
Scalable control synthesis for stochastic systems
via structural IMDP abstractions

Frederik Baymler Mathiesen

f.b.mathiesen@tudelft.nl

Delft University of Technology

Delft, The Netherlands

Sofie Haesaert

s.haesaert@tue.nl

Eindhoven University of Technology

Eindhoven, The Netherlands

Luca Laurenti

l.laurenti@tudelft.nl

Delft University of Technology

Delft, The Netherlands

Abstract
This paper introduces a novel abstraction-based framework for

controller synthesis of nonlinear discrete-time stochastic systems.

The focus is on probabilistic reach-avoid specifications. The frame-

work is based on abstracting a stochastic system into a new class

of robust Markov models, called orthogonally decoupled Interval

Markov Decision Processes (odIMDPs). Specifically, an odIMDPs is

a class of robust Markov processes, where the transition probabili-

ties between each pair of states are uncertain and have the product

form. We show that such a specific form in the transition probabil-

ities allows one to build compositional abstractions of stochastic

systems that, for each state, are only required to store the marginal

probability bounds of the original system. This leads to improved

memory complexity for our approach compared to commonly em-

ployed abstraction-based approaches. Furthermore, we show that

an optimal control strategy for a odIMDPs can be computed by solv-

ing a set of linear problems. When the resulting strategy is mapped

back to the original system, it is guaranteed to lead to reduced con-

servatism compared to existing approaches. To test our theoretical

framework, we perform an extensive empirical comparison of our

methods against Interval Markov Decision Process- and Markov

Decision Process-based approaches on various benchmarks includ-

ing 7D systems. Our empirical analysis shows that our approach

substantially outperforms state-of-the-art approaches in terms of

both memory requirements and the conservatism of the results.

CCS Concepts
•Mathematics of computing→Markov processes; •Theory of
computation → Stochastic control and optimization; • Computer
systems organization→ Embedded systems.

Keywords
Markov Decision Processes, Robust Value Iteration, Reachability,

Control Synthesis, Verification.

ACM Reference Format:
Frederik Baymler Mathiesen, Sofie Haesaert, and Luca Laurenti. 2025. Scal-

able control synthesis for stochastic systems via structural IMDP abstrac-

tions. In Proceedings of the 28th ACM International Conference on Hybrid

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HSCC ’25, May 06–09, 2025, Irvine, CA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

Systems: Computation and Control (HSCC ’25). ACM, New York, NY, USA,

14 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Modern cyber-physical systems, such as autonomous vehicles or

robotic systems, are often modeled as stochastic dynamical systems

[12, 37], where nonlinear dynamics transform stochastic quanti-

ties over time. Consequently, to deploy cyber-physical systems in

safety-critical applications, it has become of paramount importance

to develop techniques for controller synthesis and verification of

nonlinear stochastic dynamical systems with guarantees of per-

formance and correctness [16]. However, unfortunately, existing

techniques still lack scalability and are commonly limited to low-

dimensional systems [31, 33].

Abstraction-based methods arguably represent the state-of-the-

art for formal analysis of nonlinear stochastic systems [14, 33, 36,

51]. Abstraction-based methods approximate a given complex sys-

tem (the “concrete” system) with a simpler one (the “abstraction”)

for the purpose of performing analysis while maintaining a (bi-

)simulation relation between the concrete and abstract systems

[14, 36, 52, 53]. Then, by relying on the simulation relation, con-

troller strategies or verification results can be mapped from the

abstraction to the concrete system with provable correctness guar-

antees. In the context of stochastic dynamical systems, the abstrac-

tion model is usually taken to be a variant of a Markov model with

finite state space. In particular, abstractions to robust Markov mod-

els and, especially, Interval Markov Decision Processes (IMDPs) [20]

have recently shown great potential to achieve state-of-the-art re-

sults [5, 14, 15, 26]. However, these approaches are still limited both

in terms of memory and computational requirements [14, 31, 39].

In this paper, we introduce a novel framework for formal analy-

sis of stochastic dynamical systems based on abstraction to robust

Markov models. Our framework uses compositional reasoning and

relies on the structural properties of the system to improve the

tightness and computational efficiency of abstraction-based meth-

ods that use robust finite-state Markov models. In particular, we

introduce a new class of robust Markov models, called orthogonally

decoupled Interval Markov Decision Processes (odIMDPs), where

the transition probabilities between each pair of states lie within a

product of intervals. We show that this form of transition probabil-

ity is particularly suitable to abstract stochastic systems, where each

interval in the product can encode the marginal probabilities of the

system. This approach has two main advantages: (i) for each pair

of state actions, odIMDPs are only required to store the marginal

distributions of the system instead of the transition probabilities

to all the other states in the abstraction. This leads to substantial

improvements in the memory requirement of the method, which is

arguably themain bottleneck of existing abstraction-basedmethods,

ar
X

iv
:2

41
1.

11
80

3v
1

 [
ee

ss
.S

Y
]

 1
8

N
ov

 2
02

4

https://orcid.org/1234-5678-9012
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

HSCC ’25, May 06–09, 2025, Irvine, CA Frederik Baymler Mathiesen, Sofie Haesaert, and Luca Laurenti

(ii) by encoding constraints on the marginals, the resulting abstrac-

tion model exploits the structural properties of the concrete system,

leading to improved tightness of the resulting error bounds. To

guarantee computational efficiency of our framework, we propose

a novel approach to synthesize robust strategies for an odIMDP

against a probabilistic reach-avoid property based on a divide-and-

conquer algorithm that recursively solves a linear programming

problem and returns upper and lower bounds on the probability

that the odIMDP satisfies the property. Finally, we show that the

resulting strategy can be mapped back on the concrete system and

that the returned bounds are guaranteed to contain the probability

that the concrete system satisfies the property.

To empirically evaluate the framework, we tested it on bench-

marks from the literature [1, 46, 51, 56], including stochastic affine

and nonlinear systems, neural network dynamic models, Gaussian

Processes (GPs), and Gaussian mixture models. We compared our

framework with existing state-of-the-art abstraction-based tools for

verification of stochastic systems based on abstractions to Markov

Decision Processes (MDPs) and IMDPs [51, 56]. As expected, the

experiments show that our approach outperforms the state-of-the-

art both in terms of memory requirement and conservativity of the

results, allowing one to synthesize optimal strategies for systems

that current methodologies cannot handle. For example, on both 6D

and 7D systems, while existing approaches returned trivial results,

our approach would successfully synthesize optimal policies with

a guaranteed lower bound on the satisfaction probability > 0.95. In

summary, the main contributions of the paper are:

• We introduce a new class of robust Markov models called

orthogonally decoupled Interval Markov Decision Processes

(odIMDPs) and show how robust value iteration for odIMDPs

can be performed by relying on linear programming.

• We show that a large class of stochastic dynamical systems

can be successfully abstracted as odIMDPs and derive effi-

cient and scalable methods to construct the abstraction.

• We performed a large-scale empirical evaluation and com-

pared our approach with state-of-the-art abstraction-based

verification methods for stochastic systems.

Related Works. Abstraction-based approaches for stochastic sys-

tems generally rely on abstracting the concrete system to either

MDPs or IMDPs [33]. odIMDPs shares many features with IMDPs

[20] and abstraction of stochastic systems to IMDPs has been exten-

sively studied, including for stochastic hybrid systems [14], neural

networks [3], and Gaussian Processes [24, 46], and using data-

driven construction methods [5, 23]. Furthermore, many tools sup-

port value iteration over IMDPs, although with different feature

sets for dense or sparse representations and specifications: PRISM

[28], bmdp-tool [29], Storm [22], IntervalMDP.jl [39], and IMPaCT
1

[56]. However, a common limitation of these approaches is in the

memory requirements in building the abstraction, which is gen-

erally quadratic in |𝑆 |, the size of the IMDP, which is, in turn,

exponential in 𝑛, the dimension of the state space of the concrete

system. In contrast, our approach based on odIMDPs guarantees an

improved memory complexity (see Subsection 4) of a factor
𝑛
√︁
|𝑆 |.

Furthermore, we also show how our approach generally returns

1
IMPaCT includes functionality for the abstraction of stochastic systems to IMDPs.

tighter bounds compared to IMDP-based approaches. To the best of

our knowledge, the only paper that has considered compositional

reasoning for IMDPs [21], which, however, focuses on the paral-

lel composition of given IMDPs, while in this paper, we focus on

compositional construction of the abstraction.

Approaches based on abstractions to (non-robust) MDPs have

also been widely employed in the literature [2, 33, 50]. Although

MDPs suffer from the same issues as IMDPs, existing tools based

on compositional analysis and model order reduction [11, 19, 34,

43, 51] have allowed them to scale to relatively high-dimensional

stochastic systems. However, these approaches generally require

that the system can be divided into independent components or

that, at least, deterministic and stochastic dynamics (with diagonal

noise) can always be decoupled. This is not generally true for the

class of systems considered in this paper. Furthermore, MDP-based

approaches have been shown to yield more conservative results

compared to IMDP-based approaches [14].

In parallel to abstraction-based methods, various works have

focused on abstraction-free methods based on Stochastic Barrier

Functions (SBFs) [45, 48]. The idea is to construct a function that

allows one to upper-bound the probability that the system exits

a given safe set without directly studying the evolution of the

system over time. The synthesis of SBFs has been formulated as

sum-of-squares optimization [42, 48], with neural networks [38],

and as linear programming [41]. Furthermore, data-driven synthesis

techniques have also been developed [40, 47]. However, compared

to abstraction-based methods, SBFs tend to be conservative [31]

and are particularly suitable for simple properties like invariance

(although recent papers have extended them to support temporal

logic properties exist [25, 27]).

Structure of the paper. In Section 2, we formally state our problem

of verifying probabilistic reach-avoid for stochastic systems and

outline our approach. Then in Section 3, we briefly review IMDPs

and how stochastic systems are abstracted to IMDPs.We also review

weaknesses of this approach that leads us to introduce our new

Markov model, orthogonally decoupled Interval Markov Decision

Processes (odIMDPs), which is introduced in Section 4. Section 4

also discusses the space complexity required to store an odIMDPs

and analyse their ambiguity set and compare them to those of

state-of-the-art abstraction methods. In Section 5, we show how

a stochastic system can be successfully abstracted to odIMDPs.

Then, in Section 6 we derive algorithms for robust value iteration

of odIMDPs based on linear programming. Finally, in Section 7, we

empirically benchmark the proposed methodology.

Notation. R and N represent, respectively, the set of real and

natural numbers with N0 = N ∪ {0}. The set S𝑛++ is the set of

symmetric positive-definite matrices of size 𝑛 ∈ N. For a finite set
𝑆 , we denote by |𝑆 | its cardinality. A probability distribution 𝛾 over

a finite set 𝑆 is a function 𝛾 : 𝑆 → [0, 1] satisfying ∑
𝑠∈𝑆 𝛾 (𝑠) = 1.

We denote by D(𝑆) the set of all probability distributions over 𝑆 .

For 𝑝, 𝑝 : 𝑆 → [0, 1] such that 𝑝 (𝑠) ≤ 𝑝 (𝑠) for each 𝑠 ∈ 𝑆 and∑
𝑠∈𝑆 𝑝 (𝑠) ≤ 1 ≤ ∑

𝑠∈𝑆 𝑝 (𝑠), an interval ambiguity set Γ ⊂ D(𝑆) is
the set of distributions such that

Γ = {𝛾 ∈ D(𝑆) : 𝑝 (𝑠) ≤ 𝛾 (𝑠) ≤ 𝑝 (𝑠) for each 𝑠 ∈ 𝑆}.

Scalable control synthesis for stochastic systems via structural IMDP abstractions HSCC ’25, May 06–09, 2025, Irvine, CA

𝑝, 𝑝 are often referred to as the interval bounds of the interval

ambiguity set. The set of all interval ambiguity sets over 𝑆 is denoted

by int amb(𝑆). For 𝑛 finite sets 𝑆1, . . . , 𝑆𝑛 we denote by 𝑆1 × · · · ×𝑆𝑛
their Cartesian product. Given 𝑆 = 𝑆1 × · · · × 𝑆𝑛 and 𝑛 ambiguity

sets Γ𝑖 ∈ D(𝑆𝑖), 𝑖 = 1, . . . , 𝑛, the product ambiguity set Γ ⊆ D(𝑆)
is defined as:

Γ =

{
𝛾 ∈ D(𝑆) : 𝛾 (𝑠) =

𝑛∏
𝑖=1

𝛾𝑖 (𝑠𝑖), 𝛾𝑖 ∈ Γ𝑖

}
where 𝑠 = (𝑠1, . . . , 𝑠𝑛) ∈ 𝑆 . In what follows, with a slight abuse of

notation, we will denote the product ambiguity set as Γ =
⊗𝑛

𝑖=1
Γ𝑖 .

Each Γ𝑖 is called a marginal or component ambiguity set. 1𝑋 (𝑥)
denotes the indicator function for the set 𝑋 where 1𝑋 (𝑥) = 1 if

𝑥 ∈ 𝑋 and 0 otherwise.

