proved in [DFV24], including a quantitative form of the Faber-Krahn inequal-
ity for mixed Dirichlet-Neumann eigenvalues on domains with ‘small’ volume (see Proposition
3.4).

Although in the paper we only consider Lipschitz domains in Rn, one can show that Plei-
jel’s theorem and its improved version for the Robin problem also hold in the Riemannian
setting. This is because the results of [DFV24] are valid in a very general context, and other
techniques used in the proof can be adapted to the Riemannian setting, as discussed in [HS24,
Theorem 2.5] and [Don14, BM82].

With Pleijel’s theorem in hand, it is natural to investigate how many Courant-sharp eigen-
values there are and how the geometry of the underlying domain and the Robin parameter h
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can be used to quantify this number. Roughly speaking, while Weyl’s law plays a key role in
the final step of the proof of Pleijel’s theorem, the remainder in Weyl’s law plays an important
role in getting more information on the count of the Courant-sharp eigenvalues. Hence, the
bound is sensitive to the geometry of the domain and its boundary. Employing bounds on
the remainder has been successfully used in [vdBG16, BH16]. In [BH16], an upper bound
for the number of Courant-sharp Dirichlet eigenvalues of a bounded, open set in R2 with C2

boundary is obtained in terms of the area, the perimeter, bounds on the principal curvatures
and the cut-distance to the boundary. In [vdBG16], several upper bounds for the number of
Courant-sharp Dirichlet eigenvalues of various Euclidean domains are obtained. In particular,
an upper bound for the number of Courant-sharp Dirichlet eigenvalues of a bounded, open,
convex set in Rn is obtained in terms of the (n − 1)-dimensional Hausdorff measure of the
boundary and the volume of the set. To extend the results for the Dirichlet Laplacian to the
Neumann and Robin problems, more regularity and geometric assumptions are needed. For
the Neumann problem and the Robin problem with h ≥ 0, upper bounds for the number of
Courant-sharp eigenvalues of a bounded, open, convex set in Rn, n ≥ 2, with C2 boundary are
obtained in [GL20] in terms of the volume of the set, the isoperimetric ratio and the principal
curvatures of the boundary.

We obtain an upper bound for the number of Courant-sharp Robin eigenvalues of a bounded,
open, connected, convex set Ω ⊂ Rn, n ≥ 2, with C2 boundary, that is explicit in terms of the
geometric quantities of Ω and the Robin parameter (see Theorem 4.7). To do this, we first
obtain an inequality comparing the Robin counting function to a shifted Neumann counting
function and employ a result from [GL20, Appendix A] which gives an upper bound on the
Neumann counting function for such domains. We then obtain an upper bound for the largest
Courant-sharp Robin eigenvalue (see Theorem 4.4), for which the convexity of the domain is
not required. Our result then follows by substituting the bound for the eigenvalue into the
bound for the counting function.

Plan of the paper

In Section 2, we obtain an upper bound for the Neumann Rayleigh quotient of a Robin
eigenfunction on a nodal domain. We then employ this bound together with techniques from
[DFV24] to prove Pleijel’s theorem in Section 3, where we also prove an improved version of
Plejiel’s theorem. However, the proof of the latter is elaborate and entails additional technical
steps. For the convenience of the reader and to illustrate the additional steps required to obtain
an improved version, we present the proof of Pleijel’s theorem first, followed by the improved
version. In order to obtain the improved version of Pleijel’s theorem, we in particular require
a quantitative version of the Faber-Krahn inequality for domains with small volume in this
setting, which we prove in the Appendix. In Section 4, we obtain an explicit upper bound on
the number of Courant-sharp Robin eigenvalues of a bounded, open, connected, convex set
Ω ⊂ Rn, n ≥ 2, with C2 boundary.
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2. Neumann Rayleigh quotients of Robin eigenfunctions on nodal domains

Throughout the paper we assume that Ω ⊂ Rn is a Lipschitz domain, that is, an open,
bounded and connected Lipschitz set.

Definition 2.1. Let Ω be a Lipschitz domain. We call the mapping F : Rn → Rn an
outward-pointing vector field relative to Ω if

(i) F is of class C∞ with compact support;
(ii) there exists γF (Ω) > 0 such that, for a.e. x ∈ ∂Ω, we have

F (x) · ν(x) ≥ γF (Ω).

The following proposition is due to Mitrea-Taylor [MT99, Appendix A] and to Verchota [Ver82].
For the convenience of the reader, we provide a proof.

Proposition 2.2. Any Lipschitz domain Ω has an outward-pointing vector field.

Proof. For any x0 ∈ ∂Ω, we call Fx0 : Rn → Rn a local outward-pointing vector field at x0,
relative to Ω, if

(i) Fx0 is of class C∞ with compact support;
(ii) for all x ∈ ∂Ω such that ν(x) exists, Fx0(x) · ν(x) ≥ 0;
(iii) there exists γx0 > 0 and an open neighborhood Ux0 of x0 such that, for all x ∈ Ux0 ∩ ∂Ω

at which ν(x) exists,

Fx0(x) · ν(x) ≥ γx0 .

If, relative to Ω, there exists a local outward-pointing vector field at every point of ∂Ω, then
there exists a (global) outward-pointing vector field. Indeed, by compactness of ∂Ω, we can
find a finite family of points {x1, . . . , xN} ⊂ ∂Ω such that the open sets Ux1 , . . . , UxN

cover
∂Ω. Then,

F := Fx1 + · · ·+ FxN

is an outward-pointing vector field in the sense of Definition 2.1.
To conclude the proof, we note that the existence of a local outward-pointing vector field at

every point x0 ∈ ∂Ω follows easily from the definition of a Lipschitz domain. Up to a suitable
choice of coordinates, we can assume that x0 = 0 and that

Ω ∩
(
Bn−1

r × (−M,M)
)
=
{
(x′, y) : y < f(x′)

}
,

where (with r and M some positive constants) Bn−1
r is the ball centered at 0 of radius r in

Rn−1, and f : Bn−1
r → (−M,M) is a Lipschitz function such that f(0) = 0. We set

F0(x) := χ(x)




0
...
0
1


 ,

with χ a smooth non-negative function such that 0 ≤ χ ≤ 1 pointwise, the support of χ
is contained in Bn−1

r/2 , and χ = 1 pointwise in Bn−1
r/4 . The vector field F0 is then locally

outward-pointing at 0. �

Remark 2.3. By scaling, the outward-pointing vector field F may be chosen to be unitary
in a neighborhood of ∂Ω, see e.g. [MT99, Appendix A].

The existence of an outward-pointing vector field allows us to prove the fundamental in-
equalities used in this paper, which are a generalization of [HS24, Proposition 2.2].
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Proposition 2.4. Suppose that Ω is a Lipschitz domain with outward-pointing vector field
F . Suppose that h ∈ L∞(∂Ω,R), and that µ and u are an eigenvalue and a corresponding

eigenfunction respectively of the Robin Laplacian ∆R,h
Ω . Finally, suppose that D is a nodal

domain of u. Then
´

D |∇u|2 dx
´

D u2 dx
≤
(√

µ+ Γ1(Ω, F )H + Γ2(Ω, F )H
)2
, (3)

where

H = ‖min{0, h(x)}‖L∞(∂Ω) = ‖max{−h(x), 0}‖L∞(∂Ω)

and where

Γ1(Ω, F ) :=
1

γF (Ω)
sup
Ω

|∇ · F | , (4)

Γ2(Ω, F ) :=
2

γF (Ω)
sup
Ω

|F | . (5)

Proof. We assume for simplicity that ∂D is Lipschitz and that ∂D ∩ ∂Ω is an (n − 2)-
dimensional submanifold of ∂D. If not, one uses an approximation argument via Sard’s
theorem as in [BM82, Lén19, HS24].

Since u vanishes on ∂D ∩Ω, Green’s identity implies
ˆ

∂D∩∂Ω
u2 ds ≤ 1

γF (Ω)

ˆ

∂D∩∂Ω
u2(F · ν) ds =

1

γF (Ω)

ˆ

∂D

(
u2 F

)
· ν ds

=
1

γF (Ω)

ˆ

D

(
2u∇u · F + div(F )u2

)
dx

≤ 1

γF (Ω)

ˆ

D

(
2 |u| |∇u| |F |+ |div(F )| u2

)
dx

≤
ˆ

D

(
Γ2(Ω, F ) |u| |∇u|+ Γ1(Ω, F )u2

)
dx ,

and from the Cauchy-Schwarz inequality, we obtain

ˆ

∂D∩∂Ω
u2 ds ≤ Γ1(Ω, F )

ˆ

D
u2 dx+ Γ2(Ω, F )

(
ˆ

D
u2 dx

)1/2(ˆ

D
|∇u|2 dx

)1/2

. (6)

The bound (3) follows from (6) precisely as in [HS24, Proposition 2.2]. Namely, applying
Green’s identity to u in the nodal domain D,

ˆ

D
|∇u|2 dx =

ˆ

D
u∆u dx+

ˆ

∂D
u(∇u · ν) ds

= µ

ˆ

D
u2 dx−

ˆ

∂D∩∂Ω
hu2 ds

≤ µ

ˆ

D
u2 dx+H

ˆ

∂D∩∂Ω
u2 ds,

where we have used the facts that u = 0 on ∂D ∩Ω and that ∇u · ν = −hu on ∂Ω. Inserting
the bound (6) here and rearranging yields (3). �

A particularly useful example of an outward-pointing vector field, for a domain Ω with
smooth boundary, is the gradient of the distance function to the boundary, see Example
2.7. For more general Ω, we may sometimes take the outward-pointing vector field to be the
gradient of a replacement for the distance function, which we define here:
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Definition 2.5. Let Ω ⊂ Rn be a bounded Lipschitz domain. We say that a C2 function
g = g(x) defined on an open neighborhood of Ω is an outward-pointing function if there exists
γg > 0 for which ∇g · ν ≥ γg almost everywhere on ∂Ω.

Remark 2.6. If g = g(x) is a smooth outward-pointing function, then its gradient F = ∇g
is an outward-pointing vector field, with

Γ1(Ω, F ) =
1

γF (Ω)
sup
Ω

|∆g|,

Γ2(Ω, F ) =
2

γF (Ω)
sup
Ω

|∇g|.

This can be useful in special cases to analyze the geometric dependence of the constants
Γ1(Ω, F ) and Γ2(Ω, F ).

It is an intriguing question whether every bounded Lipschitz domain admits an outward-
pointing function. We highlight a few important examples that admit an outward-pointing
function, where the geometric dependency of these constants can be expressed more explicitly.

Example 2.7. a) Let Ω be an open, bounded, connected subset of Rn, n ≥ 2, with C2

or C1,1 boundary. Then we can define the outward-pointing function g to be any C2

function that coincides with the distance function d(·, ∂Ω) on a neighborhood of the
boundary staying within the positive reach of the boundary, that is a neighborhood
of the boundary where there exists a unique nearest point in ∂Ω. When the boundary
is C2, the positive reach of ∂Ω is a neighborhood of the boundary defined by the
cut-distance (the distance between ∂Ω and its cut locus). When the boundary is C1,1,
the fact that it has a positive reach is established in [Fed59, Theorem 4.12]. In both
cases, the distance function from the boundary is C2 or C1,1, respectively. For the
latter, see [HS24, Lemma 2.3]. Then γ∇g(Ω) = 1, and Γ1(Ω,∇g) and Γ2(Ω,∇g) can
be expressed in terms of bounds on the Laplacian and the gradient of the distance
function. See Lemma 4.5 for an explicit bound for C2 domains.

In Section 4, we use these types of bounds in order to obtain an upper bound for
the largest Courant-sharp Robin eigenvalue for a C2 convex domain, extending the
result in [GL20] to the case of the Robin problem where the parameter can be negative.

b) Another important family of examples are curvilinear polygons. Let Ω be a curvilinear
polygon (i.e., a planar domain with smooth boundary except for a finite number
of vertices). In this case, we can also construct an outward-pointing function g for
which Γ1(Ω,∇g) and Γ2(Ω,∇g) depend only on a list of geometric quantities described
in [BCM24].

In [BCM24], Beck, Canzani, and Marzuola considered a family of chain domains.
They defined a chain domain as a collection of domains with smooth boundaries
except for finitely many vertices that are joined by thin necks. They proved Pleijel’s
theorem for the Courant-sharp Neumann eigenvalues of chain domains as well as an
upper bound for Courant-sharp Neumann eigenvalues of such domains. Curvilinear
polygons are a subfamily of chain domains that have no necks.

