
LUTMUL: Exceed Conventional FPGA Roofline Limit by
LUT-based Efficient MULtiplication for Neural Network Inference

Yanyue Xie
Northeastern University

xie.yany@northeastern.edu

Zhengang Li
Adobe

li.zhen@northeastern.edu

Dana Diaconu
Northeastern University

diaconu.d@northeastern.edu

Suranga Handagala
Northeastern University

s.handagala@northeastern.edu

Miriam Leeser
Northeastern University

mel@coe.neu.edu

Xue Lin
Northeastern University
xue.lin@northeastern.edu

ABSTRACT
For FPGA-based neural network accelerators, digital signal pro-
cessing (DSP) blocks have traditionally been the cornerstone for
handling multiplications. This paper introduces LUTMUL, which
harnesses the potential of look-up tables (LUTs) for performing
multiplications. The availability of LUTs typically outnumbers that
of DSPs by a factor of 100, offering a significant computational ad-
vantage. By exploiting this advantage of LUTs, our method demon-
strates a potential boost in the performance of FPGA-based neural
network accelerators with a reconfigurable dataflow architecture.
Our approach challenges the conventional peak performance on
DSP-based accelerators and sets a new benchmark for efficient
neural network inference on FPGAs. Experimental results demon-
strate that our design achieves the best inference speed among
all FPGA-based accelerators, achieving a throughput of 1627 im-
ages per second and maintaining a top-1 accuracy of 70.95% on the
ImageNet dataset.

CCS CONCEPTS
•Hardware→ Reconfigurable logic and FPGAs; • Computing
methodologies→Machine learning.

KEYWORDS
FPGAs, Quantization, Look-up tables, Roofline model.

ACM Reference Format:
YanyueXie, Zhengang Li, DanaDiaconu, SurangaHandagala,Miriam Leeser,
and Xue Lin. 2025. LUTMUL: Exceed Conventional FPGA Roofline Limit
by LUT-based Efficient MULtiplication for Neural Network Inference. In
30th Asia and South Pacific Design Automation Conference (ASPDAC ’25),
January 20–23, 2025, Tokyo, Japan. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3658617.3697687

1 INTRODUCTION
Field-Programmable Gate Arrays (FPGAs) have been widely used
as deep learning accelerators, facilitating advancements in com-
puter vision [7, 17, 35, 39] and natural language processing [4, 13,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPDAC ’25, January 20–23, 2025, Tokyo, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0635-6/25/01
https://doi.org/10.1145/3658617.3697687

16, 38] tasks. However, FPGAs lag behind Graphics Processing
Units (GPUs) in terms of performance and ease of programming.
FPGA reconfigurable logic mainly consists of look-up tables (LUT),
block RAMs (BRAMs), and digital signal processing (DSP) blocks.
Together with routing resources, FPGA can be reconfigured for
customized designs. Despite the flexibility, FPGAs face constraints
in clock frequency, floating-point performance, and memory band-
width. This performance gap between FPGAs andGPUs is becoming
even larger when considering the tensor core performance of GPUs.
To address this, we need an algorithm-hardware co-design method
to boost FPGAs with greater inference capability.

FPGA accelerators can follow GPU-like [32, 34] architecture,
which maps computation to compute cores with repetitive use.
While beneficial, this approach encounters memory bandwidth is-
sues similar to GPUs. Compared with GPUs, FPGAs usually have
lower memory bandwidth, and the lower clock frequency of FPGAs
means a lower upper bound of performance. While FPGA-based
accelerators with specific instruction set architectures [37] offer
flexibility across different models, they often compromise on per-
formance due to non-optimized compute kernels for specific neural
network layers.

To bridge the performance gap between FPGAs and GPUs, par-
ticularly in deep learning applications, we introduce LUTMUL, which
leverages the look-up tables on FPGAs for deep learning tasks, fo-
cusing on accelerating convolutional neural networks (CNNs). We
recognize that the traditional FPGA designs, heavily dependent on
DSP blocks, may not fully exploit the parallelism and flexibility
that LUTs offer, as the availability of LUTs typically outnumbers
DSPs by a factor of 100. Our method emphasizes a novel utiliza-
tion of LUTs to enhance computational efficiency and throughput
in deep learning applications. Specifically, we embed the convolu-
tional neural network weights into LUTs, where the LUT input is
the activations and the LUT output is the multiplication result. Dif-
ferent from LUT-based general multipliers, our method is efficient
in resources (requiring just 2 LUTs for a single 4-bit multiplication)
and helps fully exploit the parallelism.

We propose a reconfigurable dataflow architecture for our LUT-
based efficient multiplication kernel. Our dataflow architecture
minimizes the memory access time by processing the data on-chip
through each layer without external memory. The reconfigurability
of the FPGA allows us to tailor the architecture specifically for each
distinct layer of CNNs. With LUT resources, the generated acceler-
ator can potentially exceed the peak performance of conventional
DSP-based FPGA accelerators. Our dataflow architecture aims to

ar
X

iv
:2

41
1.

11
85

2v
1

 [
cs

.A
R

]
 1

 N
ov

 2
02

4

https://doi.org/10.1145/3658617.3697687
https://doi.org/10.1145/3658617.3697687

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Yanyue Xie, Zhengang Li, Dana Diaconu, Suranga Handagala, Miriam Leeser, and Xue Lin

enhance the overall efficiency of our deep learning accelerators,
optimizing FPGAs for deep learning tasks.

