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Abstract: Positivity bounds in effective field theories (EFTs) can be extracted through

the moment problem approach, utilizing well-established results from the mathematical

literature. We generalize this formalism using the matrix moment approach to derive pos-

itivity bounds for theories with multiple field components. The sufficient conditions for

obtaining optimal bounds are identified and applied to several example field theories, yield-

ing results that match precisely the numerical bounds computed using other methods. The

upper unitarity bounds can also be easily harnessed in the matrix case. Furthermore, the

moment problem formulation also provides a means to reverse engineer the UV spectrum

from the EFT coefficients, often uniquely, as explicitly demonstrated in examples such as

string amplitudes and the stu kink theory.
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1 Introduction and Summary

The space of consistent quantum field theories is strongly constrained by the fundamental

principles of the S-matrix. In an effective field theory (EFT) setup, unitarity conditions

in the UV can be carried down to low energies through dispersion relations, which arise

from causality/analyticity and locality [1–17] (see [18] for a review). These constraints,
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often referred to as positivity bounds or causality bounds, impose stringent bounds on the

EFT coefficients, especially when crossing symmetry is fully used [6, 7]. This approach has

proven fruitful when applied to the Standard Model EFT [19–31], chiral perturbation theory

[32–37], gravitational EFTs [38–46], string EFTs [47–49], and cosmological models [50–54].

They underscore the fact that, while separation/decoupling of scales is essential for the

EFT framework to function, equally important is to recognize the UV-IR mixing in defining

the space of consistent EFTs. Alternatively, the restrictions on the EFT coefficients can

be obtained by directly constructing all viable crossing-symmetric amplitudes that satisfy

unitarity conditions [55–58] (see [59] for a review).

For an EFT weakly coupled at low energies, the extraction of the positivity bounds

from dispersive sum rules can be formulated as a (mathematical) moment problem [4, 5, 10,

17, 42]. The moment problem dates back as early as Stieltjes, Hausdorff and Hamburger,

and has been extensively studied in the mathematical literature [60], while the connections

between the pion scattering and the Stieltjes moment problem, in a slightly different form,

were already explored a few decades ago [61–64].

In the context of a single scalar EFT that is weakly coupled below the cutoff Λ, its

dispersive sum rules in the forward limit can be rewritten as

g2i,0 =

∫ ∞

Λ2

2 ds′

πs′1+2i
ImA

(
s′, t = 0

) x1 ≡Λ2/s′−−−−−−→ g2i,0 = Λ−4i

∫ 1

0
x2i1 dµ(x1) (1.1)

where g2i,0 are the EFT coefficients when expanding the 2-to-2 scattering amplitude in

terms of the Mandelstam variables A(s, 0) ∼
∑

i g
2i,0s2i and dµ is a positive measure due

to the optical theorem ImA(s′, 0) ≥ 0. This is simply the classical Hausdorff moment

problem: given a generic positive measure dµ (i.e., without knowledge of the specific

form of the UV theory except for the unitarity condition ImA(s′, 0) ≥ 0), what are the

allowed values for g2i,0 according to the integral representation (1.1)? The solution to this

problem can be given in terms of the Hankel matrices: H(g2i,0) ⪰ 0, H(g2i,0)|2i→2i+2 ⪰
0, H(g2i,0) − H(g2i,0)|2i→2i+2 ⪰ 0, where the Hankel matrix is defined by Hα,β(g2i,0) =

g2α+2β+2,0 for α, β = 0, 1, 2, ... and the notation ⪰ 0 denotes the matrix being positive

semi-definite (PSD). Away from the forward limit, the EFT amplitudes can be expanded

as A(s, t) ∼
∑

i,j g
i,j(s + t/2)itj , and the dispersive sum rules can be written as a double

summation over the UV mass scale s′ and spin ℓ, with the latter coming from the partial

wave expansion of the imaginary part of the UV amplitude. By introducing a second

moment variable x2 = ℓ(ℓ+ 1)Λ2/s′, these sum rules can be cast as a sum of bi-variate

moments [10]:

gi,j =
∑
ℓ

∫ ∞

Λ2

ηi,jℓ(ℓ+1)ds
′

s′i+j+1
ImAℓ(s′)

x1≡Λ2

s′−−−−−−−−→
x2≡Λ2ℓ(ℓ+1)

s′

gi,j ∼
∑
γ1,γ2

Ṽ i,j
γ1,γ2

∫
K
xγ11 xγ22 dµ(x1, x2) (1.2)

where ηi,jℓ(ℓ+1) is a polynomial in ℓ(ℓ + 1) and K is a set of rays in the x1-x2 plane defined

by x2 = ℓ(ℓ + 1)x1 with ℓ = 0, 2, 4, ... . With this formulation, the positivity bounds

can again be formulated as PSD conditions on (generalized) Hankel matrices. In some

simple cases, the positivity bounds can even be computed analytically [10]. However, in
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general, to obtain optimal bounds with curved boundaries, one still needs to implement

semi-definite programs (SDPs) in the final step after using the analytical results from the

moment problem.

In this paper, we shall discuss two improvements to the moment formulation above.

First of all, we propose to use a mixed-variate moment formulation to speed up the compu-

tation of the final numerical bounds. The inefficiency of the (pure) bi-variate formulation

arises from the fact that the integration over the x1-x2 plane is performed along discrete

rays rather than over continuous 2D regions. As a result, much of the effort in evaluating

these bounds involves eliminating redundant integration regions in the x1-x2 plane, which

in turn leads to a proliferation of PSD conditions on Hankel matrices. In our mixed-variate

formulation, we separate the low spin partial waves into a number of uni-variate moments

ai+j−2
ℓ , one for each partial wave, and approximate the high spin partial waves with a

bi-variate moment bi−2,j defined in a continuous 2D region in the x1-x2 plane (see Figure

3):

gi,j =

ℓM−1∑
ℓ=0

U i,j
ℓ(ℓ+1)a

i+j−2
ℓ +

∑
i′,j′

V i,j
i′j′b

i′−2,j′ + (u-channel) (1.3)

As we will see, this formulation is significantly more efficient numerically while maintaining

high accuracy, especially when a large number of partial waves are involved and one seeks

to impose the sufficient conditions discussed below.

Second, we identify the sufficient conditions for obtaining the optimal positivity bounds.

We will see that with the existing conditions on the Hankel matrices the positivity bounds

are slightly different from the linear programming results of [7], and the differences increase

for high-order EFT coefficients. Mathematically, the solvability of a moment problem is

equivalent to the existence of a PSD measure for the integral representation of the moment

sequence. Assuming the existence of the integral form with a PSD measure, it is easy to

find some necessary conditions for the moment problem by simply constructing PSD quan-

tities in terms of Hankel matrices (see around Eq. (3.2)). By the Riesz representation as

well as the Stone-Weierstrass theorem and the Positivstellensatz, the sufficient conditions

can also be formulated in terms of PSD conditions on a set of Hankel matrices (see around

3.14). For a moment problem defined in a semialgebraic set, a sufficient set of Hankel

matrices is given by the following “power set”

P(p̂) = {p̂e11 p̂e22 · · · p̂ekk | el being either 0 or 1} (1.4)

= { 1, p̂1, · · · , p̂k, p̂1p̂2, · · · , p̂k−1p̂k, · · · , p̂1p̂2 · · · p̂k−1p̂k } (1.5)

where p̂i are the defining polynomials of the semialgebraic set K (i.e., K is the region carved

out by p̂i ≥ 0).

Given a finite number of EFT coefficients, we are usually interested in a truncated

moment problem. In this case, solvability additionally requires the existence of eventual

flat extensions to the truncated Hankel matrices, which guarantees the existence of an

underlying solvable full moment sequence. (A flat extension of a Hankel matrix is an

enlarged Hankel matrix that retains the same rank as the original matrix.) Consequently,
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simply truncating the PSD conditions for the (infinite) Hankel matrices may not yield

optimal positivity bounds. Instead, it may be necessary to derive the bounds using a

larger set of moments than naively required.

Another main purpose of this paper is to generalize the moment problem approach

to positivity bounds for theories with multiple fields or spin components. After all, the

universe is more complex than a single scalar field! This generalization requires introducing

the matrix moment problem, which has also been explored but remains less developed in

the mathematical literature [65, 66]. Nonetheless, for the most part, the results of the

standard moment problem can be straightforwardly extended to the matrix case, replacing

numbers with matrices and generalizing the Hankel matrices. We will explicitly verify this

with some concrete examples by comparing to bounds obtained from other methods (see

Sections 4.2 and 4.3). The matrix moment formulation can also be easily generalized to

utilize the upper bounds of partial wave unitarity (see Section 3.3), generalizing the L-

moment formulation of the single scalar case [17]. We will demonstrate the effectiveness of

this approach in the context of a gravitational EFT in Section 4.4.

For a theory with multiple degrees of freedom (DoFs), to use all available information,

one must consider all possible 2-to-2 scatterings between different particles 12 → 34, and

the EFT coefficients gi,j1234 now carry the information of the external particles. Viewing

12 as a row index and 34 as a column index, gi,j1234 forms a matrix for given i and j. The

dispersive sum rules for gi,j1234 thus become a sum of matrix moment sequences:

Single scalar: moment problem =⇒ Multi-DoFs: matrix moment problem

Eq. (1.3) =⇒ gi,j1234 =

ℓM−1∑
ℓ=0

U i,j
ℓ(ℓ+1)a

i+j−2
ℓ,1234 +

∑
i′,j′

V i,j
i′j′b

i′−2,j′

1234 + (u-channel) (1.6)

where ai+j−2
ℓ,1234 and bi

′−2,j′

1234 are now uni-variate and bi-variate matrix moments respectively.

