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FUNCTIONAL CENTRAL LIMIT THEOREM FOR

TOPOLOGICAL FUNCTIONALS OF GAUSSIAN CRITICAL

POINTS

CHRISTIAN HIRSCH AND RAPHAËL LACHIÈZE-REY

Abstract We consider Betti numbers of the excursion of a smooth Euclidean
Gaussian field restricted to a rectangular window, in the asymptotics where the
window grows to Rd. With motivations coming from Topological Data Analysis,
we derive a functional Central Limit Theorem where the varying argument is the
thresholding parameter, under assumptions of regularity and covariance decay for
the field and its derivatives. We also show fixed-level CLTs coming from martingale
based techniques inspired from the theory of geometric stabilisation, and limiting
non-degenerate variance.

Keywords: Gaussian fields, geometric excursions, Betti numbers, functional
CLT, stabilisation, topological data analysis.

1. Introduction

Stationary Gaussian fields are a dominant model to represent spatially homoge-
neous continuous data in several dimensions. In particular, the excursion sets, or
upper level sets, obtained by thresholding at a given level, are the topic of intensive
research across several fields, and under many angles: image analysis, percolation,
materials science, neurology, cosmology. Their geometric characteristics, such as
the volume, perimeter, or topological indexes, have been the subject of several
works on limit theorems. See for instance [1, 3, 12] for theoretical tools, results,
and case studies for smooth Gaussian fields.

Recently, a large variety of disciplines have adopted methods from the mathemat-
ical domain of topological data analysis (TDA) in order to analyze data exhibiting
complex topological features. In this area, the (persistent) Betti numbers are the
key tool, which, loosely speaking, describe the number of holes of a fixed dimension
contained in a considered data set. In order to put TDA on a rigorous statis-
tical foundation and to allow for the derivation of hypothesis tests, it is crucial
to develop the theory of normal approximation for the Betti numbers. This has
been successfully achieved for topology models based on the Poisson point process
[14, 34]. While point process models are interesting, when looking into applications,
random-field models are of central importance [27, 28, 32]. However, when consid-
ering the asymptotics of persistent Betti numbers, then much less is known. One
exception is a work on discretely-indexed Gaussian excursions, which is however
restricted to the sparse regime [31].
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Central limit theorems (CLTs) for geometric functionals have been a topic of
intensive research in the last 20 years. Here, the most thoroughly studied model is
that of a Poisson point process in Euclidean space. For instance, we refer the reader
to [16, 17, 18, 26] and the references therein. Motivated by the emerging domain of
TDA, we focus in this work on topological indexes of the fields. While there has been
a lot of progress in the normal approximation of geometric functionals on Poisson
processes, the situation is much less clear for the case of Gaussian fields. The first
such work is the CLT for the Euler characteristic established by Estrade & Léon
[10]. However, their arguments critically rely on the local nature of this functional
and therefore do not generalize to the more globally defined Betti numbers. Much
more recently, [4] applied a general martingale technique to derive a CLT for the
component count of Gaussian random fields under suitable moment assumptions,
in the spirit of the theory of Geometric stabilisation [26]. Later, McAuley [19]
established a similar CLT for geometric functionals of the unbounded connected
component.

The results mentioned above in [34, 14] concern a CLT at a fixed level. However,
in applications, it is typically not at all clear what is the appropriate scale. Also,
TDA is concerned with the evolution of the topology when a real parameter is
varying, this role is played here by the level u. Therefore, it is essential to have a
functional CLT that allows to vary the level. In our main result, we derive such a
result under suitable moment conditions where the level is allowed to vary in sub-
critical and super-critical regime of random-field percolation. We note that even in
the point-process case such a process-level result is only known to hold for quasi-
1D domains or under truncation of the Betti number [15, 6]. Here, the particular
challenge in functional CLTs is the question of tightness for topological functionals.
One important ingredient in our arguments is the derivation of exponential tails for
the diameter of bounded components coming from continuous percolation.

Besides the tightness, we derive CLTs at fixed levels for a large class of non-local
topological functionals. We also discuss the question of positivity of the limiting
variance. While we can reuse some parts of the strategies from the component-
case considered in [4], the general Betti numbers require a more careful geometric
analysis.

The rest of the manuscript is organized as follows. In Section 2 we introduce the
Gaussian fields and recall some useful properties about them. In Section 2.1, we
introduce the topological functionals and their fundamental properties. In Section
2.2 we state our main results. In Section 3, we discuss key results on Gaussian
random fields such as the white-noise decomposition. Section 4 contains important
topological preliminaries that will be used in the proofs. In Section 5, we prove the
fixed-level CLT, and show the positivity of the limiting variance. Finally, the proof
of the functional CLT is given in Section 6.

2. Results

A stationary Gaussian field is a random function F : Rd Ñ R with Gaussian
finite-dimensional marginals pF pt1q, . . . , F ptdqq, and which is distributionally in-

variant under translations, i.e. F pt ` ¨q pdq“ F for t P Rd. We assume furthermore
that the field is centered with unit variance (i.e. F pxq „ N p0, 1q for x P R

d), in
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which case the law of F is characterised by the covariance function

Cpxq “ EpF p0qF pxqq, x P R
d.

Let us state some assumptions ensuring asymptotic independence and regularity of
the field.

Assumption 1 (Gaussian fields assumptions).

‚ Regularity: C should be of class C2q0`3 for some q0 ą 213.
‚ Covariance decay: C and its derivatives BαC for a multi-index α with |α| ď
3 should decay at 8 as }x}´η for some η ą 55d2.

By [2, Section 1], this assumption implies in particular that the Gaussian field
a.s. has sample paths of class Cq0`1. In practice, only class C3 is necessary to
properly assess quantitatively topological properties of the field, but by [11] this
regularity yields that the number of critical points has locally finite moments of
order q0 (Theorem 12), which is useful for using Hölder’s inequality in several parts
of the proof.

We study the topological properties of the excursion sets

Epuq “ Epu;F q “ tx : F pxq ě uu, u P R,

intersected through a rectangular window W Ă Rd. We consider topological func-
tionals applied to the connected components of Epuq XW . It is more convenient to
work with components which do not touch BW , and we shall assume that these com-
ponents have a controllable size. For A Ă Rd, denote by C pAq the set of bounded
connected components of A, for bounded Q Ă A, let C pA;Qq the set of C P C pAq
with C X Q ‰ H, and let CpA;Qq the union of the C P C pA;Qq. The functional
CLT established in this paper works on an interval I away from the critical regime.
To make this precise, we henceforth let usc ě 0 be the threshold of sharp phase
transition: for u ą usc, for any a ą 0 there is ca ă 8 with

PpdiampCptF ě uu, t0uqq ě rq ď car
´a.

Remark that it is not automatic that usc ă 8, this condition is discussed below.
Before that, we first state our assumption on the interval I.

Assumption 2. I Ă pusc,8q Y p´8,´uscq.
Sharp phase transition is traditionally defined with exponential decay, but we

require a weaker assumption here. Most available results actually give exponential
decay. This assumption is discussed at Section 2.4.

2.1. Topological functionals. For simplicity we assume here that W “ Wn is
a stratified window, i.e., a union of rectangles parallel to the axes and in general
position (all pairs of rectangles have an intersection that is either empty or full
dimensional). Our aim is to treat Betti numbers of Gaussian excursions, such as
number of connected components, number of cavities, etc. . .We introduce a more
general class of topological functionals adapted to Morse excursions.

We call E k the class of k-dimensional compact manifolds of Rd (with boundary)
that can be written as the level set tf ě uu of a Ck Morse function f : Rd Ñ R,
such that for two critical points x, y of f , fpxq ‰ fpyq. The latter requirement
could be avoided, but it is not restrictive for Gaussian fields and more convenient
this way. Such a representation of A is called a Morse representation.
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Definition 3. Say that a function β : E k Ñ R is topologically additive if it admits
the representation on bounded connected components C

βpAq “
ÿ

CPC pAq
βpCq

and

‚ βpCq only depends on the isotopy class of C, where two sets C,C 1 are in
the same isotopy class if there is a continuous function γ : r0, 1s ˆ Rd Ñ
R

d, t P r0, 1s such that γp0, xq “ x and γp1, Cq “ C 1, and for each t, γpt, ¨q
is a homeomorphism.

‚ |βpCq| is bounded by the number of critical points of f over C above level
u for any Morse representation C “ tf ě uu.

Our main example will be the Betti numbers, which are such additive topological
functionals. Here, we only give a loose description of this quantity. The precise def-
inition relies on the concept of homology, whose mathematical definition is beyond
the scope of the present work. We refer the reader to [20, 13].

Definition 4 (Betti numbers). Betti numbers are such additive topological func-
tionals βk, k ď d where βkpAq counts the number of equivalence classes of k-
dimensional cycles of A.

For instance, a 0-dimensional cycle is in the same class as a point, hence β0pAq
counts the number of classes of points which are not topologically equivalent in A,
hence β0pAq is the number of bounded connected components of A.

The first property from Definition 3 holds for Betti numbers since they are
invariant by homotopy, see [13, Theorem 2.10]. For the second property, note that
if u ď u1 are two levels of critical points of f such that there is no other critical
point with level in ru, u1s, then the relative homology groups Hk

`
tf ě uu, tf ě u1u

˘

are of rank 1 for at most one value of k and 0 otherwise. Therefore, the second
property follows from the long exact sequence in homology. We refer the reader to
[20, Section I.5] for details.

We will be looking at here a Ck Gaussian field F which level sets are not compact,
but we only observe the connected components in the interior of a window Wn, so
that we have indeed

ď

CPC pEpuq,Wn,BWnq
C “ tf ě uu,

for some Ck function f on Wn which coincides with F on a neighbourhood of the
components. It is well known that such restricted excursions of smooth Gaussian
fields a.s. correspond to this framework, use Lemma 17 for a rigourous proof. We
set

βnpuq :“ βnpu;F q :“
ÿ

CPC pEpuq,Wn,BWnq
βpCq(1)

hence we consider topologically additive functionals as defined above.

2.2. Fixed-level CLT and variance lower bounds. We first state the fixed-
level CLTs for Betti numbers, then the FCLT in the variable u, where we also
assume that #ti : Qi ‰ Hu „ VolpWnq „ n. In this section, we state a CLT for
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the Betti numbers at a fixed level. To ensure positivity of the limiting variance, we
need an additional condition. To state this precisely, let

µpuq :“ lim
nÑ8

|Wn|´1E
`
βnpuq

˘
,(2)

supposing that this limit exists. Henceforth, we set γ :“ η{d ´ 1{2, which satisfies
γ ą 54d under Assumption 1. Define

β̃npuq “ n´1{2pβnpuq ´ Epβnpuqqq.

Theorem 5 (Fixed-level CLT). Consider a Gaussian random field satisfying As-
sumption 1. Furthermore, assume that u is as in Assumption 2. Then,

Ăβnpuq ñ N p0, σpuq2q,

where N p0, σpuq2q is a normal distribution with mean 0 and some variance σpuq2 ě
0. If µpuq exists and is not 0, then σpuq ą 0.

Remark 6. Our bound for q0 is likely very conservative. We believe it can be
improved substantially by optimizing further within proofs.

Theorem 5 is proven in Section 5 by invoking a general CLT for stabilizing
functionals on Gaussian random fields from [4, Theorem 1.2]. The latter result is
modeled after a classical CLT for stabilizing functionals of a Poisson point process
[26, Theorem 3.1]. Very recently, there also has been a general CLT implying the
asymptotic normality of the volume, surface area and Euler characteristic of an
unbounded component in the excursion set [19].

Concerning the positivity of variance, we then proceed along the lines of [4,
Theorem 1.3]. However, a crucial ingredient in that proof is [4, Lemma 3.13(1)],
which contains a delicate argument based on properties of the spectral measure
to show that with positive probability at least some connected component of the
excursion set intersects r0, 1sd.