2 Problem Statement
Consider a stochastic process described by the following stochastic

difference equation

𝑥𝑘+1
= 𝑓 (𝑥𝑘 , 𝑢𝑘 , 𝑣𝑘) (1)

where 𝑥𝑘 ∈ R𝑛 and 𝑢𝑘 ∈ 𝑈 ⊆ R𝑚 are respectively state of the

system and input at time 𝑘 . We assume that |𝑈 | is finite. 𝑣𝑘 ∈ 𝑉 ⊆
R𝑛𝑣 is an independent and identically distributed (i.i.d.) random

variable for all time 𝑘 ∈ N0 that represents the noise that affects

the system at each time step. The vector field 𝑓 : R𝑛 ×𝑈 ×𝑉 → R𝑛
represents the controlled stochastic dynamics of the system.

To define a probability measure for System (1), we introduce the

one-step stochastic kernel 𝑇 (𝑋 | 𝑥,𝑢) that defines the probability
that System (1) from state 𝑥 will transition to region 𝑋 ⊆ R𝑛 in

one time step under action 𝑢. For this work, we assume that the

transition kernel is a mixture of 𝐾 Gaussians for 𝐾 > 0, each with

diagonal covariance. That is,

𝑇 (𝑋 | 𝑥,𝑢) :=

𝐾∑︁
𝑟=1

𝛼𝑟 (𝑥,𝑢)
∫
𝑋

N(𝑥 ′ | 𝜇𝑟 (𝑥,𝑢), Σ𝑟 (𝑥,𝑢))𝑑𝑥 ′, (2)

where 𝜇𝑟 (𝑥,𝑢) ∈ R𝑛 and Σ𝑟 (𝑥,𝑢) ∈ S𝑛++ are action and state-

dependent mean and covariance functions of the 𝑟 -th Gaussian in

the mixture. 𝛼𝑟 (𝑥,𝑢) is a weighting function such that 𝛼𝑟 (𝑥,𝑢) ≥ 0

and

∑𝐾
𝑟=1

𝛼𝑟 (𝑥,𝑢) = 1 for each source-action pair (𝑥,𝑢). We assume

𝜇𝑟 (𝑥,𝑢), Σ𝑟 (𝑥,𝑢), and 𝛼𝑟 (𝑥,𝑢) are continuous in 𝑥 for each𝑢. When

𝐾 = 1, we omit 𝑟 from the weighting probability function, mean,

and covariance.

Remark 2.1. Note that the kernel in Eqn. (2) encompasses a large
class of models of interest in practice. In fact, Eqn. (2) includes not only
linear and nonlinear systems with additive Gaussian noise [4] and
systems learned via Gaussian process regression [55], but we should
also stress that mixtures of Gaussians with diagonal covariance can
approximate arbitrarily well any distribution [9]. This guarantees the
generality of the model.

Given an initial condition 𝑥0 ∈ R𝑛 and a control policy
2 𝜋𝑥 :

R𝑛 × N0 → 𝑈 , the stochastic kernel 𝑇 induces a unique and well-

defined probability measure 𝑃𝑥0,𝜋𝑥
[7, Prop. 7.45], such that for sets

2
For the class of systems and problem considered in this paper time-dependent Markov

policies suffices for optimality [31].

𝑋0, 𝑋𝑘+1
⊆ 𝑋 it holds that

𝑃𝑥0,𝜋𝑥 [𝑥0 ∈ 𝑋0] = 1𝑋0
(𝑥0),

𝑃𝑥0,𝜋𝑥 [𝑥𝑘+1
∈ 𝑋𝑘+1

| 𝑥𝑘 = 𝑥,𝑢𝑘 = 𝜋𝑥 (𝑘, 𝑥)] = 𝑇 (𝑋𝑘+1
| 𝑥, 𝜋𝑥 (𝑥, 𝑘)).

With the definition of 𝑃𝑥0,𝜋𝑥
, we can now make probabilistic state-

ments on the trajectories of System (1).

Definition 2.2 (Probabilistic reach-avoid). Consider a compact

region of interest 𝑋 ⊂ R𝑛 . Let 𝑅 ⊂ 𝑋 and 𝑂 ⊂ 𝑋 be closed sets

with 𝑅 ∩ 𝑂 = ∅, 𝑥0 ∈ 𝑋 be the initial state, and 𝐻 ∈ N be the

time horizon. Then, for a given control strategy 𝜋𝑥 , probabilistic
reach-avoid is defined as

𝑃ra (𝑅,𝑂, 𝑥0, 𝜋𝑥 , 𝐻) = 𝑃𝑥0,𝜋𝑥 [∃𝑘 ∈ {0, . . . , 𝐻 }, 𝑥𝑘 ∈ 𝑅,
∀𝑘′ ∈ {0, . . . , 𝑘}, 𝑥𝑘 ′ ∉ 𝑂 ∧ 𝑥𝑘 ′ ∈ 𝑋] .

Note that the assumption of a given region of interest is standard

[14, 51] and allows one to only focus on the behavior of the system

in a bounded set. The problem we consider in this work is then

formally defined as follows.

Problem 2.3 (Verification and controller synthesis). Consider a
compact region of interest 𝑋 ⊂ R𝑛 . Then, for sets 𝑅,𝑂 ⊂ 𝑋 , initial
state 𝑥0 ∈ 𝑋 , and time horizon 𝐻 , synthesize a control strategy 𝜋𝑥
such that

𝑜𝑝𝑡
𝜋𝑥

𝑃ra (𝑅,𝑂, 𝑥0, 𝜋𝑥 , 𝐻)

where 𝑜𝑝𝑡 ∈ {min,max}.

Problem 2.3 requires one to compute the strategy 𝜋𝑥 that opti-

mizes the probability that a trajectory of System (1) starting from 𝑥0

enters 𝑅 within 𝐻 time steps and avoids 𝑂 until 𝑅 is reached. Note

that focusing on probabilistic reach-avoid in Problem 2.3 is not lim-

iting. In fact, certifying reach-avoid properties enables verification

of more complex temporal logic specifications [3, 14, 30].

Approach. To solve Problem 2.3, in Section 4, we introduce a

class of robust Markov models, called orthogonally decoupled In-

terval Markov Decision Processes (odIMDPs), where transition

probabilities lie in some product ambiguity set. To abstract System

(1) into an odIMDP, we first partition the region of interest into

a grid of discrete regions. Then, in Section 5, we show that one

can take advantage of the product form of an odIMDP and, for

each region, simply store the marginal probabilities of the original

system. This allows us to construct the abstraction for System (1) in

a compositional manner, with improved memory complexity and

guaranteeing tighter error bounds compared to existing methods.

We then show how an optimal strategy for an odIMDP can be found

via linear programming and mapped back to the original system,

guaranteeing efficiency to the resulting approach. Before formally

introducing odIMDPs, in the next Section, we start by reviewing

IMDPs and the standard approach to abstracting stochastic systems

to IMDPs.

3 Preliminaries on abstractions to Interval
Markov Decision Processes

Interval Markov Decision Processes (IMDPs) (also called bounded-

parameter MDPs) are a generalization of MDPs in which the transi-

tion probability distributions between states lie within some inde-

pendent intervals [20].

HSCC ’25, May 06–09, 2025, Irvine, CA Frederik Baymler Mathiesen, Sofie Haesaert, and Luca Laurenti

Definition 3.1. An Interval Markov Decision Process (IMDP) is a

tuple𝑀 = (𝑆,𝐴, Γ) where
• 𝑆 is a finite set of states,

• 𝐴 is a finite set of actions assumed to be available at each

state, and

• Γ = {Γ𝑠,𝑎}𝑠∈𝑆,𝑎∈𝐴 are sets of feasible transition probability

distributions with Γ𝑠,𝑎 ∈ int amb(𝑆).

IMDPs are commonly used as the abstraction model for complex

stochastic systems [5, 14, 15, 26, 30, 49]. In particular, the standard

approach to abstract systems of the form of Eqn. (1) to an IMDPs is

first to assign to𝐴 the actions in𝑈 . Then, the region of interest𝑋 is

partitioned into regions {𝑠1, . . . , 𝑠 |𝑆 | } and each region is associated

with a state in 𝑆 . In what follows, for the sake of simpler notation,

with an abuse, we will denote by 𝑠 and 𝑡 , that is, for a transition

𝑠
𝑎−→ 𝑡 , both the abstract states in 𝑆 and the corresponding regions

of 𝑋 . Then, for a state 𝑠 ∈ 𝑆 and action 𝑎 ∈ 𝐴, Γ𝑠,𝑎 is defined as

Γ𝑠,𝑎 = {𝛾𝑠,𝑎 ∈ D(𝑆) : ∀𝑡 ∈ 𝑆,
min

𝑥∈𝑠
𝑇 (𝑡 | 𝑥, 𝑎) ≤ 𝛾𝑠,𝑎 (𝑡) ≤ max

𝑥∈𝑠
𝑇 (𝑡 | 𝑥, 𝑎)}. (3)

Once the abstraction is built, then one can rely on existing poly-

nomial time algorithms for IMDPs to compute reach-avoid proba-

bilities and optimal strategies on the abstraction IMDP, which can

then be mapped back to the concrete system [14, 30]. However, the

abstraction approach outlined above, while general and sound, has

the following drawbacks:

• Memory consumption is often the main bottleneck. In fact,

to perform value iteration on an IMDP 𝑀 , for each pair

of regions 𝑠, 𝑡 ∈ 𝑆 and 𝑎 ∈ 𝐴 we need to store 𝑝
𝑠,𝑎

(𝑡) =

min𝑥∈𝑠 𝑇 (𝑡 | 𝑥, 𝑎) and 𝑝𝑠,𝑎 (𝑡) = max𝑥∈𝑠 𝑇 (𝑡 | 𝑥, 𝑎), leading
to a memory complexity of 𝑂 (|𝑆 |2 |𝐴|).

• For any 𝑠, 𝑡 ∈ 𝑆 , the computation of min𝑥∈𝑠 𝑇 (𝑡 | 𝑥, 𝑎) and
max𝑥∈𝑠 𝑇 (𝑡 | 𝑥, 𝑎) generally requires approximations, which

lead to conservatism. For instance, in the case of Gaussian ad-

ditive noise 𝑥𝑘+1
= 𝑓 (𝑥𝑘 , 𝑢𝑘) + 𝑣𝑘 , where 𝑣𝑘 ∼ N(0, Σ) with

diagonal covariance matrix Σ ∈ S𝑛++, under the assumption

that to each 𝑠 ∈ 𝑆 is associated a hyperrectangular region,

i.e., 𝑠 = [𝑠
1
, 𝑠1] × · · · × [𝑠𝑛, 𝑠𝑛], the state-of-the-art approach

[3, 14, 32] is to rely on the following under-approximation

for the min case (similar reasoning holds for the max case):

min

𝑥∈𝑠
𝑇 (𝑡 | 𝑥, 𝑎) =

min

𝑥∈𝑠

∫
𝑡

N(𝑦 | 𝑓 (𝑥, 𝑎), Σ) 𝑑𝑦 ≥

𝑛∏
𝑖=1

min

𝑥∈𝑠

∫ 𝑡𝑖

𝑡𝑖

N(𝑦𝑖 | 𝑓 (𝑥, 𝑎)𝑖 , Σ𝑖𝑖) 𝑑𝑦𝑖 ,

(4)

which introduces conservatism by allowing each marginal

to be optimized independently.

• The abstraction process does not exploit any structural prop-

erty of the system to reduce the size of the resulting ambigu-

ity set Γ. For instance, if the noise is independent across the
various dimensions (as is the case for System (1)), one may

want to account for this information to reduce the size of

the resulting feasible set of distributions in the abstraction.

In the next Section, we will introduce a new subclass of robust

MDPs, called odIMDP, where the feasible set of probabilities has a

product form and requires only storing the marginal ambiguity sets,

i.e. the right-hand side of Eqn. (4) without the product operator.

We will show that by abstracting System (1) to an odIMDP one can

alleviate the issues identified above, thus obtaining state-of-the-art

performance.

4 Orthogonally Decoupled Interval Markov
Decision Processes

Merging ideas from IMDPs [20] and compositional analysis ofMDPs

[43], we propose a new subclass of robust MDPs, which we call

orthogonally decoupled Interval Markov Decision Processes (odIMDPs).
Intuitively, in an odIMDPs for each transition, the ambiguity set

of the transition probabilities is a product of marginal interval

ambiguity sets. In what follows, in this section, we first formally

introduce odIMDPs. Then, we show how the memory requirements

for this class of models are generally orders of magnitude lower

compared to those of IMDPs. Furthermore, we also prove that they

can produce tighter ambiguity sets compared to IMDPs. These

properties will be employed in Section 5 to efficiently abstract

System (1) into an odIMDPs and solve Problem 2.3.

Definition 4.1. An orthogonally decoupled Interval Markov De-

cision Process (odIMDP) with 𝑛 marginals, also called components,

is a tuple𝑀 = (𝑆,𝐴, Γ) where
• 𝑆 = 𝑆1 × · · · × 𝑆𝑛 is a finite set of joint states with 𝑆𝑖 being

the set of states in marginal 𝑖 ,

• 𝐴 is a finite set of actions assumed to be available in each state,

and

• Γ = {Γ𝑠,𝑎}𝑠∈𝑆,𝑎∈𝐴 are sets of feasible transition probability

distributions where Γ𝑠,𝑎 =
⊗𝑛

𝑖=1
Γ𝑖𝑠,𝑎 with Γ

𝑖
𝑠,𝑎 ∈ int amb(𝑆𝑖).