Our contributions can be summarized as follows:

• Wepresent LUTMUL, an algorithm-hardware co-designmethod
that embeds quantized neural network weights into look-up
tables for efficient multiplications and uses dedicated look-up
tables for full parallelism.
• We design a reconfigurable dataflow architecture that ex-
ploits scalability and LUT potential to save computational
resources.
• Using LUTMUL, FPGA designs can potentially exceed the peak
performance of conventional DSP-based FPGA accelerators
when using the same amount of resources.

2 BACKGROUND
2.1 Roofline Model Analysis
GPUs leverage Single InstructionMultiple Data (SIMD) architecture,
allowing them to simultaneously perform the same operation across
multiple data points. This parallelism makes GPUs exceptionally
efficient for tasks that can be divided into smaller, similar operations,
such as matrix multiplication in deep learning.

FPGAs, by contrast, achieve parallel processing through their
reconfigurability, allowing hardware to be tailored to specific com-
putational tasks. This flexibility allows FPGAs to efficiently handle
complex and diverse data processing tasks, offering advantages
over the fixed architecture of GPUs. While FPGAs lack the raw
SIMD power of GPUs for certain applications, they excel in sce-
narios requiring custom hardware configurations or low-latency,
such as specific signal processing tasks or custom machine learning
algorithms. However, this adaptability often comes with a trade-off
in processing speed and ease of programming, with FPGAs typically
lagging behind the computational throughput of GPUs.

The roofline model [31] is a useful tool for analyzing the perfor-
mance of both GPUs and FPGAs. An algorithm running on GPUs or
FPGAs can be either compute bound or memory bound. According
to the roofline model [39], the peak performance of FPGAs is:

𝑃𝑒𝑎𝑘 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑝 × 𝑃𝐸𝑠 × 2 × 𝑓 , (1)

where 𝑃𝐸𝑠 is the number of processing elements (PEs) used in the
accelerator, such as the DSP blocks, 𝑓 is the clock frequency, and
×2 term accounts for multiply-accumulate (MAC) operations. The
packing factor for DSP blocks, 𝑝 , varies based on the bit-width of
the operation, with 𝑝 = 1 for 16-bit, 𝑝 = 2 for 8-bit, and 𝑝 = 4 for
4-bit multiply-accumulate operations.

Furthermore, the performance of an FPGA-based accelerator
is also limited by the memory, which is related to the memory
bandwidth (BW) and computation-to-communication (CTC) ratio:

𝑃𝑒𝑎𝑘 𝑚𝑒𝑚𝑜𝑟𝑦 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 𝐵𝑊 ×𝐶𝑇𝐶 𝑟𝑎𝑡𝑖𝑜. (2)

Table 1 summarizes the major differences between GPUs and
FPGAs, such as clock frequency, number of compute cores, and
memory bandwidth. The significant difference in clock frequency
contributes to a notable performance gap between GPUs and FPGAs.
Even with optimization such as pruning and quantization [10],
FPGA inference speed generally remains inferior to that of GPUs.

Table 1: Comparison between GPUs and FPGAs. Both V100
and U280 are compared using the PCIe version. Performance
is the theoretical peak extracted from corresponding product
datasheet [19, 33].

Devices V100 GPU Alveo U280 FPGA

Technology 12nm 16nm
Clock 1530MHz 300MHz

Compute cores 5120 CUDA cores 9024 DSP48E2640 Tensor cores

Performance 14TFLOPs(FP32 CUDA) 24.5 TOPs(INT8)112TFLOPs(FP16 Tensor)

Memory 32GB HBM2 32GB DDR4
8GB HBM2

Bandwidth 900GB/s 38GB/s (DDR4)
460GB/s (HBM2)

Power 250W 225W(Max)
100W(Typical)

Price $11,458 $7,717

Figure 1 shows the roofline model for U280. We take 1
64 resource

and HBM bandwidth of U280 for analysis. Conventional DSP-based
accelerators are compute bound when the arithmetic intensity sat-
isfies a threshold. Our LUTMUL exploits the potential of LUTs and
can achieve higher parallelism by our LUT efficient mapping.

101 102

Operational Intensity (Ops/Byte)

102

Pe
rfo

rm
an

ce
 (G

OP
s)

7.19 GB/s

DSP

LUTMUL

Roofline Model Analysis for DSP and LUTMUL Theoretical Performance
Peak Memory Bandwidth
Peak Performance

Figure 1: Roofline model analysis for LUTMUL and other
DSP-based architectures. We take 1

64 resource and memory
bandwidth of U280 for analysis.

2.2 Dataflow Architecture
Dataflow architecture contrasts with the traditional control flow
architecture. The dataflow nodes or processing elements can im-
mediately start and execute when all its inputs are ready. Dataflow
architecture employs simple operations, such as broadcast (one-
to-many), map (element-wise, e.g. activation function), zip (multi-
operands, e.g. convolution and matrix multiplication), and reduce
(many-to-one, e.g. pooling) [22]. A key advantage of reconfigurable
dataflow architecture is its ability to allow data to flow through the
computation graph efficiently, significantly enhancing parallelism
and minimizing memory access time.

LUTMUL: Exceed Conventional FPGA Roofline Limit by LUT-based Efficient MULtiplication for Neural Network Inference ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

2.3 FPGA-based Neural Network Accelerator
Architecture

Since FPGAs have relatively limited on-chip resources, most of the
FPGA accelerators [3, 24, 32, 34, 37] map computation onto hard-
ware and reuse the PE array. Notably, [18] explores the intra-layer
mixed-scheme quantization and maps vision transformer layers
onto a General Matrix Multiply (GEMM) kernel, where each layer
maintains a fixed ratio of this quantization scheme. Systolic ar-
ray architecture [30] presents another method for efficiently map-
ping convolution and matrix multiplication onto FPGAs with high
throughput.