2.3. Functional central limit theorem. After having established the CLT at a
fixed level in Theorem 5, the next step is to prove a CLT where the functional is
considered as a stochastic process in the level. To this end, we must ensure that
the process u ÞÑ βqpuq is in the CADLAG space:

Lemma 7. If |Ynpru´, u`sq| “ 0, βqpu´q “ βqpu`q.

Since, by Lemma 17, the critical values over a compact window are almost surely
locally finite, the process βq a.s. jumps finitely many times on each compact by
Lemma 17 below. Therefore, we henceforth consider βqpuq as an element in the
space of CADLAG functions equipped with the standard Skorokhod topology, see
[5, Section 12].

Theorem 8 (FCLT for Betti numbers). Consider a Gaussian random field satisfy-
ing Assumption 1. Let I be an interval satisfying Assumption 2. Then, as n Ñ 8,
as a process, in the Skorokhod topology,

Ăβnp¨q ñ Z,

where Z is a centered Gaussian process on the interval I.
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2.4. Discussion of the percolation assumption. This question is highly tech-
nical and outside the scope of the present paper, many recent works deal with the
percolation properties of Gaussian excursions, and in particular give conditions un-
der which the percolation regime undergoes a sharp phase transition, under which
this assumption is satisfied. We briefly discuss what is known about the validity
of Assumption 2 on the exponential decay of the cluster diameters. A more ele-
mentary question concerns the existence of a level above which with probability 1,
there exists an unbounded connected component. That is, we define

uc :“ sup
!
u P R : P

`
diampCpEpuq; r0, 1sdqq “ 8

˘
ą 0

)

as the standard critical level of percolation. The fact that for sufficiently low u

there is an unbounded connected component under mild assumptions goes back to
Stepanov and Molchanov [21]. Here are some more precise statements. We mainly
give results in the supercritical regime, as it is in general easier to give bounds on
the size of bounded components of the subcritical regime.

(1) Consider the planar case, i.e., d “ 2. Here, uc “ usc “ 0 by self-duality
under very mild assumptions. Then, [24, Theorem 1.7] shows the sharp-
ness of the phase transition under some correlation decay assumptions. In
particular, Assumption 2 is implied by Assumption 1 in the planar case,
meaning it holds for every interval I not containing t0u.

(2) For general dimensions d ě 3, the situation is more delicate. First, the
typical situation is to have percolation of both phases at level 0, hence
uc ą 0; it has been proved to hold in [9] under stronger assumptions, and in
general the value of uc is not known, as in most non-symmetric percolation
models. [30, Theorem 1.2] shows the sharpness of the phase transition under
mild hypotheses, meaning that Assumption 2 holds under Assumption 1 for
I Ă r´uc, ucsc. However, the arguments need positive association (a.k.a.
the FKG inequality) and therefore only apply for nonnegative covariance
kernels. That is, we must additionally assume infx Cpxq ě 0.

(3) Without positive association, for the components in the subcritical regime,
we can apply [22, Theorem 3.7]: if the covariance decays monotonically at
a rate faster than any polynomial, then we have the threshold

u1
c “ inftu P R : lim inf

RÑ8
sup
xPRd

PpCptF ě uuq X BBpx, 2Rq, Bpx,Rqq ‰ Hq “ 0u

where Bpx,Rq is the ball centred in x with radius R, that satisfies uc ď
usc ă 8, and for u ą usc,

lim sup
rÑ8

plog rq´1 logPp diampCptF ě uu, txuqq ą rq “ ´8.

It is expected that usc “ uc, but proved only in the planar case.
(4) Finally, [23, Theorem 1.2] concerns again the sharpness of the phase tran-

sition for fields not satisfying the FKG condition in dimension d ě 3. The
arguments here rely on a suitable finite-range decomposition of the consid-
ered random field. In particular, it is proved in particular that exponential
decay occurs for some (non necessarily positive) covariances decaying poly-
nomially with an arbitrary negative exponent.

To summarise:
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Theorem 9 (Muirhead,Rivera,Severo). Assume Assumption 1 holds. Then As-
sumption 2 holds in the following cases:

‚ d “ 2 and 0 R Ī .
‚ d ě 3 and Cpxq ě 0 and I Ă p´8,´uscq Y pusc,8q.
‚ d ě 3 and I Ă p´8,´uscq for some usc ą uc if Cpxq decays sufficiently fast.
‚ d ě 3 and I Ă pusc,8q for some classes of covariances of “finite range” (it
also probably works for I Ă p´8,´uscq).

3. Properties of Gaussian fields

3.1. White noise convolution. Many assumptions are more conveniently stated
through the spectral measure, defined as the unique probability measure µ on Rd

such that

Cpxq “
ż
eixuµpduq, x P R

d.

Let BpRdq denote the Borel σ-algebra on Rd. A Gaussian white noise is a random
signed measure seen as a random field W : BpRdq Ñ R such that

‚ WpAq „ N p0, |A|q for A Borel
‚ WpA YBq “ WpAq ` WpBq a.s. for every disjoint Borel sets A,B Ă Rd

‚ WpAq and WpBq are independent for every disjoint Borel sets A,B Ă Rd.

See [1, Section 1.4.3] for an explicit construction. It satisfies in particular for f, g
square integrable

Covp
ż
fdW ,

ż
gdWq “

ż
fg.(3)

Assumption 1 implies that the spectral measure µ has a smooth L2 density,

denoted by ρ. Hence C “ ρ̂ “ q ‹ q with q “ x?ρ. Let W be a centred stationary

Gaussian white noise on R
d. Writing ‹ for the classical convolution operator, F

admits the representation

F pxq pdq“ F px;Wq :“ q ‹ Wpxq(4)

because

Cpxq “ q ‹ qpxq “
ż
qpyqqpy ` xqdy “ EpF p0qF pxqq

and the covariance uniquely determines the law of the Gaussian field.
Not all Gaussian covariances can be written in this way, for instance the random

planar wave model cannot as its spectral measure is singular. The renormalisation
assumption means that

VarpF pxqq “ }q}L2 “ 1.

3.2. Non-degeneracy. Let us recall the formulae linking derivatives of the field
and the covariances [1, (5.5.4)-(5.5.5)]: if a covariance function C is C2k`, F is
a.s. of class Ck and for natural integers α, η, γ, δ such that α ` η ď k, γ ` δ ď k,
coordinates 1 ď i, j ď d,

E
`
Bα
i Bη

jF ptq ¨ Bγ
i Bδ

jF psq
˘

“ Bα`η`γ`δ

BtiαBtjηBsiγBsjδ
Cpt ´ sq, s, t P R

2.(5)
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For instance, by symmetry,

∇Cp0q “0

Covp∇F ptqq “ ´ HessCp0q “ ´

¨
˝

λ1 . . . 0
. . . . . . . . .

0 . . . λd

˛
‚

where CovpMq denotes the covariance matrix of a random vector M , and λi “
VarpBiF p0qq. We have in particular the expansion

Cpxq “ 1 ´ 1

2
p
ÿ

i

λix
2
i q ` opx2q, x P R

d.

The following standard result states that the field’s derivatives are not degenerate
at disjoint locations under Assumption 1. Let

I “ tp1q, p2q, p1, 1q, p2, 2q, p1, 2q, p1, 1, 1q, p1, 1, 2q, p1, 2, 2q, p2, 2, 2qu
the set of orderer multi-indexes of length ď 3 in t1, 2u.
Proposition 10. Assume there is an open set in the support of the spectral density
ρ. Let the Gaussian vector V pxq “ pBαF pxq;α P Iq Ă R#I , x P Rd and for x, y P
Rd, V px, yq P R2#I the random vector obtained by concatenating V pxq and V pyq.
Then for all x P Rd, the derivatives BαF pxq, α P I form a non-degenerate Gaussian
vector, i.e. detpCovpV pxqq ą 0. Also, for δ ą 0,

inf
|x´y|ąδ

| detpCov pV px, yqqq| ą 0.

Proof. The proof is based on the fact that for a Gaussian vector V “ pV1, . . . , Vmq,
detpCovpV qq “ 0 iff there is a non-trivial linear relation

mÿ

i“1

aiVi “ 0 a.s..

Let paαqαPI , pbα1 qα1PI finite collections of complex numbers indexed by multi-
indices, and let x P R

d. By recalling that C “ ρ̂, we have by (5), for some
polynomials P1, P2, Q : Cd Ñ C, for x P Rdzt0u,

Varp
ÿ

α

aαBαF p0q `
ÿ

α1

bα1 Bα1

F pxqq “
ż

Cd

rP1pλq ` P2pλq ` eiλxQpλqloooooooooooooooomoooooooooooooooon
Rpλq

sρpλqdλ,

where resp. P1, P2 are obtained when pbα1 q ” 0, resp. paαq ” 0, and Q is the
cross term. This formula is valid for any L2 spectral density ρ and corresponding
stationary Gaussian field F , hence the right hand side is nonnegative for any ρ. It
implies that Rpλq P R`, and similarly P1, P2 are nonnegative.

Assume now that for some ρ having a nonempty open set O in its support, this
quantity vanishes, which equivalently means that there exist deterministic complex
paαq, pbα1 q such that almost surely,

ÿ

α

aαF p0q `
ÿ

α1

bα1 Bα1

F pxq “ 0

It means that Rpλq “ 0 over O, and as an analytic function, it means it vanishes on
Cd. Hence, eiλxQpλq should have a finite expansion with x ‰ 0, which means that
Q “ 0, and then P1 `P2 “ 0 as well. Since they are nonnegative, all coefficients of
P1, P2 are zero, which easily implies with (5) that that the coefficients aα and bα1
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are all 0. We hence proved by contradiction that detpCovpV px, yqqq ą 0 for x ‰ y.
Looking at the first |I| coordinates of V px, yq, it means that V pxq is non-degenerate,
which proves the first statement.

For the second statement, note that the map px, yq ÞÑ detpCovpV px, yqqq is con-
tinuous and does not vanish, hence for 0 ă δ ă K ă 8,

inf
δă|x´y|ăK

| detpCovpV px, yqqq| ą 0.

Let us finally prove that the infimum over distant x, y is non-zero as well. If it is
zero, it means by stationarity that for some sequence xn Ñ 8,

detCovpV p0, xnqqlooooooomooooooon
“:Γxn

ÝÝÝÝÑ
xnÑ8

0.

Denoting by Uxn
a unit vector associated to the smallest eigenvalue of Γxn

, we
have Γxn

Uxn
Ñ 0 in Rd. By compactness of Sd´1, it means we can find coefficients

aα, bα1 which constitute the limit of a subsequence of Uxn
in S

d´1 and such that

ÿ

α

aαBαF p0q `
ÿ

α1

bα1 Bα1

F pxnq Ñ 0.

Since by stationarity both terms of the left hand side have a constant positive
variance, it means their correlation goes to 1, which is in contradiction with the
assumption that for each α, α1 P I, the partial derivative of the covariance function
BαBα1

Cpxnq Ñ 0 as xn Ñ 8.

�

3.3. Concentration. Finally, it is standard a result in Gaussian processes that the
field and its derivatives concentrate well. Nevertheless, to make the presentation
self-contained, we provide the proof.

Proposition 11. There is cd, c
1
d ă 8 such that the following holds: given any con-

tinuous centered Gaussian field G on some domain A Ă R
d, with σA “ supA

a
VarpGpxqq,

for all t ě 0,

Pp}G}A ě tq ď cdp1 ` diampAqdq expp´c1
dpt{σAq2q.(6)

Proof. Assume first VarpGpxqq ď 1. Decomposing A “ YrdiampAqsd`1

i“1 Ai where the
Ai have diameter at most 1,

Pp}G}A ě tq ď
ÿ

i

Pp}G}Ai
ě tq ď cdp1 ` diampAqdqPpS ą tq

by stationarity, where S “ }G}Bp0,1{2q. Then Borell-TIS inequality yields

Pp|S| ą Ep|S|q ` sq ď 2 expp´s2q

and Ep|S|q ď c2
d with for instance [1, Th.1.3.3]. In the general case apply the

previous reasoning to the field Gpxqσ´1
A .