We outline the approach for constructing an outward-pointing function for curvilin-
ear polygons. For some δ > 0 which depends on some explicit geometric quantities, we
take the (local) outward-pointing function to be d(·, ∂Ω), in a δ-neighborhood of each
smooth arc of the boundary. In a δ-neighborhood of each of the vertices, we view the
angle as the graph Γf = {(x, y) : y = f(x)} of a function f , where the vertex is located
at (0, f(0)), and the y-axis is directed along the bisection of the angle. We define the
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(local) outward-pointing function to be g(x, y) = y. Then, in this neighborhood, γ∇g

can be bounded from below by some explicit geometric quantities.
We can glue these functions together using a partition of unity. Roughly speaking,

this gluing occurs in the region where the distance to each vertex is between δ/2
and δ. We arrange the partition of unity so that it depends only on the tangential
coordinate along the boundary and not on the distance to the boundary. Consequently,
the gradient of the partition of unity is parallel to the boundary and is bounded by
Cδ−1, while the Laplacian of the partition of unity is bounded by Cδ−2, where C is a
universal constant. Moreover, since the normal derivatives of the partition functions
vanish, the normal derivative of the outward-pointing function is bounded from below
by 1 away from the vertices. Near the vertices, the lower bound remains away from
zero and can be explicitly given in terms of geometric quantities.

By using Proposition 2.4 it is possible to extend the results of [BCM24] for the
Robin problem on curvilinear polygons. However, in the next section, we provide
a different approach to prove Pleijel’s theorem for the Robin problem in the more
general setting of Lipschitz domains in Rn, using Proposition 2.4 and adapting the
techniques from [DFV24].

3. Pleijel’s Theorem for the Robin problem for Lipschitz domains in Rn

The proof of Pleijel’s theorem for the Robin problem with an arbitrary Robin parameter h ∈
L∞(∂Ω,R) in [HS24] relies on the techniques from [Lén19], which require the C1,1 regularity
of the domain, and an estimate relating the Robin eigenvalue on a nodal domain to the first
mixed Dirichlet-Neumann eigenvalue of that domain. By using the techniques used in [DFV24]
together with Proposition 2.4, we obtain Pleijel’s theorem for Lipschitz domains. However,
to obtain an improved version, the proof becomes more complex because we also need to
establish a quantitative version of the Faber-Krahn inequality for the first mixed Dirichlet-
Neumann eigenvalue on domains with small volume. Therefore, we include the proofs of both
Pleijel’s theorem and the improved version of Pleijel’s theorem.

We begin with Pleijel’s theorem.

Theorem 3.1. Let Ω ⊂ Rn be a bounded Lipschitz domain. Then

lim sup
k→∞

N h
Ω(k)

k
≤ γ(n) < 1,

where γ(n) := (2π)n

ω2
nj

n
n−2
2

.

We first state a simplified version of the results of [DFV24, Theorem 5.1, and Theorem 5.3]
for open subsets of a Lipschitz domain in Rn in the following lemma. Note that Lipschitz
domains are examples of uniform domains in Rn for which the results of [DFV24] hold. These
results give a version of the Faber-Krahn inequality for the mixed Dirichlet-Neumann problem
on domains with small volume.

Let Ω be an open Lipschitz domain in Rn. For any open set U ⊂ Ω, we consider the
following mixed Dirichlet-Neumann problem.





∆f = λf in U,

∂νf = 0 on ∂U ∩ ∂Ω,

f = 0 on ∂U ∩Ω.

We denote its first eigenvalue by λ1(U). When U is compactly contained in Ω, it is the
Dirichlet eigenvalue problem on U .



8 KATIE GITTINS, ASMA HASSANNEZHAD, CORENTIN LÉNA, AND DAVID SHER

Lemma 3.2. a) There exist positive constants c1 = c1(Ω) and c2 = c2(Ω, n) such that
for every open set U ⊂ Ω with |U | ≤ c1, we have

λ1(U)|U |2/n ≥ c2.

b) For every ǫ ∈ (0, 1) and δ > 0, there exist an open subset Ωδ of Ω containing ∂Ω with
|Ωδ| < δ, and constants θ0 = θ0(Ω, n, ǫ, δ) and θ1 = θ1(Ω, n, ǫ) such that for any open
set U ⊂ Ω with

|U | ≤ θ0 and
|U ∩ Ωδ|

|U | ≤ θ1,

the following holds

λ1(U)|U |2/n ≥ (1− ǫ)λD
1 (B)|B|2/n, (7)

where B is the ball of radius 1 in Rn.

We assume without loss of generality that θ0 ≤ c1 throughout this section and in the
Appendix.

Proof of Theorem 3.1. Let D be a nodal domain of uk, an eigenfunction corresponding to the
Robin eigenvalue µk. Then combining with Inequality (3), we have

λ1(D) ≤
´

D |∇uk|2
´

D u2k
≤
(√

µk + Γ1(Ω, F )H + Γ2(Ω, F )H
)2

= µk + o(µk). (8)

The last identity is for k large enough so that µk > 0. Throughout the proof, we can assume

this is the case. Let {Dj}N
h
Ω(k)

j=1 be the nodal domains of uk. For given ǫ ∈ (0, 1), δ ∈ (0, c1),

let c1, Ωδ, θ0 and θ1 be as in Lemma 3.2. We now proceed as in [DFV24], categorising the
nodal domains into three disjoint classes as follows. For the reader’s convenience, we include
the details here.

I. |Dj | > θ0;
II. |Dj | ≤ θ0 and |Dj ∩ Ωδ| > θ1|Dj |;
III. |Dj | ≤ θ0 and |Dj ∩ Ωδ| ≤ θ1|Dj |,

Let NI , NII and NIII denote the number of nodal domains in each family respectively. Note
that N h

Ω(k) = NI +NII +NIII .

Type I nodal domains. We clearly have NI ≤ |Ω|/θ0. Therefore,
NI

k
≤ |Ω|

θ0k
. (9)

Type II nodal domains. By Lemma 3.2 and inequality (8), we obtain the following
inequality for NII .

(µk + o(µk))
n/2δ ≥ (µk + o(µk))

n/2|Ωδ|
≥

∑

j∈II
λ1(Dj)

n/2|Dj ∩ Ωδ|

≥ θ1
∑

j∈II
λ1(Dj)

n/2|Dj |

≥ θ1c
n/2
2 NII;

Therefore,

NII

k
≤ (µk + o(µk))

n/2δ

θ1c
n/2
2 k

. (10)
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Type III nodal domains. Again, by Lemma 3.2 and inequality (8), we get

(µk + o(µk))
n/2|Ω| ≥

∑

j∈III
λ1(Dj)

n/2|Dj | ≥ NIII(1− ǫ)n/2λD
1 (B)

n/2|B|.

Hence,
NIII

k
≤ (µk + o(µk))

n/2|Ω|
(1− ǫ)n/2λD

1 (B)
n/2|B|k . (11)

Taking the limit of (9), (10), and (11) as k → ∞ and using the Weyl asymptotics for the
Robin problem (see e.g. [BS80, FG12]):

lim
k→∞

µ
n
2
k |Ω|
k

=
(2π)n

ωn
, (12)

we get

lim sup
k→∞

N h
Ω(k)

k
=

NI +NII +NIII

k
≤ δ(2π)n

θ1c
n/2
2 ωn|Ω|

+
γ(n)

(1− ǫ)n/2
.

Note that ωnj
n
n−2
2

= λD
1 (B)

n/2|B|. We conclude by first sending δ → 0 and then sending ǫ → 0.

Note that θ1 is independent of δ. �

We now prove an improved version of Pleijel’s theorem. See [Ste14, Bou15] for improve-
ments for the Dirichlet problem and [HS24] for an improvement for the Robin problem on
C1,1 domains.

Theorem 3.3 (Pleijel’s theorem - Improved). There exists a constant ε = ε(n) > 0 depending
only on the dimension, such that for any bounded Lipschitz domain Ω ⊂ Rn we have

lim sup
k→∞

N h
Ω(k)

k
≤ γ(n)− ε.

We discuss the strategy of the proof as the details are rather intricate. To improve the upper
bound γ(n) in Theorem 3.1, we first need to prove a quantitative Faber-Krahn inequality for
the mixed Dirichlet-Neumann eigenvalue for nodal domains with ‘small’ volume. The results
in [DFV24] do not yield a quantitative version. We prove this important component of the
proof in the Appendix. Next, we categorize the nodal domains into disjoint families and use a
sphere-packing argument to show that the family of nodal domains satisfying a quantitative
version of the Faber-Krahn inequality constitutes a nontrivial proportion of the total volume.
This allows the ε improvement.

We first state a quantitative version of the Faber-Krahn inequality for which we introduce
a slightly modified version of the Fraenkel asymmetry.

Proposition 3.4. For any ǫ ∈ (0, 1), δ > 0 sufficiently small, and any C0 < ∞, there exist
a neighbourhood Ωδ of ∂Ω with |Ωδ| < δ, a positive constant θ0 = θ0(Ω, ǫ, δ), and another
positive constant θ1 = θ1(Ω, n, ǫ), such that for any open set D ⊂ Ω satisfying

|D| ≤ θ0,
|D ∩Ωδ|

|D| ≤ θ1, λ1(D)|D|2/n ≤ C0,

we have
λ1(D) ≥ (1− ǫ+CÃ(D)4)λD

1 (D
∗).

Here D∗ is a ball with the same volume as D and Ã(D) = infU A(D ∩ U), where A is the
Fraenkel asymmetry and the infimum is taken over all U ⊆ Ω containing Ωc

δ := Ω \ Ωδ.

We refer to the quantity Ã(D) as a modified Fraenkel asymmetry of D. The proof of
Proposition 3.4 is deferred to the Appendix.
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Proof of Theorem 3.3. Let {µk} be the Robin eigenvalues with a corresponding basis {uk} of
Robin eigenfunctions. Abusing notation, we let C refer to any positive constant, depending
only on n unless otherwise specified. Throughout, for k large enough so that µk > 0, we let
Bk be a ball in Rn, chosen so that its first Dirichlet eigenvalue is µk:

λD
1 (Bk) = µk.

Lemma 3.5. There exist k0 = k0(Ω) ∈ N and C > 0 for which, for all k ≥ k0,

|Bk| ≤ C
|Ω|
k

. (13)

Proof. By (12), there exists k0 depending on Ω such that, for k ≥ k0,

µk ≥ C

(
k

|Ω|

) 2
n

, (14)

where C = ((2π)n/(2ωn))
n/2 and in particular depends only on n. However, by scaling,

µk = λD
1 (Bk) =

( |B|
|Bk|

) 2
n

λD
1 (B) = C|Bk|−

2
n .

Plugging this equation into (14) gives the desired conclusion. �

Now we fix ǫ ∈ (0, 1) and δ > 0 sufficiently small. (This “sufficiently small” may depend
only on the measure of Ω and on n. See the Appendix 31.) We supplement our fixed ǫ and δ
by fixing a set Ωδ and constants θ0 and θ1 which satisfy Proposition 3.4 and Lemma 3.2. We
may also choose θ1 so that θ1 ≤ 1

2 and θ1 ≤ ǫ2, where ǫ2 is defined below (note ǫ2 does not
depend on θ1, so that the argument is not circular).

Finally, we fix ǫ1, ǫ2 ∈ (0, 1) sufficiently small and independent of both ǫ and δ – see below.
For each k satisfying

k ≥ max

{
k0,

2

θ0
C|Ω|

}
, (15)

with C as in Lemma 3.5, we categorise the nodal domains Dj of the eigenfunction uk into

four disjoint sets (type-I, type-II, type-III, and type-ĨII) as follows.

I. |Dj | > (1 + ǫ1)|Bk|;
II. |Dj | ≤ (1 + ǫ1)|Bk| and |Dj ∩ Ωδ| > θ1|Dj |;
III. |Dj | ≤ (1 + ǫ1)|Bk|, |Dj ∩ Ωδ| ≤ θ1|Dj |, and Ã(Dj) ≤ ǫ2;

ĨII. |Dj | ≤ (1 + ǫ1)|Bk|, |Dj ∩ Ωδ| ≤ θ1|Dj |, and Ã(Dj) > ǫ2.