FINN [2, 26] uses a dataflow architecture and integrates all layers
of the network into a single FPGA. The resources for each layer
can be adjusted according to computation requirements so that all
layers are balanced and pipelined for better throughput. FINN is
particularly well-suited for exploiting inter-layer quantization for
neural networks because each layer has dedicated computation and
memory resources.

3 ALGORITHM-HARDWARE CO-DESIGN FOR
LUTMUL

3.1 Motivation
The roofline model reveals a theoretical peak performance for DSP-
based accelerators, applicable across various architectures such as
GEMM, systolic array, or dataflow architecture. We can leverage
LUT resources to perform multiplication and full parallelism to
enable FPGA with greater performance. Given that the availability
of LUTs usually outnumbers DSPs, using LUTs can potentially
exceed the upper bound of performance of current DSP-based FPGA
accelerators.

0

10

20

30

40

50

60

70

0%

2%

4%

6%

8%

10%

12%

14%

16%

1-bit 2-bit 3-bit 4-bit 5-bit 6-bit 7-bit 8-bit

LUTs per

multiplication ↓

Accuracy

loss ↓

Quantization bit-width

Accuracy loss and LUT resources for 1-bit to 8-bit quantization

LUTs per multiplication Accuracy loss

Figure 2: Accuracy loss and LUT resources for 1-bit to 8-bit
quantization.

Figure 2 shows the quantized neural network accuracy [14, 36]
and the number of LUTs needed per multiplication by our method.
We trade-off between accuracy and LUT usage and choose 4-bit as
our quantization bit-width. Binary and ternary neural networks
incur large accuracy drops and consume half of the LUTs that 4-bit
uses as the output bits of LUTs are limited. Compared with higher
bit-width quantization, 4-bit uses significantly fewer LUTs and has
negligible accuracy loss.

3.2 LUTMUL Design Flow

Quantization-Aware
Training

Hardware
Generation

Deployment

Quantization-aware training

Import, streamlining transformations, reordering

Convert to HLS layers using HLS templates

Adjust folding for performance/resource requirements

Generate IP cores, stitch IP design by Vivado

PYNQ-provided Python abstractions and drivers

Exported quantized ONNX layers

Stitched IP design

Figure 3: LUTMUL Design flow.

Figure 3 depicts the LUTMUL design flow. Initially, we train the
neural network in our quantization-aware training framework. The
quantization bit-widths for weights and activations are adjustable
hyperparameters. The final quantized neural network is exported
in Open Neural Network Exchange (ONNX) format, facilitating
subsequent hardware generation.

The ONNX intermediate representation is interpreted as a com-
putation graph and undergoes a streamlining transformation [27].
The scaling factors of each channel and batch normalization layer
are reordered and absorbed into the activation function, transform-
ing into a multi-threshold unit. Each computation node is converted
to a High-Level Synthesis (HLS) layer using our HLS templates.
These HLS layers are folded according to performance and resource
requirements and interconnected sequentially. The final hardware
bitstream, generated by Vivado, is deployed on FPGA boards via
the PYNQ framework.

3.3 Reconfigurable Dataflow Architecture
Figure 4 illustrates the hardware architecture of a MobileNetV2 [23]
implementation. This design, focusing on inverted residual blocks,
employs a First In, First Out (FIFO) buffer between layers to store
activations. The architecture uses a reconfigurable dataflow archi-
tecture.

Our design spans all Super Logic Regions (SLRs) to maximize
hardware resources. Signals only traverse SLRs when the current
SLR resources are insufficient for the next layer to avoid severe tim-
ing violations. Dataflow architecture is inherently suited for design
spanning multiple SLRs and can be scaled up, enabling additional
FPGAs connected via network for deploying larger networks [6].

3.4 Convolution Generator
For convolutional layers, the convolution operations can be lowered
to matrix-matrix multiplications. These can be mapped in a stream-
ing manner and fed to the multiplication kernel. The multiplication

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Yanyue Xie, Zhengang Li, Dana Diaconu, Suranga Handagala, Miriam Leeser, and Xue Lin

HBM HBM

D
D

R
4

D
D

R
4

FIFOImage
Stream

Result
Stream

SLR0

SLR2

Pointwise Conv Generator

LUT-based MUL

Adder tree

Threshold Memory

FIFO

Pointwise Conv Generator

LUT-based MUL

Adder tree

Threshold Memory

Depthwise Conv Generator

LUT-based MUL

Adder tree

Threshold Memory

FIFO FIFO

LUT-based MUL

Add with bias

Threshold Memory

Sliding
Window

Unit

Max
operator

SLR1

Figure 4: Hardware architecture of accelerator generated by
LUTMUL. Our design is fully on-chip and does not use DRAM
or HBMmemory.

kernel is fully paralleled to perform a matrix-vector multiplication,
where the weights are stationary vectors and activations are stream-
ing inputs. Therefore, we need a convolution generator to perform
the im2col operations: reading data from FIFO, moving across input
images to form an image matrix, and streaming the output to the
multiplication kernel.

The convolution generator accommodates various configura-
tions, including pointwise, depthwise, and standard convolution
with different kernel sizes and strides, since each kind of convolu-
tional layer expects different input data sequences, necessitating
specific generator settings.