Similarly than to IMDPs [30], a path of an odIMDP is a sequence

of states and actions𝜔 = (𝑠0, 𝑎0), (𝑠1, 𝑎1), . . . , where (𝑠𝑘 , 𝑎𝑘) ∈ 𝑆×𝐴.
We denote by 𝜔 (𝑘) = 𝑠𝑘 the state of the path at time 𝑘 ∈ N0 and

by Ω the set of all paths. A strategy or policy for an odIMDP is a

function 𝜋 : 𝑆 × N0 → 𝐴 that assigns an action to a given state

of an odIMDP. An adversary is a function that assigns a feasible

distribution 𝛾 ∈ Γ to a given state [20]. Given a strategy and an

adversary, an odIMDP collapses to a finite Markov chain, with the

transition probability matrix specified by marginal distributions.

Analysis of space complexity. Before proceeding further, we now

discuss the memory requirements to store an odIMDP. To simplify

the presentation and analysis, we assume without loss of generality

that the number of states in each marginal is equal, that is, |𝑆𝑖 | =
|𝑆𝑖+1 | for all 𝑖 = 1, . . . , 𝑛 − 1. Hence, we have that the number of

states along each marginal is |𝑆𝑖 | = 𝑛
√︁
|𝑆 |. To store an odIMDP, we

need to store the bounds on the transition probability. Then, for

each source-action pair, we must store bounds for the ambiguity

set along each marginal. That is, the upper and lower bound for |𝑆𝑖 |
states for each marginal. In total, this requires storing 2|𝑆 | |𝐴|𝑛 𝑛

√︁
|𝑆 |

scalar values. This is a crucial difference compared to traditional

IMDP, where, as discussed in Section 3, for each state-action pair,

we need to store 2|𝑆 |2 |𝐴| scalar values. An example to clarify the

different memory requirements between odIMDP and IMDP is

reported in Fig. 1.

Scalable control synthesis for stochastic systems via structural IMDP abstractions HSCC ’25, May 06–09, 2025, Irvine, CA

γ2s,a

γ1s,a

States

Source

Probability

Figure 1: An example of an odIMDP where, given a source-
action pair (𝑠, 𝑎) (the green state), the ambiguity set for the
transition probability can be decomposed into the product
between two independent interval ambiguity sets, Γ1

𝑠,𝑎, Γ
2

𝑠,𝑎 .
In this example, it is only necessary to store 9 transitions
(per source-action pair) in contrast to 20 transitions for a
traditional IMDP.

4.1 Comparison of ambiguity sets
At first glance, the ambiguity set of an odIMDPs may appear equiva-

lent to that of an IMDP obtained by multiplying the interval bounds

of the interval ambiguity sets of each marginal for each source-

action pair, as, for instance, is done in Eqn. (3) using the approxi-

mation step in Eqn. (4). Remarkably, this is, however, a fallacy. In

fact, multiplying the interval bounds of the marginal ambiguity

sets introduces distributions that are not part of the product am-

biguity set, as they may not satisfy the additional constraints on

the marginals present in odIMDPs. To better understand why this

theoretical quirk occurs, consider the following example.

Example 4.2. Fig. 2 shows an odIMDP represented by an IMDP

for each marginal. The states are numbered to index into the joint

probability distribution as [0, 1]4
. Furthermore, on the right, an

interval ambiguity set is constructed from the odIMDP by multi-

plying the marginal bounds together corresponding to the joint

transition. If we consider a distribution [0.4, 0.3, 0.08, 0.22]⊤, we
see that it is clearly contained in the joint interval ambiguity set

on the right of Fig. 2. However, since the value 0.4 in the first entry

is equal to the upper bound for that entry in the ambiguity set,

it forces [0.5, ·] and [0.8, ·] in the distribution for the vertical and

horizontal marginals, respectively (because 0.4 = 0.5 · 0.8). For

the vertical marginal to sum to one, we must have [0.5, 0.5]. The
marginal decomposition of the last element 0.22 thus needs to be

0.5𝑝 = 0.22, i.e. 𝑝 = 0.22/0.5 = 0.44, which is not contained in the

horizontal marginal ambiguity set (upper bound 0.4). Hence, the

distribution contained in the joint interval ambiguity set cannot be

factored into two distributions from the marginal ambiguity sets.

The intuition provided in Example 4.2 is formalized in Theorem

4.3 below, where we show that the ambiguity set of an odIMDP is

contained in that of an IMDP obtained by multiplying the inter-

val bounds of the interval ambiguity sets of each marginal of the

odIMDPs. This result will allow us to build abstractions for System

(1) that not only require less memory to be stored compared to

those described in Section 3, but are also guaranteed to provide

tighter error bounds for the same partition size of the state space.

[0.4, 0.5]

[0.5, 0.6]

[0.6, 0.8]
[0.2, 0.4]

[0.24, 0.4]
[0.08, 0.2]

[0.3, 0.48]
[0.1, 0.24]

States Source

1

2

3

4

Figure 2: On the left, for the green state, we report two mar-
ginal interval ambiguity sets, i.e. an interval ambiguity set
for each marginal of a product ambiguity set, with outgo-
ing transitions to all other states. On the right, an IMDP is
constructed by multiplying the interval bounds of the mar-
ginal ambiguity sets. By this multiplication of bounds, joint
distributions are introduced that cannot be represented as a
product of distributions from the marginal ambiguity sets.

Theorem 4.3. For 𝑆 = 𝑆1 × · · · × 𝑆𝑛 , consider the interval am-
biguity sets Γ1 ∈ int amb(𝑆1), . . . , Γ𝑛 ∈ int amb(𝑆𝑛), where Γ𝑖 =

{𝛾 ∈ D(𝑆𝑖) : 𝑝𝑖 (𝑠𝑖) ≤ 𝛾 (𝑠𝑖) ≤ 𝑝
𝑖 (𝑠𝑖) for each 𝑠𝑖 ∈ 𝑆𝑖 } . Call

Γ =
⊗𝑛

𝑖=1
Γ𝑖 . Then, it holds that Γ ⊆ Γ̄, where

Γ̄ =

{
𝛾 ∈ D(𝑆) :

𝑛∏
𝑖=1

𝑝𝑖 (𝑠𝑖) ≤ 𝛾 (𝑠) ≤
𝑛∏
𝑖=1

𝑝
𝑖 (𝑠𝑖) for each 𝑠 ∈ 𝑆

}
.

Proof. It is sufficient to show that any𝛾 ∈ Γ satisfies the interval

bounds

∏𝑛
𝑖=1

𝑝𝑖 (𝑠𝑖) ≤ 𝛾 (𝑠) ≤ ∏𝑛
𝑖=1

𝑝
𝑖 (𝑠𝑖) for each 𝑠 ∈ 𝑆 and

that

∑
𝑠∈𝑆 𝛾 (𝑠) = 1. By multiplying the (nonnegative) inequalities

𝑝𝑖 (𝑠𝑖) ≤ 𝛾𝑖 (𝑠𝑖) ≤ 𝑝
𝑖 (𝑠𝑖), it holds that for each 𝑠 ∈ 𝑆

𝑛∏
𝑖=1

𝑝𝑖 (𝑠𝑖) ≤
𝑛∏
𝑖=1

𝛾𝑖 (𝑠𝑖) ≤
𝑛∏
𝑖=1

𝑝
𝑖 (𝑠𝑖) .

Furthermore, since it holds that for any 𝑖 = 1, . . . , 𝑛,
∑
𝑠𝑖 ∈𝑆𝑖 𝛾

𝑖 (𝑠𝑖) =
1, by marginalization, we also have

∑
𝑠∈𝑆 𝛾 (𝑠) = 1. Therefore, we

can conclude that the product distribution 𝛾 (𝑠) = ∏𝑛
𝑖=1

𝛾𝑖 (𝑠𝑖) for
any 𝑠 ∈ 𝑆 is contained in Γ̄. □

5 Abstraction
In order to describe the abstraction process of System 1 into an

odIMDP, we first start from the case where the transition kernel is

Gaussian and then move to the more general case. In what follows,

we assume that the region of interest 𝑋 ⊂ R𝑛 is hyperrectangular
3
,

that is, 𝑋 = [𝑥
1
, 𝑥1] × · · · × [𝑥𝑛, 𝑥𝑛].

5.1 Gaussian case
We start by considering the case

𝑇 (𝑋 | 𝑥,𝑢) =
∫
𝑋

N(𝑥 ′ | 𝜇 (𝑥,𝑢), Σ(𝑥,𝑢))𝑑𝑥 ′ . (5)

Remark 5.1. Note that the transition kernel in Eqn. (5) arises for
many applications of practical interest. In fact, it arises any time 𝑓
in System (1) is linear in 𝑣𝑘 (and possibly non-linear in 𝑥𝑘). This is
the case for linear and nonlinear systems with additive i.i.d. Gaussian
noise [14], including dynamical neural network systems [3] and a
3
Note that if the region of interest is not hyperrectangular, being ut bounded, one can

always over-approximate it with a hyperrectangular region.

HSCC ’25, May 06–09, 2025, Irvine, CA Frederik Baymler Mathiesen, Sofie Haesaert, and Luca Laurenti

large class of systems learned through Gaussian Process regression
[55].

To abstract this system to an odIMDP, we start by partitioning

𝑋 into a grid of 𝑆 = 𝑆1 × · · · × 𝑆𝑛𝑥 and associate with each (hy-

perrectangular) region 𝑠 = [𝑠
1
, 𝑠1] × · · · × [𝑠𝑛, 𝑠𝑛] an abstract state

in 𝑆 . Similarly to Section 3, we abuse the notation and denote by

𝑠 both the abstract state in 𝑆 and the corresponding region in 𝑋 .

The decomposed abstract state is denoted by 𝑠 = (𝑠1, . . . , 𝑠𝑛) ∈ 𝑆 .
In addition, we add one sink state 𝑠𝑖 for each axis 𝑖 to represent

exiting the set [𝑥𝑖 , 𝑥𝑖] and denote 𝑆𝑖 = {𝑠𝑖 } ∪ 𝑆𝑖 . Finally, we assign
an action 𝑎 ∈ 𝐴 to each 𝑢 ∈ 𝑈 .

To define the marginal interval ambiguity sets Γ𝑖𝑠,𝑎 , we first need
to introduce some notation. In particular, for each (𝑠, 𝑎) we define
intervals [𝜇𝑖

𝑠,𝑎
, 𝜇𝑖𝑠,𝑎] and [Σ𝑖𝑠,𝑎, Σ

𝑖
𝑠,𝑎] such that for all 𝑥 ∈ 𝑠:

𝜇𝑖
𝑠,𝑎

≤ 𝜇 (𝑥, 𝑎)𝑖 ≤ 𝜇𝑖𝑠,𝑎 and Σ𝑖𝑠,𝑎 ≤ Σ(𝑥, 𝑎)𝑖𝑖 ≤ Σ
𝑖
𝑠,𝑎 . (6)

That is, [𝜇𝑖
𝑠,𝑎

, 𝜇𝑖𝑠,𝑎] and [Σ𝑖𝑠,𝑎, Σ
𝑖
𝑠,𝑎] represent interval bounds for

the 𝑖-th marginal of System (1) starting from region 𝑠 . Then, com-

putation of Γ𝑖𝑠,𝑎 reduces to computing for each 𝑡𝑖 ∈ 𝑆𝑖 the following
transition probabilities

𝑝𝑖
𝑠,𝑎

(𝑡𝑖) = min

𝜇𝑖 ∈[𝜇𝑖
𝑠,𝑎
,𝜇𝑖𝑠,𝑎], Σ𝑖 ∈{Σ𝑖𝑠,𝑎,Σ

𝑖

𝑠,𝑎 }

∫ 𝑡𝑖

𝑡𝑖

N(𝑦𝑖 | 𝜇𝑖 , Σ𝑖)𝑑𝑦𝑖 , (7)

𝑝
𝑖
𝑠,𝑎 (𝑡𝑖) = max

𝜇𝑖 ∈[𝜇𝑖
𝑠,𝑎
,𝜇𝑖𝑠,𝑎], Σ𝑖 ∈{Σ𝑖𝑠,𝑎,Σ

𝑖

𝑠,𝑎 }

∫ 𝑡𝑖

𝑡𝑖

N(𝑦𝑖 | 𝜇𝑖 , Σ𝑖)𝑑𝑦𝑖 . (8)

Remark 5.2. Note that analytical solutions for Eqn. (7) and (8)

exist [3, 14]. Furthermore, we stress that the computation of the bounds
on mean and variance in Eqn. (6) is a well-studied problem for which
there exist tools based on convex optimization [3, 14, 35, 53] that can
also be applied in the context of Gaussian process regression [44].

