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COHOMOLOGICAL VANISHING ON BLOWN-UP PROJECTIVE

SPACES

MARCO FLORES

Abstract. By utilizing elementary techniques from toric geometry, we prove
sharp cohomological vanishing results for line bundles defined on the blow-up
of projective space Pn at no more than n+ 1 points.

1. Introduction

Cohomological vanishing theorems are central to modern research in algebraic
geometry, particularly within the subject of positivity. A prototypical example of
such a theorem is Kodaira’s vanishing theorem, which states that if A is an ample
divisor on a smooth complex projective variety X , then

Hi(X,OX(KX +A)) = 0

for all i > 0. Following the original appearance of Kodaira’s vanishing theorem
in [Kod53], multiple generalizations of it and related theorems have come into
light, the most prominent of which is perhaps the Kawamata–Viehweg vanishing
theorem. This theorem was discovered independently by Kawamata [Kaw82] and
Viehweg [Vie82], and it states that Kodaira’s vanishing theorem remains true if we
only require the divisor A to be big and nef. A rather rich collection of important
cohomological vanishing theorems can be found in [Laz04, Chapter 4].

In the realm of toric geometry, stronger cohomological vanishing results can be
obtained, such as those presented in [CLS11, Sections 9.2 and 9.3]. Furthermore,
there is a basic result in toric geometry (see Theorem 2.8 below) which compares the
sheaf cohomology of a line bundle associated to a toric divisor on a toric variety, with
the singular cohomology of a certain subset of Euclidean space, which is constructed
following combinatorial data obtained from the toric variety and its toric divisor.
This allows one to make very explicit computations of the sheaf cohomology groups
of a line bundle associated to a toric divisor on a toric variety.

The aim of this short note is to show that we can apply Theorem 2.8 to the
case of line bundles defined on the blow-up of projective space Pn at no more than
n + 1 points, in order to obtain sharp cohomological vanishing results. Here, we
emphasize the sharpness of the results, as this is usually an unavailable perk in
cohomological vanishing theorems in algebraic geometry. In the case of a blow-up
at a single point, our result is the following.

The author acknowledges support from the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy – The Berlin Mathematics Research
Center MATH+ (EXC-2046/1, project ID: 390685689).
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Theorem (Corollary 3.8). Let π : X → Pn be a blow-up at one point, with excep-
tional divisor E, and let a, b ∈ Z. Then

H1(X,OX(−aE)⊗ π∗OPn(b)) = 0 ⇐⇒ a ≤ 0 or a ≤ b+ 1.

With some adaptations, our arguments can be extended to include the cases of
blow-ups of Pn at multiple points, but no more than n+ 1. In this case, our result
is as follows.

Theorem (Theorem 4.4). Let X → Pn be a blow-up at q+1 points, where 1 ≤ q ≤
n, with exceptional prime divisors E0, . . . , Eq. Let a0, . . . , aq, b ∈ Z. Then,

H1
(
X,OX

(
−

q∑

i=0

aiEi

)
⊗ π∗OPn(b)

)
= 0

if and only if the inequalities

ai + aj ≤ b+ 1 ∀i, j ∈ {0, . . . , q}, i 6= j

are satisfied, unless there is exactly one element ak ∈ {a0, . . . , aq} that is positive,
in which case we also require ak ≤ b+ 1.

Even though our methods and results are elementary, we believe it is interesting
that we have been able to produce such characterizations, given that most expo-
sitions on this topic focus only on sufficient conditions on an invertible sheaf for
it to have vanishing cohomology (cf. [DP23, Theorem 1.3]). To the best of our
knowledge, the necessity of the conditions for cohomological vanishing in Corollary
3.8 and Theorem 4.4 had not previously been observed.

The organization of this paper is as follows. In Section 2, we recall some basic
definitions and results in toric geometry over the complex numbers. In Section 3,
we carry out the elementary exercise of determining the ample cone of a blow-up
of Pn at one point, thence readily obtaining sufficient conditions for cohomological
vanishing of invertible sheaves on this blown-up projective space, in all positive
degrees, via the Kodaira vanishing theorem. We then prove Corollary 3.8, which
is our sharp characterization of cohomological vanishing in degree 1. Finally, in
Section 4, we adapt the arguments given in the proof of Corollary 3.8 in order to
treat the case of a blow-up of Pn at multiple points, not more than n+1, resulting
in the proof of Theorem 4.4.

Acknowledgements. We deeply thank Jürg Kramer, for his suggestion to inves-
tigate the matters present in this paper, as well as for several useful discussions.

2. Overview on the basics of toric geometry

In the present section we recall notation, basic definitions and some theorems
from the classical theory of complex toric varieties, with an emphasis on sheaf
cohomology and positivity. Our reference for this material is [CLS11].

Tori and their lattices. Let n ∈ N be a natural number. An n-dimensional torus
is an algebraic group T which is isomorphic to (C∗)n. A character of a torus T
is a morphism χ : T → C∗ of algebraic groups. The set M of characters of an n-
dimensional torus is a free abelian group of rank n, that is, it constitutes a lattice. A
one-parameter subgroup of a torus T is a morphism λ : C∗ → T of algebraic groups.
The set N of one-parameter subgroups of an n-dimensional torus is also a lattice.
Given a character χ ∈ M and a one-parameter subgroup λ ∈ N , the composition
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χ ◦ λ : C∗ → C∗ is a group homomorphism, so it is given by t 7→ tk for some k ∈ Z.
By setting 〈χ, λ〉 := k, we obtain a natural bilinear pairing 〈 , 〉 : M ×N → Z which
makes M and N dual lattices, that is, it induces isomorphisms N ∼= Hom(M,Z)
and M ∼= Hom(N,Z).

A toric variety is a variety X containing a torus T as a Zariski open subset, such
that the action by entry-wise multiplication of T on itself extends to an algebraic
action of T on X .

Cones and fans. Let M,N ∼= Zn be dual lattices with a natural bilinear pairing
〈 , 〉 : M × N → Z, which extends to a bilinear pairing of the real vector spaces
MR := M ⊗Z R and NR := N ⊗Z R. A convex polyhedral cone in NR is a set of the
form

σ = Cone(S) =
{∑

u∈S

λuu | λu ≥ 0
}
⊆ NR,

where S ⊆ NR is finite. We say that σ is generated by S. If S ⊆ N , the polyhedral
cone σ = Cone(S) is called rational.