For multiple scalars, this generalization is straightforward. However, for particles with

spin, the partial wave expansion is facilitated by Wigner d-matrices instead of the Legen-

dre polynomials. Unlike the scalar case, ηi,j;1234ℓ(ℓ+1) , the counterpart of ηi,jℓ(ℓ+1) in Eq. (1.2),

generally contains square roots of rational functions of ℓ(ℓ+ 1). Thus, the bi-variate part

of Eq. (1.6) is no longer a standard bi-variate moment problem—it is a generalized moment

problem (see Section 2.2.2). However, a simple solution to this complication is to introduce

additional moment variables to convert it to a standard moment problem. For instance,

for the spin-1 case, we will encounter the following generalized bi-variate moments

b̃γ1,γ21234 =

∫
K

√
x2(x2 − 2x1)x

γ1
1 xγ22 ρ1234(x1, x2)dx1dx2 (1.7)

in addition to the standard bi-variate moments. In this case, by introducing a new variable

x3 =
√

x2(x2 − 2x1), we can convert them to tri-variate moments

bγ1,γ2,γ31234 =

∫
K′

xγ11 xγ22 xγ33 ρ′1234(x1, x2, x3)dx1dx2dx3 (1.8)

where the modified semialgebraic set K′ is { (x1, x2, x3) | (x1, x2) ∈ K, x23 = x22 − 2x1x2 }.
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Figure 1. Inverse engineering the UV spectrum (including spin, mass and couplings) from the EFT

coefficients in the amplitude via the moment problem. The conversion from the EFT coefficients

to the moments cannot be done only using dispersive sum rules and it also requires computing the

measures of a series of Hausdorff moment sequences.

In the last part of the paper, we demonstrate that the mathematical moment approach

offers a systematic method for reconstructing the UV spectrum from generic EFT coeffi-

cients. Taking a bi-variate moment problem as an example, mathematically, a moment

problem ask, for a given moment sequence {bγ1,γ21234}, whether there exists a measure µ1234

such that the integral bγ1,γ21234 =
∫
K xγ11 xγ22 dµ1234 holds. As long as the moment problem is

solvable, it is possible to find a representing measure for the moment sequence. Particu-

larly, the Curto-Fialkow method [65, 67] allows one to construct an atomic representing

measure (see around Eq. (5.27)). An atomic measure is a simple measure that only consists

of a sum of products of delta functions: dµ1234 =
∑

n T
n
1234δ(x1 −ω1n)δ(x2 −ω2n)dx1dx2,

where ω1n, ω2n, T
n
1234 are constants. For our physical problem, the measure corresponds

to the UV spectrum, and the atomic measure gives rise to isolated UV particle masses MI

and spins ℓ along with their couplings T I,ℓ
1234:

dµ1234 =
∑
I,ℓ

T I,ℓ
1234δ(s

′ −M2
I )δ(J

2 − ℓ(ℓ+ 1))ds′dJ2 (1.9)

w�
A

(UV)
1234(s, t) = poles +

∑
I,ℓ

T I,ℓ
1234d

ℓ
h12,h34

(cos θ)

M2
I − s− iϵ

+ (crossing terms), (1.10)

For a truncated moment problem, it is essential for this method to obtain flat extended

Hankel matrices, which may require augmenting the truncated moment sequence with

some fictitious moments. We will illustrate this method with explicit examples. This UV

reconstruction is always unique in the forward limit, as in that limit it reduces a Hausdorff

problem, which satisfies Carleman’s criterion [60]. However, away from the forward limit,

the uniqueness of the reconstructed UV spectrum is not guaranteed unless the moments

satisfy some determinacy criteria. We will demonstrate the UV reconstruction with a few

examples, including the stu kink theory, the Veneziano and Virasoro amplitudes. In the

explicit examples we examined, which are by no means general, the obtained UV spectra

do reliably converge to our intended UV theory (see Figure 10, Figure 12, and Figure

15). For an EFT living on the boundary of the positivity bounds, its UV spectrum may

also be extracted by saturating the PSD conditions used to derive the positivity bounds

[37, 42, 68, 69].

A subtlety in inverse engineering the UV spectrum is that, because of the presence

of the u-channel in the dispersive sum rules (such as Eq. (1.3)), one can not directly
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obtain the moments {bγ1,γ21234} from the EFT coefficients via the sum rules. Roughly half

of the moments are undetermined. This issue can be overcome by utilizing the atomic

measures constructed from moments that can be directly or indirectly inferred from the

EFT coefficients (see Section 5.3.1). This method uniquely converts the EFT coefficients

to the moments, as the Hausdorff moment problems involved in this process have unique

atomic measures. Then these moments can be used to inverse engineer the UV spectrum.

Alternatively, one can numerically compute the moments from the sum rules and the PSD

conditions of the Hankel matrices. We will demonstrate these conversions with explicit

examples.

2 Sum rules as matrix moment problem

In Section 2.1, we first derive the dispersive sum rules for scattering amplitudes in a theory

with multiple degrees of freedom in the IR. For simplicity, we assume a large hierarchy

between the UV and IR scales, allowing us to take the massless limit for all IR particles.

In Section 2.2, we then reformulate the problem of extracting bounds from these sum rules

as a mixed-variate moment problem, treating scalar particles and those with spin separately

for technical reasons.

2.1 Dispersive sum rules

Consider a 2-to-2 scattering amplitude between the IR particles A1234(s, t) in 4D, where

1,2,3 and 4 represent the four scattering particles and s, t, u are the standard Mandelstam

variables. We will work with partial waves, particularly utilizing (part of) the partial wave

unitarity, so we expand the amplitude as follows

A1234(s, t) = 16π
∑
ℓ

(2ℓ+ 1) dℓh12h43
(θ)Aℓ

1234(s),

hij = hi − hj , cos θ = 1 +
2t

s

(2.1)

where hi is the helicity of particle i, θ is the scattering angle between the particle 1 and 3,

and dℓh12h43
is the Wigner (small) d-matrix. dℓh12h43

can be expressed in terms of hyperge-

ometric function 2F1(a, b; c;x) (see for example [70])

dℓh12h43
(cos θ) =

(−1)λ

a!

√
(J + a+ b)!(J + a)!

(J)!(J + b)!

(
sin

θ

2

)a(
cos

θ

2

)b

· 2F1

(
−J, 1 + a+ b+ J ; 1 + a; sin2

θ

2

) (2.2)

with a ≥ 0, b ≥ 0 and

(J, a, b, λ) =


(ℓ− |h43|, |h43|+ h12, |h43| − h12, |h43|+ h12), if − h43 ≥ |h12|;
(ℓ− |h43|, |h43| − h12, |h43|+ h12, 0 ), if + h43 ≥ |h12|;
(ℓ− |h12|, |h12|+ h43, |h12| − h43, 0 ), if − h12 ≥ |h43|;
(ℓ− |h12|, |h12| − h43, |h12|+ h43, |h12| − h43), if + h12 ≥ |h43|.

(2.3)
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The four cases discussed above are interconnected through the symmetry of the Wigner

d-matrices: dℓ−h43,−h12
= dℓh12,h43

and dℓh43h12
= (−1)h43−h12dℓh12h43

. Since the S-matrix is

block-diagonal for different partial waves, the unitarity of the full amplitudes imposes the

following partial wave unitarity conditions

AbsAℓ
1234 =

∑
X

Aℓ
12→X(Aℓ

3̄4̄→X)∗ (2.4)

where we have defined the absorptive part of the partial wave

AbsAℓ
1234 ≡ 1

2i

(
Aℓ

1234(s+ iϵ)− (Aℓ
3̄4̄1̄2̄(s+ iϵ))∗

)
. (2.5)

Here, for example, 3̄ is a shorthand notation for particle 3 with helicity −h3, and Aℓ
12→X

is the partial wave amplitude from 12 to state X, where X denotes all intermediate states

in a complete basis of the Hilbert space. We will use the fact that AbsAℓ
1234 is PSD,

if 12 is viewed as the row index and 34 as the column index of a matrix, and as will

be discussed in Section 3.3, the moment approach can also be easily extended to lever-

age the fact that Ĩ − AbsAℓ is PSD, where Ĩ is a diagonal matrix. This PSD condi-

tion, referred to as the “upper bound”, can be inferred by isolating the elastic part on

the right hand side of Eq. (2.4). Thanks to the Hermitian analyticity of the S-matrix

(Aℓ
3̄4̄1̄2̄

(s + iϵ))∗ = Aℓ
1234(s − iϵ), the absorptive part can be written as the discontinuity

AbsAℓ
1234 = DiscAℓ

1234/(2i) ≡
(
Aℓ

1234(s+ iϵ)−Aℓ
1234(s− iϵ)

)
/(2i). If the theory is time

reversal invariant, we additionally have (Aℓ
3̄4̄1̄2̄

(s+ iϵ))∗ = (Aℓ
1234(s+ iϵ))∗, which leads to

AbsAℓ
1234(s) = ImAℓ

1234(s+ iϵ).

The dispersive sum rules arise fundamentally due to the analytic nature of scattering

amplitudes. The amplitudes are widely conjectured to be analytic apart from the singu-

larities already known in the perturbation theory, but rigorous results about it are scarce

[71, 72]. We shall consider an EFT scenario where the theory is weakly coupled in the low

energy region such that we can neglect the loop corrections to the amplitudes below the

cutoff Λ, which means that A1234(s, t) only have simple poles below the cutoff, arising from

the exchange diagrams of the light particles. The analyticity we assume in this paper is

that for fixed t below the cutoff, the amplitudes A1234(s, t) are analytic in the whole com-

plex s plane except for some poles and branch cuts on the real axis inferred from unitarity

and the bound states in the theory, and the amplitudes are crossing symmetric. Another

essential ingredient for deriving the dispersive sum rules is the asymptotic behavior of the

amplitudes, which will allow us to get rid of the contour integral at infinity. We shall

assume that, for fixed t, the UV amplitudes are bounded by polynomials of s with degree

Ns for large |s|:

lim
|s|→∞

A1234(s, t)

sNs
= 0. (2.6)

For fields with spin less than 2, we can take Ns = 2, which can be rigorously proven for

a theory with a mass gap [73]; but for the spin-2 case, we will take Ns = 3 to avoid the

complications of the t-channel pole [9, 16, 40]. The Ns = 2 dispersive sum rules exist for

the spin-2 case, but their moment problem formulation is challenging.
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- t Λ

20 - t

s

s'

Figure 2. Analytic structure of the 2-to-2 scattering amplitude on the complex s′-plane, along

with the contour for deriving the fixed-t dispersive sum rules.

With these ingredients established, the fixed-t dispersive sum rules can be easily ob-

tained by using Cauchy’s integral formula on complex s plane for the integration contour

of Figure 2:

A1234(s, t)−
∑

EFT poles

Res
s′→spoles

A1234(s
′, t)

=

∫ +∞

Λ2

ds′

π

AbsA1234(s
′, t)

s′ − s
+

∫ +∞

Λ2

ds′

π

AbsA1432(s
′, t)

s′ − u
+

∫
C±

∞

ds′

2πi

A1234(s
′, t)

s′ − s

(2.7)

where we have used su-crossing symmetry for the second integral on the right hand side

and the summation over the EFT poles is for all the poles within the EFT. Eq. (2.7), as

it stands, is not very useful, as the terms on the right hand side can be divergent. These

terms would be convergent if the integrands go like 1/s′Ns at large |s′| (cf. Eq. (2.6)). To

remedy the divergence, we can make use of the following algebraic identity

1

s′ − s
=

(s− s0)
Ns

(s′ − s0)Ns

1

s′ − s
+

Ns−1∑
i=0

Ns!

i!(Ns − i)!