Let NI, NII, NIII, and N
ĨII

denote the number of nodal domains in each family. Note that

N h
Ω(k) = NI + NII + NIII + N

ĨII
. We denote by Ω♯ the union of all nodal domains of type ♯.

Note also that our condition (15) on k guarantees that

|Bk| ≤ min

{
C
|Ω|
k

,
θ0
2

}
.

Remark 3.6. We can now be specific about our choice of ǫ1 and ǫ2. They are chosen
independent of (sufficiently small) ǫ, and in a way such that type-III domains can only pack a
ρ̃(n) < 1 fraction of Ωc

δ; we show in our proof of Lemma 3.7 below that this is possible.

Our first step is to show that type-III domains do not have density 1 – that is, that the
fraction of nodal domains which are not type-III is bounded away from zero. This is a sphere-
packing argument.
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Lemma 3.7. There exist k1 = k1(δ, ǫ, ǫ1, ǫ2,Ω) ∈ N and ρ̃ = ρ̃(n) < 1 such that for all k ≥ k1,

|ΩIII|
|Ω| ≤ ρ̃.

To prove this lemma, we begin with an auxiliary result.

Lemma 3.8. Suppose that D is a type-III nodal domain. Then

A(D ∩ Ωc
δ) ≤

ǫ2
1− θ1

+
2θ1

1− θ1
≤ 6ǫ2. (16)

Proof. We claim a slightly more general result: if S and T are domains with A(S) < ǫ2,
T ⊆ S, and |T |/|S| ≥ 1− θ1, then

A(T ) ≤ ǫ2
1− θ1

+
2θ1

1− θ1
. (17)

Assuming this claim for the moment, we know because D is a type-III nodal domain that there
exists a U with Ωc

δ ⊆ U ⊆ Ω for which A(D ∩ U) < ǫ2. We then apply (17) with S = D ∩ U
and T = D ∩Ωc

δ, immediately proving the first inequality in (16). The last inequality in (16)

follows immediately from the inequalities θ1 ≤ 1
2 and θ1 ≤ ǫ2.

It remains to prove (17). By definition of the Fraenkel asymmetry, there is a ball B such

that |B| = |S| and |B∆S| < ǫ2|B|. Let B̃ be a ball of volume |T | with B̃ ⊆ B. Then

|B̃∆T | = |B̃ \ T |+ |T \ B̃| ≤ |B \ T |+ |S \ B̃| ≤ (|B \ S|+ |S \ T |) + (|S \B|+ |B \ B̃|).
Now |S \ T | ≤ θ1|S| and the same is true for |B \ B̃|. So

|B̃∆T | ≤ |B∆S|+ 2θ1|S|.
Dividing by |B̃| = |T | gives

A(T ) ≤ |B̃∆T |
|B̃|

≤ 1

|S|
|S|
|T | (|B∆S|+ 2θ1|S|),

and now (17) follows from the assumptions on S and T . �

Proof of Lemma 3.7. Let D be a type-III nodal domain associated with µk. By Lemma 3.2
part b), we have

|D|2/nλ1(D) ≥ (1− ǫ)λD
1 (B)|B|2/n = (1− ǫ)λD

1 (Bk)|Bk|2/n = (1− ǫ)µk|Bk|2/n.
By inequality (8), there exists k̃1 depending only on Ω and ǫ for which k ≥ k̃1 implies

(1− ǫ)µk|Bk|2/n ≤ λ1(D)|D|2/n ≤ (1 + ǫ)µk|D|2/n.
Therefore, also using the fact that D is a type-III nodal domain,

(
1− ǫ

1 + ǫ

)n/2

|Bk| ≤ |D| ≤ (1 + ǫ1)|Bk|. (18)

Now, suppose that D and D̃ are any two nodal domains associated to µk. Let B and B̃ be
balls such that

|B| = |D ∩ Ωc
δ|, |B̃| = |D̃ ∩Ωc

δ|.
By Lemma 3.8, the centers of B and B̃ can be chosen so that

|B∆(D ∩ Ωc
δ)| ≤ 6ǫ2|B|, |B̃∆(D̃ ∩ Ωc

δ)| ≤ 6ǫ2|B̃|.
We claim that B and B̃ have comparable volume and small overlap.
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To show that B and B̃ have comparable volume, first observe that by the definition of a
type-III nodal domain, then using (18) for both D and D̃, as well as the fact that θ1 ≤ ǫ2,

|B|
|B̃|

=
|D ∩ Ωc

δ|
|D̃ ∩ Ωc

δ|
≤
(
1 + θ1
1− θ1

) |D|
|D̃|

≤
(
1 + ǫ2
1− ǫ2

)
(1 + ǫ1)

(
1 + ǫ

1− ǫ

)n/2

. (19)

We can assume ǫ ≤ ǫ2 ≤ ǫ1 ≤ 1
2 . Thus,

|B|
|B̃|

≤ (1 + ǫ1)

(
1 +

2ǫ1
1− ǫ1

)(n+2)/2

≤ 1 + Cǫ1. (20)

The same upper bound holds for |B̃|/|B|.
To show that B and B̃ have small overlap, observe that since D and D̃ are disjoint,

|B ∩ B̃| ≤ |B∆(D ∩ Ωc
δ)|+ |B̃∆(D̃ ∩ Ωc

δ)| ≤ 6ǫ2(|B|+ |B̃|),
and so using (20),

|B ∩ B̃|
|B| ≤ 6ǫ2

(
1 +

|B̃|
|B|

)
≤ 6ǫ2 (2 + Cǫ1) ≤ Cǫ2, (21)

where again by abuse of notation, C in the left-hand side of the last inequality is equal to
6(2 + C).

Now consider such a ball for each type-III nodal domain of µk. Note that the volume of

each of these balls is less than C|Ω|
k . Let ρ◦ = ρ◦(n) < 1 represent the sphere packing density

of Rn. The sphere packing density of Ω is bounded above by ρ◦. Therefore, there exists a
threshold ζ > 0 for which the packing density of Ω with balls of any fixed size less than ζ is

bounded above by (ρ◦ +1)/2. We choose k sufficiently large so that C|Ω|
k < ζ. By choosing ǫ1

to be sufficiently small, the balls will have almost the same radius. We then shrink the balls
by a controlled factor, which depends only on ǫ1 and n, so that they all have the same radius.
Next, we select ǫ2 to be small enough so that their overlap is very small. By shrinking the
balls again by a controlled factor, depending only on ǫ2, we can make them disjoint, thereby
obtaining a sphere packing of Ωc

δ – indeed, a sphere packing of Ω itself. Therefore,

(1− c(n, ǫ1, ǫ2))
∑

j∈III
|Dj ∩ Ωc

δ| <
1 + ρ◦

2
|Ω|,

where c(n, ǫ1, ǫ2) is a positive function and goes to zero when ǫ1 and ǫ2 tend to zero. Hence,

we can choose ǫ1 and ǫ2 small enough such that (1+ρ◦)/2
1−c(n,ǫ1,ǫ2)

< (1 − ǫ2)ρ̃, where ρ̃ is a fixed

constant in the interval (ρ, 1). Therefore since we have type-III nodal domains,

|ΩIII| =
∑

j∈III
|Dj | ≤

∑

j∈III

1

1− θ1
|Dj ∩ Ωc

δ| ≤
1

1− ǫ2

∑

j∈III
|Dj ∩ Ωc

δ| ≤ ρ̃|Ω|.

This completes the proof of Lemma 3.7. �

We now proceed to bound, for each ♯ ∈ {I, II, III, ĨII}, the quantity
N♯

k . From adding the
bounds we obtain and taking the limsup as k → ∞, we will be able to read off our sharpened
Pleijel theorem.

Type-I nodal domains. Suppose thatDj is a nodal domain of type I. Then it is immediate
from the definition of type I that

λD
1 (Bk)

n/2|Bk|(1 + ǫ1) = µ
n/2
k |Bk|(1 + ǫ1) ≤ µ

n/2
k |Dj |.
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Summing this equation over all nodal domains of type I yields

NIλ
D
1 (Bk)

n/2|Bk|(1 + ǫ1) ≤ µ
n/2
k |ΩI |,

and thus

NI

k
≤ µ

n/2
k |Ω|

λD
1 (B)

n/2|B|k · |ΩI |
|Ω|(1 + ǫ1)

. (22)

Type-II nodal domains.We do the same treatment as for type-II nodal domains in the
proof of Theorem 3.1 to obtain

NII

k
≤ (µk + o(µk))

n/2δ

θ1c2(n,Ω)n/2k
, (23)

where c2(n,Ω) is the constant in Lemma (3.2) (a).

Type-III nodal domains. Type-III nodal domains satisfy the assumption of Lemma 3.2
(b). Thus, we have

λ1(Dj)|Dj |2/n ≥ (1− ǫ)λD
1 (B)|B|2/n.

By inequality (8),

(µk + o(µk))
n/2|ΩIII| ≥

∑

j∈III
λ1(Dj)

n/2|Dj | ≥ (1− ǫ)n/2λD
1 (B)

n/2|B|NIII.

Solving for NIII and dividing by k, we see as in the proof for Type I nodal domains that

NIII

k
≤ (µk + o(µk))

n/2|Ω|
λD
1 (B)

n/2|B|k · |ΩIII|
(1− ǫ)n/2|Ω| . (24)

Type-ĨII nodal domains. The analysis of type-ĨII nodal domains is very similar to the
analysis of type-III nodal domains, but now we have a lower bound on Ã(Dj). Moreover, by
Lemma 3.5 and inequality (8), for k ≥ k0, using also the trivial bound ǫ1 ≤ 1,

λ1(Dj)|Dj |2/n ≤ C

( |Ω|
k

)2/n

(µk + o(µk)),

which by Weyl’s law is bounded by C. Hence Proposition 3.4 applies taking C0 = C, and
therefore

λ1(Dj) ≥ (1− ǫ+ Cǫ42)λ
D
1 (D

∗
j ).

Taking ǫ small enough such that 2ǫ ≤ Cǫ42 and applying the same logic as for type-III, we
obtain

N
ĨII

k
≤ (µk + o(µk))

n/2|Ω|
λD
1 (B)

n/2|B|k · |ΩIV |
(1 + Cǫ42)

n/2|Ω| . (25)

Note that in (25), by abuse of notation C = C
2 .

Completing the proof. Combining (22), (23), (24), and (25) yields

Nk

k
≤ δ

|Ω|θ1C
(1 + o(1))µ

n/2
k |Ω|

k
+

(1 + o(1))µ
n/2
k |Ω|

k|B|λD
1 (B)

n/2

( 1

1 + ǫ1

|ΩI|
|Ω| +

1

(1− ǫ)n/2
|ΩIII|
|Ω| +

1

(1 + Cǫ42)
n/2

|Ω
ĨII
|

|Ω|
)
. (26)
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Now take the limsup. Using Weyl’s law yields

lim sup
k→∞

Nk

k
≤ Cδ

θ1|Ω|
+ γ(n) lim sup

k→∞

( 1

1 + ǫ1

|ΩI|
|Ω| +

1

(1− ǫ)n/2
|ΩIII|
|Ω| +

1

(1 + Cǫ42)
n/2

|ΩĨII|
|Ω|

)
. (27)

Pulling out the (1− ǫ)−n/2 and choosing ǫ3 > 0, again independent of ǫ and δ, so that

(1− ǫ3) ≥ max

{
1

1 + ǫ1
,

1

(1 + Cǫ42)
n/2

}

gives

lim sup
k→∞

Nk

k
≤ Cδ

θ1|Ω|
+

γ(n)

(1− ǫ)n/2
lim sup
k→∞

(
(1− ǫ3)

|ΩI |+ |ΩĨII|
|Ω| +

|ΩIII|
|Ω|

)
, (28)

which in turn means

lim sup
k→∞

Nk

k
≤ Cδ

θ1|Ω|
+

γ(n)

(1− ǫ)n/2
lim sup
k→∞

(
(1− ǫ3)

(
1− |ΩIII|

|Ω|

)
+

|ΩIII|
|Ω|

)
. (29)

By Lemma 3.7, for k ≥ k1, |ΩIII|/|Ω| ≤ ρ̃. Therefore

lim sup
k→∞

Nk

k
≤ Cδ

θ1|Ω|
+

γ(n)

(1− ǫ)n/2

(
(1− ǫ3)(1 − ρ̃) + ρ̃

)
. (30)

Now let δ → 0, using the fact that θ1, ǫ3, and ρ̃ are independent of δ, we see

lim sup
k→∞

Nk

k
≤ γ(n)

(1− ǫ)n/2

(
(1− ǫ3)(1− ρ̃) + ρ̃

)
.