Let σ be a convex polyhedral cone in NR. We define

σ⊥ := {m ∈ MR | 〈m,u〉 = 0 for all u ∈ σ} ⊆ MR,

σ∨ := {m ∈ MR | 〈m,u〉 ≥ 0 for all u ∈ σ} ⊆ MR,

and we call σ∨ the dual cone of σ. Given m ∈ MR, we define

Hm := {u ∈ NR | 〈m,u〉 = 0} ⊆ NR,

and

H+
m := {u ∈ NR | 〈m,u〉 ≥ 0} ⊆ NR.

We call Hm a supporting hyperplane of σ if σ ⊆ H+
m, which is equivalent to the

condition that m ∈ σ∨. A face τ of σ is the intersection of σ with any of its sup-
porting hyperplanes, written τ � σ. We denote by σ(r) the set of all r-dimensional
faces of σ. A face τ 6= σ is called a proper face, written τ ≺ σ. We call σ strongly
convex if {0} � σ. From this point forward, we refer to strongly convex rational
polyhedral cones simply as “cones”.

A one-dimensional face ρ ∈ σ(1) of a cone σ is called a ray. Since σ is rational,
namely, it is generated by lattice vectors in N , the semigroup ρ ∩ N is generated
by a unique element uρ ∈ ρ ∩ N , which we call the ray generator of ρ. A cone
σ is generated by the ray generators of its one-dimensional faces, which are hence
called the minimal generators of σ. We say σ is smooth if its minimal generators
are part of a Z-basis of N .

A fan Σ in NR is a finite collection of cones in NR, such that: the face of any cone
in Σ is also in Σ, and any two cones in Σ intersect along a common face. We denote
by Σ(r) the set of all r-dimensional cones of Σ. The support of a fan Σ, denoted
|Σ|, is defined as the union of all its cones. We say Σ is complete if |Σ| = NR, and
smooth if every cone in Σ is smooth.

The toric variety associated to a fan. Given a cone σ ⊆ NR, the lattice points
σ∨ ∩ M form a finitely generated semigroup. The associated semigroup algebra
C[σ∨ ∩M ] is then an integral domain, finitely generated as a C-algebra, and

Uσ := SpecC[σ∨ ∩M ]
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is an n-dimensional normal affine toric variety. Let τ = σ ∩Hm be a face of σ, so
m ∈ σ∨∩M . Then Uτ is isomorphic to the spectrum of the localization C[σ∨∩M ]m,
which we denote as (Uσ)τ .

Let now Σ be a fan. For every pair of cones σ1, σ2 ∈ Σ, we then obtain isomor-
phisms

(Uσ1
)σ2

∼= Uσ1∩σ2

∼= (Uσ2
)σ1

.

By gluing the affine varieties {Uσ}σ∈Σ along the aforementioned isomorphisms, we
obtain a normal separated toric variety XΣ whose torus is given by TN := U{0} =
SpecC[M ]. Moreover, every normal separated toric variety arises from a fan in
this way [CLS11, Corollary 3.1.8]. The variety XΣ is complete if and only if Σ is a
complete fan [CLS11, Theorem 3.4.6], and it is smooth if and only if Σ is a smooth
fan [CLS11, Theorem 3.1.19].

Example 2.1. Let N = Zn, with standard basis {e1, . . . , en}. Set

e0 := −e1 − e2 − · · · − en,

and let Σ be the fan in NR = Rn consisting of the cones generated by all proper
subsets of {e0, . . . , en}. Then XΣ

∼= Pn.

The points in the affine toric variety Uσ associated to a cone σ are in bijective
correspondence with semigroup homomorphisms γ : σ∨ ∩ M → (C, ·). There is
a distinguished point in Uσ, denoted by γσ, which corresponds to the semigroup
homomorphism

σ∨ ∩M → (C, ·)

given by the assignment

m 7→

{
1 if m ∈ σ⊥ ∩M,

0 otherwise.

The following fundamental theorem of toric geometry, known as the Orbit-Cone
Correspondence, shows that a toric variety has a natural stratification by torus
orbits, induced by the cones in its associated fan.

Theorem 2.2. [CLS11, Theorem 3.2.6] Let XΣ be the toric variety associated to
the fan Σ in NR. For each cone σ ∈ Σ, we denote the TN -orbit of the distinguished
point γσ in XΣ by O(σ). Then:

(i) The map

Σ → {TN -orbits in XΣ},

given by the assignment σ 7→ O(σ), is a bijection.
(ii) We have

codim(O(σ)) = dim(σ).

(iii) We have

Uσ =
⋃

τ�σ

O(τ).

(iv) We have τ � σ if and only if O(σ) ⊆ O(τ). Moreover, the equality

O(τ) =
⋃

τ�σ

O(σ)

holds.
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Toric morphisms. Let N1 and N2 be two lattices, Σ1 a fan in N1,R, and Σ2 a fan

in N2,R. A morphism of fans Σ1 → Σ2 is a linear map φ : N1,R → N2,R such that
it restricts to a homomorphism N1 → N2 and, for every cone σ1 ∈ Σ1, there exists
a cone σ2 ∈ Σ2 such that φ(σ1) ⊆ σ2. If X1 and X2 are normal toric varieties,
a morphism φ : X1 → X2 is called toric if φ maps the torus T1 ⊆ X1 into the
torus T2 ⊆ X2, and its restriction T1 → T2 is a group homomorphism. Any toric
morphism φ : X1 → X2 is equivariant, meaning φ(t1 · x1) = φ(t1) · φ(x1) for every
t1 ∈ T1, x1 ∈ X1.

A morphism of fans Σ1 → Σ2 induces a toric morphism XΣ1
→ XΣ2

and, con-
versely, a toric morphism XΣ1

→ XΣ2
induces a morphism of fans Σ1 → Σ2. This

yields an equivalence of categories between the category of fans with morphisms of
fans, and the category of normal toric varieties with toric morphisms.

Example 2.3. Given fans Σ and Σ′ in NR, we say that Σ′ is a refinement of Σ if
every cone of Σ′ is contained in a cone of Σ and |Σ′| = |Σ|. In this case, the identity
map of NR is a morphism Σ′ → Σ, and the induced toric morphism φ : X ′

Σ → XΣ

is proper and birational.