�
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4. Topological analysis

4.1. Morse representation. Following the theory of Morse functions [20], the
central objects of investigation in our work are the random critical points in the
compact sampling window Wn Ă Rd of volume n. More precisely, for a bounded
Borel set W Ă Rd, given F : W Ñ R smooth, we let

Y pW ˆ I;F q :“ Y pW ˆ Iq :“
 `
x, F pxq

˘
P W ˆ I : ∇F pxq “ 0

(

be the marked point process of critical points of the field F .
The index n indicates the restriction to some large rectangular windowWn Ă Rd

Yn “ Y pWn ˆ ¨q.
Furthermore, let Qi be the intersection of Wn with the half-open straight cube

centred in i with sidelength 1. Nonempty intersection of Wn with affine subspaces
that are maximal with respect to inclusion are called facets, their dimension is
the minimal possible dimension of the intersecting affine subspace. In this con-
text, call stratified critical point any x belonging to a facet f of W such that
F pxq “ 0,∇fF pxq “ 0, where ∇fF pxq “ pBui

F pxqqi, for some basis ui spanning
the hyperplane containing f. Denote by Y BpW ˆ I;F q “ Y BpW ˆ Iq the corre-
sponding process of stratified critical points, note that it contains Y pW ˆ Iq.

The following result ensures that we have finiteness of the moments of the mea-
sure Yn:

Theorem 12 (Gass, Stecconi [11]). Assume F is of class Cp`1 on some bounded
Borel set A Ă Rd. Then

Epp#Y pA ˆ Rqqpq ă 8.

The following lemma ensures some sort of topological stability of such a manifold
A “ tf ě uu perturbed by a Ck real function ∆ : B Ñ R where B is a neighbour-
hood of A. Call quasi critical point of pf,∆q at level u a couple t P r0, 1s, x P Rd

such that pf ` t∆qpxq “ u,∇pf ` t∆qpxq “ 0. In a stratified window W , call more
generally stratified quasi critical point a couple pt, xq with x P f for some facet f

of W such that pf ` t∆qpxq “ u and ∇fpf ` t∆qpxq “ 0. Denote by C pA,Q,Bq
the set of C P C pA,Qq with C X B “ H. We typically consider the components
C ptF ě uu,W, BW q of the excursion set interior to W .

Lemma 13 (Fundamental lemma of stratified Morse theory, Lemma B.1 of [4]).
Assume pf,∆q does not have stratified quasi critical point at level u on some strati-
fied window W . Then there is a one-to-one mapping ζ between C ptf ě uu,W, BW q
and C ptf `∆ ě uu,W, BW q, and for any C P C ptf ě uu,W, BW q, C and ζpCq are
isotopic.

This lemma implies that contributions in a topological functional over the man-
ifold are determined by the (stratified) critical points of the function.

Let us give an alternative representation of βnpu, F q obtained by scanning the
levels and account carefully for critical points on BWn:

Proposition 14. For x P Epuq, let Cx “ CptF ě uu, txuq be the bounded connected
component containing x, or the empty set. We have with Definition 3

βnpu;F q “
ÿ

px,vqPY BpWnˆru,8qq
δpx, v, Cxq
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where δpx, v, Cxq satisfies

|δpx, v, Cxq| ď #Y BpCx ˆ ru,8qq
and δpx, v, Cxq only depends on the isotropy class of Cx (hence is not modified upon
a ∆-perturbation without stratified quasi critical point by Lemma 13). We then
define the positive and negative parts:

β`
n pu;F q “

ÿ

px,vq
rδpx, v, Cxqs`

β´
n pu;F q “

ÿ

px,vq
rδpx, v, Cxqs´

Proof. Recall that

βnpu;F q “
ÿ

C

βpCq

and, exploiting the fact that there are a.s. finitely many critical points in any
compact set (Lemma 17), all with disjoint values, define for px, vq P Y BpC ˆ ru,8qq

δpx, v, Cq “ βnpv`;F q ´ βnpv´;F q
where exponents ` and ´ denote respectively lower and upper limits in v. �

This representation of βn as the difference between two non-decreasing func-
tionals will be useful in Section 6 when assessing the uniform tightness of the
functional u ÞÑ βnpu;F q. Let us enumerate some situations for a triple px, v, Cq
where δpx, v, Cq ‰ 0. It is important to remember that this value is allocated in
the scanning process and only depends on levels w ě v, and the value will not
change when crossing critical points below.

(1) x only involves internal components, such as when it is the birth point of
a component or the death point of a hole, or the merging of two internal
components C,C 1 P C ptF ě vu;Wn, BWnq, in the latter case δpx, v, Cq “
βpC Y C 1q ´ βpCq ´ βpC 1q.

(2) x is a stratified critical point where a component C touches BWn at level
v, hence δpx, v, Cq “ ´βpCq,

(3) x is an internal critical point which merges an internal component C with
an external one, in which case δpx, v, Cq “ ´βpCq.

Here is an alternative strategy of assigning weights to critical points.

Definition 15 (Reference point). For a compact connected component C of C pA;W ; BW q,
call xpC;F q “ xpCq P W zBW the critical point of C lowest with respect to the lex-
icographic order, called reference point of C, and define

δref px, vq “ βpCq1 rx “ xpCqs
for px, vq P Y pC ˆ ru,8qq. We have indeed

βnpu, F q “
ÿ

px,vqPY BpWnˆru,8qq
δref px, v, Cxq.

It will be apparent in the proof of Lemma 18 that this representation is easier to
handle when one tries to evaluate the probability that the topology is not modified
upon the perturbation by some field ∆, i.e. βnpu;F q “ βnpu;F ` ∆q. The reason



12FUNCTIONAL CENTRAL LIMIT THEOREM FOR TOPOLOGICAL FUNCTIONALS OF GAUSSIAN CRITICAL POINTS

is that it is easier to bound the probability that two critical points exchange lex-
icographic order during the perturbation than to bound the probability that they
exchange value, i.e. that one becomes lower than the other.

4.2. Topological perturbation. For B Ă Rd, define by WpBq an independent
resampling of the Gaussian white noise W in B, i.e.

WpBqpAq “ WpAzBq ` W 1pAX Bq
where W 1 is a white noise independent of W with the same law. We will only con-
sider countably many such resamplings, so we can assume allWpBq are independent.
Define as in (4)

F pBqpxq :“q ‹ WpBqpxq
∆B :“F ´ F pBq

Remark that F pBq has the same distribution as F because W and WpBq have
the same law, and ∆B should be small far away from B.

Proposition 16. Let |α| ď 3. If for some η ą d, cq ă 8, |Bαqpxq| ă cqp1 ` |x|q´η,
there is finite c ą 0 such that for A Ă R

d

Pp}Bα∆Bpxq}A ą tq ď cdp1 ` diam pAq2q exp
ˆ

´c t2

p1 ` dpA,Bqq´2η`d

˙
.

Proof. Let r “ dpA,Bq. By (3)

Varp∆Bpxqq “ Varpq ‹ p1BpW ´ W 1qqq “2

ż

B

|qpx ´ yq|2dy

ď c1
ż

Bp0,rqc
p1 ` }x´ y}q´2ηdy ď c2r´2η`d.

Hence, with Proposition 11, the maximum over some A satisfies the conclusion.
Then replace ∆B with Bα∆B for α ‰ 0 to arrive at the same conclusion. �

Henceforth, we only consider B :“ Hi,j the open half-space of points closer from
some j P Zd than from some i P Zd, in which case use the shorthand notation

F pi,jq “ F pHi,jq; ∆i,j “ ∆Hi,j

and remark that ∆i,j is independent from ∆j,i because Hi,j X Hj,i has negligible
intersection.

In the remainder of this section and the entire paper, it will be essential to be
able to bound the expected number of critical points whose value is contained in a
certain interval I. This will be done with the Kac-Rice formula.

Lemma 17 (Kac-Rice). let m ě 1, Q Ă R
m compact and F : Q Ñ R a C3 smooth

centred Gaussian field such that for each x P Q,

pF pxq,∇F pxq; Bi,jF pxq; i ď jq is a non-degenerate Gaussian vector.(7)

Then

Ep#Y pQ ˆ Iqq ď c|Q||I|
where c depends on the law of F . More precisely, in general, the constant c can
depend on Q. However, if F is stationary, then there is no such dependence.
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Proof. Assumption (7) yields by Corollary 11.2.2 in [1] that

Ep#Y pQˆ Iqq “
ż

Q

Ep| detHF pxq|1tF pxqPIu|∇F pxq “ 0qdx.

Let Wx “ p∇F pxq, Bi,jF pxq, i ď jq. Denote by Λv the (Gaussian) conditional dis-
tribution of F pxq given Wx “ v. By basic results on conditional Gaussian vectors,
we have Λv „ N pmpv, xq, σxq where σx is a deterministic value not depending on
v. Hence

Ep| detHF pxq|1tF pxqPIu|∇F pxq “ 0q “EpPpF pxq P I|Wxq| detHF pxq||∇F pxq “ 0q
“EpPpN pmpWx, σxq P |I|qq| detHF pxq||∇F pxq “ 0q

ďc |I|
σx

Ep| detHF pxq||∇F pxq “ 0q.

The minimal and maximal eigenvalues of the covariance matrix of Wx are bounded
from above and below as its covariance matrix is continuous on a compact and its
determinant does not vanish; hence it yields the desired bound. �

4.3. Topological lemma. Fix some stratified window Wn. Let Qi the unit cube
centered at some i P Zd with faces parallel to the axes, and let Qi :“ Qi XWn. Let
β a topologically additive functional as in Definition 3. We have the decomposition

βpu;Wnq “
ÿ

i:Qi‰H
βrispu;Wnq

where

βrispu;Wnq :“ βris :“
ÿ

px,vqPY pQi,ru,8qq
δref px, v, Cxq

“
ÿ

CPC pEpuq,Qi,BWnq
βpCq1txpC;F qPQiu.

We use implicitly that a.s. no critical point is on the boundary of a Qi, formally
proved with Lemma 17 applied with the Lebesgue-zero set YiBQi.

In this section, we consider the effect above Qi of a perturbation applied to the
field. More precisely, the white noise is resampled far away in Hi,j (points closer

from j than i), and we denote by β̃ris,j the value of βris after perturbation, i.e. for
the field F ` ∆i,j :

β̃ris,jpu;Wnq :“ β̃
j

ris : “
ÿ

CPC ptF`∆i,jěuu,Qi,BWnq
βpCq1txpC,F`∆i,jqPQiu.

We extend these definitions to the interval I “ ru´, u`s:
βrispIq “ βrispu`;Wnq ´ βrispu´;Wnq

and similarly for β̃j

rispIq. The content of the following lemma is to show that both

values are equal with high probability.

Lemma 18. Let δj “ 1 ` 1
3

}i´ j}, ε ą 0. Then,

PpDn :βrispI;Wnq ‰ β̃ris,jpI;Wnqq ď cε minpδd{2´β`ε
j , |I|q.(8)
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We prove separately that the LHS is bounded by each of the terms in the mini-
mum in the RHS. First, we have the trivial bound, exploiting the fact that βris and

β̃ris,j have the same law,

PpDn :βris ‰ β̃ris,jq ďPpDn :βris ‰ 0 or β̃ris,j ‰ 0q
ď2PpDn :βris ‰ 0q
ď2PpY pQi ˆ Iq ‰ Hq ď 2Ep#Y pQi ˆ Iqq.

The bound by |I| hence follows from Lemma 17, invoking also Proposition 10.
Bounding by the first term in the minimum in Lemma 18 is much more tricky.