Finally, we let ǫ → 0, using that ǫ3 and ρ̃ are independent of ǫ, and we observe that (1 −
ǫ3)(1− ρ̃) + ρ̃ is strictly less than 1 and depends only on n. This completes the proof. �

4. Geometric upper bounds for the number of Courant-sharp Robin
eigenvalues

The goal of this section is to obtain an upper bound for the number of Courant-sharp Robin
eigenvalues of an open, bounded, connected, convex set Ω ⊂ Rn, n ≥ 2, with C2 boundary,
that is explicit in terms of the geometric quantities of Ω and the Robin parameter.

To do this, we first derive a comparison between the Robin and Neumann counting functions
for open, bounded, connected, Lipschitz sets in Rn. We then derive an upper bound for the
largest positive Courant-sharp Robin eigenvalue of an open, bounded, connected set Ω ⊂ Rn

with C2 boundary. By combining these two results with the result from [GL20, Appendix
A] which holds for convex sets, we obtain an upper bound for the number of Courant-sharp
Robin eigenvalues of Ω. We consider the case where Ω has C2 boundary as this setting allows
us to glean explicit geometric control in the geometric bounds that follow.

4.1. Comparison between Neumann and Robin counting functions. In order to use
previous work estimating the Neumann eigenvalues and the Neumann counting function, we
prove, for an arbitrary Lipschitz domain, a comparison result between the Neumann and the
Robin spectra. This can be stated either as a lower bound for the Robin eigenvalues or an
upper bound for the Robin counting function. For µ > 0, we define the Robin counting
function as

Nh
Ω(µ) := ♯{k ∈ N : µk(Ω, h) < µ}.

We denote the Neumann counting function by NN
Ω (µ) = N0

Ω(µ).
We recall that for any Lipschitz domain Ω with outward-pointing vector field F and for all

u ∈ H1(Ω), we have
ˆ

∂Ω
u2 ds ≤ Γ1(Ω, F )

ˆ

Ω
u2 dx+ Γ2(Ω, F )

(
ˆ

Ω
u2 dx

) 1
2
(
ˆ

Ω
|∇u|2 dx

) 1
2

, (31)
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with Γ1(Ω, F ) and Γ2(Ω, F ) the constants defined in Proposition 2.4.
This can be interpreted as a kind of trace inequality, and it is the starting point of our

analysis.

Proposition 4.1. Let Ω be a Lipschitz domain and let h ∈ L∞(∂Ω) be a real-valued function
defined on its boundary ∂Ω. Let F be an outward-pointing vector field relative to Ω, and let
H := ‖h−‖L∞(∂Ω) where h− = max{0,−h}. Then, setting

K1(Ω, F ) := Γ1(Ω, F );

K2(Ω, F ) :=
Γ2(Ω, F )2

4
;

(with Γ1(Ω, F ), Γ2(Ω, F ) defined in (4), (5) respectively), for any η ∈ (0, 1) and any k ≥ 1,
we have

µk(Ω, h) ≥ (1− η)µN
k (Ω)−

(
K1(Ω, F )H +K2(Ω, F )

H2

η

)
. (32)

Equivalently, we have

Nh
Ω(µ) ≤ NN

Ω

(
1

1− η

(
µ+K1(Ω, F )H +K2(Ω, F )

H2

η

))
(33)

for all µ ∈ R.

Proof. Without loss of generality we can assume that H > 0. It follows immediately from
Inequality (31) that, for all u ∈ H1(Ω) and for any parameter A > 0,

ˆ

∂Ω
u2 ds ≤ Γ1(Ω, F )

ˆ

Ω
u2 dx+

Γ2(Ω, F )A

2

ˆ

Ω
u2 dx+

Γ2(Ω, F )

2A

ˆ

Ω
|∇u|2 dx.

Choosing A = (2η)−1Γ2(Ω, F )H, we obtain
ˆ

∂Ω
u2 ds ≤ η

H

ˆ

Ω
|∇u|2 dx+

(
K1(Ω, F ) +K2(Ω, F )

H

η

)
ˆ

Ω
u2 dx. (34)

Inequality (34) implies
ˆ

∂Ω
hu2 ds ≥ −H

ˆ

∂Ω
u2 ds

≥ −η

ˆ

Ω
|∇u|2 dx−

(
K1(Ω, F )H +K2(Ω, F )

H2

η

)
ˆ

Ω
u2 dx.

(35)

Now let qh denote the quadratic form associated to the Robin problem with boundary
function h:

qh[u] :=

ˆ

Ω
|∇u|2 dx+

ˆ

∂Ω
hu2 ds. (36)

It is closed with domain H1(Ω). From the min-max principle, we have

µk(Ω, h) = min
Vk

max
u∈Vk\{0}

qh(u)

‖u‖2
L2(Ω)

, (37)

where Vk runs over all k-dimensional subspaces of H1(Ω). In particular, Equation (37) also
holds for h = 0, that is, for the Neumann eigenvalue problem.

It follows immediately from (35) that, for all u ∈ H1(Ω),

qh[u] ≥ (1− η)q0(u)−
(
K1(Ω, F )H +K2(Ω, F )

H2

η

)
‖u‖2L2(Ω). (38)



16 KATIE GITTINS, ASMA HASSANNEZHAD, CORENTIN LÉNA, AND DAVID SHER

From the min-max principle, we get, for all k ≥ 1,

µk(Ω, h) ≥ (1− η)µN
k (Ω)−

(
K1(Ω, F )H +K2(Ω, F )

H2

η

)
.

This is Inequality (32). Inequality (33) is straightforwardly equivalent. �

We see from the previous result that to obtain an upper bound for the Robin counting func-
tion, it is sufficient to find an upper bound for a corresponding Neumann counting function.
This has been done in [GL20], under the additional assumption that Ω is convex, to derive
explicit upper bounds for the number of Courant-sharp Neumann eigenvalues. The proof of
the following result is given in [GL20, Appendix A].

Proposition 4.2. For any convex domain Ω and any µ > 0,

NN
Ω (µ) ≤ n

n
2

πn
µ

n
2

∣∣∣∣Ω+
π√
µ
B

∣∣∣∣ . (39)

where the last factor in the right-hand side is the volume (i.e. the Lebesgue measure) of the
Minkowski sum of the two convex sets.

From Inequality (39) we see that an upper bound for the volume |Ω+ δ B| translates into
an upper bound for the Neumann counting function. The volume can either be expressed with
the help of the so-called quermassintegrals (see for instance [Sch14, Chap. 4]) or estimated
from above using the maximal scalar curvature of ∂Ω in the case where Ω is a C2 domain.

Corollary 4.3. For any convex domain Ω and any µ > 0,

NN
Ω (µ) ≤ n

n
2

πn
|Ω|µn

2 +
n

n
2

πn−1
|∂Ω|µn−1

2 + n
n
2

n∑

j=2

(
n
j

)
Wj(Ω)

( µ

π2

)n−j
2

, (40)

where Wj(Ω) stands for the j-th quermassintegral of Ω.
If, in addition, Ω is of class C2, then for any µ > 0,

NN
Ω (µ) ≤ n

n
2

πn
|Ω|µn

2 + n
n
2 |∂Ω|

n−1∑

j=0

1

j + 1

(
n− 1
j

)
κjmax

( µ

π2

)n−j−1
2

, (41)

where κmax is the maximum over ∂Ω of the largest principal curvature.

Proof. By definition of the quermassintegrals, for all δ > 0,

|Ω+ δB| =
n∑

j=0

(
n
j

)
Wj(Ω)δ

j .

Taking δ = π√
µ , using Inequality (39) and recalling that W0(Ω) = |Ω| and W1(Ω) =

1
n |∂Ω|,

we get (40).
In the same way, (41) follows from the inequality

|Ω+ δB| ≤ |Ω|+ |∂Ω|
n−1∑

j=0

1

j + 1

(
n− 1
j

)
(κmax)

j δj+1,

which is proved in [GL20, Appendix A]. �

Thus, in order to obtain an upper bound for the number of Courant-sharp Robin eigen-
values of Ω, it is sufficient to obtain an upper bound for the largest Courant-sharp Robin
eigenvalue and substitute it into the bounds for the counting functions using Proposition 4.1
and Corollary 4.3.
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4.2. Geometric upper bound for Courant-sharp Robin eigenvalues. In this section
we take Ω ⊂ Rn, n ≥ 2, to be an open, bounded, connected set with C2 boundary. We will see
that the assumption that the boundary is C2 allows us to obtain explicit geometric control
in the desired bounds.

Throughout we use the following notation

• V := |Ω| is the Lebesgue measure,
• S := |∂Ω| is the surface measure,

• ρ := S/V 1− 1
n is the isoperimetric ratio,

• t+ is the minimal radius of curvature (i.e., t−1
+ is the supremum of the maximum

modulus of the principal curvatures {κ1, . . . , κn−1} of ∂Ω),
• δ0, is the minimum between t+ and the cut-distance with respect to the interior of Ω
(see, e.g., [GL20, Section 3] for a precise definition of the cut-distance),

• δ1 is the minimum between t+ and the cut-distance with respect to the entire com-
plement of ∂Ω (i.e., the interior and exterior).

• H := max{−h(x) : x ∈ ∂Ω}, where h is the real-valued function appearing in the
Robin boundary condition.

Our main result is the following.

Theorem 4.4. Let Ω ⊂ Rn, n ≥ 2, be an open, bounded, connected set with C2 boundary.
There exists a constant C, depending only on n, such that any Courant-sharp Robin eigenvalue
µ satisfies

µ ≤ C

(
V

2
n

δ41
+

ρ4

V
2
n

+ V
2
nH4

)
.

From the proof of Theorem 4.4, we will see that the constant C may be very large.
We first need to estimate the constants Γ1(Ω, F ), Γ2(Ω, F ) from Proposition 2.4 in terms

of n and of some of the geometric quantities of Ω. To do this we will construct an outward-
pointing function and use it to obtain an outward-pointing vector field. We have the following.

Lemma 4.5. Let n ≥ 2. There exists a constant C > 0, depending only on n, such that, for
any set Ω ⊂ Rn, open, bounded, connected with C2 boundary, we can find an outward-pointing
vector field F for which

Γ1(Ω, F ) ≤ C

δ0
, Γ2(Ω, F ) ≤ C.

Proof. In order to find such an F and to estimate Γ1(Ω, F ), Γ2(Ω, F ), we first construct an
outward-pointing function. Let ϕ : R → R be a C∞ function such that

(i) ϕ(t) = t for t ≤ 1
2 ,

(ii) ϕ(t) = c ∈
(
1
2 ,

3
4

)
for t ≥ 3

4 .

We define

g(x) := ϕ

(
σ(x)

d(x, ∂Ω)

δ0

)
,

where

σ(x) :=





1 if x ∈ Ω,

0 if x ∈ ∂Ω,

−1 if x ∈ Rn \Ω.
If x ∈ Ω and d(x, ∂Ω) ≥ 3

4δ0, g(x) = c. On the other-hand, it follows from the definition of δ0
that the function x 7→ d(x, ∂Ω) is of class C2 in the open inner tubular neighborhood of the
boundary

∂Ω+
δ0

:= {x ∈ Ω : d(x, ∂Ω) < δ0} .
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(See, for example, [GT01, Lemma 14.16]). It follows that g is C2 in Ω, and in fact is C2 in
an open-neighborhood1 of Ω.

For x in the inner tubular neighborhood ∂Ω+
δ0
, the chain rule implies

∇g(x) =
1

δ0
ϕ′
(
d(x, ∂Ω)

δ0

)
∇d(x, ∂Ω). (42)

It is well-known that

|∇d(x, ∂Ω)| = 1

and it is clear that there exists some absolute constant C1 such that

|ϕ′(t)| ≤ C1

for all t ∈ R. It follows that

|∇g(x)| ≤ C1

δ0

for all x ∈ ∂Ω+
δ0
. We note that Formula (42) extends by continuity to x ∈ ∂Ω. Since ϕ′(0) = 1,

this implies, for all x ∈ ∂Ω,

∇g(x) · ν(x) = 1

δ0
. (43)

In particular, g is an outward-pointing function with constant γg =
1
δ0
.