3.5 Look-Up Table based Efficient
Multiplication

Figure 5 demonstrates the look-up table based multiplication ker-
nels and how to determine look-up table initialization (INIT) values.
After embedding the weights into look-up tables, our look-up tables
transform into efficient constant multipliers [11]. Our look-up table
based multiplier is efficient in resources, utilizing only 2 LUTs on
average for a single 4-bit multiplication, compared with a general
multiplier that consumes 13-28 LUTs for an equivalent operation.
The choice of 4-bit quantization is pivotal as it maintains model
accuracy and optimizes look-up table usage, as shown in Figure 2.
We show the number of LUT6 (6:1 LUT, 6-bit input, 1-bit output) for
a general n-bit multiplication (n:2n LUT, n-bit input, 2n-bit output)
using our method:

#𝐿𝑈𝑇𝑠 =
2𝑛 × 2𝑛
1 × 26

. (3)

Algorithm 1 shows the pseudo High-Level Synthesis (HLS) code
for look-up table based multiplication. The table contents are de-
rived from pre-computed weights. The weights of convolutional
layers are fully paralleled, meaning that the𝐶𝑂𝑈𝑇 channel in Algo-
rithm 1 refers to the output channels, and the𝐶𝐼𝑁 channel refers to
the input channels times the kernel size squared. These dimensions
(four in total) are fully unrolled in the spatial domain. The remain-
ing input feature map height and width dimensions are pipelined in
the temporal domain. Input activations are streamed from the con-
volution generator and passed through look-up tables. The output
results are multiplication results. They are accumulated, go through
the threshold unit, and generate activations for the next layer.

Algorithm 1 Look-up table based multiplication kernel
Input: Streaming parallel input from the Convolution Generator and pre-

computed look-up table contents
Output: Streaming output for the next layer
1: for 𝑖 ← 1 𝑡𝑜 𝑅𝑂𝑊𝑆 × 𝐶𝑂𝐿𝑆 do
2: #pragma HLS PIPELINE II=1
3: 𝑖𝑛𝑝𝑢𝑡 ← 𝑠𝑟𝑐.𝑟𝑒𝑎𝑑 ()
4: for 𝑐𝑜 ← 1 𝑡𝑜 𝐶𝑂𝑈𝑇 do
5: #pragma HLS UNROLL
6: for 𝑐𝑖 ← 1 𝑡𝑜 𝐶𝐼𝑁 do
7: #pragma HLS UNROLL
8: 𝑚𝑢𝑙 [𝑐𝑜] [𝑐𝑖] ← 𝑙𝑢𝑡 [𝑐𝑜] [𝑐𝑖] [𝑖𝑛𝑝𝑢𝑡 [𝑐𝑖]]
9: end for
10: end for
11: for 𝑐𝑜 ← 1 𝑡𝑜 𝐶𝑂𝑈𝑇 do
12: #pragma HLS UNROLL
13: for 𝑐𝑖 ← 1 𝑡𝑜 𝐶𝐼𝑁 do
14: #pragma HLS UNROLL
15: 𝑜𝑢𝑡𝑝𝑢𝑡 [𝑐𝑜]+ =𝑚𝑢𝑙 [𝑐𝑜] [𝑐𝑖]
16: end for
17: end for
18: 𝑑𝑠𝑡 .𝑤𝑟𝑖𝑡𝑒 (𝑜𝑢𝑡𝑝𝑢𝑡)
19: end for

3.6 Quantization-Aware Training
Quantization [10] and DSP packing [24] have become a standard
approach for mapping neural networks onto FPGA-based accel-
erators, as FPGAs’ LUTs and DSP blocks are not optimized for
floating-point but ideal for integer or fixed-point operations. Quan-
tization, paired with DSP packing, reduces resource demands for
the multiplications and improves throughput.

The quantization operation is defined as:

𝑦 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒 (𝑥) = 𝑐𝑙𝑎𝑚𝑝 (𝑟𝑜𝑢𝑛𝑑 (𝑥
𝑠
+ 𝑧), 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥), (4)

where 𝑥 is the floating-point value to quantize, 𝑠 is the scaling
factor of the output quantized tensor, and 𝑧 is the zero-point or
quantization bias coefficient. The function, 𝑟𝑜𝑢𝑛𝑑 , can be round-to-
even or round-to-zero, and 𝑐𝑙𝑎𝑚𝑝 performs clipping inclusive of
the boundaries 𝑦𝑚𝑖𝑛 and 𝑦𝑚𝑎𝑥 .

For the reverse process, to compute the floating-point represen-
tation of a quantized value, we define the dequantize operation
as:

𝑑𝑒𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒 (𝑦) = 𝑠 (𝑦 − 𝑧), (5)

LUTMUL: Exceed Conventional FPGA Roofline Limit by LUT-based Efficient MULtiplication for Neural Network Inference ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

LUT6_2 #3

INIT=64'hfffe_0000_fffe_0000

6-Input Look-Up Table

A[3:0]

1'b1

LUT5

LUT5

O7

O6

WS

4

LUT6_2 #2

INIT=64'h07fe_0000_f83e_0000

6-Input Look-Up Table

A[3:0]

1'b1

LUT5

LUT5

O5

O4

WS

4

LUT6_2 #1

INIT=64'h39c6_ff00_5a5a_f0f0

6-Input Look-Up Table

A[3:0]

1'b1

LUT5

LUT5

O3

O2

WS

4

LUT6_2 #0

INIT=64'hcccc_cccc_aaaa_aaaa

6-Input Look-Up Table

A[3:0]

1'b1

LUT5

LUT5

O1

O0

WS

4

Activation(uint4) Weight=1 Output(int8) Weight=-3 Output(int8)