For the transition to the sink state, we observe that this is equiv-

alent to the complement of transitioning to inside 𝑋

𝑝𝑖
𝑠,𝑎

(𝑡𝑖) = 1 − max

𝜇𝑖 ∈[𝜇𝑖
𝑠,𝑎
,𝜇𝑖𝑠,𝑎]

Σ𝑖 ∈{Σ𝑖𝑠,𝑎,Σ
𝑖

𝑠,𝑎 }

∫ 𝑥𝑖

𝑥𝑖

N(𝑦𝑖 | 𝜇𝑖 , Σ𝑖)𝑑𝑦𝑖 , (9)

𝑝
𝑖
𝑠,𝑎 (𝑡𝑖) = 1 − min

𝜇𝑖 ∈[𝜇𝑖
𝑠,𝑎
,𝜇𝑖𝑠,𝑎]

Σ𝑖 ∈{Σ𝑖𝑠,𝑎,Σ
𝑖

𝑠,𝑎 }

∫ 𝑥𝑖

𝑥𝑖

N(𝑦𝑖 | 𝜇𝑖 , Σ𝑖)𝑑𝑦𝑖 . (10)

Finally, the sink states are absorbing, that is, for all states 𝑠 =

(𝑠1, . . . , 𝑠𝑖−1, 𝑠𝑖 , 𝑠𝑖+1, . . . , 𝑠𝑛), we define 𝑝𝑖
𝑠,𝑎

(𝑠𝑖) = 𝑝𝑖
𝑠,𝑎

(𝑠𝑖) = 1 and

𝑝𝑖
𝑠,𝑎

(𝑡𝑖) = 𝑝𝑖
𝑠,𝑎

(𝑡𝑖) = 0 for any 𝑡𝑖 ∈ 𝑆𝑖 . From the computation of

all interval bounds, we can define Γ as the product of marginal

interval ambiguity sets Γ𝑖𝑠,𝑎 for each source-action pair (𝑠, 𝑎). Then
the odIMDP is𝑀 = (𝑆,𝐴, Γ).

5.2 Mixture Models
Eqn. (2) is a generalization of the Gaussian case with 𝐾 > 1. How-

ever, a key additional technical difficulty is that even if the covari-

ance matrix of each Gaussian in the mixture is diagonal, then the

covariance matrix for the mixture distribution is not necessarily di-

agonal. Specifically, the joint covariance of the mixture distribution

in Eqn. (2), omitting the dependence on (𝑥,𝑢), is

Σ =

𝐾∑︁
𝑟=1

𝛼𝑟Σ
𝑟 +

𝐾∑︁
𝑟=1

𝛼𝑟 (𝜇𝑟 − 𝜇) (𝜇𝑟 − 𝜇)⊤ (11)

Due to the second term of Eqn. (11), the joint covariance Σ is gen-

erally not diagonal. Consequently, we cannot directly abstract the

model to odIMDPs as the resulting distribution does not have the

required product form. To solve this problem, in what follows, we

build an odIMDPs for each Gaussian in the mixture following the

approach in Section 5.1 and then abstract System (1) into a mixture

of odIMDPs.

Definition 5.3. A mixture of 𝐾 odIMDPs with 𝑛 marginals is a

tuple𝑀 = (𝑆,𝐴, Γ, Γ𝛼) where
• 𝑆 = 𝑆1 × · · · × 𝑆𝑛 is a finite set of joint states with 𝑆𝑖 being

the set of states in marginal 𝑖 ,

• 𝐴 is a finite set of actions,

• Γ = {Γ𝑟,𝑠,𝑎}𝑟 ∈𝐾,𝑠∈𝑆,𝑎∈𝐴 are a set of𝐾 product ambiguity sets,

where Γ𝑟,𝑠,𝑎 =
⊗𝑛

𝑖=1
Γ𝑖𝑟,𝑠,𝑎 with Γ𝑖𝑟,𝑠,𝑎 ∈ int amb(𝑆𝑖), and

• Γ𝛼 = {Γ𝛼𝑠,𝑎}𝑠∈𝑆,𝑎∈𝐴 are sets of feasible weightings distribu-

tions, where Γ𝛼𝑠,𝑎 ∈ int amb(𝐾). A feasible weighting distri-

bution for a source-action pair (𝑠, 𝑎) is denoted by 𝛼𝑠,𝑎 ∈ Γ𝛼𝑠,𝑎 .

𝑀 = (𝑆,𝐴, Γ, Γ𝛼) can be interpreted as a set of 𝐾 odIMDPs shar-

ing the same (decomposed) states 𝑆 and the same set of actions 𝐴,

but that can have different individual ambiguity sets Γ𝑟,𝑠,𝑎 for each

source-action pair (𝑠, 𝑎). 𝛼𝑠,𝑎 ∈ Γ𝛼𝑠,𝑎 defines the probability of se-

lecting a component from the mixture. Thus, a feasible distribution

for𝑀 is any distribution 𝛾𝑠,𝑎 =
∑
𝑟 ∈𝐾 𝛼𝑠,𝑎 (𝑟)𝛾𝑟𝑠,𝑎 , where 𝛼𝑠,𝑎 ∈ Γ𝛼𝑠,𝑎

and 𝛾𝑟𝑠,𝑎 ∈ Γ𝑟,𝑠,𝑎 for each 𝑟 ∈ 𝐾 .
The process of abstracting System (1) to a mixture of odIMDPs,

is as follows:

(1) 𝑆 and𝐴 are computed similarly to Section 5.1 and are shared

among all Gaussians in the mixture,

(2) for the 𝑟 -th Gaussian distribution in the mixture follow the

approach in Section 5.1 to compute Γ𝑟,𝑠,𝑎 for any 𝑠 ∈ 𝑆 and
𝑎 ∈ 𝐴 , and

(3) for each source-action pair (𝑠, 𝑎), the interval ambiguity set

Γ𝛼𝑠,𝑎 ∈ int amb(𝐾) is constructed such that for all 𝑥 ∈ 𝑠 there
exists some 𝛼𝑠,𝑎 ∈ Γ𝛼𝑠,𝑎 with

𝛼𝑟 (𝑥, 𝑎) = 𝛼𝑠,𝑎 (𝑟), for all 𝑟 ∈ 𝐾.

Similar to the marginal interval ambiguity sets case, we do

that by constructing Γ𝛼𝑠,𝑎 such that for each 𝑟 ∈ 𝐾 for all

𝛼𝑠,𝑎 ∈ Γ𝛼𝑠,𝑎 it holds that

min

𝑥∈𝑠
𝛼𝑟 (𝑥, 𝑎) ≤ 𝛼𝑠,𝑎 (𝑟) ≤ max

𝑥∈𝑠
𝛼𝑟 (𝑥, 𝑎) .

6 Synthesis of Optimal Policies for odIMDPs
Once an abstraction of System (1) into an odIMDPs or a mixture

of odIMDPs is built, what is left to do is to synthesize an optimal

strategy for these models, which can then be mapped back on the

original system. In what follows, we consider the odIMDPs case;

the mixture case follows similarly as we will illustrate in Eqn. (16).

For an odIMDPs 𝑀 = (𝑆,𝐴, Γ) synthesizing an optimal strategy

Scalable control synthesis for stochastic systems via structural IMDP abstractions HSCC ’25, May 06–09, 2025, Irvine, CA

W k,1
s,a

W k,2
s,a (t

1
1)

W k,2
s,a (t

1
2)

W k,2
s,a (t

1
3)

W k,3
s,a (t

1
1, t

2
1)

W k,3
s,a (t

1
1, t

2
2)

W k,3
s,a (t

1
1, t

2
3)

W k,3
s,a (t

1
2, t

2
1)

W k,3
s,a (t

1
2, t

2
2)

W k,3
s,a (t

1
2, t

2
3)

W k,3
s,a (t

1
3, t

2
1)

W k,3
s,a (t

1
3, t

2
2)

W k,3
s,a (t

1
3, t

2
3)

Vk−1(t
1
1, t

2
1)

Vk−1(t
1
1, t

2
2)

Vk−1(t
1
1, t

2
3)

Vk−1(t
1
2, t

2
1)

Vk−1(t
1
2, t

2
2)

Vk−1(t
1
2, t

2
3)

Vk−1(t
1
3, t

2
1)

Vk−1(t
1
3, t

2
2)

Vk−1(t
1
3, t

2
3)

Assignγ2
s,a ∈ Γ2

s,a

γ2
s,a ∈ Γ2

s,a

γ2
s,a ∈ Γ2

s,a

γ1
s,a ∈ Γ1

s,a

Figure 3: An example of the recursive structure for the pro-
posed algorithm for value iteration over odIMDPs. The ex-
ample is for an odIMDP with two marginals of three states
each. Notice going right-to-left that we optimize over 𝛾2

𝑠,𝑎

three times, as for each subproblem, we assume 𝑡1 is given.

for 𝑃ra (𝑅,𝑂, 𝑥0, 𝜋, 𝐻), reduces to solve the following optimization

problems:

opt
𝜋

𝜋
opt

𝛾

𝛾
P𝜋,𝛾 [𝜔 ∈ Ω | ∃𝑘 ∈ {0, . . . , 𝐾}, 𝜔 (𝑘) ∈ 𝑅,

∀𝑘′ ∈ {0, . . . , 𝑘}, 𝜔 (𝑘′) ∉ 𝑂 ∧ 𝜔 (𝑘′) ∈ 𝑆] .
(12)

where opt
𝜋 , opt

𝛾 ∈ {min,max} and P𝜋,𝛾 is the probability of the

Markov chain induced by strategy 𝜋 and distribution𝛾 . In particular,

similar to the IMDPs case [20, 30], Eqn. (12) can be computed by

solving the following robust value iteration:

𝑉0 (𝑠) = 1𝑅 (𝑠)

𝑉𝑘 (𝑠) = opt
𝜋

𝑎∈𝐴
𝑔

(
𝑠, opt

𝛾

𝛾𝑠,𝑎∈Γ𝑠,𝑎

∑︁
𝑡 ∈𝑆

𝑉𝑘−1
(𝑡)𝛾𝑠,𝑎 (𝑡)

)
= opt

𝜋

𝑎∈𝐴
𝑔

(
𝑠, opt

𝛾

𝛾𝑖𝑠,𝑎∈Γ𝑖𝑠,𝑎, 𝑖=1,...,𝑛

∑︁
𝑡 ∈𝑆

𝑉𝑘−1
(𝑡)

𝑛∏
𝑖=1

𝛾𝑖𝑠,𝑎 (𝑡𝑖)
)
,

(13)

where 𝑔(𝑠, 𝑣) = 1𝑅 (𝑠) + 1𝑆\𝑇 (𝑠)𝑣 with𝑇 = 𝑅 ∪𝑂 and the last equal-

ity is due to the fact that for odIMDPs Γ𝑠,𝑎 =
⊗𝑛

𝑖=1
Γ𝑖𝑠,𝑎 . That is, the

ambiguity set is the product of the marginal ambiguity sets. If a

strategy is given, we denote the value function by 𝑉 𝜋
𝑘
(𝑠). Further-

more, if opt
𝛾 = min (resp. opt

𝛾 = max) we use the notation 𝑉 𝜋
𝑘
(𝑠)

(resp. 𝑉 𝜋
𝑘
(𝑠)). As a consequence of the product structure, solving

Eqn. (13) reduces to iteratively solving the following optimization

problem:

opt
𝛾

𝛾𝑖𝑠,𝑎∈Γ𝑖𝑠,𝑎, 𝑖=1,...,𝑛

∑︁
𝑡 ∈𝑆

𝑉𝑘−1
(𝑡)

𝑛∏
𝑖=1

𝛾𝑖𝑠,𝑎 (𝑡𝑖) (14)

Because of its multilinear structure, Eqn. (14) cannot be solved di-

rectly using standard linear programming approaches for IMDPs,

e.g. O-maximization [20]. To solve this issue, we develop a divide-

and-conquer approach in which we recursively compute a bound

on Eqn. (14), i.e. a lower bound for opt
𝛾 = min and an upper bound

for opt
𝛾 = max, by decomposing the problem into a set of lin-

ear programming. Specifically, we compute an over (or under)-

approximation of Eqn. (14),𝑊 𝑘
𝑠,𝑎 defined recursively as follows:

𝑊
𝑘,𝑛+1

𝑠,𝑎 (𝑡1, . . . , 𝑡𝑛) = 𝑉𝑘−1
(𝑡)

𝑊
𝑘,𝑖
𝑠,𝑎 (𝑡1, . . . , 𝑡𝑖−1) = opt

𝛾

𝛾𝑖𝑠,𝑎∈Γ𝑖𝑠,𝑎

∑︁
𝑡𝑖 ∈𝑆𝑖

𝑊
𝑘,𝑖+1

𝑠,𝑎 (𝑡1, . . . , 𝑡𝑖)𝛾𝑖𝑠,𝑎 (𝑡𝑖),

for 𝑖 = 2, . . . , 𝑛

𝑊 𝑘
𝑠,𝑎 :=𝑊

𝑘,1
𝑠,𝑎 = opt

𝛾

𝛾1

𝑠,𝑎∈Γ1

𝑠,𝑎

∑︁
𝑡1∈𝑆1

𝑊
𝑘,2
𝑠,𝑎 (𝑡1)𝛾1

𝑠,𝑎 (𝑡1) .