(s− s0)
i(s′ − s)Ns−i−1

(s′ − s0)Ns
(2.8)

where the arbitrarily chosen s0 is called a subtraction point. We will choose s0 = −t/2.

Then, introducing an auxiliary variable

v = s+
t

2
, (2.9)

Eq. (2.7) can be rewritten as Ns-th subtracted dispersion relations

A1234(s, t)−
∑

EFT poles

Res
s′→spoles

A1234(s
′, t) = (2.10)

Ns−1∑
i=0

b
i,(Ns)
1234 (t)si +

∫ +∞

Λ2

ds′

π

vNs

(s′ + t/2)Ns

(
AbsA1234(s

′, t)

s′ + t/2− v
+

(−1)Ns AbsA1432(s
′, t)

s′ + t/2 + v

)
We have collected the integrals whose integrands involve polynomials in s of degree less than

Ns as
∑Ns−1

i=0 b
i,(Ns)
1234 (t)si, and the remaining contributions from the infinite upper semicircle
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and lower semicircle vanish thanks to Eq. (2.6). The usefulness of these dispersion relations

arises from the fact that we can approximate the left hand side with the EFT, and the

positivity bounds arise from the fact that, despite the unknown details of the UV amplitudes

on the right hand side, they must comply with partial wave unitarity conditions.

To draw connections with the mathematical moment problem, we shall further extract,

from Eq. (2.10), dispersive sum rules that directly link the Wilson coefficients with the UV

partial amplitudes. With sufficient subtractions, the right hand side of Eq. (2.10) is analytic

both around s = 0 and t = 0, so we can Taylor-expand both sides around s = 0 and t = 0

and match the coefficients of vitj . For the right hand side, we also perform partial wave

expansion for AbsA1234(s, t) and further expand the Wigner d-matrices. The results are

gi,j1234 =

j∑
k=0

∫ +∞

Λ2

∑
ℓ

8(2ℓ+ 1)
Dk

ℓ,h12,h43
Ej−k
i+1

(s′)i+j+1
AbsAℓ

1234(s
′)ds′

+

j∑
k=0

(−1)i
∫ +∞

Λ2

∑
ℓ

8(2ℓ+ 1)
Dk

ℓ,h14̄,h2̄3
Ej−k
i+1

(s′)i+j+1
AbsAℓ

1432(s
′)ds′

(2.11)

where gi,j1234 is defined via

∑
i≥N,j≥0

gi,j1234v
itj ≡ A1234(s, t)−

∑
EFT poles

Res
s′→spoles

A1234(s
′, t)−

Ns−1∑
i=0

b
i,(Ns)
1234 (t)si (2.12)

For tree-level EFT amplitudes, the amplitude coefficients/EFT coefficients, gi,j1234, can be

easily linked to the Wilson coefficients, so we will be directly concerned with the amplitude

coefficients in this paper, which have the benefit of being free of the ambiguity of field

redefinition. Dk
ℓ,h12,h43

and Ek
i+1 are Taylor coefficients defined by the following series

dℓh12h43
(arccos(1 + 2z)) ≡

∞∑
k=0

Dk
ℓ,h12,h43

zk,
1

(1 + z/2)i+1
≡

∞∑
k=0

Ek
i+1z

k. (2.13)

Explicitly, for h12 ≥ |h43|, for example, we have

J = ℓ− h12, a = h12 − h43, b = h12 + h43, λ = h12 − h43 (2.14)

and Dk
ℓ,h12,h43

is given by

Dk
ℓ,h12,h43

=
2k

k!

(
dk

dzk
dℓh12h43

(arccos z)

)
z→1

=

k∑
j=0

2k

j!(k − j)!

 dk−j

dxk−j

(
1 + z

2

)h12+h43
2

(
1− z

2

)h12−h43
2


z→1

F j
ℓ,h12,h43

where we have defined

F j
ℓ,h12,h43

=
(−1)h12−h43

(h12 − h43)!

√
(ℓ+ h12)!(ℓ− h43)!

(ℓ− h12)!(ℓ+ h43)!

·
[
dj

dzj
2F1

(
h12 − ℓ, 1 + h12 + ℓ; 1 + h12 − h43;

1− z

2

)]
z→1

. (2.15)
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Here, the factorials should be understood as the corresponding Gamma functions, i.e.,

n! ≡ Γ(n + 1), for the cases of half integer spins. To formulate Eq. (2.11) as a moment

problem, we want to further simplify the expression for Dk
ℓ,h12,h43

. To this end, note that

2F1(a, b; c;x) can be written as

∞∑
n=0

(
n∏

i=1

(a+ i)(b+ i)

(c+ i)

)
xn

n!
. (2.16)

where we have defined
∏n=0

i=1 (a+ i)(b+ i)/(c+ i) ≡ 1. With this expression, it is easy to

see that

F j
ℓ,h12,h43

=


(−1)h12−h43

2j(h12 − h43 + j)!

√
1

G(ℓ, h12)G(ℓ, h43)
G(ℓ, h12 + j), ℓ ≥ h12 + j;

0, ℓ < h12 + j.

(2.17)

where we have introduced G(ℓ, h) ≡ Γ(ℓ+h+1)/Γ(ℓ−h+1) ≡
∏|h|

i=1(ℓ(ℓ+1)−i(i−1))sign(h)

with sign(h) denoting the sign of h. We see that all the ℓ dependence in F j
ℓ,h12,h43

, and

thus Dk
ℓ,h12,h43

, is through the combination ℓ(ℓ + 1), the eigenvalue of the spin Casimir

operator. Similarly, we can also get explicit expressions for F j
ℓ,h12,h43

for all other three

cases of Eq. (2.3), where all the ℓ dependence is also through the combination ℓ(ℓ + 1).

Because of this ℓ(ℓ+ 1) dependence, we shall later use ℓ(ℓ+ 1), instead of ℓ, as a moment

variable. As will be discussed in more detail shortly, we see from Eq. (2.17) that for

generic spins the sum rules will involve square roots of rational functions, in contrast to

the scalar case where F j
ℓ,h12,h43

is simply a polynomial in ℓ(ℓ+1). Fortunately, the moment

problem defined on a semialgebraic set has been well established, which can accommodate

semialgebraic functions, including square roots of rational functions [74].

The above sum rules already contain the information of the su crossing symmetry of the

amplitudes. However, the amplitudes have more crossing symmetry that is not contained

in the fixed-t dispersion relations. These extra crossing symmetry can be incorporated by

imposing the st crossing symmetry [6, 7, 15]

A1234(s, t) = A1324(t, s) (2.18)

To translate this into constraints on the EFT coefficients, one can first subtract the pole

terms from both sides, and then Taylor-expand both sides and match the coefficients in

front of sitj : ai,j1234 = aj,i1234. Expressing these ai,j1324 in terms of gi,j1234, we obtain

j∑
k=0

(i+ k)!

2ki!k!
gi+k,j−k
1234 =

i∑
k=0

(j + k)!

2kj!k!
gj+k,i−k
1324 . (2.19)

Because of the Ns-th subtraction, we will make use of the null constraints with only

gi≥Ns,j≥0
1234 . Note that for various reasons, some of the lower-order EFT coefficients may

vanish, in which case certain lower-order null constraints can also be used.

Alternatively, one can substitute Eq. (2.11) into Eq. (2.19) and get a series of integral

equations. Each of these integral equations also contains a sum over all the different partial
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waves/spin, and dictates that a certain spectral combination of the UV spins need to cancel

out identically, which strongly constrains how the high spins can affect the EFT coefficients.

In principle, fully combining the su crossing symmetry with the st symmetry will lead to

the full crossing symmetry. However, practically, one often needs to resort to truncation

in evaluating a specific problem, in which case it is sometimes beneficial to also impose the

tu crossing symmetry. For example, ℓ can be only even integers for the single scalar case

due to tu crossing symmetry.

2.2 Matrix moment problem formulation

Now, we are ready to formulate the problem of extracting the bounds on gi,j1234 as a matrix

moment problem. For the single scalar case, this has been done in Refs. [4, 5, 10], in

which case it reduces to a “standard”/non-matrix moment problem. For a single field with

spin, which already contains multiple degrees of freedom, or a multi-field case, the matrix

moment generalization is needed.

Apart from the matrix generalization, our moment problem formulation will be slightly

different from the bi-variate formulation of Ref. [10]. For the most part, we will use a

uni-variate (i.e., the UV scale 1/s′) moment formulation, and only adopt a multi-variate

formulation for the high partial waves, which is used to accelerate the numerical conver-

gence. If the uni-variate method is evaluated to a high partial wave order, the multi-variate

part will be not needed, but that will be computationally more costly, although still faster

than a purely multi-variate formulation.

Note that for the multi-variate moment formulation, the cases with spin (in the IR)

are slightly differently from the multi-scalar case. This is because, as can be seen from

Eq. (2.17), for the multi-scalar case Dk
ℓ,h12=0,h43=0 is a k-th order polynomial function of

ℓ(ℓ + 1), while for the cases with spinning particles Dk
ℓ,h12,h43

may contain square roots of

rational functions of ℓ(ℓ + 1). Thus, for particles with spin, its multi-variate formulation

needs more than two moment variables. In the following, we shall first show the formulation

of the moment problem for a multi-scalar theory and then discuss the differences for the

fields with spin.