We see the resampling as a continuous temporal evolution that leads from βris to

β̃
j

ris. We interpolate between the original field F “ F0 :“ F p¨;Wq and the resampled

field F1 :“ F p¨;WpHi,jqq. The resampling around j is done continuously through
the evolution Ft “ F ` t∆, t P r0, 1s, where we recall that ∆ :“ ∆i,j is small around
i. The proof of Lemma 18 resides in the idea that the topology of tF ě uu XQi is
the same as tF `∆ ě uu XQi if no “topological event” occurs during the evolution
t Ñ Ft. It is formalised by the “deterministic” Lemma 19 below.

We must first control the size of the connected component of Qi. Let m “ δεj .
Let Qm

i the cube with faces parallel to axes centred in i with sidelength m. By
Assumption 2, there is ξ ą 0 such that

PpdiampCptF ě u´ ξuqq ě mq ď cδ
´η`d{2
j .

Introduce the events

Ω1 : “ tCptF ě u´ ξu, Qiq Ă Qm
i u

Ω2 : “ t sup
xPQm

i

}∆pxq} ă ξu.

If Ω1,Ω2 are satisfied, indeed F ` t∆ ě F ´ ξ on Qm
i , hence for t P r0, 1s,

ptF ` t∆ ą uu XQm
i q Ă ptF ą u´ ξu XQm

i q
and

CptF ` t∆ ě uu, Qiq Ă CptF ě u´ ξu, Qiq Ă Qm
i .

These events are indeed dominant using also Proposition 11:

PpΩc
1q ` PpΩc

2q ďcδ´η`d{2
j

where the constant depends on the law of F and u, ξ, ε.

Lemma 19. Recall I “ ru´, u`s. Assume that Ω1,Ω2 and the following hold:

(1) There is no quasi critical point pt, xq P r0, 1s ˆQm
i with Ftpxq P tu´, u`u

(2) There is no stratified quasi critical point pt, xq P r0, 1s ˆ f for some facet f
of Qi or Q

m
i or BWn XQm

i , i.e. such that Ftpxq P tu´, u`u,∇fFtpxq “ 0.
(3) There is no pt, xq P r0, 1s ˆ BQi such that ∇Ftpxq “ 0.
(4) There are no two critical points x ‰ y P Qm

i of Ft such that x1 “ y1.
(5) For px, tq P Qm

i ˆ r0, 1s, detHFt
pxq ‰ 0 if ∇Ftpxq “ 0.

Then,

βipI;Wnq “ β̃ris,jpI;Wnq.
Proof. Denote by y1ptq, . . . , ypptqptq the critical points of CptFt ě u´u, Qiq Ă Qm

i at
time t such that Ftpykptqq P I. Then,
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(i) ykptq satisfies the equation ∇Ftpykptqq “ 0,
(ii) the Jacobian matrix of y ÞÑ ∇Ft is Jtpyq “ pBjBiFtpyqq “ HFt

pyq,
(iii) and by (4), det Jtpykptqq ‰ 0.

Hence, by the Inverse Function Theorem, t ÞÑ ykptq can be C1 extended on a
neighbourhood of t, which means the ykptq are C1 trajectories r0, 1s Ñ Qm

i .
The number of critical points could in principle depend on t, but since the

component is contained in Qm
i during the evolution process they cannot escape

Qm
i , and due to the previous lemma, points stay all along the evolution and pptq “

p “ const. The corresponding values Ftpykpsqq remain in I thanks to point (1) and
by continuity in t.

According to Lemma 13, points (1) and (2) yield an isotopy Γ between connected
components of tFt ě uu in Qm

i at times t “ 0 and t P r0, 1s. By point (2), those
of these components that touch Qi at time 0 are the same than at time t, because
there is no stratified quasi critical point on the boundary BQi. Let us label such
components at time t “ 0 by C1, . . . , Cℓ, and C 1

1 “ ΓpC1q, . . . , C 1
ℓ “ ΓpCℓq the

components of tFt ě uu touching Qi at some time t P r0, 1s. We used that since
Ω1,Ω2 are satisfied, all these components are contained in Qm

i . In particular, the
isotopy yields that βpCkq “ βpC 1

kq for 1 ď k ď ℓ. By point (3), two critical points
cannot exchange order in the lexicographic order, hence we can write that the
reference points are yi1ptq, . . . , yiℓptq for some fixed indexes i1, . . . , iℓ P t1, . . . , pu.
Hence,

βipu´;Wnq ´ β̃
j

rispu´;Wnq “
ℓÿ

k“1

βpCkq1tyikp0qPQi,CkĂWnu ´ βpC 1
kq1tyikp1qPQi,C

1
k

ĂWnu

“
ℓÿ

k“1

βpCkqp1tyik
p0qPQi,CkĂWnu ´ 1tyik

p1qPQi,C
1
k

ĂWnuq

(and a similar representation holds for βrispu`q ´ β̃
j

rispu`q). Since (2) is satisfied,

yikptq stays at a positive distance from BQi, hence 1tyik
p0qPQiu “ 1tyik

ptqPQiu.

Finally, since there is no tangency point of some component Ck, C
1
k with the

boundary of Wn by (2), the status Ck Ă Wn or C 1
k Ă Wn cannot change, and the

previous sum vanishes.
�

To complete the proof of Lemma 18, we hence have

PpDn :βris ‰ β̃
j

risq ďPpΩc
1q ` PpΩc

2q `
ÿ

k

Pppkq is not satisfied qlooooooooooooomooooooooooooon
“:bk

ďcδη´d{2
j ` b1 ` b2 ` b3 ` b4`b5.

Let us estimate the bk’s. First note that point (1) is a particular case of (2), with
f “ Qm

i . Point (2) is implied by

|F pxq ´ u| ą }∆F pxq} or }∇fF pxq} ą }∇f∆pxq}, x P BWn XQm
i

and similarly for v. Point (3) is implied by

}∇F pxq} ą }∇∆pxq}, x P BQi
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b2 ďPpDx P f : |F pxq ´ u´| ă |∆pxq|, }∇fF pxq} ă }∇f∆pxq}q
b3 ďPpDx P BQi : |∇F pxq| ă }∇∆pxq}q
b4 “PpDt P r0, 1s, Dx ‰ y P Qm

i such that x1 “ y1 and ∇Ftpxq “ ∇Ftpyq “ 0q
b5 “PpDt, x P r0, 1s ˆQm

i : ∇Ftpxq “ 0, detHFt
pxq “ 0q

All the terms are dealt with a lemma bounding from above the probability that
the minimum of a Gaussian field on a compact is small, it is a quantitative version
of Bulinskaya’s lemma [7] in the spirit of the Nazarov and Sodin’s version [25],
applicable also to some non-Gaussian fields such as detHFt

pxq. This lemma is
proved later in this section.

Lemma 20 (Bulinskaya). Let p1 ă p integers, A a bounded Borel set of Rp1

. Let
g1, . . . , gp be smooth centred Gaussian fields A Ñ Rdi resp. for some di P N˚, and
such that

Gpxq :“ pgipxqq P R
p˚

has a uniformly bounded density, where p˚ “ ř
i di. Let hi : R

di Ñ R be subpolyno-
mial functions, and fipxq :“ hipgipxqq, 1 ď i ď p. Assume also that each hipXq has
a density bounded on r´ε, εs for some ε ą 0 and X „ N p0, Idi

q. Let

ψpxq “ pfipxqqpi“1 P R
p,

Let α ă 1. There is cα such that for τ ą 0,

Pp inf
xPA

}ψpxq} ď τq ď cαp|A| _ 1qτα.

Furthermore for a centred Gaussian field ϕ : A Ñ R
p, let σA :“ maxxPA Varpϕpxqq,

we have

PpDx P A, }ψpxq} ă }ϕpxq}q ď c1
αp|A| _ 1qσα

A.

In all cases except b5, we will apply the lemma with hipsq “ s or hipsq “ s ´ u

or hipsq “ s´v, which obviously have a bounded density on Gaussian input. Recall
that γ “ η{d´ 1{2

pb2q Let p1 “ dimpfq ď d. Lemma 20 can be applied on A “ f Ă R
p1

with
p “ p1 ` 1, ψpxq “ pB1F pxq, . . . , Bp1F pxq, F pxq ´ u´q, hipsq “ s for i ď
p1, hppsq “ s ´ u´. The Gaussian field Gpxq “ p∇F pxq, F pxqq is non-
degenerate for each x with Proposition 10, hence since A is compact and
x Ñ detCov pGpxqq is continuous, Gpxq has a uniformly bounded density.

Let ϕpxq “ p∇∆pxq,∆pxqq. We compute in the proof of Proposition 16
that with B0∆ :“ ∆,

max
kďd

VarpBk∆pxqq ď cmdδ
´γd
j , 0 ď k ď d

hence Bulinskaya’s lemma yields

b2 ďPp}ψpxq} ď }ϕpxq}, x P Qm
i q

ďcα|Qm
i |α max

xPQm
i
,0ďkďd

VarpBk∆pxqαq

ďcmdαδ
´γdα
j

for 1 ´ α sufficiently small. This is of the right order for Lemma 18.
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(b3) For b3, reason similarly with p1 “ d ´ 1, p “ d, ψpxq “ ∇F pxq, hipsq “
s, ϕpxq “ ∇∆pxq, to show

b2 ď cδ
p´η`d{2qα
j .

Once again ψpxq “ Gpxq is non-degenerate by Proposition 10.
pb4q For px, ŷq “ px, py2, . . . , ydqq P R

2d´1, denote by ỹ “ px1, y2, . . . , ydq. Let
p1 “ 2d´ 1 and

A “ tpx, ŷq P Qm
i ˆ R

d´1 : ỹ P Qm
i , x ‰ ỹu.

Define the operator D2F px, ŷq “ }x´ ỹ}´1p∇F pxq ´∇F pỹqq for x ‰ ỹ. We
want to estimate the probability that there is some t P r0, 1s such that

∇F pxq ` t∇∆pxq “ ∇F pỹq ` t∇∆pỹq “ 0.

It implies (technique of the divided differences)

}∇F pxq} ď }∇∆pxq}, }D2F px, ŷq} ď }D2∆px, ŷq}.

We wish to apply Bulinskaya’s lemma with p1 “ 2d ´ 1, p “ 2d to the
fields

ψpx, ŷq “ p∇F pxq, D2F px, ŷqq P R
2d,

ϕpx, ŷq “ p∇∆pxq, D2∆px, ŷqq

on A, with hipsq “ s. It would yield with the same mechanism

b4 ď PpDpx, ŷq P A : }ψpx, ŷq} ď }ϕpx, ŷq}q ď c2
αm

dδ
´γdα
j .

It remains to check the non-degeneracy condition. Since A is not closed,
the non-degeneracy of each Gpx, ŷq “ ψpx, ŷq is not enough. Reason by
contradiction: assume that for some sequence pxn, ŷnqn in A the max den-
sity of ψpxn, ŷnq grows to 8. By compactness, up to taking a sub-sequence,
pxn, ỹnq Ñ px8, ỹ8q P pQm

i q2.
‚ First possibility: x8 ‰ ỹ8, hence the law of p∇F px8q,∇F pỹ8qq is
degenerate, contradicts Proposition 10.

‚ Second possibility: x8 “ ỹ8. Up to taking a sub-subsequence, by
compactness of Sd´1, there is a unit vector z such that pxn ´ ỹnq}xn ´
ỹn}´1 Ñ z. Therefore D2F pxn, ŷnq Ñ Bz∇F px8q. It follows that
p∇F px8q, Bz∇F px8qq is degenerate, which again contradicts Proposi-
tion 10.

pb5q Denote d det the differentiable application of the determinant on the space
of dˆ d matrices, }H} the norm of a matrix. Remark that for any matrices
H,D

| detpH `Dq ´ detpHq| ď }D} sup
tPr0,1s

~d detH`tD ~

ď }D} sup
t

ÿ

i

| com pH ` tDqi,i|

ďc}D}p}H} ` }D}qd´1,

where com pHq denotes the comatrix of H. Denote by Hf pxq the Hessian
matrix at x of some C2 field f : A Ñ R, and }Hf }Qm

i
“ supxPQm

i
}Hf pxq}.
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The latter inequality yields that detHFt
pxq “ detpHF pxq ` tH∆pxqq can

only vanish for some t P r0, 1s if
| detpHF pxqq| ă c}H∆}Qm

i
p}HF }Qm

i
` }H∆}Qm

i
qd´1.