4'b0000 8'b00000000 8'b00000000

4'b0001 8'b00000001 8'b11111101

4'b0010 8'b00000010 8'b11111010

4'b0011 8'b00000011 8'b11110111

4'b0100 8'b00000100 8'b11110100

4'b0101 8'b00000101 8'b11110001

4'b0110 8'b00000110 8'b11101110

4'b0111 8'b00000111 8'b11101011

4'b1000 8'b00001000 8'b11101000

4'b1001 8'b00001001 8'b11100101

4'b1010 8'b00001010 8'b11100010

4'b1011 8'b00001011 8'b11011111

4'b1100 8'b00001100 8'b11011100

4'b1101 8'b00001101 8'b11011001

4'b1110 8'b00001110 8'b11010110

4'b1111 8'b00001111 8'b11010011

Activation Multiplication results

Weight=1, WS=0 Weight=-3, WS=1

4’b0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4’b0001 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1
4’b0010 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0
4’b0011 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1
4’b0100 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0
4’b0101 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 1
4’b0110 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0
4’b0111 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1
4’b1000 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0
4’b1001 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0 1
4’b1010 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0
4’b1011 0 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1
4’b1100 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 0
4’b1101 0 0 0 0 1 1 0 1 1 1 0 1 1 0 0 1
4’b1110 0 0 0 0 1 1 1 0 1 1 0 1 0 1 1 0
4’b1111 0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1

Figure 5: Illustration of LUTMUL for efficient multiplication via look-up tables. The left-hand side figure demonstrates how
to use LUT6_2 primitive for embedding multiplication results of weights and input activations. The right-hand side table
demonstrates the multiplication results of two example weights and how to generate the corresponding look-up table contents.
The weights (int4) and multiplication output (int8) are using two’s complement representation, while activation are all unsigned numbers
(uint4). The Most Significant Bit (MSB) of LUT6_2 input is configured as ‘1’ to enable two output ports. The bit below the MSB is a
Weight Select (WS) signal to select between two weights. The lowest 4-bit inputs serve as activation inputs. Our method embeds two
int4 weights inside four LUT6, a resource-efficient approach contrasting with the LUT6-instantiated general multipliers, which consume
6-14× more LUT6 resources. Two used example weights are 1 and -3 respectively. The embedded LUT contents for these four LUTs are
64’hfffe_0000_fffe_0000, 64’h07fe_0000_f83e_0000, 64’h39c6_ff00_5a5a_f0f0, and 64’hcccc_cccc_aaaa_aaaa, respectively.

where 𝑦 is a quantized tensor, 𝑧 is its zero-point, and 𝑠 is the scaling
factor.

Quantization introduces errors to the trained model parame-
ters and results in performance degradation. Quantization-Aware
Training (QAT) is a popular approach that retrains the model with
quantized parameters on the pretraining dataset to converge to the
pretrained model performance. The usual forward and backward
passes are performed on the quantized model in floating point, and
the model parameters are quantized after each gradient update.
In particular, it is important to do this projection after the weight
update is performed in floating point precision. Performing the
backward pass with floating point is vital, as accumulating the
gradients in quantized precision can result in zero gradients or
gradients with high error, especially in low-precision scenarios [9].

4 EVALUATION
4.1 Experimental Setup
To evaluate the performance of LUTMUL, we implementMobileNetV2
on FPGAs and compare it with existing FPGA-based MobileNet ac-
celerators. MobilenetV2 [23] has 3.4M parameters and achieves
71.88% top-1 accuracy on the ImageNet dataset [5]. We utilize the
FINN framework [2] as our foundational platform. For quantiza-
tion, we adopt PyTorch 1.13.0 and Brevitas 0.9.1 [20]. Specifically,
we choose 4-bit for weights and activations quantization except
for the first and last layers, which are set as 8-bit. To preserve the
accuracy of the MobileNetV2 model, we apply the channel-wise

quantization scheme for our model. Our quantized MobileNetV2
network is trained for 420 epochs, culminating in a 70.95% top-1
accuracy evaluated on the ImageNet dataset [5].

For the hardware evaluation, the utilized development platform
is the AMD Xilinx Alveo U280 data center accelerator card on the
Open Cloud Testbed (OCT) [40]. We implement the first 15 layers
of MobileNetV2 in a fully parallel manner and fold the remaining
layers for resource optimization. To maximize the computation
efficiency without timing violation, the working frequency is set to
333 MHz for all the designs implemented through Vitis HLS/Vivado
2022.1.

4.2 Experimental Results
Table 2 showcases the hardware performance and comparisons with
other FPGA-based MobileNet accelerators. Most of these accelera-
tors are tailored for edge FPGAs, such as ZU9EG, except for FINN,
which has data center accelerator implementation for MobileNetV1.
The FINN result is generated and tested on the same device as our
implementation, while other data points are extracted from their
original publications.

In terms of accuracy, our model achieves the best 70.95% top-1
accuracy on ImageNet among all implementations. Quantization-
aware training effectively mitigates quantization errors, preserving
the model original accuracy, even with 4-bit quantized weights and
activations.

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Yanyue Xie, Zhengang Li, Dana Diaconu, Suranga Handagala, Miriam Leeser, and Xue Lin

Table 2: Comparisons of MobileNet implementations between previous FPGA-based accelerators.