2.2.1 Multi-scalar

For the multi-scalar case, we can write the right hand side of Eq. (2.11) as a linear combi-

nation of uni-variate moments and bi-variate moments. To see this, let us define moment

variables

x1 =
Λ2

s′
, x2 =

ℓ(ℓ+ 1)Λ2

s′
(2.20)

and the PSD spectral functions for the low and high partial wave parts are respectively

σℓ
1234(x1) = 16(2ℓ+ 1)xNs−1

1 AbsAℓ
1234(Λ

2/x1) (2.21)

ρ1234(x1, x2) =
∞∑

ℓ=ℓM

σℓ
1234(x1)δ

(
x2 − ℓ(ℓ+ 1)x1

)
. (2.22)
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where Ns is the subtraction order of the relevant dispersion relation. (For a large ℓ, x2
is essentially the square of the impact parameter b = ℓ/

√
s′ with ℓ being the angular

momentum.) With these definitions, we can split the right hand side of Eq. (2.11) into two

parts for each of the s and u channels:

gi,j1234 =

ℓM−1∑
ℓ=0

U i,j
ℓ(ℓ+1),1234a

γ
ℓ,1234 +

∑
γ′
2

V
(γ)
γ2,γ′

2
b
γ1,γ′

2
1234 + (u-channel) (2.23)

with

aγℓ,1234 =

∫
Ka

xγ1σ
ℓ
1234(x1)dx1 (2.24)

bγ1,γ21234 =

∫
Kb

xγ11 xγ22 ρ1234(x1, x2)dx1dx2 (2.25)

where we have defined γ = i+ j −Ns, γ1 = i−Ns, γ2 = j and semialgebraic sets 1

Ka = {x1|x1 ≥ 0, 1− x1 ≥ 0} (2.26)

Kb = {(x1, x2)|x1 ≥ 0, 1− x1 ≥ 0, x2 ≥ 0, x2 − ℓ∞(ℓ∞ + 1)x1 ≤ 0, (2.27)(
x2 − ℓ(ℓ+ 1)x1

)(
x2 − (ℓ+ 1)(ℓ+ 2)x1

)
≥ 0, ℓ = ℓM, ℓM + 1, ℓM + 2, · · · , ℓ∞ − 1}

ℓ∞ is a large integer regulator introduced to make Kb strictly semialgebraic, but the nu-

merical results are insensitive to it as long as ℓ∞ is sufficiently large. U i,j
ℓ(ℓ+1) and V

(γ)
γ2,γ′

2
can

be easily inferred from Eq. (2.11). From the partial wave unitarity conditions, we can infer

that σℓ
1234(x1) and ρ1234(x1, x2) are positive semi-definite matrices, if 12 (34) is viewed

as the row (column) index, so σℓ
1234(x1)dx1 and ρ1234(x1, x2)dx1dx2 are matrix-valued

positive measures. This means that Eq. (2.24) and Eq. (2.25) define a uni-variate and

bi-variate matrix moment sequence respectively.

We could have formulated Eq. (2.11) as a pure uni-variate moment problem (ℓM = ∞
and without bγ1,γ21234) or a pure bi-variate moment problem (ℓM = 0 and without aγℓ,1234), but

neither of them is numerically as efficient as the mixed formulation (2.23). In particular, in

the pure uni-variate formulation, it is awkward to include the large/infinite ℓ contributions,

as V
(γ)
γ2,γ′

2
can become very large/go to infinity as ℓ → ∞.

The rationale behind the mixed formulation is that we shall compute the dominant

contributions to gi,j1234 from the aγℓ,1234 moments with just the first few leading ℓ, and

then the bγ1,γ21234 moments allow us to obtain the subleading corrections from the large ℓ. In

the partial wave expansion, it is natural to expect the results are dominated by the low

spins [13]. This is also implied by the null constraints, which explains the effectiveness of

formulating the leading spins as uni-variate moment problems. Kb is a set of line segments.

For a relative large ℓM, we relax Kb to a continuous region K′
b:

K′
b = {(x1, x2)|0 ≤ x1 ≤ 1, x2 − ℓM(ℓM + 1)x1 ≥ 0, x2 − ℓ∞(ℓ∞ + 1)x1 ≤ 0}. (2.28)

See Figure 3 for a pictorial description of the set Kb and the approximate set K′
b.

1In a moment problem, the domain of integration K can generally be a semialgebraic set, which is a

finite union of subsets of Rn delineated by a finite system of polynomial inequalities.
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Figure 3. Set Kb (blue lines) and its approximate set K′
b (blue region) as the integration regions of

the moment problems. The orange dashed lines are not part of Kb and K′
b. Instead, each dashed line

is formulated as a uni-variate moment problem aγ1,γ2

ℓ,1234. This mixed-variate formulation improves

numerical efficiency. ℓM = 10 is chosen for these plots.

With the formulation (2.23), we can solve the matrix moment problems of aγℓ,1234
and bγ1,γ21234 separately, extract the conditions for each, and then combine them to infer the

bounds on gi,j1234. Specifically, note that, denoting aγℓ,1234 and bγ1,γ21234 collectively as

mγ1,γ2
1234 = aγℓ,1234 or bγ1,γ21234, (2.29)

the solvability condition of the matrix moment problem for mγ1γ2
1234 is just a set of explicit

conditions on mγ1γ2
1234. These conditions can be written as linear matrix inequalities of the

form: mTM ≥ 0, where m is a vector whose components are the relevant elements of mγ1γ2
1234

and M is a vector whose components are constant matrices. To compute the bounds on

a specific gi,j1234, we express it as a linear combination of mγ1,γ2
1234 via Eq. (2.23) at first, and

then optimize it as the objective in a garden-variety SDP. In this process, we can also

include the null constraints (2.19) to get two-sided bounds. These null constraints can be

implemented by direct substitution or by imposing them as part of the constraints in the

SDP. This final-step SDP can be easily implemented in, say, Mathematica with minimal

coding, if extremely high accuracy is not required.

2.2.2 Fields with spin

As mentioned above, the main difference for fields with spin is that Dk
ℓ,h12,h43

is now gen-

erally a function of ℓ(ℓ+ 1) that involves square roots of rational functions of ℓ(ℓ+ 1), not

merely a polynomial in ℓ(ℓ + 1) of degree k. For a fast and efficient determination of the

bounds, we still want to adopt the mixed-variate formulation. That is, for the low partial

waves, we continue use the uni-variate moment formulation, for which the non-polynomial

nature of Dk
ℓ,h12,h43

does not create any difficulty at all, as we formulate each partial wave

as a uni-variate moment problem. However, for the high partial wave part, the bi-variate

formulation with Eqs. (2.20)-(2.21) fails to yield Eq. (2.23), due to the presence of square

roots of rational functions of ℓ(ℓ+1). Instead, the equivalence of Eq. (2.23) for fields with
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spin becomes

gi,j1234 =

ℓM−1∑
ℓ=0

U i,j
ℓ(ℓ+1)a

γ
ℓ,1234 +

∑
k,γ′

2

V
(k,γ)
γ2,γ′

2
b
k,γ1,γ′

2
1234 + (u channel) (2.30)

bk,γ1,γ21234 =

∫
Kb

Fk(x1, x2)x
γ1
1 xγ22 ρ1234(x1, x2)dx1dx2 (2.31)

where Fk takes the form of Fk =
√
· · ·, with · · · potentially also containing square roots.

Thus, we get a so-called generalized moment problem [66] for the the high partial wave part.

For our specific problem, Fk are positive semialgebraic functions 2 on Kb. In this case, we

can easily transform a generalized moment problem into a standard moment problem by

introducing extra moment variables.

Let us demonstrate this with the example of massless spin-1 particle scattering. In

this case, we will have the following three bi-variate moment sequences:

bγ1,γ21234 =

∫
Kb

xγ21 xγ22 ρ1234(x1, x2)dx1dx2 (2.32)

b̂γ1,γ21234 =

∫
Kb

√
x2(x2 − 2x1)x

γ2
1 xγ22 ρ1234(x1, x2)dx1dx2 (2.33)

b̃γ1,γ21234 =

∫
Kb

1√
x2(x2 − 2x1)

xγ21 xγ22 ρ1234(x1, x2)dx1dx2 (2.34)

As 1/
√

x2(x2 − 2x1) is positive, we can first absorb it into the positive spectral function

ρ1234:

ρ′1234(x1, x2) =
1√

x2(x2 − 2x1)
ρ1234(x1, x2) (2.35)

and the moment problems become

bγ1,γ21234 =

∫
Kb

√
x2(x2 − 2x1)x

γ1
1 xγ22 ρ′1234(x1, x2)dx1dx2 (2.36)

b̂γ1,γ21234 =

∫
Kb

x2(x2 − 2x1)x
γ1
1 xγ22 ρ′1234(x1, x2)dx1dx2 (2.37)

b̃γ1,γ21234 =

∫
Kb

xγ11 xγ22 ρ′1234(x1, x2)dx1dx2 (2.38)

(For the case of multiple different square roots in the denominator, one can simply absorb

a large common factor into ρ′1234(x1, x2) to get rid of the square roots in the denominator.)

The moment problems (2.37) and (2.38) are bi-variate, the same as the multi-scalar case.

For Eq. (2.37), we introduce a new moment variable

x3 =
√

x2(x2 − 2x1) (2.39)

2For a semialgebraic set K, a semialgebraic function F (x1, · · · , xn) defined on K is a function such that

{(x1, x2, · · · , xn,F ) | (x1, x2, · · · , xn) ∈ K} is also a semialgebraic set. Functions that are rational and

include radical roots are semialgebraic functions.
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along with

ρ′′1234(x1, x2, x3) = ρ′1234(x1, x2)δ(x3 −
√

x2(x2 − 2x1)) (2.40)

which allows us to write Eq. (2.37) as one tri-variate problem

bγ1,γ2,γ31234 =

∫
K(3)

b

xγ21 xγ22 xγ33 ρ′′1234(x1, x2, x3)dx1dx2dx3 (2.41)

where now the semialgebraic set becomes

K(3)
b = {(x1, x2, x3)|(x1, x2) ∈ Kb, x23 − x2(x2 − 2x1) = 0}. (2.42)

With one extra moment variable, the solution of the moment problem will be expressed with

Hankel matrices (which will be introduced in the next section) with very high dimensions.

For scatterings between massless spin-s particles, the relevant new moment variables

needed are listed in Table 2.2.2. We see that in those cases only one extra variable is needed.

For scatterings with mixed spins or between massive particles, more moment variables are

needed. For example, for scatterings betwen massive spin-2 particles, we would need the

following new moment variables x3 =
√
x1x2 x4 =

√
x1(x2 − 2x1), x5 =

√
x1(x2 − 6x1),

x6 =
√

x1(x2 − 12x1) or a subset of them depending on the specific scattering process.

extra moment variable spin-0 spin-1 spin-2 spin-12
x3 =

√
x1x2 ✓

x3 =
√
x2(x2 − 2x1) ✓

x3 =
√
x2(x2 − 2x1)(x2 − 6x1)(x2 − 12x1) ✓

Table 1. Additional moment variable needed for a scattering amplitude between massless particles

with (equal) spin in 4D.