Hence, b5 is upper bounded by

P
`
Dx P Qm

i : ∇F pxq ď }∇∆pxq}, detHF pxq| ă c}H∆}Qm
i

p}HF }Qm
i

` }H∆}Qm
i

qd´1
˘
.

We still invoke Bulinskaya’s lemma with p1 “ d, p “ d` 1, A “ Qm
i ,

pg1pxq, . . . , gdpxqq “∇Ftpxq,
gd`1pxq “pBi,jF pxq, i ď jq P R

dpd`1q{2,

hipsq “s, s P R, i ď d,

hd`1ppai,jqiďjq “detppai,jqq
hence

ψpxq “p∇F pxq, detHF pxqq.
By Proposition 10, Gpxq :“ pgipxqq1ďiďd`1 has a non-degenerate distribu-
tion, and A “ Qm

i is compact. The fact that hd`1pAi,jq “ detppAi,jqq has a
bounded density for i.i.d. Gaussian entries Ai,j , i ď j follows from Lemma
21 below. We hence have for α ă 1 some c such that, by Lemma 20,

pτ :“ PpDx P Qm
i : }∇F pxq} ă τ, | detHF pxq| ă τq ď cτα, τ ą 0.

Let τ “ cδ
´γdα
j . We then have for ε ą 0 sufficiently small, by Proposition

16

b5 ďpτ ` Pp}∇∆} ą τq ` Pp}H∆}p}HF } ` }H∆}qd´1 ą τq
ďcτα ` Pp}∇∆} ą δ

η´d{2´ε
j q ` Pp}H∆} ą τ1`εq ` Pp}HF } ą δε

1

j q

ďcδp´d{2`ηqp1´ε2q
j ` c expp´cδ´ε

j q
where ε1, ε2 ą 0 are as small as we want.

Finally, all terms have been dealt with and give a contribution whose
magnitude is not larger than the RHS of (8), thereby concluding the proof.

Proof of Bulinskaya’s lemma. If infx0PAmaxiďp |fipx0q| ă τ , then,

max
yPBpx0,τq

|fipyq| ď τp1 ` }∇fi}Bpx0,τq}q.

Let γ P p0, 1q, and

X “
ż

A

1śp
i“1 |fipxq|γ dx.

Let Ω “ tinfx0PA }ψpx0q} ď τu. If Ω is realised,

sup
xPBpx0,τq

|fpxq| ď τ ` τ sup
yPBpx0,τq

}∇fpyq},

then for some c ą 0 deterministic,

X ě
ż

Bpx0,τq

1śp
i“1 |fipxq|γ dx ě cτp

1 ź

i

1

τγp1 ` }∇f}Bpx0,τqqγ “: cτp
1´pγ 1

B
.
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Remark that for q ą 1, EpBqq ă C where C depends on A, q and supx,i Varpfipxqq.
Let q1 “ p1 ´ q´1q´1. Hence, with Hölder’s inequality

PpΩq ďτpγ´p1

EpBXq “ τpγ´p1

EpBqq 1

q

»
–E

˜ż

A

ź

i

|fipxq|´γdx

¸q1fi
fl

1{q1

ďcτpγ´p1

«
|A|q1

E

˜ż

A

ź

i

|fipxq|´γq1 dx

|A|

¸ff1{q1

ďcτpγ´p1 |A|psup
xPA

Ep
ź

i

|fipxq|´γq1 qq1{q1

Since p ě p1 ` 1, we can choose γ such that pγ ´ p1 “ α and then q such that
γq1 ă 1.

By assumption, the covariance matrix of Gpxq “ pgipxqqmi“1 P Rp˚

is not degen-

erate for each x P A Ă Rm1

, it is also a continuous function of x because the field is
smooth, hence its determinant is a non-vanishing continuous function, hence uni-
formly (in x) bounded from below, and the density of Gpxq is uniformly bounded
from above: there is C such that for X1, . . . , Xp independent Gaussian vectors with
Xi „ N p0, Ipi

q, for all ϕ ě 0, for all x,

EpϕpGpxqqq “
ż

Rm˚
ϕpyqdPGpxqpyq ď CEpϕpX1, . . . , Xpqq

In particular,

sup
xPA

Ep
pź

i“1

|fipxq|´γqq “ sup
xPA

Ep
pź

i“1

|hipgipxqq|´γq1 q

ďCEp
pź

i“1

|hipXiq|´γq1 q

“C
pź

i“1

Ep|hipXiq|´γq1 q

ďCpε´γq `
ż

r´ε,εs
|u|´γq1

duqp ă 8.

For the second statement of the lemma, assume wlog σA ď 1. Let α1 “ ?
α ă 1.

Let τ “ σα1

A ě σA, with Proposition 11

PpDx : }ψpxq} ă }ϕpxq}q ďPpDx, }ψpxq} ă τq ` Ppsup
x

}ϕpxq} ą τq

ďcα1τα
1 ` cdp|A| _ 1q expp´c1

dτ
2{σ2

Aq
ďcασα

A ` cdp|A| _ 1q expp´c1
dσ

2α1´2
A q

�

Lemma 21. Let a random symmetric matrix M with centred Gaussian entries in
the upper diagonal forming a non-degenerate Gaussian vector. Then detpMq has a
bounded density in 0.

Proof. Let G “ pMi,j , i ď jq be the centred Gaussian vector forming the entries,
and let G1 “ pM 1

i,jq the GOE model, i.e. the M 1
i,j are independent with VarpM 1

iiq “
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2,VarpM 1
i,jq “ 1, i ă j. The non-degeneracy condition yields that the density fG is

uniformly bounded by cfG1 pc1¨q for some constants c, c1, hence it is enough to prove
the result for the GOE model.

We prove by induction that there is Cd ă 8 such that, if Md is the d-th order
GOE, P p| detpMdq| ă aq ă Cda for a ą 0. We use the classical result of random
matrix theory that the eigenvalues pl1, . . . , ldq of Md have the explicit joint density
cd

ś
iăj |li ´ lj|fpl1q . . . fpljq for some Gaussian density f . Hence, we can explicitly

write

P p| detpMd`1q| ă aq

“ cd

ż

Rn`1

1|l1...ld`1|ăa

ź

iăj

|li ´ lj |fpl1q . . . fpld`1qdl1 . . . dld`1

“ 2cd

ż 8

0

˜ż

Rn

1|l1...ld`1|ăa

ź

iăj

|li ´ lj |fpl1q . . . fpldqdl1 . . . dld
¸
fpld`1qdld`1

using the symmetry of f .
Up to a combinatorial term, we can reduce the multiple integral to pd ` 1q-

tuples such that ld`1 ą |ld`1| ą ¨ ¨ ¨ ą |l1| ą 0, and we have the crude bound
|ld`1 ´ li| ă 2ld`1 for i ă d ` 1. We then have, using the induction hypothesis,

P p| detpMd`1q| ă aq ďc1
d

ż 8

0

ldd`1

ż
1|l1...ld|ăa{ld`1

ź

iăjďd

|li ´ lj |fpl1q . . . fpld`1qdl1 . . . dld`1

“c1
d

ż 8

0

ldd`1P p| detpMdq| ă a{ld`1qfpld`1qdld`1

ďc1
d

ż 8

0

ldd`1Cd

a

ld`1

fpld`1qdld`1

ďc2
da

ż 8

0

ld
fplq
l
dl

ďCd`1a.

�

5. Proof of the fixed-level CLT, Theorem 5

In this section, we prove the fixed-level CLT from Theorem 5. We proceed in
two steps. First, in Section 5.1, we prove the CLT asserted in Theorem 5 with a
possibly vanishing variance. Second, in Section 5.2, we show the positivity of the
limiting variance.

5.1. Fixed-level CLT. Now, we establish the asymptotic normality of the Betti
numbers of the excursion set Epuq.

Essentially, the proof idea for asymptotic normality at a fixed level relies on the
stabilisation and moment arguments from [26, Theorem 3.1]. This technique was
designed for dealing with functionals from a Poisson point process in a bounded
domain, which is inconvenient in the current setting. Indeed, the white noise W is
defined in all of Rd, and modifications at large distances still have a small but non-
vanishing effect on the number of critical points in a given domain. This problem
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also appears in the investigation of the component counts of excursion sets in [4].
To provide a suitable analog of [26, Theorem 3.1] for the setting where the white
noise is defined in the entire Euclidean space, [4, Theorem 3.2] is established.

One of the key proof steps of [4, Theorem 1.2] is that the proof of the CLT
is reduced to a stabilisation and a moment condition [4, Lemmas 3.6, 3.7]. To
state these conditions precisely, we first need to introduce the costs associated with
resampling. Moreover, since Assumption 2 guarantees that we are in the subcritical
percolation regime, we may assume that all bounded connected components of the
excursion set Epuq that intersect Wn are contained in W2n. We write βnpu;F q as
in (1). We set the global variation on Qj resampling

B
pnq
∆,j :“ βn

`
u;F

˘
´ βn

`
u;F pQjq˘ “

ÿ

iPWn

B∆,i,j(9)

where B∆,i,j “ βrispu,Wnq ´ β̃ris,jpu,Wnq denotes the contribution to B
pnq
∆,j coming

from critical points in the cube Qi. B
pnq
∆,j represents the total variation when Qj is

resampled. Recall that γ :“ η{d´ 1{2.
Proposition 22 (Stabilisation condition; Lemma 3.7 of [4]). Assume that γ ą 1.

Then, the sequence tBpnq
∆,oun converges almost surely to some almost surely finite

random variable B
p8q
∆,o .

Proof. We want to show that B∆,i,opu,Wnq “ 0 for all i P Zd with |i| ě R and
n ě 1, where R is an almost surely finite random variable. This will be achieved
via the Borel-Cantelli lemma. More precisely, first, Lemma 18 implies that

PpYně1tB∆,i,opu,Wnq ‰ 0uq P O
`
|i|´γd`ε

˘
.(10)

In particular, since γ ą 1, the products |i|d´1PpYně1tB∆,i,opu,Wnq ‰ 0uq are
summable for i P Zd. Hence, applying the Borel-Cantelli lemma shows that the
existence of the asserted random R ă 8 such that B∆,i,opu,Wnq “ 0 for all i P Zd

with |i| ě R and n ě 1. �

Now, we write dj,n :“ distpj,W2nq`1 for the distance of a site j to the window
W2n. To ease notation, we assume henceforth that E

“
Y pQ1 ˆ Rqq0

‰
ă 8 for

some q0 ą 2 which results from F P Cq0 by Theorem 12. Moreover, we write
q “ qpεq “ 2 ` ε in the rest of this section. For the proof of Proposition 23 below,
we assume that q0 ą 4 and that γ ą 12. Here, we also note that these assumptions
imply that γ ą 9q0

q0`6
.

Proposition 23 (Moment conditions; Lemma 3.6 of [4]). Assume that q0 ą 4 and
γ ą 12. Then, for any sufficiently small ε ą 0, it holds that

(1) supně1 supjPZd Ep|Bpnq
∆,j|qpεqq ă 8;

(2)

sup
n,kě1

ř
jPZd : dj,nąk Ep|Bpnq

∆,j|qpεqq
|Wn|3k´η{3pkd ` k|Wn|pd´1q{dq ă 8;

(3) supně1 |Wn|´1
ř

jPZd Ep|Bpnq
∆,j |qpεqq ă 8.