(15)

Fig. 3 gives an example of Eqn. (15) for a 2-marginals odIMDP with

three states in eachmarginal. The intuition is that we derive a bound

for Eqn. (14) by solving a set of simpler optimization problems,

one marginal at a time. In particular,𝑊
𝑘,𝑖
𝑠,𝑎 (𝑡1, . . . , 𝑡𝑖−1) optimizes

the expectation of𝑊
𝑘,𝑖+1

𝑠,𝑎 , which is itself a bound of 𝑉𝑘−1
, for the

marginal 𝑖 , while keeping the values of the other marginals fixed to

𝑡1, . . . , 𝑡𝑖−1
. Note that, as illustrated in Fig. 3, the resulting algorithm

is exponential in 𝑛. However, as each of the optimization problems

is a particularly simple linear problem that can be solved efficiently

using, e.g., the O-maximization algorithm [20, 30] and as we will

show in Section 6.1, the resulting computational time complexity

will still be lower compared to the approach described in Section 3

based on IMDPs. First, in the rest of this Section, in Theorem 6.1

and Proposition 6.2 we show, respectively, that the approach in Eqn.

(15) is sound and guaranteed to improve the tightness of the results

compared to the approach described in Section 3. We prove the

statements for the case opt
𝛾 = min. The max case follows similarly.

Theorem 6.1. Assume opt
𝛾 = min. Then for any source-action

pair (𝑠, 𝑎) ∈ 𝑆 ×𝐴, it holds that

𝑊
𝑘,1
𝑠,𝑎 ≤ min

𝛾𝑖𝑠,𝑎∈Γ𝑖𝑠,𝑎,𝑖=1,...,𝑛

∑︁
𝑡 ∈𝑆

𝑉𝑘−1
(𝑡)

𝑛∏
𝑖=1

𝛾𝑖𝑠,𝑎 (𝑡𝑖) .

Proof.

𝑊
𝑘,1
𝑠,𝑎 = min

𝛾1

𝑠,𝑎∈Γ1

𝑠,𝑎

∑︁
𝑡1∈𝑆1

𝑊
𝑘,2
𝑠,𝑎 (𝑡1)𝛾1

𝑠,𝑎 (𝑡1) =

min

𝛾1

𝑠,𝑎∈Γ1

𝑠,𝑎

∑︁
𝑡1∈𝑆1

min

𝛾2

𝑠,𝑎∈Γ2

𝑠,𝑎

∑︁
𝑡2∈𝑆2

𝑊
𝑘,3
𝑠,𝑎 (𝑡1, 𝑡2)𝛾1

𝑠,𝑎 (𝑡1)𝛾2

𝑠,𝑎 (𝑡2) ≤

min

𝛾1

𝑠,𝑎∈Γ1

𝑠,𝑎

min

𝛾2

𝑠,𝑎∈Γ2

𝑠,𝑎

∑︁
𝑡1∈𝑆1

∑︁
𝑡2∈𝑆2

𝑊
𝑘,3
𝑠,𝑎 (𝑡1, 𝑡2)𝛾1

𝑠,𝑎 (𝑡1)𝛾2

𝑠,𝑎 (𝑡2) ≤

min

𝛾𝑖𝑠,𝑎∈Γ𝑖𝑠,𝑎,𝑖=1,...,𝑛

∑︁
𝑡1∈𝑆1

...
∑︁
𝑡𝑛∈𝑆𝑛

𝑊
𝑘,𝑛+1

𝑠,𝑎 (𝑡1, ..., 𝑡𝑛)
𝑛∏
𝑖=1

𝛾𝑖𝑠,𝑎 (𝑡𝑖) =

min

𝛾𝑖𝑠,𝑎∈Γ𝑖𝑠,𝑎,𝑖=1,...,𝑛

∑︁
𝑡 ∈𝑆

𝑉𝑘−1
(𝑡)

𝑛∏
𝑖=1

𝛾𝑖𝑠,𝑎 (𝑡𝑖) .

□

Note that an alternative option to the divide-and-conquer algo-

rithm considered here would be to simply multiply the interval

bounds of the marginal ambiguity sets for each source-action pair,

obtaining an ambiguity set identical to the one in Eqn. (3). As al-

ready mentioned, we do not do that because it would increase the

conservativism of the resulting approach. This is proved in the fol-

lowing proposition that guarantees that our approach in Eqn. (15)

is guaranteed not to be more conservative than the one described

HSCC ’25, May 06–09, 2025, Irvine, CA Frederik Baymler Mathiesen, Sofie Haesaert, and Luca Laurenti

in Section 3. In practice, in the experimental section, we show how

our approach consistently returns substantially tighter bounds.

Proposition 6.2. For an odIMDPs𝑀 = (𝑆,𝐴, Γ) consider the func-
tion 𝑉𝑘−1

: 𝑆 → R and define the interval ambiguity set associated
to𝑀 as

Γ̄𝑠,𝑎 =

{
𝛾 ∈ D(𝑆) : 𝑝

𝑠,𝑎
(𝑡) ≤ 𝛾𝑠,𝑎 (𝑡) ≤ 𝑝𝑠,𝑎 (𝑡) for each 𝑡 ∈ 𝑆

}
.

where 𝑝
𝑠,𝑎

(𝑡) = ∏𝑛
𝑖=1

𝑝𝑖
𝑠,𝑎

(𝑡𝑖) and 𝑝𝑠,𝑎 (𝑡) =
∏𝑛
𝑖=1

𝑝
𝑖
𝑠,𝑎 (𝑡𝑖) Then, for

any (𝑠, 𝑎) ∈ 𝑆 ×𝐴 it holds that

𝑊 𝑘
𝑠,𝑎 ≥ min

𝛾𝑠,𝑎∈ Γ̄𝑠,𝑎

∑︁
𝑡 ∈𝑆

𝑉𝑘−1
(𝑡)𝛾𝑠,𝑎 (𝑡𝑖).

Proof. To conclude the proof, it suffices to show that for any

source-action pair (𝑠, 𝑎) ∈ 𝑆 × 𝐴, the joint distribution 𝛾𝑠,𝑎 (𝑡) ob-
tained by optimizing Eqn. (15) is contained Γ̄𝑠,𝑎 . By definition of

sets Γ𝑖𝑠,𝑎 in Eqn. (15) it holds that the 𝑖-th marginal of 𝛾𝑠,𝑎 (𝑡) must

be contained within [𝑝𝑖
𝑠,𝑎

(𝑡𝑖), 𝑝𝑖𝑠,𝑎 (𝑡𝑖)]. This implies that

𝑛∏
𝑖=1

𝑝𝑖
𝑠,𝑎

(𝑡𝑖) ≤ 𝛾𝑠,𝑎 (𝑡) ≤
𝑛∏
𝑖=1

𝑝
𝑖
𝑠,𝑎 (𝑡𝑖) .

□

The proposed divide-and-conquer algorithm extends readily to

mixtures of odIMDPs by executing the algorithm in Eqn. (15) for

each element of the mixture and optimizing for the worst or best

mixture distribution. That is, by solving:

𝑊 𝑘
𝑠,𝑎 := opt

𝛾

𝛼∈Γ𝛼𝑠,𝑎

∑︁
𝑟 ∈𝐾

𝛼 (𝑟)𝑊 𝑘,1
𝑟,𝑠,𝑎, (16)

where 𝑊
𝑘,1
𝑟,𝑠,𝑎 is computed as in Eqn. (15). As Γ𝛼𝑠,𝑎 is an interval

ambiguity set, the above is a linear program that can be efficiently

solved using O-maximization [20].

6.1 Analysis of time complexity
Similarly to the analysis of the space complexity (see Subsection

4), we assume that the number of states in each marginal is equal,

i.e. |𝑆𝑖 | = 𝑚
√︁
|𝑆 |. Since value iteration is performed independently

for each source-action pair, to compute the time complexity of

the algorithm, we can analyze each pair separately. To do this, we

start by observing the number of (branching) internal nodes in the

recursion tree required to solve Eqn. (15) (see Fig. 3) is a geometric

series with base |𝑆𝑖 | up to exponent 𝑛 − 1. The complexity of the

geometric series is 𝑂

(
(|𝑆𝑖 |)𝑛−1

)
[17]. At each internal node of the

tree, the O-maximization algorithm [30] is executed once on a set of

size |𝑆𝑖 |. O-maximization is limited by the required sorting, which

is of complexity 𝑂 (|𝑆𝑖 | lg |𝑆𝑖 |). Now, since |𝑆𝑖 | = 𝑛
√︁
|𝑆 | = |𝑆 |

1

𝑛 , the

complexity for each source-action pair is 𝑂 (|𝑆 | lg |𝑆𝑖 |), and the full

complexity is thus 𝑂 (|𝑆 |2 |𝐴| lg 𝑛
√︁
|𝑆 |). In contrast, value iteration

for a regular IMDP [20] has a time complexity of 𝑂 (|𝑆 |2 |𝐴| lg |𝑆 |).

6.2 Correctness
In this subsection, we map the strategy 𝜋 to a switching strategy

𝜋𝑥 : R𝑛 × N0 → 𝑈 for System (1), ensuring the correctness of our

aproach. To this end, define the function 𝐽 : R𝑛 → 𝑆 that maps

each concrete state to an abstract state and its corresponding region.

That is, 𝐽 (𝑥) = 𝑠 if and only if 𝑥 ∈ 𝑠 . Then the switching strategy

for System (1) is defined as 𝜋𝑥 (𝑥, 𝑘) = 𝜋 (𝐽 (𝑥), 𝑘) for all 𝑥 ∈ R𝑛 .
The following theorem ensures the correctness of 𝜋𝑥 .

Theorem 6.3. Let𝑀 be an odIMDP abstraction of System (1). Then,
for any strategy 𝜋 , it holds that for any 𝑥𝑜 ∈ 𝑋

𝑃ra (𝑅,𝑂, 𝑥0, 𝜋𝑥 , 𝐻) ∈ [𝑉 𝜋
𝐻
(𝐽 (𝑥0)),𝑉 𝜋𝐻 (𝐽 (𝑥0))],

where 𝑉 𝜋
𝐻
(𝑠),𝑉 𝜋

𝐻
(𝑠) are the lower and upper bounds on the satisfac-

tion probability for𝑀 , as introduced in Section 6.

The proof follows similarly to [31, Theorem 4] by induction on

Eqn. (13) and relying on Theorem 6.1 to guarantee the soundness

of our approach at any time step.

7 Experiments
To show the efficacy of our approach, we conducted a wide range of

empirical studies with benchmarks ranging from linear 2D systems

to nonlinear systems, linear 7D systems, Neural Network Dynamic

Models (NNDMs), and Gaussian mixture models. A summary of

the benchmarks can be found in Table 1 and extended descriptions

are provided in Appendix A. All benchmarks are verified for a

time horizon 𝐻 = 10 unless otherwise specified. We compare our

results against state-of-the-art tools for abstractions to IMDPs and

MDPs. In particular, for IMDPs, we compare with the method in

[3, Theorem 1], as well as IMPaCT [56], which uses nonlinear

optimization andMonte Carlo integration to compute the transition

probabilities needed to compute the abstraction as illustrated in

Section 3. Furthermore, we also compare with SySCoRe [51], which

is based on model reduction and abstractions to MDPs. To run value

iteration for both the proposed method and the method of [3], we

use IntervalMDP.jl [39], which is our package for parallelized

value iteration over IMDPs and odIMDPs written in Julia [8]. The

experiments are all run on the TU Delft supercomputer, DelftBlue

[18], on one memory partition node with an Intel Xeon E5-6248R

CPU (12 cores allocated) and 200 GBmemory. We stress that despite

recent advances in performing value iteration on GPUs [39, 56],

the experiments are all conducted on CPUs.

7.1 Comparison with IMDP-based approaches
To compare abstraction approaches based on odIMDPs and IMDPs,

for each method, we report abstraction and certification time and

memory usage. Furthermore, to quantify the conservatism of the

results, we consider the following metrics: (i) the mean lower

bound mean({𝑉 𝜋
𝐻
(𝑠) : 𝑠 ∈ 𝑆 \ 𝑇 }) and (ii) the mean error, 𝜀 =

mean({𝑉 𝜋
𝐻
(𝑠) −𝑉 𝜋

𝐻
(𝑠) : 𝑠 ∈ 𝑆 \𝑇 }) where 𝑇 is the set of terminal

states and 𝜋 is the optimal strategy for Eqn. (13) with opt
𝜋 = max,

opt
𝛾 = min. 𝑉 𝜋

𝐻
and 𝑉 𝜋

𝐻
are the lower and upper bounds on the

satisfaction probability returned by our approach. That is the so-

lution of Eqn. (12) using the approach in Eqn. (14). Furthermore,

we report the (aggregated) difference in 𝑉 between the methods

as agg({𝑉 odIMDP

𝐻
(𝑠) − 𝑉 other

𝐻
(𝑠) : 𝑠 ∈ 𝑆 \ 𝑇 }) where the aggrega-

tion functions are agg ∈ {min,max,mean} and the methods are

other ∈ {IMDP, IMPaCT} (IMDP refers to the method in [3, Theo-

rem 1]). We consider the same discretization size in the abstraction

process for all methods, as reported in Table 1.