3 Solvability of matrix moment problem

In the previous section, we have formulated the problem of finding positivity bounds as

a set of matrix moment problems plus a standard SDP, without actually specifying how

to solve the matrix moment problems. In this section, we will demonstrate how to solve

these matrix moment problems using existing mathematical results. Since a uni-variate

moment problem (low ℓ part) is a special case of a bi-variate problem (high ℓ part of the

scalar case) and the problems with more moment variables (high ℓ part of the spinning

field case) are similar to the bi-variate problem, we shall discuss the results primarily for

the bi-variate case: mγ1γ2
ij ≡ mγ1γ2

1234. The solvability (necessary and sufficient) conditions for

the truncated moment problem, including the flat extension condition, will be established

in this section.
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3.1 Full matrix moment problem

Let us first consider the following (infinite) bi-variate matrix K-moment problem

mγ1γ2
ij =

∫
K
xγ11 xγ22 dµij(x1, x2) ≡

∫
K
xγ11 xγ22 ρij(x1, x2)dx1dx2 (3.1)

where (γ1, γ2) ∈ N2
0 is a pair of integers, i = 12 (j = 34) enumerates the ingoing (outgoing)

asymptotic state in a 2-to-2 scattering and K is a semialgebraic set (see, e.g., Eq. (2.24)).

Since ρij(x1, x2) is a PSD matrix-valued function, we have introduced a PSD matrix-valued

measure µij. In this subsection, we will show how to solve this matrix moment problem

in principle, demonstrating the solvability condition. In practice, however, one often can

only solve a truncated moment problem, where γ1 and γ2 are allowed to take some finite

values, say, γ1 + γ2 ≤ G, which will be discussed in the next subsection.

A full matrix moment problem is solved if a possible representing measure µij can be

found for the infinite K-moment sequence {mγ1γ2
ij } enumerated by i, j, γ1, γ2. Therefore, any

conditions on the existence of a representing measure µij give rise to necessary conditions

for the sovable moment problem on the moment sequence {mγ1γ2
ij }.

So let us first assume the existence of PSD measure µij in Eq. (3.1) and derive some

necessary conditions for mγ1γ2
ij . To that end, note that, thanks to µij being PSD, the

following quantity is obviously PSD:

∑
ij

∫
K

[√
p(x1, x2)

(∑
α1α2

ciα1α2
xα1
1 xα2

2

)]√p(x1, x2)

∑
β1β2

cjβ1β2
xβ1
1 xβ2

2

dµij

=
∑

α1α2β1β2ij

ciα1α2
cjβ1β2

∫
K
p(x1, x2)x

α1+β1
1 xα2+β2

2 dµij

≡
∑

α1α2β1β2ij

ciα1α2
(Hm

p )
α1α2,β1β2

ij cjβ1β2
≥ 0.

(3.2)

where ciα1,α2
are a set of real constants, p(x1, x2) is a positive polynomial of x1 and x2 over

the set K, and we have defined the following Hankel matrix(
Hm

p(x1,x2)

)α1α2,β1β2

ij
≡
∫
K
p(x1, x2)x

α1+β1
1 xα2+β2

2 dµij(x1, x2) (3.3)

If we take (α1, α2, i) as the row index and (β1, β2, j) as the column index, Eq. (3.2) implies

that (Hm
p )

α1α2,β1β2

ij must be PSD for any positive polynomial p(x1, x2) on K:

Hm
p ⪰ 0, ∀ p(x1, x2) ≥ 0 on K (3.4)

We emphasize that these conditions follow from assuming the existence of a PSD measure

µij, and they are necessary conditions for the existence of µij, and thus also necessary

conditions for the matrix moment problem (3.1) to have a solution. Since the entries of

(Hm
p )

α1α2,β1β2

ij can be written as linear combinations of mγ1γ2
ij , these PSD conditions impose

conditions on (Hm
p )

α1α2,β1β2

ij , and thus on the EFT coefficients.
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Evidently, the condition (3.4) is impractical as it necessitates consideration of all pos-

itive polynomial p(x1, x2) on K. Furthermore, so far, we have only established Eq. (3.4)

as necessary conditions. The next step is to show that it is possible to find a sufficient set

of polynomials {p(x1, x2)} such that the PSD of the corresponding (Hm
p )

α1α2,β1β2

ij gives rise

to the solution of the full matrix moment problem.

Before proceeding, to grasp a sense of these conditions, let us look at two examples

that are related to the physical problems [4, 5, 10]. First, consider a simple, non-matrix-

valued, uni-variate moment problem, in which case mγ1 is simply a real number for a given

γ1. If we are interested in the set K = {x1 | x1 ≥ 0, 1− x1 ≥ 0 } = [0, 1], that is, we are

concerned with the Hausdorff moment problem, which is related to the forward scattering

in a single scalar theory, we can choose p(x1) = 1, x1, 1 − x1 to get the solution for the

moment problem. That is, we can simply require the PSD of the following matrices:

(Hm
1 )

α1,β1 =

∫
K
xα1+β1
1 dµ, (3.5)

(Hm
x1
)α1,β1 =

∫
K
xα1+β1+1
1 dµ, (3.6)

(Hm
1−x1

)α1,β1 =

∫
K
(xα1+β1

1 − xα1+β1+1
1 )dµ, (3.7)

These three matrices are sufficient because for any positive polynomial p(x1) on K can be

expanded as p(x1) = q20(x1) + x1q
2
1(x1) + (1− x1)q

2
2(x1), where q0, q1, q2 are polynomials 3.

Another example is the bi-variate formulation of a scalar field [10]. In this case, the sec-

ond moment variable is nontrivial. With the continueous approximation, the semialgebraic

set K in this case is given by the 2D regions carved out by the following inequalities

x1 ≥ 0, 1− x1 ≥ 0, x2 ≥ 0, x2 − ℓM(ℓM + 1) ≥ 0,−x2 + ℓ∞(ℓ∞ + 1) ≥ 0. (3.8)

By the construction (3.2), this set K immediately implies that we can obtain the following

positivity bounds for the single scalar field theory

Hm
p ⪰ 0, p ∈ {x1, 1− x1, x2 − ℓM(ℓM + 1),−x2 + ℓ∞(ℓ∞ + 1) } (3.9)

More explicitly, this means that the following matrices are PSD:

Hm
x1

=


m1,0 m2,0 m1,1 · · ·
m2,0 m3,0 m2,1 · · ·
m1,1 m2,1 m1,2 · · ·
...

...
...

. . .

 , (3.10)

Hm
1−x1

=


m0,0 −m1,0 m1,0 −m2,0 m0,1 −m1,1 · · ·
m1,0 −m2,0 m2,0 −m3,0 m1,1 −m2,1 · · ·
m0,1 −m1,1 m1,1 −m2,1 m0,2 −m1,2 · · ·

...
...

...
. . .

 , (3.11)

3In fact, q20(x1) can be omitted for this case because 1 = x1 + (1− x1).
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Hm
x2−ℓM(ℓM+1)x1

= (3.12)
m0,1 − ℓM(ℓM + 1)m1,0 m1,1 − ℓM(ℓM + 1)m2,0 m0,2 − ℓM(ℓM + 1)m1,1 · · ·
m1,1 − ℓM(ℓM + 1)m2,0 m2,1 − ℓM(ℓM + 1)m3,0 m1,2 − ℓM(ℓM + 1)m2,1 · · ·
m0,2 − ℓM(ℓM + 1)m1,1 m1,2 − ℓM(ℓM + 1)m2,1 m0,3 − ℓM(ℓM + 1)m1,2 · · ·

...
...

...
. . .

 ,

Hm
ℓ∞(ℓ∞+1)x1−x2

= (3.13)
ℓ∞(ℓ∞ + 1)m1,0 −m0,1 ℓ∞(ℓ∞ + 1)m2,0 −m1,1 ℓ∞(ℓ∞ + 1)m1,1 −m0,2 · · ·
ℓ∞(ℓ∞ + 1)m2,0 −m1,1 ℓ∞(ℓ∞ + 1)m3,0 −m2,1 ℓ∞(ℓ∞ + 1)m2,1 −m1,2 · · ·
ℓ∞(ℓ∞ + 1)m1,1 −m0,2 ℓ∞(ℓ∞ + 1)m2,1 −m1,2 ℓ∞(ℓ∞ + 1)m1,2 −m0,3 · · ·

...
...

...
. . .

 ,

As mentioned, these are necessary conditions, and we will see in Section 4.1, they are

indeed not sufficient.

Let us return to the general case and establish the sufficient conditions. To solve a

matrix moment problem, we must ensure the existence of the measure µij for given matrix

moments mγ1γ2
ij . To this end, we invoke a matrix version of the Riesz representation theorem

(Theorem 3 of [75]), which asserts that the existence of the measure µij(x1, x2) is equivalent

to the requirement that for all PSD, continuous matrices F ij(x1, x2) on K, the following

conditions are satisfied ∫
K
F ij(x1, x2)dµij ≥ 0. (3.14)

By the Stone-Weierstrass theorem, any continuous function defined on a compact Hausdorff

space can be uniformly approximated by a polynomial function, so the condition (3.14) can

be relaxed to apply to all possible positive polynomials if the semialgebraic setK is compact.

This is the case for the uni-variate moment problems of aγℓ,ij and also for the multi-variate

problems once a large order partial wave truncation is in place.