Example 2.4. Let Σ be a fan in NR with dim(NR) = n. Let σ = Cone(u1, . . . , un)
be a smooth cone in Σ, that is, such that {u1, . . . , un} is a Z-basis for N . Let
u0 = u1+ · · ·+un ∈ N and let Σ′(σ) be the set of all cones generated by subsets of
{u0, . . . , un} not containing {u1, . . . , un}. Let ρ0 := Cone(u0) be the ray generated
by u0. Then,

Σ∗(σ) := (Σ \ {σ}) ∪ Σ′(σ)

is a fan in NR, which is a refinement of Σ and is called the star subdivision of Σ
along σ. The corresponding toric morphism π : XΣ∗(σ) → XΣ is the blow-up of XΣ

at the distinguished point γσ, with exceptional divisor given by π−1(γσ) = O(ρ0).

Toric divisors. Let XΣ be the toric variety associated to a fan Σ in NR, with
dim(NR) = n. By the Orbit-Cone Correspondence, a ray ρ ∈ Σ(1) corresponds

to an (n − 1)-dimensional orbit O(ρ) whose closure Dρ := O(ρ) is a TN -invariant
Weil divisor on XΣ. Divisors of the form

∑
ρ∈Σ(1) aρDρ with aρ ∈ Z are called toric

divisors. These are precisely the divisors on XΣ which are invariant under the torus
action. Thus

DivTN
(XΣ) :=

⊕

ρ∈Σ(1)

ZDρ ⊆ Div(XΣ)

is the group of TN -invariant divisors on XΣ.
Let uρ ∈ ρ ∩ N be the ray generator of a ray ρ ∈ Σ(1), and let m ∈ M be a

character of TN . Then m : TN → C∗ is a rational function on XΣ, and its associated
divisor is given by

div(m) =
∑

ρ∈Σ(1)

〈m,uρ〉Dρ ∈ DivTN
(XΣ).

We have an exact sequence

(2.1) M → DivTN
(XΣ) → Cl(XΣ) → 0

where the first map is given by m 7→ div(m) and Cl(XΣ) denotes the class group
of XΣ. In particular, every divisor on XΣ is linearly equivalent to a toric divisor.
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Moreover, the map given by m 7→ div(m) is injective if and only if the set {uρ | ρ ∈
Σ(1)} spans NR.

Now let D be a Cartier divisor on XΣ. From the exact sequence (2.1), D is lin-
early equivalent to a toric divisor, which is itself Cartier. Let CDivTN

(XΣ) ⊆
DivTN

(XΣ) denote the subgroup of TN -invariant Cartier divisors. Then, since
div(m) is Cartier for each m ∈ M , we have a further exact sequence

M → CDivTN
(XΣ) → Pic(XΣ) → 0

where Pic(XΣ) denotes the Picard group of XΣ.
Let Σmax ⊆ Σ be the set of maximal cones of Σ, that is, the cones in Σ which are

not proper subsets of another cone in Σ. Let D =
∑

ρ∈Σ(1) aρDρ be a toric divisor

on XΣ. Then, D is Cartier if and only if for each σ ∈ Σmax there exists a character
mσ ∈ M , such that 〈mσ, uρ〉 = −aρ for every ρ ∈ σ(1). When D is Cartier, such a
set {mσ | σ ∈ Σmax} is called the Cartier data of D. Each mσ is unique modulo
σ⊥ ∩M ; in particular, if Σ is complete, then Σmax = Σ(n) and the Cartier data of
D is uniquely determined.

Suppose that σ0 ∈ Σ(n) ⊆ Σmax is a top-dimensional cone, and consider the
subgroup

Aσ0
:=

{ ∑

ρ∈Σ(1)

aρDρ ∈ CDivTN
(XΣ) | aρ = 0 for all ρ ∈ σ0(1)

}
⊆ CDivTN

(XΣ).

If D =
∑

ρ∈Σ(1) aρDρ is any toric Cartier divisor, whose Cartier data is given by

{mσ | σ ∈ Σmax}, then D+div(mσ0
) ∈ Aσ0

. This shows that the restriction Aσ0
→

Pic(XΣ) of the natural surjective map CDivTN
(XΣ) → Pic(XΣ) remains surjective.

But, moreover, this restriction map is also injective. Indeed, if div(m) ∈ Aσ0
for

some m ∈ M , then 〈m,uρ〉 = 0 for each ρ ∈ σ0(1), which implies that m = 0
because σ0 is top-dimensional. We have thus proven the following statement (cf.
[CLS11, Exercise 6.1.6]).

Proposition 2.5. For each cone σ0 ∈ Σ(n), the induced map
{ ∑

ρ∈Σ(1)

aρDρ ∈ CDivTN
(XΣ) | aρ = 0 for all ρ ∈ σ0(1)

}
→ Pic(XΣ)

is an isomorphism.

We now recall that toric Cartier divisors behave well under pullbacks by a toric
morphism. Let N1 and N2 be two lattices, with Σ1 a fan in N1,R and Σ2 a fan in

N2,R. Let φ : XΣ1
→ XΣ2

be a toric morphism, with φ : N1,R → N2,R its associ-

ated linear map, so that the restriction φ : N1 → N2 is a homomorphism inducing

a dual homomorphism φ
∗
: M2 → M1. Then, the following result (cf. [CLS11,

Proposition 6.2.7]) shows how to pullback a toric Cartier divisor on XΣ2
via φ.

Proposition 2.6. Let D2 ∈ CDivTN2
(XΣ2

) with Cartier data {mσ | σ ∈ (Σ2)max}.

For each σ′ ∈ (Σ1)max we choose σ ∈ (Σ2)max such that φ(σ′) ⊆ σ, and let

mσ′ := φ
∗
(mσ).

Then {mσ′ | σ′ ∈ (Σ1)max} is the Cartier data of a toric Cartier divisor D1 on
XΣ1

satisfying OXΣ1
(D1) ∼= φ∗OXΣ2

(D2).
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Positivity of toric divisors. Recall that a sheaf F of OX -modules on a variety
X is generated by global sections if there exists a set {si} ⊆ H0(X,F) such that, for
every point x ∈ X , the stalk Fx is generated by the images of the global sections
{si}. An invertible sheaf L on X is said to be ample if for every coherent sheaf F
on X , there is an integer n0 > 0 (depending on F) such that, for every n ≥ n0, the
sheaf F ⊗ Ln is generated by global sections. A Cartier divisor D on X is said to
be:

(i) nef, if D · C ≥ 0 for every irreducible complete curve C ⊆ X ,
(ii) basepoint free, if its associated invertible sheafOX(D) is generated by global

sections, and
(iii) ample, if its associated invertible sheaf OX(D) is ample.