Implementation FINN FPL’19 Light-OPU FPL’21 Mix & Match FILM-QNN LUTMUL
[2] [32] [37] [34] [3] [24] (Ours)

Network MobileNetV1 MobileNetV2 MobileNetV3 MobileNetV2 MobileNetV2 MobileNetV2 MobileNetV2
Bit-Width W4A4 W8A8 W8A8 W8A8 W4A4 W8A5&W4A5 W4A4

Top-1 Accuracy 70.4% 68.1% 66.7% 70.8% 65.6% 65.7% 70.95%
Platform Alveo U280 ZU9EG XC7K325T XC7V690T XC7Z045 ZU9EG Alveo U280

Frequency (MHz) 333 333 200 150 100 150 333
LUT 501363 161944 173522 308449 145049 180100 529242
FF 476316 301416 241175 278926 111575 - 503192

BRAM36 898 771 193.5 941.5 225.5 440.5 1119
DSP 106 2070 704 2160 900 2092 106

Power (W) 41.69 - 8.5* 11.35 - 12.9 42.12
Frame Rate (FPS) 925 809.8 332.6 302.3 549.3 537.9 1627

Throughput (GOPS) 556.4 487.1 84.48* 181.8 326.9 320.1 978.6
Energy Efficiency (GOPS/W) 13.35 - 9.9 16.02 - 24.8 23.23

Note: ‘-’ means that the result is not given in the original publications, and ‘*’ means that the result is inferred from the original publications.

As for the inference performance, our implementation achieves
a throughput of 1627 images per second. Our implementation con-
sumes the most FPGA resources but could still fit on a single Alveo
U280. However, it is noteworthy that our implementation also yields
a 23.23 GOPS/W energy efficiency, marginally lower than the FLIM-
QNN [24], which is implemented on a more power-efficient edge
FPGA board.

4.3 Discussion

LUT as ROM
3277
55%

Adder logic
2645
45%

Implementation
LUT as ROM Adder logic

Memory
(multiplication)

1829
11%

Expression (addition)
14944
89%

Synthesis
Memory (multiplication) Expression (addition)

Figure 6: LUTResource breakdown of the second convolution
layer in MobileNetV2 using LUTMUL.

Figure 6 shows the LUT resource breakdown of the second con-
volution layer in MobileNetV2 using LUTMUL, which is a 1 × 1 con-
volution kernel and has 32 input channels and 32 output channels.
For these 1024 4-bit weights, multiplication operations use 1829
LUTs after HLS synthesis, which matches the theoretical analysis
of LUTMUL. However, HLS instantiates an adder for each addition
operation to achieve an II of 1, resulting in a high usage of LUT
for adder logic. After Vivado implementation, the LUT usage de-
creased to 5922. Vivado optimizes the logic and instantiates 3277
LUTs as ROM and 2645 LUTs as adder and other logic. Even though
adder logic accounts for a large part of resources, the parallel MAC

performance by LUTMUL still outperforms the DSP packing method
using the same number of resources.

4.4 Comparisons with Related Works
Our method is not only limited to integer multiplication, but can
also be extended to customized data formats, such as FP4 and
MXFP4 [21], while DSP packing is designed efficiently for integer
formats. LUTNet [28, 29] also utilizes LUT for inference and ex-
plores the flexibility of LUT. However, LUTNet design suffers from
low accuracy when the network becomes larger. PolyLUT [1] trains
multivariate polynomials instead of linear functions and embeds
piecewise polynomial functions into LUTs. CompressedLUT [15]
proposes a lossless LUT compression method and is efficient for
non-linear functions and large LUT logic blocks, such as [8, 12, 25].
Our method maps MAC operations to the single-LUT level, and
Vivado can handle remaining logic optimization efficiently.

5 CONCLUSION
We propose LUTMUL, an efficient method that leverages look-up ta-
bles for multiplication in convolutional neural networks. Compared
with the general multiplier, our method is efficient in resources,
which only needs two look-up tables on average for a single 4-bit
multiplication. Compared with other DSP-based FPGA accelerators,
LUTMUL’s reconfigurable dataflow architecture enables full paral-
lelism, reduces memory access time, and increases the theoretical
upper bound of performance. Experimental results demonstrate
that our design maintains a top-1 accuracy of 70.95% on the Ima-
geNet dataset and achieves a throughput of 1627 images per second
on a single Alveo U280 FPGA, outperforming other FPGA-based
MobileNet accelerators.

ACKNOWLEDGMENTS
This research was supported in part by the National Science Foun-
dation under Grants CCF-1901378, CNS-1925658, and CNS-2319962.

LUTMUL: Exceed Conventional FPGA Roofline Limit by LUT-based Efficient MULtiplication for Neural Network Inference ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

REFERENCES
[1] Marta Andronic and George A Constantinides. 2023. PolyLUT: learning piecewise

polynomials for ultra-low latency FPGA LUT-based inference. In 2023 Interna-
tional Conference on Field Programmable Technology (ICFPT). 60–68.

[2] Michaela Blott, Thomas B Preußer, Nicholas J Fraser, Giulio Gambardella, Kenneth
O’brien, Yaman Umuroglu, Miriam Leeser, and Kees Vissers. 2018. FINN-R: An
end-to-end deep-learning framework for fast exploration of quantized neural
networks. ACM Transactions on Reconfigurable Technology and Systems (TRETS)
11, 3 (2018), 1–23.

[3] Sung-En Chang, Yanyu Li, Mengshu Sun, Runbin Shi, Hayden K-H So, Xuehai
Qian, Yanzhi Wang, and Xue Lin. 2021. Mix and match: A novel fpga-centric deep
neural network quantization framework. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA). IEEE, 208–220.

[4] Hongzheng Chen, Jiahao Zhang, Yixiao Du, Shaojie Xiang, Zichao Yue, Niansong
Zhang, Yaohui Cai, and Zhiru Zhang. 2024. Understanding the potential of fpga-
based spatial acceleration for large language model inference. ACM Transactions
on Reconfigurable Technology and Systems (TRETS) (2024).