Furthermore, from Property (ii) of ϕ, ∇g(x) = 0 for all x ∈ Ω such that d(x, ∂Ω) ≥ 3
4δ0. It

follows that

|∇g(x)| ≤ C1

δ0
(44)

for all x ∈ Ω.
Differentiating Formula (42) once more, we find, for x ∈ ∂Ω+

δ0
, that

∆g(x) =
1

δ20
ϕ′′
(
d(x, ∂Ω)

δ0

)
|∇d(x, ∂Ω)|2 + 1

δ0
ϕ′
(
d(x, ∂Ω)

δ0

)
∆d(x, ∂Ω)

=
1

δ20
ϕ′′
(
d(x, ∂Ω)

δ0

)
+

1

δ0
ϕ′
(
d(x, ∂Ω)

δ0

)
∆d(x, ∂Ω). (45)

It is clear that there exists some absolute constant C2 such that

|ϕ′′(t)| ≤ C2

for all t ∈ R. Property (ii) of ϕ implies that ∆g(x) = 0 for all x ∈ Ω such that d(x, ∂Ω) ≥ 3
4δ0.

It remains to estimate |∆d(x, ∂Ω)|. Since ∂Ω is C2, we have, for all x ∈ ∂Ω+
δ0
,

∆d(x, ∂Ω) =
n−1∑

i=1

−κi
1− κi d(x, ∂Ω)

,

where the κ1, . . . , κn−1 are the principal curvatures at y, the unique point in ∂Ω such that
|x−y| = d(x, ∂Ω). (See, for example, [GT01, Appendix 14.6]). Let us recall that, by definition,
δ0 ≤ t+ and κi ≤ t−1

+ for all 1 ≤ i ≤ n− 1. Then,

|κi d(x, ∂Ω)| ≤ |κi| ·
3δ0
4

≤ |κi| ·
3t+
4

≤ 3

4
.

1The distance from ∂Ω up to which g is C2 in the complement of Ω will depend on Ω, through the geometric
parameter δ1. However, since we only consider the values of g and its derivatives in Ω, we just need g to be
C2 in some open neighborhood of Ω, even very small, and only the parameter δ0 will play a role.
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Therefore, if x ∈ ∂Ω+
3δ0/4

,

|∆d(x, ∂Ω)| ≤
n−1∑

i=1

4|κi| ≤
4(n− 1)

t+
≤ 4(n − 1)

δ0
.

This finally gives us

|∆g(x)| ≤ C2

δ20
+

4(n− 1)C1

δ20
. (46)

Now we set

C := C2 + 4(n− 1)C1

(and we note that C ≥ 2C1). Since g is an outward-pointing function with constant γg,
F := ∇g is an outward-pointing vector field, with constant

γF = γg =
1

δ0
.

Using the formulas for Γ1(Ω, F ) and Γ2(Ω, F ) from Proposition 2.4, we obtain

Γ1(Ω, F ) =
1

γF
sup
Ω

|div(F )| = δ0 sup
Ω

|∆g| ≤ δ0
C

δ20
=

C

δ0
,

Γ2(Ω, F ) =
2

γF
sup
Ω

|F | = 2 δ0 sup
Ω

|∇g| ≤ 2 δ0
C1

δ0
≤ 2C1 ≤ C.

�

In order to prove Theorem 4.4, we make use of the following standard inequalities.

Remark 4.6. Let a and b be non-negative numbers, 0 ≤ θ ≤ 1 and p ≥ 1.
(i) (a+ b)θ ≤ aθ + bθ. If θ < 1 and a, b > 0, the inequality is strict. A useful special case is

θ = 1
2 :

√
a+ b ≤ √

a+
√
b.

(ii) abp−1 ≤ C (ap + bp), with C = C(p).2

(iii) If a ≤ b, then bp − ap ≤ p bp−1(b− a).
(iv) (a+ b)p ≤ C (ap + bp), with C = C(p).
(v) For all ε > 0, (a+ b)p ≤ (1 + ε) ap + C bp, with C = C(p, ε).

By using these inequalities in the proof of Theorem 4.4, we obtain the existence of a constant
C(n), depending only on n, as claimed. At each step of the proof, we take the maximum of
various constants depending only on n and thus any closed-form expression arising would be
very complicated and far from optimal. Hence we use C = C(n) throughout to denote a
constant depending on n which may change from line to line.

Proof of Theorem 4.4. We define

µ̂
1
2
H :=

(
µ+ C

H

δ0

) 1
2

+ CH, (47)

where C is a constant depending only on n, defined by Lemma 4.5. The idea of the proof is
to apply similar arguments to those used in [GL20] to µ̂H instead of to µ.

We assume µ ≥ 0. Then, according to Remark 4.6 part (i),

µ̂
1
2
H ≤ µ

1
2 +∆H ,

2By this, we mean that for a given p, there exists a constant C, depending only on p, such that Inequality (ii)
is satisfied for all a, b ≥ 0. The meaning in the other statements in Remark 4.6 is similar.
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with

∆H :=

(
C
H

δ0

) 1
2

+ CH.

We fix ε̂(n) ∈ (0, 1) (to be specified later). We consider a spectral pair (eigenvalue-
eigenfunction) (µ, u) for the Robin eigenvalue problem. As in [Lén19, GL20, HS24], we con-
sider ν0 and ν1, respectively the number of bulk and boundary nodal domains (defined using
ε0 = ε̂(n)), and µ̂H , associated with µ via Equation (47).

If
(
V

2
n

µ̂H

) 1
4

≤ δ1, (48)

that is, if

µ̂H ≥ V
2
n

δ41
, (49)

then, by following the same arguments as in [GL20], we have

ν0 ≤
V

Λ(n)
n
2


(1 + ε(n))µ̂H + C

µ̂
1
2
H

V
1
n




n
2

, (50)

where ε(n) > 0 is defined by

1 + ε(n) =
1 + ε̂(n)

1− ε̂(n)

and can be chosen arbitrarily small by taking ε̂(n) small enough, at the cost of a larger C.
In what follows, we express the inequalities in terms of ε(n), for which we will specify some
properties later (this correspondingly specifies ε̂(n)).

Still under Condition (49), we have3

ν1 ≤ C(n)S V
1
2n µ̂

− 1
4

H


µ̂H +

µ̂
1
2
H

V
1
n




n
2

. (51)

Now, as in [GL20, Section 2.1], let (λk(Ω))k≥1 denote the Dirichlet eigenvalues of the
Laplacian on Ω and, for µ > 0, define the Dirichlet counting function as:

ND
Ω (µ) := ♯{k ∈ N : λk(Ω) < µ},

and the corresponding remainder RD
Ω (µ) such that

ND
Ω (µ) =

ωn|Ω|
(2π)n

µn/2 −RD
Ω (µ), (52)

where the first term in the right-hand side of Equation (52) corresponds to Weyl’s law.
By monotonicity of the Robin eigenvalues, we have

Nh
Ω(µ) ≥ ND

Ω (µ) = wn V µ
n
2 −RD

Ω (µ)

3Inequalities (50) and (51) essentially correspond to the upper bounds on page 23 of [GL20]. However, there
is a gap in the proof of the upper bound for ν1 in that reference. It can be fixed at the cost of changing the
values of the constants and putting a stronger condition on µ. Namely, one must impose that Inequality (48)
is satisfied, rather than Inequality (34) in [GL20], meaning that δ0 must be replaced with δ1. That way, one
obtains (51).
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with wn := ωn/(2π)
n. From the known bounds on the Dirichlet counting function (see [GL20,

Section 9.2] and [vdBG16, Section 2]), we find that under a condition of the form

µ ≥ C
V 2

S2 δ40
, (53)

we have

RD
Ω (µ) ≤ C (SV )

1
2µ

n
2
− 1

4 ≤ C (SV )
1
2 (µ̂H)

n
2
− 1

4 .

It follows that

Nh
Ω(µ) ≥ wn V µ̂

n
2
H − C (SV )

1
2 µ̂

n
2
− 1

4
H − wn V

(
µ̂

n
2
H − µ

n
2

)
.

Using Remark 4.6 part (iii) with a = µ
1
2 , b = µ̂

1
2
H and p = n, we get

µ̂
n
2
H − µ

n
2 ≤ n µ̂

n
2
− 1

2
H

(
µ̂

1
2
H − µ

1
2

)
≤ n µ̂

n
2
− 1

2
H ∆H .

Hence we obtain

Nh
Ω(µ) ≥ wn V µ̂

n
2
H − C (SV )

1
2 µ̂

n
2
− 1

4
H − C V µ̂

n
2
− 1

2
H ∆H . (54)

A necessary condition for (µ, u) to be a Courant-sharp pair is

Nh
Ω(µ)− ν0 − ν1 < 0.

If µ ≥ 0 and Conditions (49) and (53) are satisfied, we have

Nh
Ω(µ)− ν0 − ν1 ≥ wn V µ̂

n
2
H − C (SV )

1
2 µ̂

n
2
− 1

4
H − C V µ̂

n
2
− 1

2
H ∆H

− V

Λ(n)
n
2


(1 + ε(n))µ̂H + C

µ̂
1
2
H

V
1
n




n
2

− C S V
1
2n µ̂

− 1
4

H


µ̂H +

µ̂
1
2
H

V
1
n




n
2

. (55)

To simplify the analysis, we define the dimensionless (i.e. scaling invariant) quantities

ξ := V
1
nµ

1
2 ,

ξ̂ := V
1
n µ̂

1
2
H .

Inequality (55) then becomes

Nh
Ω(µ)− ν0 − ν1 ≥wn ξ̂

n − C ρ
1
2 ξ̂n−

1
2 − C V

1
n ∆H ξ̂n−1

− 1

Λ(n)
n
2

(
(1 + ε(n))ξ̂2 + C ξ̂

)n
2

− C ρ ξ̂−
1
2

(
ξ̂2 + ξ̂

)n
2
.

If we apply Remark 4.6 part (v) to the term on the second line (with p = n
2 and ε = ε(n))

and rearrange the right-hand side, we find

Nh
Ω(µ)− ν0 − ν1 ≥

(
wn − (1 + ε(n))

n
2
+1

Λ(n)
n
2

)
ξ̂n − C ρ

1
2 ξ̂n−

1
2 − C V

1
n ∆H ξ̂n−1

− C ξ̂
n
2 − C ρ ξ̂−

1
2

(
ξ̂2 + ξ̂

)n
2
. (56)
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Since

wn >
1

Λ(n)
n
2

,

we can choose ε(n) > 0 such that

ℓ(n) := wn − (1 + ε(n))
n
2
+1

Λ(n)
n
2

> 0.

Furthermore, we have, from the isoperimetric inequality, ρ ≥ nω
1
n
n . It follows that for any

0 ≤ α < β,

ρα ≤ Cρβ,

with C = C(n, α, β) := (nω
1/n
n )α−β . In addition, if ξ̂ ≥ ρ, we have, with the same C,

ξ̂α ≤ Cξ̂β.

Using these remarks in Inequality (56), we obtain, if ξ̂ ≥ ρ,

NΩ(µ)− ν0 − ν1 ≥ ℓ(n) ξ̂n − C
(
ρ+ V

1
n∆H

)
ξ̂n−

1
2 .

Now, using Remark 4.6 part (ii) with a = δ
− 1

2
0 , b = H

1
2 and p = 2, we find

∆H ≤ C

(
1

δ0
+H

)
.

Therefore, if ξ̂ ≥ ρ,

NΩ(µ)− ν0 − ν1 ≥ ℓ(n) ξ̂n − C

(
ρ+

V
1
n

δ0
+ V

1
nH

)
ξ̂n−

1
2 . (57)

If ξ̂ ≥ ξ̂∗, with

ξ̂∗ :=
C2

ℓ(n)2

(
ρ+

V
1
n

δ0
+ V

1
nH

)2

,

then the right-hand side of Inequality (57) is non-negative. Note that by applying Remark
4.6 part (iv) with p = 2 repeatedly, with find that there exists C large enough so that

ξ̂∗ ≤ C

(
ρ2 +

V
2
n

δ20
+ V

2
nH2

)
.