Then, by a special case of a matrix-valued Positivstellensatz theorem (Theorem 2.5 of

[76] as well as Corollary 1 of [77]), we can write F ij as

F ij(x1, x2) =

lmax∑
l=0

pl(x1, x2)q
i
l(x1, x2)q

j
l (x1, x2), (3.15)

where qil are polynomials of x1 and x2, pl are positive polynomials of x1 and x2, and we

have defined p0 = 1. For a given K, we can choose a fixed, finite set of pl(x1, x2), but qil
are generally different for a different F ij. If we parameterize qil as

qil =
∑
α1α2

(cl)
i
α1α2

xα1
1 xα2

2 (3.16)

and substitute Eq. (3.15) into Eq. (3.14), we obtain

lmax∑
l=0

∑
α1α2β1β2ij

(cl)
i
α1α2

(Hm
pl
)α1α2,β1β2

ij (cl)
j
β1β2

≥ 0 (3.17)
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Therefore, the sufficient conditions for ensuring the existence of µij(x1, x2), i.e., to solve

the matrix moment problem, are that

Hm
pl
⪰ 0, for a sufficient set of pl (3.18)

Since we have established the existence of a sufficient set of pl(x1, x2), the next step is to

select an appropriate such set. For this, a couple of possible options have been established

in the mathematical literature for functions and matrix-valued functions F ij(x1, x2). One

option is to choose the “power set” of the defining polynomials of the semialgebraic set (see

[60] for the function case and [78] for the matrix-valued case). Suppose the semialgebraic

set K is defined by

K = {(x1, x2) | p̂1(x1, x2) ≥ 0, p̂2(x1, x2) ≥ 0, · · · , p̂k(x1, x2) ≥ 0}. (3.19)

where p̂l(x1, x2) are the defining polynomials. Then, a simple choice of a sufficient set of

pl polynomials is given by linearly multiplying p̂l(x1, x2) together:

P(p̂) = {p̂e11 p̂e22 · · · p̂ekk | el being either 0 or 1} (3.20)

= { 1, p̂1, · · · , p̂k︸ ︷︷ ︸
k

, p̂1p̂2, · · · , p̂k−1p̂k︸ ︷︷ ︸
k(k−1)/2

, · · · , p̂1 · · · p̂k−1, · · · , p̂2 · · · p̂k︸ ︷︷ ︸
k

, p̂1 · · · p̂k } . (3.21)

Actually, at least for the non-matrix case, it has been proven (Theorem 12.27 of [60]) that,

counting after the element 1, the first 2k−1 elements of the set (3.21) are already sufficient:

P 1
2
(p̂) = {p̂1, · · · , p̂k, p̂1p̂2, · · · , p̂k−1p̂k, · · ·︸ ︷︷ ︸

2k−1

}. (3.22)

Therefore, the solvability (i.e., necessary and sufficient) condition of the full matrix

moment problem for a compact K is

Hm
pl
⪰ 0, ∀pl ∈ P(p̂). (3.23)

At this point, as a solution to the full moment problem, the Hankel matrices above are

infinite dimensional.

3.2 Truncated moment problem and flat extension

In the previous subsection, we have obtained the solution to the full matrix moment prob-

lem with truncated partial waves but without truncating the moment sequence. In practice,

however, we may only wish to know the bounds on the first few EFT coefficients, i.e., the

first few moments mγ1γ2
ij with γ1 and γ2 taking the first few values, agnostic about the

higher order moments. After all, numerically, we only have finite resources to compute

matrices with finite dimensions. That is, we are interested in solving a truncated moment

problem. Generally, Stochel’s theorems [79] allow us to, in some sense, approximate the full

moment problem by solving the truncated moment problem with some specific truncations.

An important concept here is the flat extension of the truncated moment problem, which

allows one to find the optimized solution for the given information.
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Suppose we only consider the a finite number of moments mγ1γ2
ij specified by the set

Θ(G) = { (γ1, γ2) ∈ N2
0 | γ1 + γ2 ≤ G } , (3.24)

where G is a non-negative integer. In general, if we simply discard all the rows and

columns of the Hm
pl

matrices containing the excluded mγ1γ2
ij and use the condition (3.23)

for the naively trunacted Hankel matrices, we get some truncated conditions on the EFT

coefficients

Hm
pl
(G) ⪰ 0, ∀pl ∈ P(p̂). (3.25)

These conditions are weaker than the PSD conditions of the full moment problem, because

Hm
pl
(G) is a principal submatrix of Hm

pl
(+∞), and the PSD of a matrix requires all of its

principal submatrices to be PSD.

If we extend the set from Θ(G) to Θ(G+2), we obtain a slightly larger matrix Hm
pl
(G+

2), which is referred to as an extension of Hm
pl
(G). For this given Θ(G)-truncation, a flat

extension of Hm
pl
(G) is said to exist if one can choose the extra moments in Θ(G+2)−Θ(G)

such that

rank
(
Hm

pl
(G+ 2)

)
= rank

(
Hm

pl
(G)
)
. (3.26)

In this case, (Hm
pl
(G+2))α1α2,β1β2

ij is said to be flat. If Eq. (3.26) is not satisfied, one verifies

a similar equation comparing the ranks of G + 4 and G + 2, and so on, until an eventual

flat extension is found, which satisfies

rank
(
Hm

pl
(G+ 2G′

l + 2)
)
= rank

(
Hm

pl
(G+ 2G′

l)
)

(3.27)

where G′
l is a non-negative integer. A truncated moment problem has a solution if and only

if all Hm
pl
(G) are PSD and every Hm

pl
(G) has an eventual flat extension. The “only if” part

of the above statement is established in Ref. [65] for the matrix-valued generalization of the

Bayer-Teichmann-Tchakaloff theorem [80]. The “if” part can be proven in a constructive

way, that is, one can always construct a special representing measure for a flat Hankel

matrix, which will be discussed in detail in Section 5.3. Furthermore, it is unnecessary to

verify whether all of Hm
pl
(G) have flat extensions. It is suffice to only verify whether Hm

1 (G)

has a flat extension, at least in the case of the non-matrix-valued moment problem [81].

This is because, if Hm
1 (G) has a flat extension, all the other Hankel matrices will eventually

have a flat extension, thereby guaranteeing the solvability of the moment problem. Our

empirical evidence from numerical computations suggests that the same conclusion may

also apply to the matrix moment problem.

Put another way, without verifying the existence of a flat extension, even if a truncated

moment sequence satisfies the PSD conditions of the naively truncated Hankel matrices,

there is no guarantee that this truncated moment sequence can truly have a moment

integral representation (with a positive measure). On the other hand, the PSD conditions

of flat Hankel matrices are reliable because a truncated moment sequence satisfying these

conditions must have a moment integral representation. In terms of the original physical
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problem, only those EFT coefficients within the boundaries defined by the PSD conditions

of the flat Hankel matrices satisfy the dispersion relations.

Now, we introduce Stochel’s theorem [79], which establishes the relation between a

truncated and a full moment problem defined on a closed semialgebraic setK. (The theorem

is rigorously proven for a “standard” moment problem, but, as with many other results,

it might be generalized to the matrix-valued case.) The theorem states that if for every

G ≥ 0, the Θ(G)-truncated moment problem is solvable, then the full moment problem is

solvable. As will be shown in Section 5.3, one can actually construct a specific representing

measure for every solvable Θ(G)-truncated moment problem. If the full moment problem

is determinate on Rn, the measure of the truncated problem converges to that of the full

problem as G → ∞. We will come back to this discussion about determinacy in Section

5.4.

In summary, it is usually sufficient to work with a truncated moment problem, as we

typically must do when extracting positivity bounds numerically. For our physical problem,

there are some null constraints, which are linear equations involving a certain number of

moments. To calculate the positivity bounds for a given set of null constraints, the lowest

order of the Θ(G)-truncation, denoted as G1, should be chosen such that all moments

appearing in this set of null constraints are included. Concretely, the steps to compute the

positivity bounds are outlined as follows.

• For a given set of null constraints, we begin by imposing the the lowest order PSD

constraints

Hm
pl
(G1) ⪰ 0, ∀pl ∈ P(p̂), (3.28)

together with the chosen null constraints, and optimize some linear combinations

of the EFT coefficients that we wish to bound. Here, the polynomials p̂l(x1, x2),

l = 1, 2, ..., k, are the ones that define the semialgebraic set K, and P(p̂) is the

“power set” of {p̂l}.

• One can verify the flatness of Hm
pl
(G1)

rank
(
Hm

pl
(G1)

)
= rank

(
Hm

pl
(G1 − 2)

)
. (3.29)

If they are flat, one has obtained the positivity bounds. Often, it is sufficient to check

rank (Hm
1 (G1)) = rank (Hm

1 (G1 − 2)).

• Sometimes, they are not flat, in which case we shall choose a bigger G, starting from

Θ(G1 + 2), Θ(G1 + 4) and so on, until eventual flat Hankel matrices are obtained.

The optimal bounds are then obtained by instead imposing the stronger constraints

from the eventually flat Hankel matrices.

To compute the bounds for higher order EFT coefficients or with more null constraints, a

higher order G-truncation is required. Essentially, we often should use higher order Hankel

matrices in order to obtain the optimal constraint for a truncated moment problem.
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In our numerical computations later, we will find that for a sufficiently large ℓM (∼ 20),

replacing Kb with K′
b (see Section 2.2) generally does not affect the numerical accuracy

(at least within the errors of 10−5). Apart from K′
b being a good approximate set for a

large ℓM, this also reflects the fact that we are evaluating a truncated moment problem,

which involves only a finite number of moments for a given set of null constraints. With

the conditions on the Hankel matrices established, we optimize the moments to find the

positivity bounds. To a given order in the moment truncation, there are only a finite

number of moments in the linear matrix inequalities of the SDP. As it happens, adding

more high ℓ uni-variate moments is often redundant and does not improve the accuracy

for a given truncation.

3.3 L-moment problem for multiple DoFs

In the previous discussions, we only made use of the positivity part of the UV partial wave

unitarity conditions (2.4): AbsAℓ ⪰ 0. While the full unitarity conditions are straight-

forward to implement in the primal bootstrap approach [82, 83], it is more complicated

for a dual approach with dispersion relations [11]. Nevertheless, the “upper bound” of

the unitarity conditions, which also manifest as positivity conditions Ĩ − AbsAℓ ⪰ 0, can

be also be easily incorporated in the moment problem approach. The (non-matrix) uni-

variate moment problem where the measure spectrum ρ(x) is bounded both from above

and below, 0 ≤ ρ(x) ≤ L is sometimes referred to as the L-moment problem [84]. By

taking the Minkowski sum for various partial waves, each of which is formulated as an

L-moment problem, and tapping into the results of the L-moment problem, Refs. [17, 42]

were able to analytically derive positivity bounds for the single degree of freedom, taking

into account the upper bounds of unitarity. However, this approach does not yet account

for the inclusion of multiple null constraints or the extension to multiple degrees of free-

dom. Other ways to utilize the upper bounds of unitarity and beyond for positivity bounds

include the approaches of [17, 31, 41, 42, 85]. Here we propose a straightforward way to

implement the upper bounds of unitarity within the matrix moment approach that can

easily accommodate multiple null constraints.