Scalable control synthesis for stochastic systems via structural IMDP abstractions HSCC ’25, May 06–09, 2025, Irvine, CA

Table 1: A summary of the benchmarks and their characteristics. Note that the number of states for the different experiments
is the specified amount unless otherwise stated.

Name Dimension Dynamics type Property # inputs # states

Car parking [51] 2 Additive linear Reach-avoid 9 1600

Robot reachability [56] 2 Additive linear (non-linear control) Reachability 121 400

Robot reach-avoid [56] 2 Additive linear (non-linear control) Reach-avoid 441 1600

Building automation system [56] 4 Additive affine Safety 4 1225

Van der Pol [51] 2 Additive polynomial Reachability 11 2500

NNDM Cartpole 4 Additive Neural Network Dynamic Model (NNDM) Safety 2 192000

6D linear model 6 Additive linear Safety 0 262144

7D linear model 7 Additive linear Safety 0 2097152

Dubin’s car GP [46] 3 Gaussian process with deep kernel learning Reach-avoid 7 25600

Stochastic switched linear 2 Gaussian mixture, each linear Reach-avoid 0 1600

The results of the comparison with IMDP-based approaches can

be found in Table 2 and Table 3 for computation performance and

satisfaction probability, respectively. Comparing the computation

time of [3, Theorem 1] and IMPaCT [56] with that of our method

based on odIMDPs, the abstraction time of odIMDPs is at least 5x

faster, up to 80x faster, for 2D benchmarks, and at least two orders

of magnitude faster for >3D benchmarks. The certification time

is comparable to or faster than both [3, Theorem 1] and IMPaCT.

As expected, the memory requirements are considerably lower for

odIMDPs: Compared to IMPaCT, odIMDPs use at least an order of

magnitude less memory. Most remarkably, for the 6D and 7D linear

models, odIMDPs uses 4682x and 30476x less memory, respectively,

compared to IMPaCT. If we compare the satisfaction probability

results in Table 3, the proposed method is at least as good as the

method [3, Theorem 1] for all states in all examples. This ranges

from almost the same satisfaction probability for the 2D robot with

a reach-avoid specification to 17.33 percentage points better on

average for the 4D building automation system. A similar analy-

sis holds for IMPaCT, with the caveat that IMPACT uses global

optimization to compute Eqn. (3), thus its results are generally

tighter compared to those of [3, Theorem 1], at the cost of possibly

introducing an error for nonconvex transition kernels.

7.2 Comparison with SySCoRe (MDP-based
approach)

We now also compare with SySCoRe [51], which represents a state-

of-the-art tool for control and verification of stochastic systems

based on abstractions toMDPs. Note that, as SySCoRe only supports

gridding of 2D systems, we cannot compare on systems of higher

dimension. In particular, in Fig. 4, we consider the robot reach-

avoid benchmark introduced in Table 1, and for various sizes of

the abstraction, we report the error 𝜀, as introduced in the previous

subsection. From the figure, we have three key observations:

• SySCoRe requires a relatively large number of regions in the

partition before its mean error decreases with larger time

horizons.

• As expected, odIMDPs tends to obtain substantially tighter

bounds for the same abstration size. For example, the mean

error at time 100 of SySCoRe with an MDP of size 90𝑘 is

larger than that of our approach with an odIMDPs of 2.5𝑘

states.

Time horizon

M
ea

n
er

ro
r (

lo
g

sc
al

e)

0.001

0.005

0.010

0.050

0.100

0.500

0 25 50 75 100

SySCoRe: |S| = 2.5k

SySCoRe: |S| = 10k

SySCoRe: |S| = 22.5k

SySCoRe: |S| = 90k

SySCoRe: |S| = 360k

odIMDP: |S| = 2.5k

odIMDP: |S| = 10k

odIMDP: |S| = 22.5k

odIMDP: |S| = 90k

odIMDP: |S| = 360k

Figure 4: Comparing 𝜀 for a varying number of regions on the
abstraction (assuming a uniform partition of the state space)
and time horizons for both SySCoRe [51] and odIMDPs.

• The mean error for odIMDPs first increases with time hori-

zons to a level slightly above SySCoRe with the same number

of regions and then decreases for longer horizons.

We should, however, stress that, in terms of memory requirements,

SySCoRe requires less memory compared to our approach for the

same partition size. The memory usage compared to the mean error

at convergence for both SySCoRe and odIMDPs is reported in Table

4. Nevertheless, especially for longer time horizon, because of the

fewer regions per dimension required by our approach to achieve a

similar level of error, we expect our approach based on odIMDPs

to be substantially more scalable for higher dimensions. In fact,

this has already been observed in [14] for IMDP-based approaches

compared to MDP-based approaches and, as illustrated in Table

2, our approach substantially outperforms that of [14] in terms of

scalability.

8 Conclusion
We presented a novel approach for control synthesis of non-linear

stochastic systems against probabilistic reach-avoid specifications.

Our approach is based on abstractions to orthogonally decoupled

Interval Markov Decision Process (odIMDP), which is a new class

of robust Markov models with uncertain transition probabilities

HSCC ’25, May 06–09, 2025, Irvine, CA Frederik Baymler Mathiesen, Sofie Haesaert, and Luca Laurenti

Table 2: Computation time and memory requirements for IMDP-based approaches across different benchmarks. Time is
measured in seconds, and memory is measured in MB. OOM denotes out of memory. To compare the memory requirements for
the benchmarks with OOM, we have calculated the amount of memory required to store the transition interval bounds (as a
dense matrix) using the formula for IMDPs in Subsection 4.

Our method Adams et al. [3] IMPaCT [56]

Benchmark Abs. time Cert. time Mem. Abs. time Cert. time Mem. Abs. time Cert. time Mem.

Car parking 0.150 0.146 19.2 13.497 0.255 138.1 19.570 0.846 304.9

Robot reachability 0.665 0.168 21.6 12.659 0.129 88.0 20.611 0.765 306.7

Robot reach-avoid 14.259 7.641 547.2 1136.720 6.739 4143.8 918.856 37.526 16388.0

Building automation system 0.023 0.237 3.1 7.273 0.285 105.1 17.564 0.318 96.0

Van der Pol 1.658 0.257 45.5 27.255 0.827 353.6 113.235 3.233 1093.4

NNDM Cartpole 236.154 550.747 610.8 42326.400 3.751 1590.9 Incompatible dynamics

6D linear model 8.959 359.887 237.3 OOM OOM (≈ 1.1𝑇𝐵)

7D linear model 66.231 13903.540 2310.8 Timeout (24h) OOM (≈ 70.4𝑇𝐵)

Dubin’s car GP 13.816 19.562 352.2 336.940 31.333 14265.8 Incompatible dynamics

Stochastic switched linear 0.033 0.045 4.5 3.391 0.038 41.0 NLopt failure

Table 3: Satisfaction probabilities for IMDP-based approaches. 𝑉 denotes the lower bound satisfaction probability and 𝜖 the
mean error. For Adams et al. [3] and IMPaCT [56], we also report the (minimum, maximum, and mean over regions) difference 𝛿
in𝑉 to our method, where positive means that our method yields a higher satisfaction probability and vice versa. The unreliable
result for IMPaCT with the Van der Pol benchmark is due to it returning NaN for every state.

Our method Adams et al. [3] IMPaCT [56]

Benchmark Mean �̌� 𝜀 Mean �̌� 𝜀 Min 𝛿 Max 𝛿 Mean 𝛿 Mean �̌� 𝜀 Min 𝛿 Max 𝛿 Mean 𝛿

Car parking 0.269 0.3885 0.213 0.5315 0.0040 0.1428 0.0560 0.213 0.5183 0.0040 0.1422 0.0556

Robot reachability 0.889 0.1108 0.881 0.1186 0.0060 0.0119 0.0079 0.890 0.1098 -0.0058 0.0022 -0.0010

Robot reach-avoid 0.980 0.0199 0.979 0.0208 0.0005 0.0027 0.0008 0.980 0.0202 -0.0001 0.0018 0.0003

Building automation system 0.263 0.7336 0.090 0.9076 0.0510 0.2297 0.1733 0.824 0.8237 0.0304 0.1131 0.0897

Van der Pol 0.069 0.3367 0.051 0.4178 0.0000 0.0529 0.0177 Unreliable results

NNDM Cartpole 0.004 0.7634 0.000 0.7184 0.0000 0.4101 0.0037 Incompatible dynamics

6D linear model 0.958 0.0419 OOM OOM

7D linear model 0.952 0.0483 Timeout OOM

Dubin’s car GP 0.362 0.3461 0.216 0.5046 0.0000 0.8383 0.1458 Incompatible dynamics

Stochastic switched linear 0.411 0.2828 0.366 0.3605 0.0000 0.0979 0.0456 NLopt failure

Table 4: The memory usage and the mean error 𝜀 at 100 time
steps for SySCoRe [51] and odIMDPs on the robot reach-avoid
benchmark (see Table 1).

regions SySCoRe odIMDPs

Mem. (MB) 𝜀 Mem. (MB) 𝜀

2500 0.80 0.2650 35.55 0.0204

10000 3.20 0.1568 279.51 0.0107

22500 7.20 0.1254 937.86 0.0070

90000 28.81 0.0288 7459.02 0.0028

360000 115.21 0.0060 59499.08 0.0014

having the product form. We showed how such a structure on the

transition probabilities allows one to abstract a large class of sto-

chastic systems by obtaining substantial improvements both in

terms of memory requirements and tightness of the results com-

pared to state-of-the-art abstraction-based methods. The theoretical

findings are supported by experimental results, where we show

how our new approach can successfully synthesize optimal strate-

gies for tasks that are too complex for existing competing methods.

Naturally, the proposed methods and algorithms are not without

limitations. In particular, exactly and efficiently solving the multi-

linear problem of Eqn. (14) is still an open problem for which we

employed relaxations. Furthermore, our approach assumes on a

grid-partitioning of the region of interest, although the literature

[3, 46] on refinement has shown that heterogeneous abstractions

can be beneficial.

References
[1] Alessandro Abate, H.A.P. Blom, Nathalie Cauchi, Joanna Delicaris, Arnd Hart-

manns, Mahmoud Khaled, Abolfazl Lavaei, Carina Pilch, Anne Remke, and More

Authors. 2020. ARCH-COMP20 Category Report: Stochastic Models. In EPiC
Series in Computing.

[2] Alessandro Abate, Joost-Pieter Katoen, John Lygeros, and Maria Prandini. 2010.

Approximate model checking of stochastic hybrid systems. European Journal of
Control 16, 6 (2010), 624–641.

[3] Steven Adams, Morteza Lahijanian, and Luca Laurenti. 2022. Formal control

synthesis for stochastic neural network dynamic models. IEEE Control Systems
Letters 6 (2022), 2858–2863.

[4] Steven Adams, Andrea Patane, Morteza Lahijanian, and Luca Laurenti. 2024.

Finite Neural Networks as Mixtures of Gaussian Processes: From Provable Error

Bounds to Prior Selection. arXiv e-prints (2024), arXiv–2407.

Scalable control synthesis for stochastic systems via structural IMDP abstractions HSCC ’25, May 06–09, 2025, Irvine, CA

[5] Thom Badings, Licio Romao, Alessandro Abate, David Parker, Hasan A Poon-

awala, Marielle Stoelinga, and Nils Jansen. 2023. Robust control for dynamical

systems with non-gaussian noise via formal abstractions. Journal of Artificial
Intelligence Research 76 (2023), 341–391.

[6] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. 1983. Neu-

ronlike adaptive elements that can solve difficult learning control problems.

IEEE Transactions on Systems, Man, and Cybernetics SMC-13, 5 (1983), 834–846.

https://doi.org/10.1109/TSMC.1983.6313077

[7] Dimitri P Bertsekas and Steven E Shreve. 2004. Stochastic Optimal Control: the
Discrete-time Case. Athena Scientific.

[8] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman. 2012. Julia: A

fast dynamic language for technical computing. arXiv preprint arXiv:1209.5145
(2012).

[9] Christopher M Bishop and Nasser M Nasrabadi. 2006. Pattern recognition and
machine learning. Vol. 4. Springer.

[10] El-Kébir Boukas. 2007. Stochastic switching systems: analysis and design. Springer
Science & Business Media.

[11] Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. 2000. Stochastic

dynamic programming with factored representations. Artificial Intelligence 121,
1 (2000), 49–107. https://doi.org/10.1016/S0004-3702(00)00033-3

[12] Ashwin Carvalho, Yiqi Gao, Stéphanie Lefevre, and Francesco Borrelli. 2014.

Stochastic predictive control of autonomous vehicles in uncertain environments.

In 12th international symposium on advanced vehicle control, Vol. 9.
[13] Nathalie Cauchi, Kurt Degiorgio, and Alessandro Abate. 2019. StocHy: automated

verification and synthesis of stochastic processes. arXiv:1901.10287 [cs.SY]

https://arxiv.org/abs/1901.10287

[14] Nathalie Cauchi, Luca Laurenti, Morteza Lahijanian, Alessandro Abate, Marta

Kwiatkowska, and Luca Cardelli. 2019. Efficiency through uncertainty: Scalable

formal synthesis for stochastic hybrid systems. In Proceedings of the 22nd ACM
international conference on hybrid systems: computation and control. 240–251.