In the category of toric varieties, we can give a combinatorial characterization of
nef, basepoint free and ample toric divisors, as follows. Let XΣ be a complete toric
variety, and let D =

∑
ρ∈Σ(1) aρDρ be a toric Cartier divisor on XΣ with Cartier

data {mσ | σ ∈ Σmax}. Then, its support function ϕD : |Σ| → R is defined by

ϕD(u) = 〈mσ, u〉

when u ∈ σ ∈ Σ. In particular, it satisfies ϕD(uρ) = −aρ for each ρ ∈ Σ(1).
A cone τ ∈ Σ(n − 1) is called a wall if τ = σ ∩ σ′ for some σ, σ′ ∈ Σ(n). The

support function ϕD is known to be convex if, and only if, for every wall τ = σ ∩σ′

there exists u ∈ σ′ \ σ such that the wall inequality

ϕD(u) ≤ 〈mσ, u〉

holds. Moreover, if ϕD is convex, then the inequality ϕD(u) ≤ 〈mσ, u〉 must hold
for every σ ∈ Σ(n), u ∈ |Σ| (cf. [CLS11, Lemma 6.1.5]).

Now, ϕD is said to be strictly convex if for every wall τ = σ ∩ σ′ there exists
u ∈ σ′ \ σ, such that the strict wall inequality

ϕD(u) < 〈mσ, u〉

holds. Moreover, if ϕD is strictly convex, then the inequality ϕD(u) < 〈mσ, u〉 must
hold for every σ ∈ Σ(n), u ∈ |Σ| \ σ (cf. [CLS11, Lemma 6.1.13]). These properties
of the support function characterize nefness and ampleness of toric Cartier divisors.

Theorem 2.7. Let D be a toric Cartier divisor on a complete toric variety XΣ.
Then:

(i) D is nef if and only if it is basepoint free, if and only if ϕD is convex.
(ii) D is ample if and only if ϕD is strictly convex.

Proof. According to [CLS11, Theorem 6.1.7], D is basepoint free if and only if ϕD

is convex, while D is basepoint free if and only if it is nef according to [CLS11,
Theorem 6.3.12]. Part (ii) is the content of [CLS11, Theorem 6.1.14]. �

Sheaf cohomology of toric varieties. Let D =
∑

ρ∈Σ(1) aρDρ be a toric Cartier

divisor on a toric variety XΣ. Then, the group of global sections of OXΣ
(D) admits

a grading

H0(XΣ,OXΣ
(D)) =

⊕

m∈M

H0(XΣ,OXσ
(D))m,

where

H0(XΣ,OXΣ
(D))m :=

{
C ·m if 〈m,uρ〉 ≥ −aρ for every ρ ∈ Σ(1),

0 otherwise.
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This induces a natural grading of the cohomology groups

Hi(XΣ,OXΣ
(D)) =

⊕

m∈M

Hi(XΣ,OXΣ
(D))m

for every i ≥ 0.
For each m ∈ M , we then consider the union of convex hulls

VD,m :=
⋃

σ∈Σmax

Conv(uρ | ρ ∈ σ(1), 〈m,uρ〉 < −aρ) ⊆ NR.

Then, there is a comparison theorem between the sheaf cohomology of OXΣ
(D) and

the singular cohomology of the sets VD,m ⊆ NR
∼= Rn.

Theorem 2.8. [CLS11, Theorem 9.1.3] For each m ∈ M and each i ≥ 0, there is
an isomorphism

Hi(XΣ,OXΣ
(D))m ∼= H̃i−1(VD,m,C),

where H̃i−1 denotes reduced singular cohomology of degree i− 1.

As an application of Theorem 2.8, one has the following vanishing theorem (see
[CLS11, Theorem 9.2.3] for a proof).

Theorem 2.9 (Demazure vanishing). If |Σ| is convex and D is nef, then

Hi(XΣ,OXΣ
(D)) = 0

for all i > 0.

Another classic cohomological vanishing result is the Kodaira vanishing theorem,
which states that if X is a smooth projective variety and A is an ample Cartier
divisor on X , then

Hi(X,OX(KX +A)) = 0

for all i > 0, where KX denotes a canonical divisor on X (see, e.g., [Laz04, The-
orem 4.2.1] for a proof). Now, if XΣ is a toric variety, a torus invariant canonical
divisor is given by

KXΣ
= −

∑

ρ∈Σ(1)

Dρ

according to [CLS11, Theorem 8.2.3]. Hence, we may state the Kodaira vanishing
theorem in the context of toric geometry as follows.

Theorem 2.10 (Kodaira vanishing). Let XΣ be a smooth projective toric variety
and let A ∈ DivTN

(XΣ) be an ample toric divisor. Then

Hi
(
XΣ,OXΣ

(
A−

∑

ρ∈Σ(1)

Dρ

)
= 0

for all i > 0.

3. The blow-up of projective space at one point

In the present section, we utilize the tools of toric geometry, as recalled in Sec-
tion 2, in order to determine the ample cone of a blow-up X of Pn at one point,
thence obtaining a cohomological vanishing result for invertible sheaves on X via
the Kodaira vanishing theorem. Moreover, we characterize the isomorphism classes
of invertible sheaves on X whose cohomology in degree 1 vanishes, with the use of
Theorem 2.8.
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Let n ≥ 3 be an integer. Let T := (C×)n be the n-dimensional complex torus, and
{e1, . . . , en} the standard basis of its lattice of one-parameter subgroups N = Zn.
We set

e0 := −e1 − e2 − · · · − en ∈ Zn

and we let Σ be the fan in NR = Rn consisting of the cones generated by all proper
subsets of {e0, . . . , en}, that is,

(3.1) Σ := {Cone(S) | S ( {e0, . . . , en}}.