Note that the PSD of the measure in a moment problem is equivalent to the PSD of

the corresponding Hankel matrices. Therefore, the (reduced) unitarity conditions Ĩij ⪰
ρij(x) ⪰ 0 can be reformulated as the PSD of the Hankel matrices generated by two

measures ρij(x) ⪰ 0 and ρ̃ij ≡ Ĩij − ρij(x) ⪰ 0, where Ĩij is a diagonal matrix whose entries

are either 1 or 2, depending on whether the scattering is between identical particles. In the

previous subsections, we already make use of ρij(x) ⪰ 0. To take into account ρ̃ij(x) ⪰ 0,

for a bi-variate moment problem for example, we define

Iγ1γ2 =

∫
K
xγ11 xγ22 Ĩijdx1dx2, so we have Iγ1γ2 −mγ1γ2 =

∫
K
xγ11 xγ22 ρ̃ijdx1dx2, (3.30)

Then, the extra Hankel matrix conditions we need to impose are

HI−m
pl

(G) ⪰ 0, ∀pl ∈ P(p̂). (3.31)

where HI−m
pl

denotes a Hankel matrix constructed from the moment sequence I−m.
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For a toy model example, consider the Hausdorff moment problem modified with the

upper bound for ρ(x1). That is, we look at the moment sequence given by

aγ1 =

∫ 1

0
xγ11 ρ(x1)dx1, 0 ≤ ρ(x1) ≤ 1. (3.32)

To incorporate the upper bound ρ ≤ 1 in addition to the conditions from the Hausdorff mo-

ment problem, we simply need to impose PSD conditions for the following extra truncated

Hankel matrices:

HI−a
x1

⪰ 0, HI−a
1−x1

⪰ 0. (3.33)

Putting all the PSD conditions together, a0 and a1 are bounded in a closed region, and we

see that the convergence is rather quick as the truncation order G increases; see Figure 4.

The case of G = 9 is visually indistinguishable from the analytical result of [17, 42] for this

toy example. However, it is also easy to apply this method to numerically compute the

upper bounds for multi-field theories with spin, including multiple null constraints, as will

be briefly discussed in Section 4 for a spin-2 theory.

G=1

G=3

G=9

0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.

0.

0.1

0.2
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0.4

0.5

0

1

Figure 4. Numerical bounds for various truncation orders G for the simple example (3.32).

4 Bounds on EFT models

In this section, we demonstrate how to use our matrix moment formulation to derive

bounds on the EFT coefficients for several example EFTs. Most (but not all) of these

positivity bounds for these models have been previously calculated using other methods.

Therefore, our goal here is not to obtain comprehensive bounds for these models, but rather

to illustrate how to compute the bounds using our approach, showcasing both consistency

with and improvements over previous results.

4.1 Single scalar

Let us first consider the case of a single scalar, in which case the matrix moments reduce to

the normal moments and some necessary conditions of the moment problem have been used
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to bound general EFT coefficients via a pure bi-variate formulation [10] (see [4, 5] for earlier

work). Here we revisit this problem with our mixed-variate moment formulation, which is

numerically more efficient. With the continuous large ℓ approximation, we implement the

sufficient conditions for both the uni-variate and bi-variate parts of the moment problem.

We find that these sufficient conditions generally give rise to small improvements to the

previous results from the necessary conditions in the moment approach, and the bounds

derived from these sufficient conditions agree to a high degree with the results obtained

using the method of [7].

Let us use this single scalar case to reiterate the essential steps for obtaining the

positivity bounds in the moment problem approach, ignoring for now the complications

arising from multiple degrees of freedom and spin. For this case, we have 1 = 2 = 3 = 4,

so we shall omit the subscripts of the external particles. We parametrize the scalar EFT

amplitude as follows

A(s, t) =
∑

i≥0,j≥0

gi,j
(
s+

t

2

)i

tj . (4.1)

Following the prescription of Section 2.1, we can derive the dispersive sum rules and the

corresponding null constraints:

gi,j =
∑
k

∫
ds′
∑
ℓ

(· · · )i,j ,
j∑

k=0

(i+ k)!

2ki!k!
gi+k,j−k =

i∑
k=0

(j + k)!

2kj!k!
gj+k,i−k (4.2)

Thanks to the positivity part of partial wave unitarity, which imposes the PSD on the

spectral functions, these sum rules are then transformed to a linear combination of moment

problems, as prescribed in Section 2.2.1,

gi,j =

ℓM−1∑
ℓ=0

U i,j
ℓ(ℓ+1)a

γ
ℓ +

∑
γ′
2

V
(γ)
γ2,γ′

2
bγ1,γ

′
2 + (u-channel) (4.3)

where γ = i+j−Ns, γ1 = i−Ns, γ2 = j and the uni-variate moments aγℓ and the bi-variate

moments bγ1,γ2 along with their integration regions Ka and K′′
b are given by

aγℓ =

∫
Ka

xγ1dµℓ(x1), bγ1,γ2 =

∫
K′′

b

xγ11 xγ22 dµ(x1, x2) (4.4)

Ka = {x1|x1 ≥ 0, 1− x1 ≥ 0}
K′′

b = {(x1, x2)|x1 ≥ 0, 1− x1 ≥ 0, x2 − ℓM(ℓM + 1)x1 ≥ 0} (4.5)

We have replaced K′
b of Eq. (2.28) with the K′′

b above, as numerically it does not affect the

results for a sufficiently large ℓ∞. (In comparison, the pure bi-variate moment approach

corresponds to the choice of ℓM = 0, that is, there being no aγℓ part.) The solutions of the

aγℓ and bγ1,γ2 moment problems are given respectively by

Haℓ
pl
(Ga

ℓ) ⪰ 0, ∀pl ∈ {x1, 1− x1 } (4.6)

Hb
pl
(Gb) ⪰ 0, ∀pl ∈ {x1, 1− x1, x1(1− x2), x2 − x1ℓM(ℓM + 1) } . (4.7)
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where the orders of the moment truncations Ga
ℓ and Gb will be specified momentarily.

Our goal is to infer bounds on the ratios of the EFT coefficients g̃i,j = gi,j/g2,0 from

the Hankel matrix constraints as well as the null constraints, where g2,0 is positive as

can be easily seen from its dispersive sum rule. In a given optimization run, we select

an optimization objective
∑

i,j αij g̃
i,j , which entails choosing a direction αij within the

space spanned by g̃i,j to probe the boundary of the positivity bounds. Additionally, we

also choose the number of null constraints we want to impose. Since each null constraint

encompasses several EFT coefficients, the minimal moment truncations Ga
ℓ and Gb are

such that the moments aγℓ and bγ1,γ2 associated with these EFT coefficients are just fully

included in the Hankel matrices. For these minimal moment truncations, we can verify

whether the corresponding Hankel matrices are flat or not. In principle, the flatness of all

these Hankel matrices needs to be verified. However, in practice, it is often sufficient to

check Hα,β
1,ij (G

a
ℓ) and Hα1α2,β1β2

1,ij (Gb). If these Hankel matrices are flat, it is unnecessary to

consider higher-order moment truncations. Conversely, if they are not flat, higher-order

moment truncations should be pursued until flat Hankel matrices are found. The eventual

flat Hankel matrices are the ones to impose PSD conditions in order to yield optimal

positivity bounds.

As an explicit example, suppose we aim to obtain the lower bound of g̃3,1, making use

the null constraints involving g̃i,j with i+ j ≤ 6. We shall execute the following SDP:

minimize g3,1 =
∑

ℓ

(3
2
− ℓ(ℓ+ 1)

)
a1ℓ +

3

2
b1,0 − b0,1,

such that g2,0 ≡
∑

ℓ a
0
ℓ + b0,0 = 1∑

ℓ

(
ℓ2(ℓ+ 1)2 − 8ℓ(ℓ+ 1)

)
a2ℓ + b0,2 − 8b1,1 = 0,∑

ℓ

(
2ℓ3(ℓ+ 1)3 − 43ℓ2(ℓ+ 1)2 + 150ℓ(ℓ+ 1)

)
a3ℓ

+ 2b0,3 − 43b1,2 + 150b2,1 = 0,∑
ℓ

(
ℓ4(ℓ+ 1)4 − 44ℓ3(ℓ+ 1)3 + 588ℓ2(ℓ+ 1)2 − 2448ℓ(ℓ+ 1)

)
a4ℓ

+ b0,4 − 44b1,3 + 588b2,2 − 2448b3,1 = 0,

Haℓ
x1
(5) ⪰ 0, Haℓ

1−x1
(5) ⪰ 0, ℓ = 0, 2, 4, ..., ℓM,

Hb
x1
(5) ⪰ 0, Hb

1−x1
(5) ⪰ 0, Hb

x1(1−x1)
(5) ⪰ 0, Hb

x2−x1ℓM(ℓM+1)(5) ⪰ 0.

(4.8)

where aγℓ and bγ1,γ2 are decision variables and we have chosen the normalization g2,0 = 1.

For ℓM = 8, the result of this program gives:

min(g̃3,1) = 5.18309. (4.9)

which is in perfect agreement with the result of [7]. (The result remains unchanged if

the pure bi-variate formulation is applied using these sufficient base polynomials.) Indeed,

after running the program, one can get the values for the decision variables aγℓ and bγ1,γ2 ,

and substituting them back into the Hankel matrices Haℓ
1 , one can check that these Hankel

matrices are already flat. The flatness of the Hankel matrices can also be seen from the

fact that one can obtain an atomic representing measure from these matrices, which will

be discussed in Section 5.3. Once flatness is achieved, the results will agree perfectly with

those obtained using the method of Ref. [7].
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Typically, for given orders of moment and null constraint truncations, there exists a

maximum ℓM, beyond which increasing ℓM will not affect the numerical results. This is

because we are optimizing over a finite number of constraints, and a large ℓM merely leads

to redundant decision variables.

Figure 5. Comparison between the positivity bounds on g̃6,0 = g6,0/g2,0 and g̃4,1 = g4,1/g2,0 from

sufficient (Eqs. (4.6 and 4.6)) and necessary (see around Eq. (4.10)) Hankel matrix conditions in

the single scalar theory. The sufficient conditions agree to a high degree with the results using the

method of [7].