The key step in the proof of Proposition 23 are the following moment bounds on

B
pnq
∆,j. Henceforth, we set |px1, . . . , xdq| :“ maxiďd |xi| for the ℓ8 norm in Rd.
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Lemma 24 (Moment bound on B
pnq
∆,j). Let q0 ą 2, γ ą 1 and 2 ă m ă q0γ{pq0`γq.

Then, for every ε ą 0,

Ep|Bpnq
∆,j|mq P O

`
d

´γdpq0´mq{q0`ε
j,n p|Wn| ^ ddj,nqm

˘
.

Henceforth, we let

gj,npkq :“
ˇ̌ 
i P W̄n : |i´ j| “ k

(ˇ̌
P O

`
kd´1 ^ n1´1{d˘.

denote the number of elements of W̄n :“ ti P Z
d : Wn XQi ‰ ∅u at distance k ě 0

from j P Zd. To ease notation, we henceforth often write B∆,i,j instead of the more
verbose B∆,i,jpu,Wnq when the value of n is clear from the context.

Proof. First, by the Jensen inequality, Ep|Bpnq
∆,j|mq ď

´ř
iPW̄n

Ep|B∆,i,j |mq1{m
¯m

.

Now, invoking (10) and the Hölder inequality with q1 “ q0{m and p1 “ q0{pq0 ´mq
gives that

EpBm
∆,i,jq ď

`
EpBq0

∆,i,jq
˘1{q1

PpB∆,i,j ‰ 0q1{p1 P O
`
|i´ j|´γd{p1`ε

˘
(11)

Note that by our moment bound, we have EpBq0
∆,i,jq ă 8. Now,

ÿ

iPW̄n

|i´ j|´γd{pp1mq ď C
ÿ

kědj,n

gj,npkqk´γd{pp1mq`ε,

where the right-hand side is in O
`
p|Wn| ^ ddj,nqd´γd{pp1mq`ε

j,n

˘
, as asserted. �

Finally, we complete the proof of Proposition 23.

Proof of Proposition 23. Note that our assumptions on q0 and γ imply that 3 ă
q0γ{pq0 ` γq. In particular, part (1) follows from Lemma 24 , and we concentrate
on parts (2) and (3). In both parts, we write

g
pnq
k :“ |ti P Z

d : distpi,W2nq “ ku|
for the number of sites that are at distance k ě 1 from Wn. Moreover, putting
ρpεq :“ 1´ qpεq{q0, we also note that for k ě n1{d, Lemma 24 and Jensen give that

ÿ

j : dj,něk

Ep|Bpnq
∆,j|qpεqq ď C

ÿ

ℓěk

g
pnq
ℓ |Wn|qpεqℓ´γdρpεq.(12)

Since g
pnq
ℓ P O

`
ℓd´1

˘
, the right-hand side is of order O

`
|Wn|qpεqkd´γdρpεq˘.

Part (3). Since the number of j P Zd with dj,n ď n1{d is of order Op|Wn|q, it
suffices to deal with the case, where dj,n ě n1{d. Then, by (12) with k “ tn1{du,

|Wn|´1
ÿ

j : dj,něn1{d

Ep|Bpnq
∆,j |qpεqq P O

`
|Wn|qpεq´γρpεqq˘.

Hence, invoking the assumption γ ą 3q0{pq0 ´ 2q concludes the proof of part (3).

Part (2). First, (12) implies that for k ě n1{d,
ÿ

j : dj,něk

Ep|Bpnq
∆,j |qq P O

`
|Wn|qpεqkd´γdρpεqq˘.

In particular, noting that η “ γd` d{2, q0 ą 4 and γ ą 6, for k ě n1{d, the ratio

|Wn|qpεqkd´γρpεqd

|Wn|3kd´η{3 “ |Wn|qpεq´3kp1{6´γpρpεq´1{3qqd
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remains bounded.
Second, we consider the case dj,n ď n1{d. Then, by Lemma 24,

ÿ

j : kďdj,nďn

Ep|Bpnq
∆,j|qpεqq ď C

ÿ

kďℓďn

g
pnq
ℓ |Wn|qpεqℓp1´γρpεqqd.

Since maxℓďn g
pnq
ℓ P O

`
n1´1{d˘, this is of order O

`
n3d´1`dεk1`p1´γρpεqqd˘ . Again,

since γ ą 12, the ratio

|Wn|3`ε´1{dk1`p1´γρpεqqd

|Wn|4´1{dkd´η{3 “ |Wn|´1`εk1`d{6´γpρpεq´1{3qd

remains bounded, thereby concluding the part of part (2). �

5.2. Positivity of variance.
In this section, we establish the positivity of the limiting variance σpuq2 from

Theorem 5. The strategy is to proceed similarly as in the case of the component
count considered in [4, Theorem 1.3]. The idea is that in the proof the martingale
CLT from [4, Theorem 1.3], the authors also derive a non-trivial and highly useful
representation of the limiting variance. First, we recall from Proposition 22 that

B
p8q
∆,o is the difference of the Betti numbers before and after the resampling of the

white noise in Q1. Now, we have

σ2 :“ σpuq2 :“ E
“
EpBp8q

∆,o |F0q2
‰
,(13)

where

F0 :“ σ
`
W XQi : Qi ă Q1

˘

is the σ-algebra generated by the white noise W in all cubes of the form Qi which
center i precedes 1 in the lexicographic order. This representation provides a start-
ing point for the positivity proof.

We now proceed along the lines of [4, Theorem 1.3] to show that σ2 ą 0. In order
to avoid redundancy, we sometimes sketch the general argument and concentrate
on the steps that are markedly different. We note that some of our steps are in
fact simpler because we work in the subcritical percolation regime. We now briefly
comment on the assumption that µpuq ‰ 0.

Remark 25. Recall that µpuq “ limnÒ8 |Wn|´1EpβpWn XEpuqqq for the normalised
expected functional of the excursion set Epuq. A key step in the positivity proof of [4,
Theorem 1.3] is the positivity of µpuq. While for the considered case of connected
components this can be enforced by assuming that the support of the spectral
measure has a support containing an open set, the situation is more complicated
and we plan to proceed as in [33, Theorem 1.2c] and [29, Proposition 5.2].

Nevertheless, in the case of actual Betti numbers, the positivity of µpuq can
be verified along the lines of the [29, 33]. More precisely [29, 33] deal with Betti
numbers of level sets whereas we need excursion sets and general topological func-
tionals. Although this change does not cause major differences, we briefly recall
the argument from [29, Lemma 5.5] to make our presentation self-contained. We
first consider any smooth function h : Rd Ñ R with support in some compact set
D Ď Rd such that the excursion set at level u has a positive Betti number. Now,
as in Lemma [29, Lemma 5.5], since the field F is smooth it allows for a series
representation in terms of eigenfunctions, and we can conclude that with positive
probability, h is at most ε away from F in C1pDq-distance. Hence, we conclude from
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Morse theory in the form of Lemma 13 that with positive probability the excursion
sets of F and of h are isotopic. Hence, the excursion set Apu;F q has a positive
Betti number with positive probability.

Recall that βnpF ;uq is the functional of the union of components of the excur-
sion set Epuq in the interior of the window Wn. Similarly to [4], a key step is
that the expected functional of the excursion set becomes smaller after a suitable
perturbation of the underlying random field.

Lemma 26 (Reduction of expected functional by perturbation). Assume that q0 ą
2 ¨ 642 and that γ ą 3. Then, there exists m ě 1 and a nonempty open set S Ď R

such that if µpuq ą 0, then

sup
sPS

lim
nÒ8

`
EpβnpF ` spq ‹ 1mQ0

q, uqq ´ EpβnpF, uqq
˘

ă 0.

and if µpuq ă 0, then

sup
sPS

lim
nÒ8

`
EpβnpF ` spq ‹ 1mQ0

q, uqq ´ EpβnpF, uqq
˘

ą 0.

We first explain how Lemma 26 implies σ2 ą 0 if µpuq ą 0, the case µpuq ă 0 is
symmetric. After that, we prove Lemma 26. Since the proof is parallel to that of
[4, Lemma 3.12], we only give the main idea. The positivity proof relies on the
representation (13). In fact, it will be convenient to generalise the definition of

B
p8q
∆,o so as to compare the excursion functional after resampling to those obtained

by a deterministic perturbation of the considered random field. More precisely, for
w P C4 satisfying lim|x|Ò8 |wpxq| “ 0, we set

Dpwq :“ lim
nÒ8

`
βnpF ` w;uq ´ βn

`
F pQ1q;u

˘˘
,

where the right-hand side converges almost surely by our assumption that the level
u is in the subcritical regime. Note that we cannot directly use Proposition 22

because this only deals with w “ 0. More precisely, Dp0q “ B
p8q
∆,o .

Proof of positivity of the limiting variance. In the proof, we rely on a variantB
p8q
∆,0;m

of B
p8q
∆,o , where instead of a partition into side length 1 boxes, we use boxes of side

length m ě 1. To avoid confusion, we stress that there is no clash in notation in

the sense that B
p8q
∆,0;m is different from B∆,i,j.

Let Z0:“ WpmQ0q, which is normal random variable with variance md. Then,

the EpBp8q
∆,0;m |Z0q “ GpZ0q for some measurable function G : R Ñ R. Now, the

white noise W on mQ0 decomposes into Z01mQ0
p¨q and an orthogonal part W1.

Hence, we can represent the random field F

F “ q ‹ pW |pmQ0qc ` Z01mQ0
p¨q ` W1q,

and also, for any fixed s P R,

q ‹ pW |pmQ0qc ` pZ0 ` sq1mQ0
p¨q ` W1q “ F ` w,

where w “ spq ‹1mQ0
q. In particular, for any fixed s P R, we have EpGpZ0 ` sqq “

EpDpspq ‹ 1mQ0
qqq, so that EpGpZ0qq “ 0. Moreover, Lemma 26 implies that

EpGpZ0 ` sqq ă 0 for s contained in an open set. Then, the formula for the
conditional variance gives the asserted σ2 ě VarpGpZ0qq ą 0, where σ2 is the
variance defined in (13), which inside this proof might still depend on m. �
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It remains to prove the perturbation property asserted in Lemma 26. Before
starting the proof, we recall that we assume that for the critical points, we have
moments up to order qpεq “ 2 ` ε.

Proof of Lemma 26. In the proof, we may assume that
ş
Rd qpxqdx “ 1. Otherwise,

one repeats the proof below after s by s{
ş
Rd qpxqdx. Moreover, we also set

β
`
A,F q :“ β

`
A X Epu;F q

˘
,

and the same for β
`
A,F ` wq.

Here, we include in this definition all bounded components at level u whose
reference point is contained in A. Note that since µpuq is defined as an aver-
age over growing windows, the contributions coming from components intersecting
the boundary are negligible in the limit. The key observation is to realise that
limuÒ8 µpuq “ 0. Indeed, we first note that µpuq is bounded above by the expected
number of critical points above level u per unit volume. Since the expected number
of such critical points is finite so that the dominated convergence theorem yields
that limuÒ8 µpuq “ 0. Now, we use that µpuq ą 0 for every u P R. To justify this
note that Theorem 1.2c in (Wigman, 2021) shows the positivity µpuq in the setting
of level sets, which also extends to excursion sets. Hence, we conclude that there
exists ζ ą 0 and an open S Ď R such that supsPS µpu´ sq ´ µpuq ă ´7ζ. Invoking
the definition of µ therefore gives for k ą k0 sufficiently large

E
“
β
`
Bpkq, F ` s

˘‰
´ E

“
β
`
Bpkq, F

˘‰
ă ´6ζkd,(14)

where we write Bpkq :“ Bp0, kq. Then, as in [4, Theorem 1.3], we proceed in the
following four steps where which are valid for n ą md, provided that m is chosen
sufficiently large. While it would be possible to extract the specific lower bound for
m from the proof, it is not needed for our aims. For such m, we set k :“ m´ ?

m,
s P S and where we set w :“ ws,m :“ sq ‹ 1mQ0

:

E
“ˇ̌
β
`
Wn, F

˘
´ β

`
Bpkq, F

˘
´ β

`
WnzBpkq, F q

ˇ̌‰
ď ζmd(15)

E
“ˇ̌
β
`
Wn, F ` w

˘
´ β

`
Bpkq, F ` w

˘
´ β

`
WnzBpkq, F ` wq

ˇ̌‰
ď ζmd(16)

E
“ˇ̌
β
`
WnzBpkq, F ` w

˘
´ β

`
WnzBpkq, F

˘ˇ̌‰
ď ζmd(17)

E
“ˇ̌
β
`
Bpkq, F ` w

˘
´ β

`
Bpkq, F ` s

˘ˇ̌‰
ď ζmd.(18)

Hence, as soon as (15)–(17) are satisfied, we obtain the desired

sup
sPS

lim
nÒ8

`
EpβnpF ` spq ‹ 1mQ0

qqq ´ EpβnpF qq
˘

ď ´ζmd,

We now verify the individual claims separately.