[15] Krishnendu Chatterjee, Koushik Sen, and Thomas A Henzinger. 2008. Model-

checking 𝜔-regular properties of interval Markov chains. In Foundations of
Software Science and Computational Structures: 11th International Conference,
FOSSACS 2008, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings 11. Springer, 302–317.

[16] Steve A. Chien. 2022. Formal Methods for Trusted Space Autonomy: Boon or

Bane?. In NASA Formal Methods, Jyotirmoy V. Deshmukh, Klaus Havelund, and

Ivan Perez (Eds.). Springer International Publishing, Cham, 3–13.

[17] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2001. Introduction to Algorithms (2 ed.). The MIT Press.

[18] Delft High Performance Computing Centre. 2024. DelftBlue Supercomputer

(Phase 2). https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2.

[19] Sadegh Esmaeil Zadeh Soudjani, Alessandro Abate, and Rupak Majumdar. 2016.

Dynamic Bayesian networks for formal verification of structured stochastic

processes. Acta Informatica 54, 2 (Dec. 2016), 217–242. https://doi.org/10.1007/

s00236-016-0287-9

[20] Robert Givan, Sonia Leach, and Thomas Dean. 2000. Bounded-parameter Markov

decision processes. Artificial Intelligence 122, 1-2 (2000), 71–109.
[21] Vahid Hashemi, Andrea Turrini, Ernst Moritz Hahn, Holger Hermanns, and

Khaled Elbassioni. 2017. Polynomial-Time Alternating Probabilistic Bisimulation

for Interval MDPs. In Dependable Software Engineering. Theories, Tools, and Ap-
plications, Kim Guldstrand Larsen, Oleg Sokolsky, and Ji Wang (Eds.). Springer

International Publishing, Cham, 25–41.

[22] Christian Hensel, Sebastian Junges, Joost-Pieter Katoen, Tim Quatmann, and

Matthias Volk. 2021. The probabilistic model checker Storm. International
Journal on Software Tools for Technology Transfer 24, 4 (July 2021), 589–610.

https://doi.org/10.1007/s10009-021-00633-z

[23] John Jackson, Luca Laurenti, Eric Frew, and Morteza Lahijanian. 2020. Towards

Data-driven Verification of Unknown Dynamical Systems. In 2nd RSS Workshop
on Robust Autonomy: Tools for Safety in Real-World Uncertain Environments (RSS
2020).

[24] John Jackson, Luca Laurenti, Eric Frew, and Morteza Lahijanian. 2021. Formal

verification of unknown dynamical systems via Gaussian process regression.

arXiv preprint arXiv:2201.00655 (2021).
[25] Pushpak Jagtap, Sadegh Soudjani, and Majid Zamani. 2018. Temporal Logic Verifi-

cation of Stochastic Systems Using Barrier Certificates. In Automated Technology
for Verification and Analysis, Shuvendu K. Lahiri and Chao Wang (Eds.). Springer

International Publishing, Cham, 177–193.

[26] Jesse Jiang, Ye Zhao, and Samuel Coogan. 2022. Safe learning for uncertainty-

aware planning via interval MDP abstraction. IEEE Control Systems Letters 6
(2022), 2641–2646.

[27] Arash Bahari Kordabad, Maria Charitidou, Dimos V. Dimarogonas, and Sadegh

Soudjani. 2024. Control Barrier Functions for Stochastic Systems under Signal

Temporal Logic Tasks. In 2024 European Control Conference (ECC). 3213–3219.
https://doi.org/10.23919/ECC64448.2024.10591078

[28] Marta Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Veri-

fication of probabilistic real-time systems. In Computer Aided Verification: 23rd

International Conference. Springer, 585–591.
[29] Morteza Lahijanian. 2021. bmdp-tool. https://github.com/aria-systems-group/

bmdp-tool Standalone software.

[30] Morteza Lahijanian, Sean B Andersson, and Calin Belta. 2015. Formal verification

and synthesis for discrete-time stochastic systems. IEEE Trans. Automat. Control
60, 8 (2015), 2031–2045.

[31] Luca Laurenti and Morteza Lahijanian. 2023. Unifying Safety Approaches for Sto-

chastic Systems: From Barrier Functions to Uncertain Abstractions via Dynamic

Programming. arXiv preprint arXiv:2310.01802 (2023).
[32] Luca Laurenti, Morteza Lahijanian, Alessandro Abate, Luca Cardelli, and Marta

Kwiatkowska. 2020. Formal and efficient synthesis for continuous-time linear

stochastic hybrid processes. IEEE Trans. Automat. Control 66, 1 (2020), 17–32.
[33] Abolfazl Lavaei, Sadegh Soudjani, Alessandro Abate, and Majid Zamani. 2022.

Automated verification and synthesis of stochastic hybrid systems: A survey.

Automatica 146 (2022), 110617.
[34] Abolfazl Lavaei, Sadegh Soudjani, and Majid Zamani. 2021. Compositional

abstraction-based synthesis of general MDPs via approximate probabilistic rela-

tions. Nonlinear Analysis: Hybrid Systems 39 (2021), 100991. https://doi.org/10.

1016/j.nahs.2020.100991

[35] Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark

Barrett, Mykel J Kochenderfer, et al. 2021. Algorithms for verifying deep neural

networks. Foundations and Trends in Optimization (2021).

[36] Jun Liu and Necmiye Ozay. 2014. Abstraction, discretization, and robustness in

temporal logic control of dynamical systems. In Proceedings of the 17th interna-
tional conference on Hybrid systems: computation and control.

[37] Ryan Luna, Morteza Lahijanian, Mark Moll, and Lydia E. Kavraki. 2014. Fast

stochastic motion planning with optimality guarantees using local policy re-

configuration. In 2014 IEEE International Conference on Robotics and Automation
(ICRA). 3013–3019. https://doi.org/10.1109/ICRA.2014.6907293

[38] Frederik Baymler Mathiesen, Simeon C. Calvert, and Luca Laurenti. 2023. Safety

Certification for Stochastic Systems via Neural Barrier Functions. IEEE Control
Systems Letters 7 (2023), 973–978. https://doi.org/10.1109/LCSYS.2022.3229865

[39] Frederik Baymler Mathiesen, Morteza Lahijanian, and Luca Laurenti. 2024. Inter-

valMDP.jl: Accelerated Value Iteration for Interval Markov Decision Processes.

arXiv:2401.04068 [eess.SY] https://arxiv.org/abs/2401.04068

[40] Frederik Baymler Mathiesen, Licio Romao, Simeon C. Calvert, Alessandro Abate,

and Luca Laurenti. 2023. Inner Approximations of Stochastic Programs for

Data-Driven Stochastic Barrier Function Design. In 2023 62nd IEEE Conference on
Decision and Control (CDC). 3073–3080. https://doi.org/10.1109/CDC49753.2023.

10383306

[41] Rayan Mazouz, Frederik Baymler Mathiesen, Luca Laurenti, and Morteza Lahija-

nian. 2024. Piecewise Stochastic Barrier Functions. arXiv:2404.16986 [cs.RO]

https://arxiv.org/abs/2404.16986

[42] Rayan Mazouz, Karan Muvvala, Akash Ratheesh Babu, Luca Laurenti, and

Morteza Lahijanian. 2022. Safety guarantees for neural network dynamic sys-

tems via stochastic barrier functions. Advances in Neural Information Processing
Systems 35 (2022), 9672–9686.

[43] Petter Nilsson, Sofie Haesaert, Rohan Thakker, Kyohei Otsu, Cristian Ioan Vasile,

Ali-Akbar Agha-Mohammadi, Richard M Murray, and Aaron D Ames. 2018.

Toward Specification-Guided Active Mars Exploration for Cooperative Robot

Teams.. In Robotics: Science and systems, Vol. 14. 1–9.
[44] Andrea Patane, Arno Blaas, Luca Laurenti, Luca Cardelli, Stephen Roberts, and

Marta Kwiatkowska. 2022. Adversarial robustness guarantees for gaussian pro-

cesses. Journal of Machine Learning Research 23, 146 (2022), 1–55.

[45] Stephen Prajna, Ali Jadbabaie, and George J. Pappas. 2007. A Framework for

Worst-Case and Stochastic Safety Verification Using Barrier Certificates. IEEE
Trans. Automat. Control 52, 8 (2007), 1415–1428. https://doi.org/10.1109/TAC.

2007.902736

[46] Robert Reed, Luca Laurenti, and Morteza Lahijanian. 2023. Promises of deep

kernel learning for control synthesis. IEEE Control Systems Letters (2023).
[47] Ali Salamati, Abolfazl Lavaei, Sadegh Soudjani, and Majid Zamani. 2021. Data-

Driven Safety Verification of Stochastic Systems via Barrier Certificates. IFAC-
PapersOnLine 54, 5 (2021), 7–12. https://doi.org/10.1016/j.ifacol.2021.08.466 7th

IFAC Conference on Analysis and Design of Hybrid Systems ADHS 2021.

[48] Cesar Santoyo, Maxence Dutreix, and Samuel Coogan. 2021. A barrier function

approach to finite-time stochastic system verification and control. Automatica
125 (2021), 109439. https://doi.org/10.1016/j.automatica.2020.109439

[49] John Skovbekk, Luca Laurenti, Eric Frew, and Morteza Lahijanian. 2023. Formal

Abstraction of General Stochastic Systems via Noise Partitioning. IEEE Control
Systems Letters (2023).

[50] Sadegh Esmaeil Zadeh Soudjani and Alessandro Abate. 2014. Aggregation and

control of populations of thermostatically controlled loads by formal abstractions.

IEEE Transactions on Control Systems Technology 23, 3 (2014), 975–990.

[51] Birgit Van Huijgevoort, Oliver Schön, Sadegh Soudjani, and Sofie Haesaert. 2023.

SySCoRe: Synthesis via stochastic coupling relations. In Proceedings of the 26th
ACM international conference on hybrid systems: Computation and control.

[52] Birgit C. van Huijgevoort and Sofie Haesaert. 2022. Similarity quantification for

linear stochastic systems: A coupling compensator approach. Automatica 144

https://doi.org/10.1109/TSMC.1983.6313077
https://doi.org/10.1016/S0004-3702(00)00033-3
https://arxiv.org/abs/1901.10287
https://arxiv.org/abs/1901.10287
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://doi.org/10.1007/s00236-016-0287-9
https://doi.org/10.1007/s00236-016-0287-9
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.23919/ECC64448.2024.10591078
https://github.com/aria-systems-group/bmdp-tool
https://github.com/aria-systems-group/bmdp-tool
https://doi.org/10.1016/j.nahs.2020.100991
https://doi.org/10.1016/j.nahs.2020.100991
https://doi.org/10.1109/ICRA.2014.6907293
https://doi.org/10.1109/LCSYS.2022.3229865
https://arxiv.org/abs/2401.04068
https://arxiv.org/abs/2401.04068
https://doi.org/10.1109/CDC49753.2023.10383306
https://doi.org/10.1109/CDC49753.2023.10383306
https://arxiv.org/abs/2404.16986
https://arxiv.org/abs/2404.16986
https://doi.org/10.1109/TAC.2007.902736
https://doi.org/10.1109/TAC.2007.902736
https://doi.org/10.1016/j.ifacol.2021.08.466
https://doi.org/10.1016/j.automatica.2020.109439

HSCC ’25, May 06–09, 2025, Irvine, CA Frederik Baymler Mathiesen, Sofie Haesaert, and Luca Laurenti

(2022), 110476. https://doi.org/10.1016/j.automatica.2022.110476

[53] B. C. van Huijgevoort, S. Weiland, and S. Haesaert. 2023. Temporal Logic Control

of Nonlinear Stochastic Systems Using a Piecewise-Affine Abstraction. IEEE
Control Systems Letters (2023). https://doi.org/10.1109/LCSYS.2022.3230765

[54] Abraham P. Vinod, Joseph D. Gleason, and Meeko M. K. Oishi. 2019. SReachTools:

A MATLAB Stochastic Reachability Toolbox. , 33 – 38 pages. https://sreachtools.

github.io.

[55] Christopher Williams and Carl Rasmussen. 1995. Gaussian processes for regres-

sion. Advances in neural information processing systems 8 (1995).
[56] BenWooding and Abolfazl Lavaei. 2024. IMPaCT: Interval MDP Parallel Construc-

tion for Controller Synthesis of Large-Scale STochastic Systems. In Quantitative
Evaluation of Systems and Formal Modeling and Analysis of Timed Systems.

[57] Kaidi Xu, Zhouxing Shi, Huan Zhang, YihanWang, Kai-Wei Chang, Minlie Huang,

Bhavya Kailkhura, Xue Lin, and Cho-Jui Hsieh. 2020. Automatic perturbation

analysis for scalable certified robustness and beyond. In Proceedings of the 34th
International Conference on Neural Information Processing Systems.