Putting everything together, we conclude that there exists a constant C (large enough) so
that under conditions (49) and (53), if

ξ̂ ≥ C

(
ρ2 +

V
2
n

δ20
+ V

2
nH2

)
,

then (u, µ) cannot be Courant-sharp (we note that C can be chosen large enough that the

above inequality implies ξ̂ ≥ ρ).

Conditions (49) and (53) are not independent. Since δ1 ≤ δ0 by definition and ρ ≥ nω
1/n
n ,

we have

V 2

S2δ40
≤ V

2
n

ρ2δ41
≤ C

V
2
n

δ41
,
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with C = (nωn)
−2. Under the condition µ ≥ 0, we have µ̂H ≥ µ. Therefore, we can choose C

(large enough) so that

µ ≥ C
V

2
n

δ41
implies both conditions (49) and (53).

It follows that, if (µ, u) is Courant-sharp,

ξ ≤ max

{
C
V

2
n

δ21
, C

(
ρ2 +

V
2
n

δ20
+ V

2
nH2

)}
,

which, since δ1 ≤ δ0, implies

ξ ≤ C

(
V

2
n

δ21
+ ρ2 + V

2
nH2

)
. (58)

From µ = ξ2/V
2
n and from Remark 4.6 part (iv), applied repeatedly with p = 2, we obtain

that, for (µ, u) Courant-sharp,

µ ≤ C

(
V

2
n

δ41
+

ρ4

V
2
n

+ V
2
nH4

)
.

�

4.3. Geometric upper bound for the number of Courant-sharp Robin eigenvalues

of a convex, C2 domain. In this section we take Ω ⊂ Rn, n ≥ 2, to be an open, bounded,
connected, convex set with C2 boundary. We use the same notation as was introduced at the
beginning of Section 4.2. We note that the convexity assumption on Ω allows us to employ
Corollary 4.3.

Our main result is the following.

Theorem 4.7. Let Ω ⊂ Rn, n ≥ 2, be an open, bounded, connected, convex set with C2

boundary. There exists a constant C, depending only on n, such that the number of Courant-
sharp Robin eigenvalues of Ω is at most

C

(
V 2

t2n+
+ ρ2n + V 2H2n

)
.

Roughly speaking, the strategy of the proof is to substitute the result of Theorem 4.4 into
that of Corollary 4.3. As the constant given in the statement of Theorem 4.4 may be very
large, the constant C given in the statement of Theorem 4.7 may be very large too.

Proof. By Lemma 4.5, we see that there exists a constant C > 0, depending only on n and a
vector field F : Ω → Rn, outward-pointing relative to Ω, such that Proposition 4.1 holds with

K1(Ω, F ) ≤ C

δ0
, K2(Ω, F ) ≤ C.

Thus, there exists a constant K, depending only on n, such that, for all η ∈ (0, 1) and all
x ≥ 0,

Nh
Ω(x) ≤ NN

Ω

(
1

1− η

(
x+K

(
H

δ0
+

H2

η

)))
. (59)

Since Ω is convex, inequality (41) gives an upper bound for the Neumann counting function,
which we can put into a simplified form: there exists a constant C, depending only on n, such
that for all x ≥ 0,

NN
Ω (x) ≤ C x

n
2

(
V + S x−

1
2

(
1 +

1

t+
√
x

)n−1
)
. (60)
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We begin by deducing a weaker inequality from Inequality (60) which is easier to use.

Setting y = V
1
nx

1
2 (dimensionless variable), we have

NN
Ω (x) ≤ C yn


1 + ρ y−1

(
1 +

V
1
n

t+y

)n−1

 = C


yn + ρ

(
y +

V
1
n

t+

)n−1

 .

Using Remark 4.6 part (iv) and part (ii) (twice), we get

NN
Ω (x) ≤ C


yn + ρ yn−1 + ρ

(
V

1
n

t+

)n−1

 ≤ C

(
yn + ρn + yn + ρn +

(
V

1
n

t+

)n)
.

We obtain, for x ≥ 0,

NN
Ω (x) ≤ C

(
yn + ρn +

(
V

1
n

t+

)n)
. (61)

From Inequality (59) (fixing, for instance, η = 1
2 ), and Inequality (61), we get, for all x,

Nh
Ω (x) ≤ C

(
V

(
C

(
x+ +

H

t+
+H2

))n
2

+ ρn +

(
V

1
n

t+

)n)
,

where x+ = max{0, x}4. Setting y+ := V
1
nx

1
2
+, using repeatedly Remark 4.6 part (iv) with

p = n
2 and part (ii) with p = 2, we get

Nh
Ω (x) ≤ C


yn+ +

(
V

2
nH

t+

)n
2

+ (V
1
nH)n + ρn +

(
V

1
n

t+

)n



≤ C


yn+ +



(
V

1
n

t+

)2

+ (V
1
nH)2




n
2

+ (V
1
nH)n + ρn +

(
V

1
n

t+

)n



≤ C

(
yn+ +

(
V

1
n

t+

)n

+ (V
1
nH)n + (V

1
nH)n + ρn +

(
V

1
n

t+

)n)
.

Finally, we obtain

Nh
Ω (x) ≤ C

(
yn+ + (V

1
nH)n + ρn +

(
V

1
n

t+

)n)
. (62)

We now denote the largest Courant-sharp Robin eigenvalue by µ = µk(Ω, h). Then, the
number of Courant-sharp Robin eigenvalues (counted with multiplicities) is at most k. For

ε > 0 (using the notation µ+ = max{µ, 0} and ξ = V
1
nµ

1
2
+), we have

k ≤ Nh
Ω(µ+ + ε) ≤ C

(
(µ+ + ε)

n
2 V + (V

1
nH)n + ρn +

(
V

1
n

t+

)n)
,

so that, taking ε → 0+, we get

k ≤ C

(
ξn + (V

1
nH)n + ρn +

(
V

1
n

t+

)n)
. (63)

4We give this definition to deal with the case where x < 0, which is relevant since the Robin Laplacian has
negative eigenvalues in general.
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We now use Inequality (58) to obtain

ξ ≤ C

(
V

2
n

t2+
+ ρ2 + V

2
nH2

)
, (64)

where we used the fact that δ1 = δ0 = t+ since Ω is convex. Substituting Inequality (64) for
ξ in Inequality (63) and using Remark 4.6 part (iv) with p = n repeatedly, we get

k ≤ C



(
V

1
n

t+

)2n

+ ρ2n + (V
1
nH)2n + (V

1
nH)n + ρn +

(
V

1
n

t+

)n

 . (65)

To complete the proof, we note that ρ ≥ nω
1
n
n (from the isoperimetric inequality), so that

ρn ≤ Cρ2n,

(V
1
nH)n ≤ C ρn(V

1
nH)n ≤ C

(
ρ2n + (V

1
nH)2n

)
,

(
V

1
n

t+

)n

≤ Cρn

(
V

1
n

t+

)n

≤ C


ρ2n +

(
V

1
n

t+

)2n

 .

Substituting these bounds for the n-th powers in Inequality (65), we conclude that

k ≤ C



(
V

1
n

t+

)2n

+ ρ2n + (V
1
nH)2n


 .

�

Remark 4.8. We note that the bounds derived in the proof of Theorem 4.4 implicitly contain
a bound on the number of negative Robin eigenvalues of Ω. Indeed, for all x < 0, x+ = 0 and
therefore y+ = 0. This means that for negative values of x, taking y+ = 0 in the right-hand
side of (62) gives an upper bound for the number of negative Robin eigenvalues, Nh

Ω(x), which
is explicit in terms of H and some of the geometric quantities of Ω.

Appendix A. Proof of Proposition 3.4

The idea behind the quantitative version of the Faber-Krahn inequality for the first Dirichlet
eigenvalue (see [FMP09] and the references therein) employs the classical method of compar-
ing the Dirichlet energy of the eigenfunction with that of its radially symmetric, monotone
rearrangement on a Euclidean ball, known as the Pólya-Szegö inequality, together with a
quantitative version of the Euclidean isoperimetric inequality. The proof of Proposition 3.4
follows a similar line of reasoning. We first establish a quantitative version of the isoperi-
metric inequality in terms of the perimeter of the interior boundary of ‘small’ domains in Ω
and a modified Fraenkel asymmetry (see Proposition A.1). We follow the proof of the (non-
quantitative) isoperimetric inequality in [DFV24], incorporating the quantitative isoperimetric
inequality and applying it to part of the domain distant from the boundary. It in turn gives an
improvement in the Pólya-Szegö inequality. Then we follow the proof in [DFV24] while adapt-
ing the approach in [FMP09] to obtain a quantitative version of the Faber-Krahn inequality
in the setting of Proposition 3.4. While the method of the proof is based on the same ideas
as in [FMP09, DFV24], the presence of a modified Fraenkel asymmetry and a modification of
the eigenfunction in the Pólya-Szegö Inequality pose some challenges and require adaptation
at each step of the proof.
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We first start with some definitions and notation. Throughout this section, we use Ci =
Ci(n) to denote constants depending only on n, and for the rest of the constants we mainly
use ci = ci(·).

For any f ∈ L1
loc(R

n) and U ⊂ Rn open, we define

|Df |(U) := inf

{
lim inf
n→∞

ˆ

U
|∇fn| : fn ∈ Liploc(U), fn → f in L1

loc(U)

}
.

For any Borel set A ⊆ Rn, we set

|Df |(A) := inf {|Df |(U) : A ⊂ U, and U is open in Rn} .
Subsequently for any two Borel sets A and E we define Per(E,A) = |DχE |(A). We denote
Per(E,Rn) by Per(E) or |∂E|. We say that E is of finite perimeter when Per(E) < ∞.

Let Ω be an open Lipschitz domain in Rn. Note that Per(E,Ω) gives the interior perimeter
of E in Ω. For simplicity, we use the following notation:

Per(E,Ω) = |∂E ∩ Ω|.
De Ponti, Farinelli, and Violo [DFV24, Theorem 4.1] proved an almost sharp isoperimetric

inequality for any Borel set E in Ω with ‘small ’ volume having its interior boundary Per(E,Ω)
instead of Per(E) in the inequality. We shall see that with some modification of their proof,
we get a quantitative version. It is an interesting question whether the quantitative version
we obtain for the Lipschitz domains can be generalised to the general setting of the PI spaces
considered in [DFV24].

Proposition A.1. Let Ω ⊂ Rn be an open, bounded, Lipschitz domain. For any ǫ, δ ∈ (0, 1)
there exist a neighbourhood Ωδ of ∂Ω with |Ωδ| < δ and positive constants C1 = C1(n),
α = α(n, ǫ, δ) and β = β(ǫ) such that for every Borel set E ⊂ Ω with

0 < |E| ≤ α,
|E ∩Ωδ|

|E| ≤ β, (66)

we have

|∂E ∩ Ω| ≥ (1− ǫ)
(
1 + C1Ã(E)2

)
nω1/n

n |E|n−1
n (67)

where Ã(E) := infU A(E ∩U), where the infimum is taken over all open sets U ⊆ Ω such that
Ω \Ωδ ⊂ U .

Proof. Let Ut = {x ∈ Ω : d(x, ∂Ω) > t}. Take t0 > 0 such that Ωδ := Ω \ Ut0 has volume less
than δ. We first show that for any Borel set E ⊂ Ω, there exists t1 ∈ (0, t0) such that

|∂(E ∩ Ut1)| ≤ |∂E ∩ Ω|+ c1|E|,
where c1 = c1(Ω, δ) is a positive constant.

Note that the function d(·, ∂Ω) ∈ Lip(Ω). By the co-area formula [Mir03, Theorem 4.2], we
have

ˆ t0

t0/2
Per(Ut, E)dt ≤

ˆ ∞

0
Per(Ut, E)dt =

ˆ

E
|∇d| ≤ |E|.

By Markov’s inequality,
∣∣∣∣
{
t ∈ (

t0
2
, t0) : Per(Ut, E) ≥ 3|E|

t0

}∣∣∣∣ ≤
t0

3|E|

ˆ t0

t0/2
Per(Ut, E)dt ≤ t0

3
.