The associated toric variety is then XΣ
∼= Pn. For each i = 0, . . . , n we let

σi := Cone(e0, . . . , êi, . . . , en) ⊆ Rn,

where the hat notation êi means that the vector ei is excluded. The set of maximal
cones of Σ is then given by Σmax = {σ0, . . . , σn}, while the set of ray generators of
Σ is equal to {e0, . . . , en}. For each i = 0, . . . , n, let Di denote the toric divisor in
Pn associated to the ray generated by ei.

We now let Σ′ denote the star subdivision of Σ along σ0, as in Example 2.4.
Then Σ′ is a refinement of Σ, and the induced toric morphism

(3.2) π : XΣ′ → Pn

is the blow-up of Pn at the distinguished point γσ0
.

Remark 3.1. Since PGLn+1 acts transitively on Pn, making an appropriate change
of coordinates shows that any blow-up X → Pn at one point p ∈ Pn is of the form
(3.2).

For each i = 1, . . . , n, we let

τi := Cone(u0, e1, . . . , êi, . . . , en) ∈ Σ′,

where u0 := e1 + · · · + en ∈ N . We note that, by construction, the set of
maximal cones of Σ′ is given by Σ′

max = {σ1, . . . , σn, τ1, . . . , τn}, while the set
of ray generators of Σ′ is equal to {u0, e0, e1, . . . , en}. For each ray generator
u ∈ {u0, e0, e1, . . . , en}, let Du denote the toric divisor in XΣ′ associated to the
ray generated by u; in particular, Du0

is the exceptional divisor. We now compute
an explicit formula for the pullback of toric divisors in Pn via the blow-up morphism
π : XΣ′ → Pn.

Remark 3.2. Notice the notational choice that we have made. Since the ray gen-
erators ei appear in both the fan Σ and the fan Σ′, we distinguish the associated
toric divisors by writing Di for the divisor in XΣ

∼= Pn, while writing Dei for the
divisor in XΣ′ .

Lemma 3.3. Let D = λ0D0+ · · ·+λnDn be a toric divisor in Pn. Then, the toric
divisor

D′ := λ0De0 + · · ·+ λnDen + (λ1 + · · ·+ λn)Du0

in XΣ′ satisfies OX
Σ′
(D′) ∼= π∗OPn(D).

Proof. In Pn the groups of Weil and Cartier divisors coincide, so D is Cartier and
we can determine its Cartier data. Let s := λ0 + · · ·+ λn. For each i = 1, . . . , n we
define

mi := (−λ1, . . . , s− λi, . . . ,−λn) ∈ M = Zn,
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where the entry equal to s− λi is the i-th entry. We also define

m0 := (−λ1,−λ2, . . . ,−λn) ∈ M = Zn.

The set {m0, . . . ,mn} equals the Cartier data of D, since the equality 〈mi, ej〉 =
−λj is satisfied whenever i 6= j. We note that, for every i = 1, . . . , n, the smallest
cone in Σ containing τi ∈ Σ′ is σ0. Then, by Proposition 2.6 the Cartier divisor D′′

on XΣ′ whose Cartier data is given by

mσi
:= mi,

mτi := m0

for i = 1, . . . , n, satisfies OX
Σ′
(D′′) ∼= π∗OPn(D). Direct computation now shows

that D′′ = D′. Indeed, we have

〈mσi
, ej〉 = −λj

whenever i 6= j, and
〈mτi , u0〉 = −λ1 − · · · − λn

for all i = 1, . . . , n, so

D′′ = λ0De0 + · · ·+ λnDen + (λ1 + · · ·+ λn)Du0

= D′.

This finishes the proof. �

We now wish to describe the Picard groups of Pn andXΣ′ by choosing convenient
sets of generators given by toric divisors. The group Pic(Pn) ∼= Z is generated by
the class of any hyperplane: we pick the toric divisor D1 as representative and
write Pic(Pn) = ZD1. Regarding a choice of generators for Pic(XΣ′ ), we note that
Proposition 2.5 applied to the cone σ1 ∈ Σ′(n) gives

Pic(XΣ′) = ZDu0
+ ZDe1 .

However, a natural choice of generators for Pic(XΣ′), using the language of in-
vertible sheaves, is the pullback of OPn(1) ∼= OPn(D1) via the blow-up π, and
the ideal sheaf OX

Σ′
(−Du0

) of the exceptional divisor. In order to write these
generators more explicitly, we note that Lemma 3.3 shows that the toric divisor
Du0

+De1 ∈ Pic(XΣ′) satisfies

OX
Σ′
(Du0

+De1)
∼= π∗OPn(D1).

We thus choose {−Du0
, Du0

+De1} as Z-basis for Pic(XΣ′ ).

Theorem 3.4. Let π : X → Pn be a blow-up at one point with exceptional divisor
E, and let a, b ∈ Z. Then:

(i) OX(−aE)⊗ π∗OPn(b) is nef if and only if 0 ≤ a ≤ b.
(ii) OX(−aE)⊗ π∗OPn(b) is ample if and only if 0 < a < b.

Proof. We view Pn as the toric variety associated to the fan Σ as defined in (3.1),
and we identify π with the toric morphism π : XΣ′ → Pn induced by star subdivi-
sion as in (3.2), by choosing coordinates so that the blown-up point matches the
distinguished point γσ0

. Then, by Lemma 3.3 we have

OX
Σ′
(−aE)⊗ π∗OPn(b) ∼= OX

Σ′
(−aDu0

+ b(Du0
+De1)).

Let us first compute, directly from the definition, the Cartier data

{mσ | σ ∈ Σ′
max} = {mσ1

, . . . ,mσn
,mτ1 , . . . ,mτn} ⊆ M = Zn
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of the toric Cartier divisor D := −aDu0
+ b(Du0

+De1) = (b − a)Du0
+ bDe1 .