[58] Majid Zamani, Alessandro Abate, and Antoine Girard. 2015. Symbolic models for

stochastic switched systems: A discretization and a discretization-free approach.

Automatica 55 (2015), 183–196. https://doi.org/10.1016/j.automatica.2015.03.004

[59] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. 2018.

Efficient neural network robustness certification with general activation func-

tions. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems.

https://doi.org/10.1016/j.automatica.2022.110476
https://doi.org/10.1109/LCSYS.2022.3230765
https://sreachtools.github.io
https://sreachtools.github.io
https://doi.org/10.1016/j.automatica.2015.03.004

Scalable control synthesis for stochastic systems via structural IMDP abstractions HSCC ’25, May 06–09, 2025, Irvine, CA

A Experiment details
A.1 Other tools for verification of stochastic

systems
We have explored comparing against SReachTools [54], however,

this tool supports a different class of problems. Namely, that given
an initial region, find a reachability tube with high probability, or

given a target tube, find a set of initial states with a minimum

probability of satisfaction. We have also tested StocHy [13], but the

tool crashed in 3 of its 4 case studies, suggesting that the tool is not

maintained and thus we decided against comparing with StocHy.

A.2 Benchmarks
Car parking. A 2D case study from [51] of parking a car with

dynamics 𝑥𝑘+1
= 0.9𝑥𝑘 + 0.7𝑢𝑘 + 𝑣𝑘 with 𝑣𝑘 ∼ N(0, 𝐼). The region

of interest is 𝑋 = [−10, 10]2
and the input space 𝑈 = {−1, 0, 1}2

.

The reach region is 𝑅 = [4, 10] × [−4, 0] and the avoid region is

𝑂 = [4, 10] × [0, 4]. The goal is to maximize the pessimistic reach-

avoid probability over 10 time steps. We consider a partition of the

region of interest of |𝑆1 | × |𝑆2 | = (40, 40).

2D robot. A 2D case study from [56] of a planar robot with non-

linear input

𝑥𝑘+1
= 𝑥𝑘 + 10𝑢𝑘,1

(
cos(𝑢𝑘,2)
sin(𝑢𝑘,2)

)
+ 𝑣𝑘

where 𝑣𝑘 ∼ N(0, 0.75𝐼). The region of interest is𝑋 = [−10, 10]2
and

the action space is [−1, 1]2
uniformly discretized into 𝐿𝑢 points. The

benchmark is similar to the SySCoRe running example, except with

nonlinear inputs. For running the benchmark using our methods,

we transform the input to 𝑣 =
(
𝑢1 cos(𝑢2) 𝑢1 sin(𝑢2)

)⊤
such that

the dynamics are linear in the (nonlinearly partitioned) control

inputs.

We consider two different specifications: reachability and reach-

avoid, each with a different partitioning. For both specifications,

the reach region is 𝑅 = [5, 7]2
and for the reach-avoid specification,

the avoid region is 𝑂 = [−2, 2]2
. For reachability, we use a state

partitioning of |𝑆1 | × |𝑆2 | = (20, 20) and an action partitioning of

|𝐴1 | × |𝐴2 | = (11, 11), while for reach-avoid we use |𝑆1 | × |𝑆2 | =
(40, 40) and |𝐴1 | × |𝐴2 | = (21, 21). For both properties, we maximize

the pessimistic reach-avoid probability over 10 time steps.

4D building automation system. A 4D case study from [56] of

building automation system with the linear dynamics 𝑥𝑘+1
= 𝐴𝑥𝑘 +

𝐵𝑢𝑘 + 𝑣𝑘 where 𝑣𝑘 ∼ N(0, Σ) with

𝐴 =

©«
0.6682 0 0.02632 0

0 0.683 0 0.02096

1.0005 0 −0.000499 0

0 0.8004 0 0.1996

ª®®®¬ ,
𝐵 =

©«
0.1320

0.1402

0

0.0

ª®®®¬ , and
Σ = diag(1/12.9199, 1/12.9199, 1/2.5826, 1/3.2276) .

The region of interest is 𝑋 = [18.75, 21.25]2 × [29.5, 36.5]2
and the

input space𝑈 = {17, 18, 19, 20}. The safe region is 𝑋 . The goal is to

maximize the pessimistic probability of safety in 10 time steps, or

by duality, minimize the optimistic reachability probability to the

complement of the safe set 𝑋𝑐 . Then the complement probability of

that result is maximized pessimistic safety probability. We consider

a partition of the region of interest of |𝑆1 | × |𝑆2 | × |𝑆3 | × |𝑆4 | =
(5, 5, 7, 7).

Van der Pol Oscillator. A 2D nonlinear case study from [51] with

the following dynamics:

𝑥𝑘+1
=

(
𝑥𝑘,1 + 𝑥𝑘,2𝜏

𝑥𝑘,2 + (−𝑥𝑘,1 + (1 − 𝑥𝑘,1)2𝑥𝑘,2)𝜏 + 𝑢𝑘

)
+ 𝑣𝑘

where 𝜏 = 0.1 and 𝑣𝑘 ∼ N(0, 0.2𝐼). The region of interest is 𝑋 =

[−4, 4]2
and the action space is [−1, 1] partitioned into 11 points.

The goal is to maximize the pessimistic reachability probability to a

reach region 𝑅 = [−1.4,−0.7] × [−2.9,−2.0] over 10 time steps. We

consider a partition of the region of interest of |𝑆1 | × |𝑆2 | = (50, 50).

Neural Network Dynamic Model. As a complex benchmark with

non-smooth dynamics, we consider a NNDMwith dynamics 𝑥𝑘+1
=

𝑓𝜃 (𝑥𝑘 , 𝑢𝑘) + 𝑣𝑘 where 𝑓𝜃 : R𝑛 ×𝑈 → R𝑛 is a neural network. The

specific benchmark is a surrogate model for the classic cartpole

model [6] where the states are (𝑥, ¤𝑥, 𝜃, ¤𝜃), the region of interest is

𝑋 = [−𝑎, 𝑎] with 𝑎 = [2, 34.028235, 0.41887903, 34.028235], and the

input is𝑈 = {0, 1} (push the cart left and right, respectively). The

noise is 𝑣𝑘 ∼ N(0, 0.1𝐼).
The model is a neural network with two hidden layers of 256

neurons and ReLU activation function (no activation function on

the output). The input to the network is 6-dimensional since the

two discrete actions are one-hot encoded. The model is trained for

10,000 iterations on batches of 100 samples where the samples are

obtained by uniformly sampling from 𝑋 . The ADAM optimization

algorithm is used with a learning rate of 1e−3, exponential decay

with a multiplicative factor of 0.999, and the standard mean-squared

error is used as the loss function. For reachability analysis of the

neural network, CROWN [57, 59] is used for each region and input.

We use |𝑆1 | × |𝑆2 | × |𝑆3 | × |𝑆4 | = (20, 20, 24, 20).

𝑛-D linear model. To show scalability, we include a linear model

with a configurable dimension 𝑛. The dynamics are 𝑥𝑘+1
= 𝐴𝑥𝑘 +𝑣𝑘

where 𝐴 is a Toeplitz matrix

𝐴 =

©«

0.7 −0.1 · · · 0

0 0.7
. . .

.

.

.

.

.

.
. . . 0.7 −0.1

−0.1 · · · 0 0.7

ª®®®®®®¬︸ ︷︷ ︸
𝑛

and 𝑣𝑘 ∼ N(0, 0.1𝐼). The safe set is 𝑋 = [−1, 1]𝑛 and the goal

is to stay within 𝑋 for 10 time steps. We use a partitioning of∏𝑛
𝑖=1

|𝑆𝑖 | = (8, . . . , 8︸ ︷︷ ︸
𝑛

). Experiments are conducted with 𝑛 = 6 and

𝑛 = 7.

Dubin’s car Gaussian Process. A 3D case study from [46] where

the dynamics of each mode (input), of 7, are learned as a Gaussian

Process (GP) with Deep Kernel Learning. That is, a Gaussian Process

𝐺𝑃 (𝜇, 𝑘𝜃) where 𝜇 : R𝑛 → R is a mean function and 𝑘𝜃 : R𝑛 ×

HSCC ’25, May 06–09, 2025, Irvine, CA Frederik Baymler Mathiesen, Sofie Haesaert, and Luca Laurenti

[0.4, 0.5]

[0.5, 0.6]

[0.6, 0.8]
[0.2, 0.4]

[0.24, 0.4]
[0.08, 0.2]

[0.3, 0.48]
[0.1, 0.24]

1

2

4

3

2.06

1

2

4

3

2 2.8

2.16

States Source

Vk−1 Vk−1

W k,2
s,a

W k,1
s,a / Vk

Vk

Figure 5: One (pessimistic) Bellman update on the example in
Fig. 2 with an odIMDP on the left and an IMDP on the right
constructed by multiplying the marginal interval bounds of
the odIMDP. The values immediately below the odIMDP and
IMDP is the value function at the previous step 𝑉𝑘−1

. For the
odIMDPs, the Bellman update using Eqn. (15) is computed
by recursively using O-maximization [20, 30] with each red
box outlining an O-maximization step. For the IMDP, the
Bellman update using Eqn. (13) is computed using a one-shot
O-maximization step. The result is that the odIMDP and Eqn.
(15) together yields a tighter lower bound.

R𝑛 → R≥0 is a deep kernel, with 𝑘𝜃 (𝑥, 𝑥 ′) = 𝑘 (𝑔𝜃 (𝑥), 𝑔𝜃 (𝑥 ′)) for
a given base kernel 𝑘 : R𝑠 × R𝑠 → R≥0 and a neural network

𝑔𝜃 : R𝑛 → R𝑠 . We refer to [46] for details on the deep kernel

including the training process and on the number of samples for

the posterior. Bounds on the standard deviation and covariance are

obtained using the method from [44]. We remark that while [46]

introduces a refinement algorithm, we use the GP bounds without

refinement, as refining the abstraction results in a non-gridded

abstraction necessary for the proposed method.

The property to synthesize an optimal strategy for is reach-

avoid with𝑂 = [4, 6] × [0, 1] × [−0.5, 0.5] and 𝑅 = [8, 10] × [0, 1] ×
[−0.5, 0.5] for 10 time steps. We use a region of interest [0, 10] ×
[0, 2] × [−0.5, 0.5] and a partitioning |𝑆1 | × |𝑆2 | × |𝑆3 | = (80, 16, 20).

Stochastic switched linear system. We have designed a new bench-

mark for the class of stochastic switched systems [10, 58] to show-

case the functionality on Gaussian mixture models. The dynamics

are a mixture of two Gaussians whose mean depends on 𝑥 and the

switching between the modes is governed by a Bernoulli random

variable 𝑍 with P(𝑍 = 0) = 0.7,

𝑥𝑘+1
∼ P(𝑍 = 0)︸ ︷︷ ︸

𝛼1

𝑝1 (𝑥𝑘) + P(𝑍 = 1)︸ ︷︷ ︸
𝛼2

𝑝2 (𝑥𝑘)

where

𝑝1 (𝑥𝑘) = N
((

0.1 0.9

0.8 0.2

)
𝑥𝑘︸ ︷︷ ︸

𝜇1 (𝑥𝑘)

,

(
0.32

0

0 0.22

)
︸ ︷︷ ︸

Σ1

)

𝑝2 (𝑥𝑘) = N
((

0.8 0.2

0.1 0.9

)
𝑥𝑘︸ ︷︷ ︸

𝜇2 (𝑥𝑘)

,

(
0.22

0

0 0.12

)
︸ ︷︷ ︸

Σ2

)
.

The specification asserted is a reach-avoid property with the reach

region 𝑅 = [1, 2] × [0, 1] and avoid region 𝑂 = [−1, 0] × [−1, 1]
over 10 time steps. We use |𝑆1 | × |𝑆2 | = (40, 40).

B Value iteration over odIMDPs vs IMDPs
Proposition 6.2 proves that the divide-and-conquer algorithm in

Eqn. (15) is at most as conservative as Eqn. (13) over the IMDP

constructed by multiplying the marginal interval bounds. This

might however still be unintuitive, hence we show in this section

Eqn. (15) applied to the example in Fig. 2 against value iteration on

the corresponding IMDP. The result is displayed in Fig. 5 where

Eqn. (15) on the odIMDP yields a value of 2.16 to a value of 2.06 on

the Eqn. (13) on the IMDP. That is, a larger and thus tighter lower

bound for the odIMDP.

	Abstract
	1 Introduction
	2 Problem Statement
	3 Preliminaries on abstractions to Interval Markov Decision Processes
	4 Orthogonally Decoupled Interval Markov Decision Processes
	4.1 Comparison of ambiguity sets

	5 Abstraction
	5.1 Gaussian case
	5.2 Mixture Models

	6 Synthesis of Optimal Policies for odIMDPs
	6.1 Analysis of time complexity
	6.2 Correctness

	7 Experiments
	7.1 Comparison with IMDP-based approaches
	7.2 Comparison with SySCoRe (MDP-based approach)

	8 Conclusion
	References
	A Experiment details
	A.1 Other tools for verification of stochastic systems
	A.2 Benchmarks

	B Value iteration over odIMDPs vs IMDPs