Hence, the set

T :=

{
t ∈ (

t0
2
, t0) : Per(Ut, E) <

3|E|
t0

}
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has non-zero measure. Therefore, there exists t1 ∈ T such that Per(E, ∂Ut1) = 0 following
the same argument as in [APP22, Corollary 2.6]. Here, t0 and t1 depend only on Ω and δ.
Moreover, since Per(E, ∂Ut1) = 0, we can apply [APPV23, Proposition 2.6] to get

|∂(E ∩ Ut1)| = Per(E ∩ Ut1) ≤ Per(E,Ut1) + Per(Ut1 , E
◦)

≤ Per(E,Ω) +
3|E|
t0

.

Since E∩Ut1 ⊂ Ω, we can use the quantitative version of the isoperimetric inequality [FMP08]:

|∂(E ∩ Ut1)| ≥ (1 + C1A(E ∩ Ut1)
2)nω1/n

n |E ∩ Ut1 |
n−1
n .

Combining the above inequalities, we obtain

|∂E ∩ Ω| = Per(E,Ω) ≥ (1 + C1A(E ∩ Ut1)
2)nω1/n

n |E ∩ Ut1 |
n−1
n − 3|E|

t0

≥ (1 + C1A(E ∩ Ut1)
2)nω1/n

n |E \Ωδ|
n−1
n − 3|E|

t0

≥ (1 + C1A(E ∩ Ut1)
2)nω1/n

n |E|n−1
n

(
1−

( |E ∩ Ωδ|
|E|

)n−1
n

− 3|E|1/n

t0nω
1/n
n

)
.

Hence, it is enough to have

( |E ∩ Ωδ|
|E|

)n−1
n

≤ ǫ

2
,

3|E|1/n

t0nω
1/n
n

≤ ǫ

2
.

We conclude by taking β =
(
ǫ
2

) n
n−1 and α =

tn0
6nn

nωnǫ
n.

�

Another main ingredient of the proof is a generalization of the Pólya-Szegö inequality. The
classical Pólya-Szegö inequality is stated for functions in H1

0 (U) where U is a bounded open
set in Rn. Recently the Pólya-Szegö inequality has been extended to the setting of metric-
measure spaces [MS20, NV22, DFV24]. Its main difference with the classical version is that we
can view Ω as a complete metric-measure space and compactly supported functions in Ω can
be nonzero on the boundary of Ω. Without any extra condition, the Pólya-Szegö inequality
fails in this general setting. However, it holds true on subdomains of Ω with small volume.
In [DFV24, Theorem 2.22], it is stated that it holds for open sets in a bounded PI space. We
do not need to know the definition of a PI space. We use [DFV24, Theorem 3.9], where it is
shown that a bounded Lipschitz domain Ω is a bounded PI space. Hence, we state Lemma A.2
below, which is a version of [DFV24, Theorem 2.22], only for Lipschitz domains. Let us first
introduce some notation.

Let Ω be an open, bounded, Lipschitz domain in Rn. Let U ( Ω be an open set in Ω. For
a non-negative Borel function u on U we define

µ(t) = |{u > t}|.
We denote by U∗ the ball centred at the origin having the same volume as U , and u∗ : U∗ →
[0,∞) the symmetric decreasing rearrangement of u. By abuse of notation, we use Lipc(U)
to denote the space of Lipschitz functions compactly supported in U with induced topology
from Ω.

Lemma A.2 (Pólya-Szegö inequality). Let Ω be an open, bounded, Lipschitz domain in Rn.
There exists a constant c = c(Ω) such that for any open set U ( Ω in Ω with |U | ≤ c, any
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0 6= u ∈ Lipc(U) non-negative with |∇u| 6= 0 a.e. in {u > 0}, and any 0 < s ≤ T := supU u
we have u∗ ∈ Lipc(U

∗) and
ˆ

{u≤s}
|∇u|2 −

ˆ

{u∗≤s}
|∇u∗|2 ≥

ˆ s

0

Per({u > t},Ω)2 − Per({u∗ > t})2
|µ′(t)| .

Proof. By [DFV24, Lemma 3.7], Ω satisfies the assumption of [DFV24, Theorem 2.18]. Thus
there exist constants c0 = c0(Ω) > 0 and c1 = c1(Ω, n) such that for any U with |U | ≤ c0 and
any Borel set E ⊂ U we have

Per(E,Ω) = |∂E ∩ Ω| ≥ c1|E|n−1
n .

Hence, the assumption of [DFV24, Theorem 2.22] is met. Therefore, u∗ ∈ Lipc(U
∗). Moreover,

for any s ∈ (0, T ), we have (see e.g. [NV22, Lemma 2.25])

−µ′(t) =
ˆ

{u∗=t}

dHn−1

|∇u∗| =

ˆ

{u=t}

dHn−1

|∇u| , a.e.

and as a result (see [DFV24, Inequality (2.29)])

ˆ

{u≤s}
|∇u|2 ≥

ˆ s

0

Per({u > t},Ω)2
−µ′(t)

dt. (68)

Since |∇u∗| is constant on {u∗ = t}, we have
ˆ

{u∗≤s}
|∇u∗|2 =

ˆ s

0
dt

ˆ

{u∗=t}
|∇u∗|dHn−1 =

ˆ s

0

Per({u∗ > t})2
−µ′(t)

dt. (69)

We obtain the result by taking the difference of (68) and (69). �

We now use Proposition A.1, and Lemma A.2 to prove Proposition 3.4.

Proof of Proposition 3.4. We choose θ0 = θ0(Ω, ǫ, δ), θ1 = θ1(Ω, ǫ) > 0 small enough such that
θ0 satisfies inequality (74) below, and θ1 satisfies a set of inequalities (70),(73),(77),(81),(86),(90)
below. Let f : D → R be a λ1(D) eigenfunction, where D satisfies the assumption of the
proposition. We know that f is strictly positive on D.

The strategy is to use Proposition A.1 to estimate the right-hand side of the Polya-Szegö
inequality in Lemma A.2. Hence, we need to ensure that the condition of Proposition (A.1) is
met for the super-level sets {f > 0}. For this reason, we restrict the range of t. We consider

t̃ = sup{t : |{f > t}| ≥ 2
√

θ1|D|}
and define

f̃ = (f − t̃)+, f̂ = min{f, t̃} =: f ∧ t̃.

Note that |{f > t̃}| ≤ 2
√
θ1|D| and for any t ∈ (0, t̃), we have |{f > t}| ≥ 2

√
θ1|D|. We break

down the proof into several steps.
Step 1. We start by giving a lower bound for the Rayleigh quotient of f̃ . From [DFV24,
Corollary 5.2], we know that there exists a constant c1 = c1(Ω) such that for any u ∈ W 1,2(Ω)
with | supp(u)| ≤ c1 we have

´

Ω |∇u|2
´

Ω u2
≥ c1

| supp(u)|2/n .

We assume θ1 is chosen such that

2
√

θ1|D| < c1. (70)
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Then for f̃ = (f − t̃)+ we have
´

Ω |∇f̃ |2
´

Ω f̃2
≥ c1

(2
√
θ1|D|)2/n . (71)

Step 2. We now estimate the Dirichlet energy of f̂ using the Pólya-Szegö inequality. Up to
scaling, we can assume

´

f̂2 = 1.

Note that for any t < t̃, we have |{f > t}| ≥ 2
√
θ1|D|. Hence,

|{f > t} ∩ Ωδ|
|{f > t}| ≤ |D ∩ Ωδ|

2
√
θ1|D| ≤

θ1|D|
2
√
θ1|D| =

√
θ1/2. (72)

We can assume θ1 is chosen so that it satisfies
√

θ1 < 2β, (73)

where β is as in Proposition A.1 with ǫ = ǫ/2. By assumption we also have |{f > t}| ≤ |D| ≤
θ0. We can assume that

θ0 ≤ min{α, c(Ω)} (74)

where α is as in Proposition A.1, again with ǫ = ǫ/2, and c = c(Ω) is the constant in
Lemma A.2. Hence, by Proposition A.1, for a.e. t < t̃, we have

Per({f > t},Ω) = |∂{f > t} ∩ Ω| ≥ (1− ǫ

2
)
(
1 +C1Ã({f > t})2

)
nω1/n

n |{f > t}|n−1
n .

We can rewrite the above inequality as

Per({f > t},Ω)2 − (1− ǫ) Per({f∗ > t})2 ≥ C2(1− ǫ)Ã({f > t})2µ(t)
2(n−1)

n , (75)

where C2 = 2C1. We now use Lemma A.2, which applies since θ0 ≤ c, and inequality (75) to
obtain

ˆ

{f≤t̃}
|∇f |2 − (1− ǫ)

ˆ

{f∗≤t̃}
|∇f∗|2 ≥ C2(1− ǫ)

ˆ t̃

0

Ã({f > t})2µ(t) 2(n−1)
n

|µ′(t)| dt. (76)

Here, f∗ : D∗ → R is the monotone rearrangement of f , where D∗ is the Euclidean ball
centred at the origin with the same volume as D.

Step 3. Let us define η(D) := λ1(D)

λD
1 (D∗)

− 1. In this step, we relate the left-hand side of (76)

to η(D). Observe that
ˆ

{f∗≤t̃}
|∇f∗|2 =

ˆ

D∗

|∇(f∗ ∧ t̃)|2

≥ λD
1 (D

∗)
ˆ

D∗

(f∗ ∧ t̃)2

= λD
1 (D

∗)
ˆ

D
f̂2

= λD
1 (D

∗).

On the other hand, we have

λ1(D) =

´

D |∇f |2
´

D f2

≥
´

D |∇f̂ |2 +
´

D |∇f̃ |2

1 +
´

D f̃2 + 2
(
´

D f̃2
) 1

2
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by inequality (71) ≥
´

D |∇f̂ |2 + c1(2
√
θ1|D|)− 2

n

´

D f̃2

1 +
´

D f̃2 + 2
(
´

D f̃2
) 1

2

≥
´

D |∇f̂ |2
1

+ c−1
1 (2

√
θ1|D|) 2

n

ˆ

D
|∇f̂ |2,

where in the last inequality, we minimize over possible values of
´

D f̃2 as in [DFV24, Proof of
Theorem 5.3]. By rearranging, we get

(
1− c−1

1 (2
√

θ1|D|) 2
nλ1(D)

) ˆ

D
|∇f̂ |2 ≤ λ1(D).

By the assumption, λ1(D)|D|2/n ≤ C0. Hence, we can assume θ1 is small enough such that

C0c
−1
1 (2

√
θ1)

2
n ≤ ǫ. (77)

Therefore,
ˆ

D
|∇f̂ |2 ≤ λ1(D)

1− ǫ
.

In summary, we get

C2(1− 2ǫ)

ˆ t̃

0

Ã({f > t})2µ(t) 2(n−1)
n

|µ′(t)| ≤ λD
1 (D

∗) (η(D) + 2ǫ) . (78)

Note that we use the trivial inequality (1− ǫ)2 ≥ 1− 2ǫ.

The remaining part of the proof follows the argument in [FMP09] for the proof of a quan-
titative version of the Faber-Krahn inequality. The goal is to obtain a lower bound for η(D)

in terms of Ã(D).

Step 4. In this step, we establish a relation between Ã(D) and Ã({f > t}) as in [FMP09].
More precisely, we show that there is a positive constant C3 = C3(n) such that for any
t ∈ (0, t̃) we have

Ã(D) ≤ C3(t
√

|D|+ η(D) + Ã({f > t}) + ǫ). (79)

Since Ã(D) ≤ 2, inequality (79) holds for t > 1
4 |D|−1/2 and for any constant C3 ≥ 8,

see [FMP09]. Thus we assume t ≤ 1
4 |D|−1/2.

Let B ⊂ Rn be a ball centered at the origin with |B| = |D ∩ U |. W.l.o.g., we can also
assume |D \ U | ≤ |D ∩ U |. Thus

|B| ≤ |D| ≤ 2|B|. (80)

For any x0 ∈ Rn, following the same line of argument as on [FMP09, Page 59-60], we have

|B|A(D ∩ U) ≤ |(D ∩ U)∆(x0 +B)| = 2|(x0 +B) \ (D ∩ U)|
≤ 2|(x0 +B) \ ({f > t} ∩ U)|
≤ 2|(x0 +B ∩ {f∗ ≤ s}) \ ({f > t} ∩ U)|+ 2|x0 + ({f∗ > s}) \ ({f > t} ∩ U)|
≤ 2 (|B ∩ {f∗ ≤ s}|+ |x0 + {f∗ > s}) \ ({f > t} ∩ U)|)
≤ 2 (|B ∩ {f∗ ≤ s}|+ |x0 + {f∗ > s})∆({f > t} ∩ U)|)
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where s ≥ t is chosen such that |{f∗ > s}| = |{f > t} ∩ U |. Thus, optimizing over x0 and
then taking the infimum over all such U , we get

Ã(D) ≤ 2

( |B ∩ {f∗ ≤ s}|
|B| + Ã({f > t})

)
.