Let i ∈ {2, . . . , n}. The equalities

〈mσ1
, ei〉 = 0,

〈mσ1
, e0〉 = 0

imply that mσ1
= (0, . . . , 0) is the zero character, while the equalities

〈mσi
, e0〉 = 0,

〈mσi
, e1〉 = −b,

〈mσi
, ej〉 = 0 ∀ j ∈ {2, . . . , n} \ {i}

imply that mσi
= (−b, 0, . . . , 0, b, 0, . . . , 0), where b occurs at the i-th entry. Fur-

thermore, the equalities

〈mτ1 , ei〉 = 0,

〈mτ1 , u0〉 = a− b

imply that mτ1 = (a− b, 0, . . . , 0), while the equalities

〈mτi , u0〉 = a− b,

〈mτi , e1〉 = −b,

〈mτi , ej〉 = 0 ∀ j ∈ {2, . . . , n} \ {i}

imply that mτi = (−b, 0, . . . , 0, a, 0, . . . , 0), where a occurs at the i-th entry.
Suppose that D is nef, so its support function ϕD : |Σ′| → R is convex by Theo-

rem 2.7. In particular, e0 ∈ σ1 \ τ1 must satisfy the wall inequality

0 = ϕD(e0) ≤ 〈mτ1 , e0〉 = b− a,

and e2 ∈ τ1 \ τ2 must satisfy the wall inequality

0 = ϕD(e2) ≤ 〈mτ2 , e2〉 = a.

Therefore 0 ≤ a ≤ b.
Now suppose that 0 ≤ a ≤ b. Then all the wall inequalities are satisfied, namely:

−b = ϕD(e1) ≤ 〈mσ1
, e1〉 = 0,

−b = ϕD(e1) ≤ 〈mτ1 , e1〉 = a− b,

0 = ϕD(ei) ≤ 〈mσi
, ei〉 = b ∀ 2 ≤ i ≤ n,

0 = ϕD(ei) ≤ 〈mτi , ei〉 = a ∀ 2 ≤ i ≤ n,

0 = ϕD(e0) ≤ 〈mτi , e0〉 = b− a ∀ 1 ≤ i ≤ n,

a− b = ϕD(u0) ≤ 〈mσi
, u0〉 = 0 ∀ 1 ≤ i ≤ n,

so ϕD is convex andD is nef. The corresponding statement about ampleness follows
analogously, by arguing with strict convexity instead of convexity. �

We now turn our attention to the cohomology groups Hi(XΣ′ ,OX
Σ′
(−aE) ⊗

π∗OPn(b)), where a, b ∈ Z. As an immediate consequence of Theorem 2.9 and
Theorem 3.4, if 0 ≤ a ≤ b, we then have

Hi(XΣ′ ,OX
Σ′
(−aE)⊗ π∗OPn(b)) = 0

for all i > 0. However, we can obtain a better result by using the Kodaira vanishing
theorem.



12 MARCO FLORES

Theorem 3.5. Let π : X → Pn be a blow-up at one point, with exceptional divisor
E, and let a, b ∈ Z satisfying 0 ≤ a ≤ b+ 1. Then

Hi(X,OX(−aE)⊗ π∗OPn(b)) = 0

for all i > 0.

Proof. As in the proof of Theorem 3.4, we view Pn as the toric variety associated
to Σ, we identify π with the toric morphism π : XΣ′ → Pn, and we set

D := −aDu0
+ b(Du0

+De1).

Hence, we wish to show that Hi(XΣ′ ,OX
Σ′
(D)) = 0 for all i > 0.

According to [CLS11, Theorem 8.2.3], the canonical sheaf ωX
Σ′

is given by

ωX
Σ′

∼= OX
Σ′
(−Du0

−De0 − · · · −Den).

We choose a different representative KX
Σ′

of the canonical divisor class, as follows.
We consider the character m := (−n, 1, . . . , 1) ∈ M , and we set

KX
Σ′

:= div(m)−Du0
−De0 − · · · −Den

=(〈m,u0〉 − 1)Du0
+ (〈m, e0〉 − 1)De0 + · · ·+ (〈m, en〉 − 1)Den

=− 2Du0
− (n+ 1)De1

=(n− 1)Du0
− (n+ 1)(Du0

+De1).

We then notice that the toric divisor

D −KX
Σ′

= −(a+ n− 1)Du0
+ (b+ n+ 1)(Du0

+De1)

is ample by Theorem 3.4, since

0 ≤ a ≤ b+ 1 =⇒ 0 < a+ n− 1 < b+ n+ 1.

Therefore, Hi(XΣ′ ,OX
Σ′
(D)) = 0 for all i > 0 by the Kodaira vanishing theorem.

�

We will end this section by characterizing the cohomological vanishing of Theo-
rem 3.5 in the case i = 1. For this, we will directly compute the dimension of the

singular cohomology groups H̃0(VD,m,C), and then apply Theorem 2.8.

Lemma 3.6. Let D =
∑

ρ∈Σ′(1) aρDρ be any toric divisor on XΣ′ , and let m ∈ M

be a character. If

VD,m =
⋃

σ∈Σ′

max

Conv(uρ | ρ ∈ σ(1), 〈m,uρ〉 < −aρ) ⊆ Rn

is not path-connected, then VD,m = {e0, u0}.

Proof. Recall that Σ′
max = {σ1, . . . , σn, τ1, . . . , τn}, and Σ′(1) consists of the rays

generated by u0, e0, . . . , en ∈ N = Zn. Let us assume that VD,m is not path-
connected.

Suppose that ei ∈ VD,m for some 1 ≤ i ≤ n, and let p ∈ VD,m be any point.
From the definition of VD,m, we note that there is a line segment fully contained in
VD,m connecting p to some ray generator v ∈ {u0, e0, . . . , en}. Since n ≥ 3, we can
choose a maximal cone σ ∈ Σ′

max containing both ei and v. Indeed, if 1 ≤ j ≤ n,
we choose 1 ≤ k ≤ n with k 6= i, j and we find ei, ej ∈ τk, whereas for v = e0 and
v = u0 we can choose 1 ≤ j ≤ n with j 6= i and we find e0, ei ∈ σj and u0, ei ∈ τj .
Therefore, again by the definition of VD,m, we deduce that the line segment between
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ei and v is fully contained in VD,m. This shows that every point p ∈ VD,m admits a
path in VD,m to ei, contradicting the assumption that VD,m is not path connected.
Therefore ei /∈ VD,m for every 1 ≤ i ≤ n.

Now, if only one of the points e0, u0 belongs to VD,m, then VD,m consists of that
single point, which is again a contradiction. Therefore e0, u0 ∈ VD,m. Since there is
no cone in Σ′

max containing both e0 and u0, we conclude that VD,m = {e0, u0}. �

Theorem 3.7. Let D = λ0De0 + · · ·+λnDen +λn+1Du0
be a toric divisor on XΣ′ .