Bounds (15) & (16). We only deal with (15) since the arguments for (16)
are analogous. The key observation is that the Betti number is additive in the
connected components. Hence, the Betti numbers of components contained in Bpkq
are taken into account in βpWn, F q. Similarly also the Betti numbers of components
contained inWnzBpkq are accounted for in βpWn, F q. Hence, the deviations in (15)
come from components intersecting BBpkq.

Hence, it therefore suffices to show that supiPZd E
“
β
`
CpQi,Epuqq

˘‰
ă 8. To

prove this claim, we let Ωi,m denote the event that m ě 1 is the smallest integer
such that all connected components hitting Qi are contained in Qm

i . Henceforth,
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we write Y “ Y B for the set critical and stratified critical points of the field F .
Then, by the Cauchy-Schwarz inequality,

sup
iPWn

E
“
β
`
CpQi,Epuqq

˘‰
ď

ÿ

mě1

E
“
Y pBpmqq1tΩi,mu

‰

ď sup
iPWn

b
E
“
Y pQiq2

‰ ÿ

mě1

|Bpmq|
b

PpΩi,mq ă 8,

where the last step follows since the excursion set is in the subcritical regime.

It remains to deal with (17) and (18), where the general idea is to apply Lemmas
18 and 19. First, we note that that βpBpkq, F ` wq decomposes into the contribu-
tions coming from the cubes Qj . That is,

βpBpkq, F ` wq “:
ÿ

jPBpkqXZd

BjpF ` wq,

and similarly for βpBpkq, F`sq. The key step is now to obtain bounds onEp|BjpF q´
BjpF ` wq|q, i.e., on the contribution to the perturbation from each cube Qj .

To this end, we first need to show that the field perturbation w is small. Indeed,
we have that

sup
xPRd

|wpxq| ď |s| sup
xPRd

ż

Bpmq
|gpx´ yq|dy ď |s| sup

xPRd

ż

Rd

|gpx´ yq|dy ă 8,(19)

and a similar computation shows the boundedness of derivatives up to order 3.
Next, we recall that by Theorem 12 on the finiteness of moments of the number

of critical points, we have Ep|BjpF q|qq ă 8. Moreover, in Remark 1.3, it is argued
that this moment bound is uniform over all fields with an upper bound on the
absolute value of their derivatives. Hence, we deduce that we also have Ep|BjpF `
wq|qq ă 8 uniformly over all considered perturbations w.

We will use this observation as follows. The Hölder inequality with q1 “ q “ qpεq
and qM “ q{pq´1q shows that for every j P Z

d the expressionEp|BjpF q´BjpF`wq|q
is at most

P
`
BjpF q ‰ BjpF ` wq

˘1{qM
´
Ep|BjpF q|qq1{q ` Ep|BjpF ` wq|qq1{q

¯
,

where as argued above, the second factor is of constant order. Therefore,

Ep|BjpF q ´BjpF ` wq|q ď CP
`
BjpF q ‰ BjpF ` wq

˘1{qM
.(20)

Relying on this observation, we now conclude the proofs of (17) and (18).

Bound (17). First,

Ep
ˇ̌
βpWnzBpkq, F ` wq ´ βpWnzBpkq, F q

ˇ̌
q

ď
ÿ

j : kă|j|ďm

Ep|BjpF ` wq ´BjpF q|q `
ÿ

j : |j|ěm`?
m

Ep|BjpF ` wq ´BjpF q|q

Note that the number of summands in the first sum is of order Opmd´1{2q. Hence,
according to (20), it suffices to show that

max
j : kă|j|ďm

PpBjpF ` wq ‰ BjpF qq P op1q,(21)
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and ÿ

j : |j|ěm`?
m

PpBjpF ` wq ‰ BjpF qq1{qM P opmdq.(22)

In both cases, we rely on Lemmas 18 and 19. We apply these results to the family
of perturbations F ptq :“ F ` tw. Then, for x P Bpmqc,

|wpxq| “
ˇ̌
ˇ
ż

Bpmq
gpx´ uqdu

ˇ̌
ˇ ď

ż

|u|ądistpx,Bpmqq
|gpuq|du P Opdistpx,Bpmqqd´βq.

In particular, Lemmas 18 and 19 give that PpBjpF ` wq ‰ BjpF qq P Opmd´βq,
thereby implying (21). Moreover, since η{d ą qM ` 1, we can bound (22) by

c2
ÿ

j : |j|ěm`?
m

distpj, Bpmqq´pη´dq{qM ď c3
ÿ

iěm`?
m

id´1pi´mq´pη´dq{qM P Opmd´1{2q,

thereby concluding the proof of (22).

Bound (18). First, arguing as in (17), it suffices to show that

max
j : |j|ďk

P
`
BjpF ` sq ‰ BjpF ` wq

˘
P op1q.

In both cases, we rely again on Lemmas 18 and 19. We apply this result to the
family of perturbations F ptq :“ F ` s ` tpw ´ sq. The arguments are now very
similar to the proof of (18) but to make the presentation self-contained, we give
some details. Indeed, we have that

sup
xPBpkq

|s´ wpxq| ď |s|
ż

RdzBp?
mq
gpxq P O

`
m´pη´dq{2˘.

Therefore,

P
`
BjpF ` sq ‰ BjpF ` wq

˘
P Opm´pη´dq{2q.

Hence, noting that η ą d concludes the proof of the (18). �

6. Proof of the FCLT, Theorem 8

In this section, we prove the functional CLT from Theorem 8. After having
established the fixed-level CLT in Theorem 5, we now need to prove tightness.
Recall that we assume that the critical points have moments of order at least 32.
The percolation Assumption 2 allows us to restrict our attention to components
contained in W2n.

Henceforth, we write Y “ Y B for the set critical and stratified critical points
above level u of the field F , where the stratification is with respect to Wn, see
Section 2.1. For deriving the functional CLT, it will be essential to ensure that the
decomposed Betti numbers β`

n and β´
n are both non-increasing in the level u. To

ensure this, we recall from Proposition 14 βn “ β`
n ´ β´

n with

β˘
n pu;F q “

ÿ

px,v,Cq
rδpx, v, Cqs˘

Since the sum of tight processes is tight and symmetry considerations it suffices to
prove the tightness statement when replacing βn by β`

n .
Set β̄`

n pIq :“ β`
n pIq ´ Epβ`

n pIqq. We prove tightness by verifying the Chentsov-
condition from [5, Theorem 15.6],

E
“
β̄`
n pIq4

‰
ď c|Wn|2|I|5{4,(23)
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for suitable c ą 0, where for I “ ru´, u`s, we set β̄`
n pIq :“ β̄`

n pu`q ´ β̄`
n pu´q. The

crucial tool is the cumulant expansion

E
“
β̄`
n pIq4

‰
“ 3Var

`
β̄`
n pIq

˘2 ` c4
`
β̄`
n pIq

˘
.(24)

In Section 6.1 below, we rely on a trick from [8, Corollary 2] reducing the verification

of (23) to n-big intervals I, i.e., to intervals with |I| ě |Wn|´2{3. Hence, to establish
condition (23), we derive refined bounds on variances and cumulants.

Proposition 27. Let q0 ą 16 and γ ą 54d{p1 ´ 8{q0q. Then,

sup
ně1

sup
I is n-big

|Wn|´1|I|´5{8
Varpβ`

n pIq
˘

` |Wn|´7{6c4
`
β`
n pIq

˘
ă 8.

The variance and cumulant bounds in Proposition 27 give the tightness.

Proof of (23); n-big intervals. First, by combining Proposition 27 and the identity

E
“
β̄`
n pIq4

‰
ď 3c|Wn|2|I|5{4 ` c|Wn|7{6.

Since |I| is n-big, we deduce that |Wn|7{6 ď |Wn|2|I|5{4, as asserted. It remains to
prove the reduction step, see below. �

After the reduction step, we prove Proposition 27 in Section 6.2. To achieve
this goal, the key task is bound both the moments for the critical points inside
percolation sets, and also to to refine the moment condition so as to reflect the
level. To allow for clear reference, we state the result as a separate lemma.

Let Ci “ CptF ě ucu;Qiq denote the union of all connected components of
tF ě ucu intersecting the cube Qi.

Lemma 28 (Moment bounds). Let q0 ě 213. Assume that supiPZd E
“
Y BpBpi, 1q ˆ

Rqq0
‰

ă 8. Then,

(1) supiPZd E
“
Y BpCi ˆ Rqq0{2‰ ă 8;

(2) supIĎIb
supiPZd |I|´31{32E

“
Y BpCi ˆ Iq

?
q0{2‰ ă 8 for every compact Ib Ď R.

Proof. We prove the two parts separately.

Part (1). Let Ki ě 1 be the smallest integer such that Ci Ď Bpi,Kiq. Then, by
the Cauchy-Schwarz inequality,

sup
iPZd

E
“
Y BpCi ˆ Rqq0{2‰ ď sup

iPZd

ÿ

kě1

E
“
Y BpBpi, kq ˆ Rqq0{2

1tKi “ ku
‰

ď sup
iPZd

ÿ

kě1

b
E
“
Y BpBpi, kq ˆ Rqq0

‰a
PpKi “ kq

ď sup
iPZd

b
E
“
Y BpBpi, 1q ˆ Rqq0

‰ ÿ

kě1

p2kq1`q0{2aPpKi “ kq.

Finally, the sum converges because we assume that we are in the subcritical regime
of percolation, see Assumption 2. Note that the first term is finite by applying
Theorem 12 to all faces of Bpi, 1q.
Part (2). Set M :“

a
q0{2. We proceed similarly as in the proof of part (1).

The difference is that instead of the Cauchy-Schwarz inequality, we use the Hölder
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inequality with q “ M and p “ M{pM ´ 1q. Then,
E
“
Y BpCi ˆ IqM

‰
ď

ÿ

kě1

E
“
Y BpBpi, kq ˆ IqM1tKi “ ku

‰

ď
ÿ

kě1

`
E
“
Y BpBpi, kq ˆ IqpM

‰˘1{p
PpKi “ kq1{q

ď
`
E
“
Y BpBpi, 1q ˆ IqpM

‰˘1{p ÿ

kě1

p2kqM`1PpKi “ kq1{q.