We first establish an upper bound for s in terms of t.

µ(t) ≥ µ(s) = |{f∗ > s}| = |{f > t} ∩ U |
≥ |{f > t} ∩Ωc

δ|
= |{f > t}| − |{f > t} ∩ Ωδ|

by (72) ≥
(
1−

√
θ1
2

)
|{f > t}|

=

(
1−

√
θ1
2

)
µ(t).

Let us consider the generalised inverse µ−1 of µ defined by

µ−1(m) =

{
sup f m = 0

inf{t : µ(t) < m} m > 0

It is non-increasing and left-continuous ([DFV24, Definition 2.20]). Let m0 := µ(t) and

m = µ(s). We have m ∈
((

1−
√
θ1
2

)
m0,m0

)
. There exists a positive constant c2 = c2(Ω, ǫ)

such that for

θ1 ≤ c2 (81)

we have

µ−1(m)− µ−1(m0) = s− t ≤ ǫ.

Thus, to obtain (79), it reduces to show that

|B ∩ {f∗ ≤ s}|
|B| ≤ C4(s

√
|D|+ η(D) + ǫ) ≤ C4(t

√
|D|+ η(D) + 2ǫ) (82)

for every s ∈ [t, t + ǫ) and t ≤ min{t̃, 14 |D|−1/2}. We can assume ǫ ≤ 1
4 |Ω|−1/2 ≤ 1

4 |D|−1/2.
Thus

s ≤ 1

2
|D|−1/2. (83)

We consider the function fs(x) = (f∗(x)− s)+ ∈ H1
0 ((1− r)B), where r > 0 is chosen such

that {fs > 0} = {f∗ > s} = (1− r)B. Note that

|B ∩ {f∗ ≤ s}| = |B \ {fs > 0}| = (1 − (1− r)n)|B| ≤ nr|B|. (84)

Hence, we need to estimate r. We can use fs(x) as a test function for λD
1 ((1− r)B).

λD
1 (B)

(1− r)2
= λD

1 ((1− r)B) ≤
´

(1−r)B |∇fs|2
´

(1−r)B f2
s

≤
´

B |∇f∗|2
´

(1−r)B f2
s

By Lemma A.2 ≤
´

D |∇f |2
´

(1−r)B f2
s

≤ λD
1 (D

∗)(1 + η(D))
´

D f2

´

(1−r)B f2
s

≤ λD
1 (B)(1 + η(D))

´

D f2

´

(1−r)B f2
s
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Taking the square root of both sides and using the fact that ‖f‖L2(D) ≤ 1+ ‖f̃‖L2(D), we get:

1

(1− r)
≤ (1 + η(D))1/2(1 + (

´

D f̃2)1/2)

(
´

(1−r)B f2
s )

1/2
. (85)

We now estimate ‖f̃‖L2(D). Using inequality (71), we obtain

‖f̃‖L2(D) ≤ c
−1/2
1 (2

√
θ1|D|)1/n

(
ˆ

D
|∇f̃ |2

)1/2

≤ c
−1/2
1 (2

√
θ1|D|)1/n(

ˆ

D
|∇f |2)1/2

≤ c
−1/2
1 (2

√
θ1)

1/n
(
|D| 2nλ1(D)

)1/2 (
1 + ‖f̃‖L2(D)

)

≤ c
−1/2
1 (2

√
θ1)

1/nC
1/2
0

(
1 + ‖f̃‖L2(D)

)

where in the last inequality we use the assumption λ1(D)|D|2/n ≤ C0. Let

A := c
−1/2
1 (2

√
θ1)

1/nC
1/2
0 .

Thus, for θ1 small enough such that

1−A > 0, and
A

1−A
< ǫ, (86)

we have

‖f̃‖L2(D) ≤
A

1−A
≤ ǫ. (87)

Therefore, after rearranging inequality (85), we get
(
ˆ

(1−r)B
f2
s

)1/2

≤ (1− r)(1 + η(D))1/2 (1 + ǫ)

≤ (1− r)(1 +
η(D)

2
)(1 + ǫ)

≤ (1 + ǫ)(1− r +
η(D)

2
)

≤ (1 + ǫ)(1− r) + η(D). (88)

On the other hand, we have
(
ˆ

(1−r)B
f2
s

)1/2

=

(
ˆ

(1−r)B
(f∗ − s)2+

)1/2

=

(
ˆ

(1−r)B
(f∗ − s)2

)1/2

by the triangle inequality ≥
(
ˆ

B
(f∗)2 −

ˆ

B\(1−r)B
(f∗)2

)1/2

− s((1− r)n|B|)1/2

≥
(
ˆ

B
(f∗)2 −

ˆ

B\(1−r)B
(f∗)2

)1/2

− s|B|1/2

≥
(
ˆ

D∗

(f∗)2 −
(
ˆ

D∗\B
+

ˆ

B\(1−r)B

)
(f∗)2

)1/2

− s|B|1/2
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using ‖f‖L2(D) ≥ ‖f̂‖L2(D) = 1 ≥
(
1−

(
ˆ

D∗\B
+

ˆ

B\(1−r)B

)
(f∗)2

)1/2

− s|B|1/2

≥
(
1− s2 (|D∗ \ (1− r)B)|)

)1/2 − s|B|1/2

≥
(
1− s2|D∗|

)1/2 − s|B|1/2 (89)

≥ 1− s|D∗|1/2 − s|B|1/2

≥ 1− s

( |B|
1− θ1

)1/2

− s|B|1/2.

The inequality, (80) and the bound on s in (83) imply that 1 − s2|D∗| ≥ 1
2 > 0, so (89) and

the two inequalities above are valid. The last inequality is the consequence of the following.
We use the assumption |D ∩ Ωδ| ≤ θ1|D| to get |D ∩ U c| ≤ |D ∩Ωδ| ≤ θ1|D|. Thus,

|B| = |D ∩ U | = |D| − |D ∩ U c| ≥ |D|(1− θ1).

Assuming

1− θ1 ≥
1

4
, (90)

we have (
ˆ

(1−r)B
f2
s

)1/2

≥ 1− 3s|B|1/2. (91)

Combining and rearranging (88) and (91), we get

r ≤ ǫ+ η(D) + 3s
√

|B| ≤ ǫ+ η(D) + 3s
√

|D|.
Putting this into (84), we obtain inequality (79) with C3 = max{8, 6n}.

Step 5. For the final step, we use (78) to show that there exists t ∈ (0, t̃) such that Ã({f > t})
is bounded above in terms of η(D). Then we use it in inequality (79) to conclude.

Using the identity λD
1 (D

∗)|D∗| 2n = λD
1 (B)|B|

2
n , we can rewrite inequality (78) as

ˆ t̃

0

Ã({f > t})2µ(t) 2(n−1)
n

|µ′(t)| ≤ C5|D|− 2
n (η(D) + 2ǫ) . (92)

W.l.o.g, we assume η(D) ≤ δ3 where δ3 < 1 is small enough (depending only on n) to
be chosen later. We now use (82) to obtain a lower bound for µ(t). Note that in (82),
|B| = |D ∩ U | where U ⊆ Ω is any open set containing Ω \ Ωδ. We take U = Ω, and thus
|B| = |D ∩ Ω| = |D|. Hence, for every t ≤ min{1

4 |D|−1/2, t̃}, we have

µ(t) = |{f > t}|
≥ |D| − |D ∩ {f ≤ t}|
≥ |B| − |B ∩ {f∗ ≤ t}|
≥ |B| − |B|C4(t

√
|D|+ η(D) + ǫ).

Let t1 = min

{
1

6C4

√
|D|

, 1

4
√

|D|
, t̃

}
, δ3 ≤ 1

6C4
and ǫ ≤ 1

6C4
. Then for any t ∈ (0, t1), using (80),

µ(t) ≥ |B|
2

=
|D|
2
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for any t ∈ (0, t1). As a result we obtain
ˆ t1

0

|D|2Ã({f > t})2
|µ′(t)| ≤ C6 (η(D) + 2ǫ) . (93)

We now follow the same line of argument as in [FMP09] and introduce two positive param-
eters θ and σ (that are fixed below). Let us estimate the 1-dimensional Hausdorff measure of
the following two sets.

I1 :=

{
t ∈ (0, t1) :

Ã({f > t})2
|µ′(t)| ≥ θ

}
, I2 :=

{
t ∈ (0, t1) : |µ′(t)| ≥ |D|θ−σ

}
.

From inequality (93), we have

|I1| ≤
C6(η(D) + 2ǫ)

|D|2θ , |I2| ≤
ˆ

I2

|µ′(t)||D|−1θσ ≤ θσ,

and therefore

|I1 ∪ I2| ≤
(
C6(η(D) + 2ǫ)

|D|2θ + θσ
)
.

Taking θ =
(
η(D)+2ǫ

|D|2
) 1

1+σ
and σ = 1

3 , we get:

|I1 ∪ I2| ≤ C7

(
η(D) + 2ǫ

|D|2
) σ

1+σ

=
C7(η(D) + 2ǫ)

1
4

√
|D|

.

Now note that

t̃2|D| ≥
ˆ

{f≤t̃}
f2 +

ˆ

{f>t̃}
t̃2 =

ˆ

D
f̂2 = 1.

Thus, t̃ ≥ 1√
|D|

. As a result t1 ≥ C8√
|D|

, where C8 = min{ 1
6C4

, 14}. Assuming δ3 and ǫ are

sufficiently small so that ǫ ≤ δ3
2 and 2C7(2δ3)

1/4 ≤ C8 implies that the set

B = (0, t1) ∩
(
0,

2C7(η(D) + 2ǫ)1/4√
D

)
\ (I1 ∪ I2)

=

(
0,

2C7(η(D) + 2ǫ)1/4√
D

)
\ (I1 ∪ I2).

has nonzero measure. In particular for any t ∈ B, we have

Ã({f > t})2 ≤ |µ′(t)|θ ≤ |D|θ1−σ = |D|
(
η(D) + 2ǫ

|D|2
) 1−σ

1+σ

= (η(D) + 2ǫ)
1
2 .

Plugging into (79) for such t, we get

Ã(D) ≤ C
(
(η(D) + 2ǫ)

σ
1+σ + η(D) + ǫ+ (η(D) + 2ǫ)

1−σ
2(1+σ)

)
(94)

≤ C(η(D) + 2ǫ)
1
4 .

Note that the choice of σ = 1
3 is also made so that the power of the first and the last term in

the right-hand side of (94) are equal. We conclude that

λ1(D) ≥
(
1− 2ǫ+ CÃ(D)4

)
λD
1 (D

∗).

Note that we only get a quantitative version when the term CÃ(D)4 − 2ǫ is positive. �



NODAL COUNTS FOR THE ROBIN PROBLEM ON LIPSCHITZ DOMAINS 35

References

[APP22] Gioacchino Antonelli, Enrico Pasqualetto, and Marco Pozzetta. Isoperimetric sets in spaces with
lower bounds on the Ricci curvature. Nonlinear Anal., 220:Paper No. 112839, 59, 2022.

[APPV23] Gioacchino Antonelli, Enrico Pasqualetto, Marco Pozzetta, and Ivan Yuri Violo. Topological reg-
ularity of isoperimetric sets in PI spaces having a deformation property. Proceedings of the Royal
Society of Edinburgh: Section A Mathematics, page 1–23, 2023.

[BCM24] Thomas Beck, Yaiza Canzani, and Jeremy L. Marzuola. Uniform upper bounds on Courant sharp
Neumann eigenvalues of chain domains. J. Geom. Anal., 34(9):Paper No. 262, 39, 2024.

[vdBG16] Michiel van den Berg and Katie Gittins. On the number of Courant-sharp Dirichlet eigenvalues. J.
Spectr. Theory, 6(4):735–745, 2016.

[BH16] Pierre Bérard and Bernard Helffer. The weak Pleijel theorem with geometric control. J. Spectr.
Theory, 6(4):717–733, 2016.
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