Then, dimC H1(XΣ′ ,OX
Σ′
(D)) is equal to the cardinality of the set

{
(m1, . . . ,mn) ∈ Zn | λ0 < m1 + · · ·+mn < −λn+1,mi ≥ −λi ∀i = 1, . . . , n

}
.

Proof. Since

H1(XΣ′ ,OX
Σ′
(D)) =

⊕

m∈M

H1(XΣ′ ,OX
Σ′
(D))m

and
H1(XΣ′ ,OX

Σ′
(D))m ∼= H̃0(VD,m,C)

for all m ∈ M by Theorem 2.8, we have

dimC H1(XΣ′ ,OX
Σ′
(D)) =

∑

m∈M

dimC H̃0(VD,m,C).

By Lemma 3.6, for each m ∈ M we have

dimC H̃0(VD,m,C) ≥ 1 ⇐⇒ VD,m = {e0, u0},

and in this case dimC H̃0(VD,m,C) = 1 because {e0, u0} has two connected compo-
nents. Therefore,

dimC H1(XΣ′ ,OX
Σ′
(D)) = #

{
m ∈ M | VD,m = {e0, u0}

}
.

Let m = (m1, . . . ,mn) ∈ Zn. By the definition of the set VD,m, we have VD,m =
{e0, u0} if and only if the inequalities

−m1 − · · · −mn = 〈m, e0〉 < −λ0,

m1 + · · ·+mn = 〈m,u0〉 < −λn+1,

mi = 〈m, ei〉 ≥ −λi ∀ i = 1, . . . , n

are satisfied. Therefore, dimC H1(XΣ′ ,OX
Σ′
(D)) is equal to

#
{
(m1, . . . ,mn) ∈ Zn | λ0 < m1+· · ·+mn < −λn+1 and mi ≥ −λi ∀i = 1, . . . , n

}
.

This finishes the proof. �

Corollary 3.8. Let π : X → Pn be a blow-up at one point, with exceptional divisor
E, and let a, b ∈ Z. Then

H1(X,OX(−aE)⊗ π∗OPn(b)) = 0 ⇐⇒ a ≤ 0 or a ≤ b+ 1.

Proof. As in the proof of Theorem 3.4, we view Pn as the toric variety associated
to Σ, we identify π with the toric morphism π : XΣ′ → Pn and we set

D := (b− a)Du0
+ bDe1 .

Hence, we wish to show that H1(XΣ′ ,OX
Σ′
(D)) = 0 if and only if a ≤ 0 or a ≤

b+ 1. Indeed, by Theorem 3.7, dimC H1(XΣ′ ,OX
Σ′
(D)) is equal to the cardinality

of the set
{
(m1, . . . ,mn) ∈ Zn | 0 < m1+· · ·+mn < a−b,m1 ≥ −b and mi ≥ 0 ∀i = 2, . . . , n

}
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which, via the assignment (m1, . . . ,mn) 7→ (m1 + b,m2, . . . ,mn), is in bijection
with the set

{
(m1, . . . ,mn) ∈ Zn | b < m1 + · · ·+mn < a and mi ≥ 0 ∀i = 1, . . . , n

}
.

This set is empty if, and only if, a ≤ 0 or a ≤ b+ 1. �

4. The blow-up of projective space at several points

We continue with our assumption that n ≥ 3. Let 1 ≤ q ≤ n be an integer, and
let X → Pn be a blow-up at q + 1 distinct points. The main result of this section,
Theorem 4.4, characterizes the isomorphism classes of invertible sheaves on X with
vanishing cohomology in degree 1. As a criterion for cohomological vanishing, this
is well known and elementary (cf. [DP23, Theorem 1.3]), so our emphasis lies in
observing that the criterion is sharp.

Let Σ be the fan in NR
∼= Rn introduced in Section 3, whose associated toric

variety is XΣ
∼= Pn. Recall that Σ consists of the cones generated by all proper

subsets of {e0, . . . , en}, so its maximal cones are the cones

σi = Cone(e0, . . . , êi, . . . , en) ⊆ Rn

for i = 0, . . . , n. We now let Σ′ denote the fan obtained by successive star subdi-
visions along the cones σ0, . . . , σq. Then Σ′ is a refinement of Σ, and the induced
toric morphism

(4.1) π : XΣ′ → Pn

is the blow-up of Pn at the q + 1 distinguished points γσ0
, . . . , γσq

.

Remark 4.1. Since PGLn+1 acts transitively on tuples of q+1 points in Pn, making
an appropriate change of coordinates shows that any blow-upX → Pn at q+1 points
in Pn is of the form (4.1).

For each 0 ≤ i ≤ q, let ui := −ei, and for each 0 ≤ j ≤ n with i 6= j, let

τij := Cone(ui, e0, . . . , êi, . . . , êj, . . . , en).

The maximal cones of Σ′ are then given by these τij and the cones σq+1, . . . , σn,
while the set of ray generators of Σ′ is given by {u0, . . . , uq, e0, . . . , en}. For each
ray generator u, let Du denote the toric divisor in XΣ′ associated to Cone(u); for
example, Du0

, . . . , Duq
are the exceptional prime divisors. We now compute an

explicit formula for the pullback of toric divisors in Pn via the blow-up morphism
π : XΣ′ → Pn.

Lemma 4.2. Let D = λ0D0 + · · · + λnDn be a toric divisor in Pn and let s :=
λ0 + · · ·+ λn. Then, the toric divisor

D′ := λ0De0 + · · ·+ λnDen + (s− λ0)Du0
+ · · ·+ (s− λq)Duq

in XΣ′ satisfies OX
Σ′
(D′) ∼= π∗OPn(D).

Proof. As in the proof of Lemma 3.3, let m0, . . . ,mn be the Cartier data of D. We
note that, for every 0 ≤ i ≤ q and 0 ≤ j ≤ n with i 6= j, the smallest cone in Σ
containing τij ∈ Σ′ is σi. Then, by Proposition 2.6, the Cartier divisor D′′ on XΣ′

whose Cartier data is given by

mσi
:= mi
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for i = q + 1, . . . , n, and

mτij := mi

for 0 ≤ i ≤ q, 0 ≤ j ≤ n (i 6= j), satisfies OX
Σ′
(D′′) ∼= π∗OPn(D). Direct

computation now shows that D′′ = D′. �

Lemma 4.3. Let D =
∑

ρ∈Σ′(1) aρDρ be any toric divisor on XΣ′ , and let m ∈ M

be a character. If

VD,m =
⋃

σ∈Σ′

max

Conv(uρ | ρ ∈ σ(1), 〈m,uρ〉 < −aρ) ⊆ Rn

is not path-connected, then VD,m = {ei, ui} for some 0 ≤ i ≤ q, or VD,m ⊆
{u0, . . . , uq}.