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Ima-
genet: A large-scale hierarchical image database. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 248–255.

[6] Dana Diaconu, Yanyue Xie, Mehmet Gungor, Suranga Handagala, Xue Lin, and
Miriam Leeser. 2023. Machine Learning Across Network-Connected FPGAs. In
2023 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1–7.

[7] Peiyan Dong, Mengshu Sun, Alec Lu, Yanyue Xie, Kenneth Liu, Zhenglun Kong,
Xin Meng, Zhengang Li, Xue Lin, Zhenman Fang, et al. 2023. Heatvit: Hardware-
efficient adaptive token pruning for vision transformers. In 2023 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE, 442–455.

[8] Daniel Gerlinghoff, Benjamin Chen Ming Choong, Rick Siow Mong Goh, Weng-
Fai Wong, and Tao Luo. 2024. Table-Lookup MAC: Scalable Processing of Quan-
tised Neural Networks in FPGA Soft Logic. In Proceedings of the 2024 ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA).

[9] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and
Kurt Keutzer. 2022. A survey of quantization methods for efficient neural network
inference. In Low-Power Computer Vision. Chapman and Hall/CRC, 291–326.

[10] SongHan, Huizi Mao, andWilliam J Dally. 2016. Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.
International Conference on Learning Representations (ICLR) (2016).

[11] Martin Hardieck, Martin Kumm, Konrad Möller, and Peter Zipf. 2019. Reconfig-
urable convolutional kernels for neural networks on FPGAs. In Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA). 43–52.

[12] Jingkai Hong, Arash Fayyazi, Amirhossein Esmaili, Mahdi Nazemi, and Massoud
Pedram. 2023. Algorithms and Hardware for Efficient Processing of Logic-based
Neural Networks. In Proceedings of the 60th ACM/IEEE Design Automation Con-
ference (DAC). IEEE, 1–6.

[13] SeongminHong, SeungjaeMoon, Junsoo Kim, Sungjae Lee, Minsub Kim, Dongsoo
Lee, and Joo-Young Kim. 2022. DFX: A Low-latency Multi-FPGA Appliance
for Accelerating Transformer-based Text Generation. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 616–630.

[14] Qing Jin, Linjie Yang, and Zhenyu Liao. 2020. Adabits: Neural network quan-
tization with adaptive bit-widths. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 2146–2156.

[15] Alireza Khataei and Kia Bazargan. 2024. CompressedLUT: An Open Source
Tool for Lossless Compression of Lookup Tables for Function Evaluation and
Beyond. In Proceedings of the 2024 ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA).

[16] Bingbing Li, Santosh Pandey, Haowen Fang, Yanjun Lyv, Ji Li, Jieyang Chen,
Mimi Xie, Lipeng Wan, Hang Liu, and Caiwen Ding. 2020. Ftrans: energy-
efficient acceleration of transformers using fpga. In Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and Design (ISLPED). 175–180.

[17] Zhengang Li, Alec Lu, Yanyue Xie, Zhenglun Kong, Mengshu Sun, Hao Tang,
Zhong Jia Xue, Peiyan Dong, Caiwen Ding, Yanzhi Wang, et al. 2024. Quasar-
ViT: Hardware-Oriented Quantization-Aware Architecture Search for Vision
Transformers. In Proceedings of the 38th ACM International Conference on Super-
computing (ICS). 324–337.

[18] Zhengang Li, Mengshu Sun, Alec Lu, Haoyu Ma, Geng Yuan, Yanyue Xie, Hao
Tang, Yanyu Li, Miriam Leeser, Zhangyang Wang, Xue Lin, and Zhenman Fang.
2022. Auto-vit-acc: An fpga-aware automatic acceleration framework for vi-
sion transformer with mixed-scheme quantization. In 2022 32nd International
Conference on Field-Programmable Logic and Applications (FPL). IEEE, 109–116.

[19] Nvidia. 2017. Nvidia Tesla V100 GPU Architecture Whitepaper.
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-
whitepaper.pdf. Last accessed Oct. 30, 2024.

[20] Alessandro Pappalardo. 2023. Xilinx/brevitas. https://doi.org/10.5281/zenodo.
3333552

[21] Bita Darvish Rouhani, Ritchie Zhao, Ankit More, Mathew Hall, Alireza Kho-
damoradi, Summer Deng, Dhruv Choudhary, Marius Cornea, Eric Dellinger,

Kristof Denolf, et al. 2023. Microscaling data formats for deep learning. arXiv
preprint arXiv:2310.10537 (2023).

[22] Sambanova Whitepaper. 2021. Accelerated Computing with a Reconfigurable
Dataflow Architecture. https://sambanova.ai/wp-content/uploads/2021/
04/SambaNova_Accelerated-Computing-with-a-Reconfigurable-Dataflow-
Architecture_Whitepaper_English.pdf. Last accessed Oct. 30, 2024.

[23] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 4510–4520.

[24] Mengshu Sun, Zhengang Li, Alec Lu, Yanyu Li, Sung-En Chang, Xiaolong Ma,
Xue Lin, and Zhenman Fang. 2022. Film-qnn: Efficient fpga acceleration of deep
neural networks with intra-layer, mixed-precision quantization. In Proceedings
of the 2022 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA). 134–145.

[25] Yaman Umuroglu, Yash Akhauri, Nicholas James Fraser, and Michaela Blott. 2020.
LogicNets: Co-designed neural networks and circuits for extreme-throughput
applications. In 2020 30th International Conference on Field-Programmable Logic
and Applications (FPL). IEEE, 291–297.