As in part (1), the convergence of the sum follows from the assumption of subcrit-
ical percolation. To ease notation, write Y B short for Y BpBpi, 1q ˆ Iq. Note that
pY BqpM ď pY BqpM`p. Hence, another application of the Hölder inequality gives
that

E
“
Y BpBpi, 1q ˆ IqpM

‰
ď EpY BpBpi, 1q ˆ RqpM2 q1{MEpY BpBpi, 1q ˆ Iqq1{p

Since 2M2 ď q0, we deduce that the first factor is finite, whereas the second is of
order O

`
|I|1{p˘ by the Kac-Rice Lemma 17 applied to each facet of Bpi, 1q. Since,

M ě 64, we conclude that 1{p2 ě 31{32, thereby concluding the proof. �

6.1. Reduction to n-big intervals. In this section, we explain how to reduce the
verification of the moment bound to n-big intervals. The key idea is to consider the
approach from [8, Corollary 2]. In order to be able to apply this result, we recall
from Section 3 that β`

n puq is decreasing in u.
Now, [8, Corollary 2] allows to carry out the reduction to n-big intervals provided

that Epβ`
n pIqq P o

`a
|Wn|

˘
holds for all n-small intervals I Ď Ib. Now, we show

that Epβ`
n pIqq P o

`a
|Wn|

˘
. We recall from Section 3 that |δpx, v, Cq| ď c#Y B X

pC ˆ ru,8qq for v ě u ě uc. Therefore, with Yj :“ Y BpQj ˆ Iq,
β`
n pIq ď c

ÿ

jPW̄n

Y B`Cj ˆ ruc,8q
˘
1tYj ‰ 0u.

Hence, taking expectations and using Lemma 28, we arrive at

E
“
β`
n pIq

‰
ď c

ÿ

jPW̄n

E
“
Y B`Cj ˆ ruc,8q

˘
1tYj ‰ 0u

‰‰
(25)

Now, we bound the second summand in (25). First, by the Hölder inequality,

E
“
Y B`Cj ˆ ruc,8q

˘
1tYj ‰ 0u

‰‰
ď

`
E
“
Y B`Cj ˆ ruc,8q

˘32‰˘ 1

32P
`
Yj ‰ 0

˘
.
31

32

The first factor is bounded by part (1) of Lemma 28. Finally, the second factor

is of order Op|I|31{32q by Lemma 17. Now, referring again to the smallness of I
concludes the proof.

6.2. Proof of Proposition 27. To prove Proposition 27, we rely on the martingale
technique that was already implemented in the setting of cylindrical networks [15].
To make the presentation self-contained, we recollect here the basic set-up.

We let Gj be the σ-algebra generated by the restriction of W to boxes of the

form Qi with i ďlex j. Then, setting B
pnq
`,jpIq :“ β`

n pI;F q ´ β`
n pI;F pQjqq as in (9),

we decompose the centered increment β̄`
n pIq as

β`
n pIq ´ Epβ`

n pIqq “
ÿ

jPZd

EpBpnq
`,jpIq |Gjq.
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We now prove the variance bounds in Proposition 27.

Proof of Proposition 27 – variance. The key observation from [26] is that tBpnq
`,iuiPZd

is a martingale-difference sequence becauseEpβ`
n pI;F pQjqq |Gjq “ Epβ`

n pI;F q |Gj´1q.
Hence, the Cauchy-Schwarz inequality implies that

Varpβ`
n pIqq “

ÿ

jPZd

Var
`
EpBpnq

`,jpIq |Gjq
˘

ď
ÿ

jPZd

E
“
B

pnq
`,jpIq2

‰
.

We now let B`,i,j denote the positive contribution to B`,j coming from critical
points in the cube Qi. Then, we have a decomposition

B
pnq
`,jpIq “

ÿ

iPW2n

B`,i,jpIq.(26)

Now, let M “ 16 and p1 “ 16{15. Then, by Cauchy-Schwarz and Hölder,

E
“
B

pnq
`,jpIq2

‰1{2ď
ÿ

iPW̄n

b
E
“
B`,i,jpIq2

‰
ď
ÿ

iPW̄n

E
“
B`,i,jpIq2M

‰p2Mq´1

PpB`,i,jpIq ‰ 0qp2p1q´1

We claim that the first factor is of constant order. Indeed, we first note that F
and F pQjq have the same distribution. Moreover, by the weak Morse inequality, the
Betti number of a component is bounded by the number of critical points. Finally,
Lemma 24 implies that

E
“
Y BpC0 ˆ Rq2M

‰
ă 8,

thus showing the asserted finiteness of the first factor.
For the second factor, an application of (10) shows that

PpB`,i,jpIq ‰ 0q1{5PpB`,i,jpIq ‰ 0q4{5 P O
`
|i´ j|´γd{5|I|4{5˘

Therefore, E
“
B

pnq
`,jpIq2

‰1{2 ď O
`ř

iPW̄2n
|i ´ j|´γd{8|I|3{8˘. Hence, we conclude

that if dj,n :“ distpj,W2nq ď n1{d, then E
“
B

pnq
`,jpIq2

‰
P Op|I|3{4q. Moreover, if

dj,n ě n1{d, then E
“
B

pnq
`,jpIq2

‰
P Opd2p1´γ{8qd

j,n |I|3{4q. Finally,
ÿ

j : dj,něn

d
2p1´γ{8qd
j,n P |Wn|3´γ{4.

Thus, recalling the assumption γ ą 8 concludes the proof.
�

Hence, it remains to establish the cumulant bounds in Proposition 27. To achieve
this goal, we need to have a suitable control on the correlation structure. To
make this precise, we let dpzq :“ maxtS,Tuăti,j,k,ℓu dS,T pzq, where the maximum

is taken over all possible partitions of z “ ti, j, k, ℓu Ă Zd into two non-empty
groups, and where dS,T pzq :“ dist

`
tsusPS , ttutPT

˘
is the inter-partition distance,

when partitioning z into two groups indexed by S and T , respectively. We set

DpIq :“
 
B

pnq
`,ipIq, Bpnq

`,jpIq, Bpnq
`,kpIq, Bpnq

`,ℓpIq
(
. Again, we state the decorrelation

property now, and postpone the proof.

Lemma 29 (Spatial decorrelation). Let q0 ą 213 and γ ą 1. Assume that
supiPZd E

“
Y BpBpi, 1q ˆ Rqq0

‰
ă 8. Let z Ď Z

d with |z| ď 4. Then, for every
ε ą 0, ˇ̌

c4
`
B

pnq
`,ipIq, Bpnq

`,jpIq, Bpnq
`,kpIq, Bpnq

`,ℓpIq
˘ˇ̌

P O
`
dpzq´γdp1´8{q0q˘.
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Relying on Lemma 29, we now complete the proof of the cumulant bound. To

ease notation, we henceforth drop the dependence on I in the quantity B
pnq
`,ipIq.

Proof of Proposition 27 – cumulant bounds. First, by multilinearity of cumulants,

c4
`
β̄`
n pIq

˘
“

ÿ

i,j,k,ℓPZd

ai,j,k,ℓc4pBpnq
`,i, B

pnq
`,j , B

pnq
`,k, B

pnq
`,ℓq,(27)

where the ai,j,k,ℓ ě 1 are suitable combinatorial constants. They only depend on
which indices i, j, k, ℓ are equal.

We now decompose (27) into contributions with indices in the set I :“ ti : di,n ď
n1{du and those with some indices outside I. We bound the contributions from Ic

and I separately. In both cases, we use that each summand in (27) can be bounded
as

|c4pBpnq
`,i, B

pnq
`,j , B

pnq
`,k, B

pnq
`,ℓq| P O

` ź

mPti,j,k,ℓu
EppBpnq

`,mq4q1{4˘.(28)

Now, by Lemma 24, we have Ep|Bpnq
`,i|4q1{4 P O

`
|Wn|5{4d´γd{5

i,n

˘
. In particular,

ÿ

i : di,nąn1{d

Ep|Bpnq
`,i|4q1{4 P O

`
|Wn|1`5{4´γ{5˘,

so that
ÿ

i

Ep|Bpnq
`,i |4q1{4 “

ÿ

i:di,nďn1{d

Ep|Bpnq
`,i|4q1{4 `

ÿ

i:di,nąn1{d

Ep|Bpnq
`,i |4q1{4 P Op|Wn|q

and
ÿ

Ic

|c4pBpnq
`,i, B

pnq
`,j , B

pnq
`,k, B

pnq
`,ℓq| ď C

ÿ

i : di,nąn1{d

Ep|Bpnq
`,i |4q 1

4

´ ÿ

jPZd

Ep|Bpnq
`,j |4q 1

4

¯3

P O
`
|Wn|4`5{4´γ{5˘.

Hence, noting that γ ą 22 shows that the last line is in op|Wn|q.
Therefore, it remains to deal with indices in I. Here, we partition the sum over

I again into two parts Σ1 ` Σ2, where Σ1 and Σ2 are determined as follows. The
part Σ1 contains all summands corresponding to indices pi, j, k, ℓq P I such that
dpti, j, k, ℓuq ď |Wn|ε{d with ε “ 1{18, and Σ2 contains the remaining summands.

The sum Σ1 consists of Op|Wn|1`3εq summands each of which is of constant
order, because of the bound (28). Thus, Σ1 P O

`
|Wn|7{6˘. Second, we note that

Σ2 consists of Op|Wn|4q summands. Moreover, by Lemma 29 each of them is in
O
`
|Wn|´γεp1´4{?

q0q{d˘. Thus, since γεp1 ´ 8{q0q ě 3d, we concludes the proof. �

It remains to prove the spatial decorrelation asserted in Lemma 29. To that end,
we will proceed along the blueprint provided in [15, Lemma 2].

Proof of Lemma 29. We may assume that k0 :“ dpzq :“ dist
`
ti, ku, tj, ℓu

˘
. The

other cases are similar but easier. Moreover, by the cluster-decomposition of the
cumulant from [26, Lemma 5.1], it suffices to show the claim when replacing the
cumulant by

Cov
`
B

pnq
`,iB

pnq
`,j, B

pnq
`,kB

pnq
`,ℓ

˘
.



32FUNCTIONAL CENTRAL LIMIT THEOREM FOR TOPOLOGICAL FUNCTIONALS OF GAUSSIAN CRITICAL POINTS

Now, letting z
1 “ pi1, j1, k1, ℓ1q P Z4d, this covariance decomposes as

ÿ

z
1

Cov
`
B1

`,i1,iB
1
`,j1,j , B

1
`,k1,kB

1
`,ℓ1,ℓ

˘
.

Now, we may use the resampling representation in order to conclude the proof.
More precisely, to construct B̃1

`,i1,i and B̃1
`,j1,j, we resample the white noise in

the half-space of consisting of all points that are closer to i than to k. Similarly,
we define B̃1

`,k1,k and B̃1
`,ℓ1,ℓ by resampling the white noise in the half-space of

consisting of all points that are closer to k than to i. Therefore,
ˇ̌
ˇCov

`
B1

`,i1,iB
1
`,j1,j , B

1
`,k1,kB

1
`,ℓ1,ℓ

˘ˇ̌
ˇ

“
ˇ̌
ˇE
”
B1

`,i1,iB
1
`,j1,jB

1
`,k1,kB

1
`,ℓ1,ℓ ´ B̃1

`,i1,iB̃
1
`,j1,jB̃

1
`,k1,kB̃

1
`,ℓ1,ℓ

ıˇ̌
ˇ.

Then, by the Hölder inequality with q1 “ M and p1 “ M{pM´1q whereM :“ q0{8,
we have thatˇ̌

ˇCov
`
B1

`,i1,iB
1
`,k1,k, B

1
`,j1,jB

1
`,ℓ1,ℓ

˘ˇ̌
ˇ

ď 2P
`
B1

`,i1,iB
1
`,k1,kB

1
`,j1,jB

1
`,ℓ1,ℓ ‰ B̃1

`,i1,iB̃
1
`,k1,kB̃

1
`,j1,jB̃

1
`,ℓ1,ℓ

˘1{p1

ˆ sup
m,m1PZd

E
“ˇ̌
B1

`,m,m1

ˇ̌4M ‰1{p4Mq
.

Lemma 18 shows that P
`
B1

`,i1,i ‰ B̃1
`,i1,i

˘
P Opdpzq´γd`εq, and the arguments for

j, k, ℓ are analogous. By the moment bound in Lemma 28, the second factor remains
bounded uniformly over all indices. This concludes the proof.

�
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