Proof. Recall that Σ′
max = {σq+1, . . . , σn, τij | 0 ≤ i ≤ q, 0 ≤ j ≤ n, i 6= j} and

Σ′(1) = {Cone(u0), . . . ,Cone(uq),Cone(e0), . . . ,Cone(en)}. Let us assume that
VD,m is not path-connected.

Suppose that ei ∈ VD,m for some 0 ≤ i ≤ n. Since n ≥ 3, given any ray
generator v 6= ui we can find a maximal cone σ ∈ Σ′

max containing both ei and v,
which implies that, if v ∈ VD,m, then there is a path in VD,m joining ei and v.
Since VD,m is assumed not to be path-connected, we deduce that ui ∈ VD,m. But
then, similarly, for any ray generator v 6= ei we can find a maximal cone containing
both ui and v, so v ∈ VD,m would imply that VD,m is path-connected. Therefore
VD,m = {ei, ui}.

Now suppose that e0, . . . , eq /∈ VD,m. Since, for any 0 ≤ i, j ≤ q with i 6= j,
there is no maximal cone containing both ui and uj, we conclude that VD,m ⊆
{u0, . . . , uq}. �

Let X → Pn be a blow-up at q + 1 points, with exceptional prime divisors
E0, . . . , Eq. The Picard group of X is generated by the classes of E0, . . . , Eq and
by π∗OPn(1), so the following theorem characterizes the isomorphism classes of
invertible sheaves on X with vanishing cohomology in degree 1.

Theorem 4.4. Let a0, . . . , aq, b ∈ Z. Then,

H1
(
X,OX

(
−

q∑

i=0

aiEi

)
⊗ π∗OPn(b)

)
= 0

if and only if the inequalities

ai + aj ≤ b+ 1 ∀i, j ∈ {0, . . . , q}, i 6= j

are satisfied, unless there is exactly one element ak ∈ {a0, . . . , aq} that is positive,
in which case we also require ak ≤ b+ 1.

Proof. We view Pn as the toric variety associated to the fan Σ, and we identify π
with the toric morphism π : XΣ′ → Pn by choosing coordinates so that the blown-up
points match the distinguished points γσ0

, . . . , γσq
.

By Lemma 4.2, we have

π∗OPn(b) ∼= π∗OPn(bD0) ∼= OX
Σ′
(bDe0 + bDu1

+ · · ·+ bDuq
),

so we are interested in the cohomology of the divisor

D := bDe0 − a0Du0
+ (b − a1)Du1

+ · · ·+ (b− aq)Duq
.
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By Theorem 2.8, we have H1(XΣ′ ,OX′

Σ
(D)) = 0 if and only if VD,m is path-

connected for every character m ∈ M . In view of Lemma 4.3, we must thus
investigate under which conditions there is a character m ∈ M such that VD,m is
of the form {ei, ui}, or it is a subset of {u0, . . . , uq} with at least two elements.

Let i ∈ {1, . . . , q}. From the definition of the set VD,m, and recalling that
uj = −ej for every j ∈ {0, . . . , q}, we see that VD,m = {ei, ui} if and only if the
inequalities

a0 ≤ 〈m,u0〉 ≤ b,

b − ai < 〈m, ei〉 < 0,

〈m, ej〉 ≤ b− aj ∀j ∈ {0, . . . , q} \ {i},

0 ≤ 〈m, ej〉 ∀j ∈ {0, . . . , n} \ {i}

are satisfied. Notice that the above inequalities imply b − ai < 〈m,u0〉 ≤ b. We
thus find that VD,m 6= {ei, ui} for all m ∈ M if and only if ai ≤ 0, or ai ≤ b + 1,
or b + 1 ≤ aj for some j 6= i. Similarly, we find that the same statement holds for
i = 0.

Next, let i, j ∈ {1, . . . , q} with i 6= j. We note that VD,m is a subset of
{u0, . . . , uq} containing the elements ui, uj, if and only if the inequalities

〈m,ui〉 < ai − b,

〈m,uj〉 < aj − b,

〈m, e0〉 ≥ −b,

〈m, ek〉 ≥ 0 ∀k ∈ {1, . . . , n}

are satisfied. These inequalities admit no solution m ∈ M if and only if ai + aj ≤
b+ 1.

So, suppose that H1(XΣ′ ,OX′

Σ
(D)) = 0, i.e., that VD,m is path-connected for

every m ∈ M . We readily deduce that ai + aj ≤ b + 1 for all i 6= j by the above
observation, so we need only analyze the case that there is exactly one positive
element ak in the set {a0, . . . , aq}. We then have aj < aj + ak ≤ b + 1 for every
j 6= k, so the fact that VD,m 6= {ek, uk} implies that ak ≤ b+ 1.

Conversely, suppose that ai+aj ≤ b+1 for all i 6= j and, in case there is exactly
one positive element ak ∈ {a0, . . . , aq}, suppose also that ak ≤ b+1. In particular,
we know that VD,m is not a subset of {u0, . . . , uq} containing at least two elements,
so it only remains to show that VD,m is not of the form {ei, ui}. We then finish our
argument by swiftly analyzing the following three cases:

(i) If none of the elements in {a0, . . . , aq} is positive, then the inequality b−ai <
b is false for every i = 0, . . . , q and so VD,m is not of the form {ei, ui}.

(ii) If there is exactly one positive element ak ∈ {a0, . . . , aq}, then ai < ai+ak ≤
b + 1, so VD,m is not of the form {ei, ui} for i 6= k, and furthermore the
assumption ak ≤ b+ 1 implies that VD,m 6= {ek, uk}.

(iii) If there are at least two positive elements in {a0, . . . , aq}, then ai < b + 1
and VD,m 6= {ei, ui} for every i = 0, . . . , q.

Therefore H1(XΣ′ ,OX′

Σ
(D)) = 0. �
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