[26] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott, Philip
Leong, Magnus Jahre, and Kees Vissers. 2017. Finn: A framework for fast, scal-
able binarized neural network inference. In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA). 65–74.

[27] Yaman Umuroglu and Magnus Jahre. 2017. Streamlined deployment for quantized
neural networks. arXiv preprint arXiv:1709.04060 (2017).

[28] Erwei Wang, James J Davis, Peter YK Cheung, and George A Constantinides.
2019. LUTNet: Rethinking inference in FPGA soft logic. In 2019 IEEE 27th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM). IEEE, 26–34.

[29] Erwei Wang, James J Davis, Georgios-Ilias Stavrou, Peter YK Cheung, George A
Constantinides, and Mohamed Abdelfattah. 2022. Logic shrinkage: Learned FPGA
netlist sparsity for efficient neural network inference. In Proceedings of the 2022
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA).
101–111.

[30] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han
Hu, Yun Liang, and Jason Cong. 2017. Automated systolic array architecture
synthesis for high throughput CNN inference on FPGAs. In Proceedings of the
54th Annual Design Automation Conference (DAC). 1–6.

[31] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an
insightful visual performance model for multicore architectures. Commun. ACM
52, 4 (2009), 65–76.

[32] Di Wu, Yu Zhang, Xijie Jia, Lu Tian, Tianping Li, Lingzhi Sui, Dongliang Xie,
and Yi Shan. 2019. A high-performance CNN processor based on FPGA for
MobileNets. In 2019 29th International Conference on Field Programmable Logic
and Applications (FPL). 136–143.

[33] AMDXilinx. 2021. Alveo Product Selection Guide. https://docs.xilinx.com/v/u/en-
US/alveo-product-selection-guide. Last accessed Oct. 30, 2024.

[34] Shun Yan, Zhengyan Liu, Yun Wang, Chenglong Zeng, Qiang Liu, Bowen Cheng,
and Ray CC Cheung. 2021. An fpga-based mobilenet accelerator considering
network structure characteristics. In 2021 31st International Conference on Field-
Programmable Logic and Applications (FPL). IEEE, 17–23.

[35] Geng Yang, Yanyue Xie, Zhong Jia Xue, Sung-En Chang, Yanyu Li, Peiyan Dong,
Jie Lei, Weiying Xie, Yanzhi Wang, Xue Lin, and Zhenman Fang. 2024. SDA:
Low-Bit Stable Diffusion Acceleration on Edge FPGAs. In 2024 34th International
Conference on Field-Programmable Logic and Applications (FPL). 264–273.

[36] Linjie Yang and Qing Jin. 2021. Fracbits: Mixed precision quantization via frac-
tional bit-widths. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), Vol. 35. 10612–10620.

[37] Yunxuan Yu, Tiandong Zhao, Kun Wang, and Lei He. 2020. Light-OPU: An FPGA-
based overlay processor for lightweight convolutional neural networks. In Pro-
ceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA). 122–132.

[38] Shulin Zeng, Jun Liu, Guohao Dai, Xinhao Yang, Tianyu Fu, Hongyi Wang,
Wenheng Ma, Hanbo Sun, Shiyao Li, Zixiao Huang, Yadong Dai, Jintao Li, Zehao
Wang, Ruoyu Zhang, Kairui Wen, Xuefei Ning, and Yu Wang. 2024. FlightLLM:
Efficient Large Language Model Inference with a Complete Mapping Flow on
FPGA. In Proceedings of the 2024 ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA).

[39] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.
2015. Optimizing FPGA-based accelerator design for deep convolutional neural
networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on
Field Programmable Gate Arrays (FPGA). 161–170.

[40] Michael Zink, David Irwin, Emmanuel Cecchet, Hakan Saplakoglu, Orran Krieger,
Martin Herbordt, Michael Daitzman, Peter Desnoyers, Miriam Leeser, and
Suranga Handagala. 2021. The Open Cloud Testbed (OCT): A platform for
research into new cloud technologies. In 2021 IEEE 10th International Conference
on Cloud Networking (CloudNet). IEEE, 140–147.

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.5281/zenodo.3333552
https://sambanova.ai/wp-content/uploads/2021/04/SambaNova_Accelerated-Computing-with-a-Reconfigurable-Dataflow-Architecture_Whitepaper_English.pdf
https://sambanova.ai/wp-content/uploads/2021/04/SambaNova_Accelerated-Computing-with-a-Reconfigurable-Dataflow-Architecture_Whitepaper_English.pdf
https://sambanova.ai/wp-content/uploads/2021/04/SambaNova_Accelerated-Computing-with-a-Reconfigurable-Dataflow-Architecture_Whitepaper_English.pdf
https://docs.xilinx.com/v/u/en-US/alveo-product-selection-guide
https://docs.xilinx.com/v/u/en-US/alveo-product-selection-guide

	Abstract
	1 Introduction
	2 Background
	2.1 Roofline Model Analysis
	2.2 Dataflow Architecture
	2.3 FPGA-based Neural Network Accelerator Architecture

	3 Algorithm-Hardware Co-Design for LUTMUL
	3.1 Motivation
	3.2 LUTMUL Design Flow
	3.3 Reconfigurable Dataflow Architecture
	3.4 Convolution Generator
	3.5 Look-Up Table based Efficient Multiplication
	3.6 Quantization-Aware Training

	4 Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 Discussion
	4.4 Comparisons with Related Works

	5 Conclusion
	Acknowledgments
	References