For comparison, we also compute the bounds using the necessary set of base polyno-

mials for the Hankel matrices used in [10] in the pure bi-variate formulation:

x2, x1, 1− x1, (x2 − ℓ(ℓ+ 1)x1)(x2 − (ℓ+ 2)(ℓ+ 3)x1), ℓ = 0, 2, 4, · · · , ℓM (4.10)

These are also the defining polynomials for the integration region of the corresponding

moment problem, i.e., they are the defining polynomials of set Kb with ℓM = 0 and without

the x2−ℓ∞(ℓ∞+1)x1 ≤ 0 truncation. (If the x2−ℓ∞(ℓ∞+1)x1 ≤ 0 truncation is included,

a sufficient set of base polynomials in this formulation is treating these polynomials as p̂l
and get the “power set” or the first half of the “power set”, according to the prescription

of Eqs. (3.19-3.22.) Keeping all the other setups the same, it would give rise to

min(g̃3,1) = 5.18321 (4.11)

which slightly deviates from the minimum in (4.9). Larger discrepancies can arise for the

higher order EFT coefficients. For example, for the lower bound on g̃6,0, the differences

can reach a percentage level for a large g̃4,1. See Figure 5 for a comparison of the effects

of the necessary and sufficient sets of base polynomials on the positivity bounds of g̃6,0
and g̃4,1. Notably, these discrepancies decrease close to the origin of the g̃6,0 and g̃4,1
plane. Therefore, for the single scalar example, the necessary conditions of [10], although

incomplete, are already quite accurate.
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In the pure bi-variate formulation, the number of Hankel matrices, i.e., the cardinality

of the set of the sufficient base polynomials grows exponentially with ℓM . In the mixed-

variate formulation, on the other hand, the number of Hankel matrices increases linearly

with ℓM. The reason is that in the pure bi-variate formulation, considerable effort is spent

eliminating regions on the x1-x2 plane that do not correspond to the true integration

domain of the underlying moment problem. In contrast, the mixed-variate formulation, for

the most part, directly uses the true integration domain.

4.2 Double Z2 bi-scalar

Now, we move to one of the simplest cases of multiple degrees of freedom where the matrix

moment formulation is needed: a bi-scalar with double Z2 symmetry: ϕ1 ↔ ϕ2, ϕ1 ↔ −ϕ1.

We follow the steps described in Section 2.2. In particular, we use the bi-variate moment

formulation for the large ℓ region. The main difference from the single scalar case is

that now many quantities have additional indices to label the particle degrees of freedom.

This mostly means that the SDP involves a greater number of decision variables. For

the Hankel matrices, these particle labels become parts of their row and column indices,

so the dimensions of the matrices are significantly enlarged, but the sufficient set of base

polynomials is still given by those of Eqs. (4.6) and (4.7). For example, for a generic bi-field

case, the Hankel matrices Haℓ
1 (2) and Hb

1(2) are respectively enlarged to be

a0ℓ,1111 a0ℓ,1112 a0ℓ,1121a
0
ℓ,1122 a1ℓ,1111 a1ℓ,1112 a1ℓ,1121a

1
ℓ,1122

a0ℓ,1211 a0ℓ,1212 a0ℓ,1221a
0
ℓ,1222 a1ℓ,1211 a1ℓ,1212 a1ℓ,1221a

1
ℓ,1222

a0ℓ,2111 a0ℓ,2112 a0ℓ,2121a
0
ℓ,2122 a1ℓ,2111 a1ℓ,2112 a1ℓ,2121a

1
ℓ,2122

a0ℓ,2211 a0ℓ,2212 a0ℓ,2221a
0
ℓ,2222 a1ℓ,2211 a1ℓ,2212 a1ℓ,2221a

1
ℓ,2222

a1ℓ,1111 a1ℓ,1112 a1ℓ,1121a
1
ℓ,1122 a2ℓ,1111 a2ℓ,1112 a2ℓ,1121a

2
ℓ,1122

a1ℓ,1211 a1ℓ,1212 a1ℓ,1221a
1
ℓ,1222 a2ℓ,1211 a2ℓ,1212 a2ℓ,1221a

2
ℓ,1222

a1ℓ,2111 a1ℓ,2112 a1ℓ,2121a
1
ℓ,2122 a2ℓ,2111 a2ℓ,2112 a2ℓ,2121a

2
ℓ,2122

a1ℓ,2211 a1ℓ,2212 a1ℓ,2221a
1
ℓ,2222 a2ℓ,2211 a2ℓ,2212 a2ℓ,2221a

2
ℓ,2222


, (4.12)



b0,01111 b0,01112 b0,01121b
0,0
1122 b1,01111 b1,01112 b1,01121b

1,0
1122 b0,11111 b0,11112 b0,11121b

0,1
1122

b0,01211 b0,01212 b0,01221b
0,0
1222 b1,01211 b1,01212 b1,01221b

1,0
1222 b0,11211 b0,11212 b0,11221b

0,1
1222

b0,02111 b0,02112 b0,02121b
0,0
2122 b1,02111 b1,02112 b1,02121b

1,0
2122 b0,12111 b0,12112 b0,12121b

0,1
2122

b0,02211 b0,02212 b0,02221b
0,0
2222 b1,02211 b1,02212 b1,02221b

1,0
2222 b0,12211 b0,12212 b0,12221b

0,1
2222

b1,01111 b1,01112 b1,01121b
1,0
1122 b2,01111 b2,01112 b2,01121b

2,0
1122 b1,11111 b1,11112 b1,11121b

1,1
1122

b1,01211 b1,01212 b1,01221b
1,0
1222 b2,01211 b2,01212 b2,01221b

2,0
1222 b1,11211 b1,11212 b1,11221b

1,1
1222

b1,02111 b1,02112 b1,02121b
1,0
2122 b2,02111 b2,02112 b2,02121b

2,0
2122 b1,12111 b1,12112 b1,12121b

1,1
2122

b1,02211 b1,02212 b1,02221b
1,0
2222 b2,02211 b2,02212 b2,02221b

2,0
2222 b1,12211 b1,12212 b1,12221b

1,1
2222

b0,01111 b0,01112 b0,01121b
0,0
1122 b1,01111 b1,01112 b1,01121b

1,0
1122 b0,11111 b0,11112 b0,11121b

0,1
1122

b0,11211 b0,11212 b0,11221b
0,1
1222 b1,11211 b1,11212 b1,11221b

1,1
1222 b0,21211 b0,21212 b0,21221b

0,2
1222

b0,12111 b0,12112 b0,12121b
0,1
2122 b1,12111 b1,12112 b1,12121b

1,1
2122 b0,22111 b0,22112 b0,22121b

0,2
2122

b0,12211 b0,12212 b0,12221b
0,1
2222 b1,12211 b1,12212 b1,12221b

1,1
2222 b0,22211 b0,22212 b0,22221b

0,2
2222



. (4.13)

where 1, 2, 3 and 4 take the values of 1 and 2, denoting the two types of scalars. With

the double Z2 symmetry, some of the components are identical to each other, significantly

reducing the number of independent coefficients in the EFT.

The positivity bounds on this model have been computed in Ref. [15]. Here, we

reproduce some of the bounds using the matrix moment formulation, which serves as a
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Figure 6. Positivity bounds on g̃2,1(1) and g̃2,1(2) with all g̃i,j(3) = 0 and the i + j ≤ 7 null constraints

in double Z2 bi-scalar theory. We have used notations similar to Ref. [15]: g2,0(1) = 2g2,01111, g̃
i,j
(1) =

2gi,j1122/g
2,0
(1) , g̃

i,j
(2) = 4g2,11111/g

2,0
(1) and g̃i,j(3) = 4gi,j1122/g

2,0
(1) .

verification of the formalism, in particular, the choice of the base polynomials for the

Hankel matrices. We parameterize the IR amplitude as

A1234(s, t) = poles + g01234(t) + s g11234(t) +
∑

i≥2,j≥0

gi,j1234(s+ t/2)itj (4.14)

Let us compute, for example, the bounds on gi,j1122/g
2,0
1111 and gi,j1111/g

2,0
1111 for various g

2,0
1122/g

2,0
1111;

see Figure 6. These bounds can be easily computed with the SemidefniteOptimazition

function in Mathematica, and the results are consistent with those of [15].

4.3 Photon EFT

The spin effects are another way to introduce multiple degrees of freedom in a field the-

ory. Let us first consider the case of an Abelian spin-1 EFT whose leading terms in the

Lagrangian are given by

L = −1

4
FµνF

µν + a1(FµνF
µν)2 + a2(FµνF̃

µν)2 + · · · , (4.15)

where Fµν is the field strength and its dual is defined as F̃µν = ϵµνρσF
ρσ/2. For this model,

the particle labels 1, 2, 3 and 4 in the 2-to-2 scattering amplitudes take the values of the

two helicity states h = +1,−1. In the context of QED, when the electron is considered as

a heavy particle and integrated out, we will get the famous Euler-Heisenberg EFT where

the EFT coefficients are suppressed by powers of the electron mass. Additionally, dark

photons have been popular in modeling the dark sector of the universe [86]. The positivity

bounds of this theory have been comprehensively investigated by [43, 87]. Here we use the

moment approach to reproduce some of the previous results.
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For an Abelian spin-1 EFT with conserved parity and time reversal invariance, the

amplitudes have the following symmetries

A1234 = A1̄2̄3̄4̄, A1234 = A3̄4̄1̄2̄, A1234 = A2143, (4.16)

where 1̄, for example, denotes the opposite helicity state of 1. Combined with crossing

symmetry, we can parametrize the amplitudes as follows
A++−− A++−+ A+++− A++++

A+−−− A+−−+ A+−+− A+−++

A−+−− A−+−+ A−++− A−+++

A−−−− A−−−+ A−−+− A−−++



=


s2ηF (s|t, u) (stu)ηG(s, t, u) (stu)ηG(s, t, u) H(s, t, u)

(stu)ηG(s, t, u) u2ηF (u|s, t) t2ηF (t|s, u) (stu)ηG(s, t, u)

(stu)ηG(s, t, u) t2ηF (t|s, u) u2ηF (u|s, t) (stu)ηG(s, t, u)

H(s, t, u) (stu)ηG(s, t, u) (stu)ηG(s, t, u) s2ηF (s|t, u)


(4.17)

where η = 1 for the spin-1 case, G(s, t, u) and H(s, t, u) are triple crossing symmetric and

f(s|t, u) is only symmetric in swapping its second and third arguments. Also, taking into

account the leading terms in the photon EFT Lagrangian, in the IR, we can parameterize

these independent amplitudes according to their symmetries

A++−−(s, t) = F2s
2 + F3s

3 + F4,1s
4 + F4,2s

2(s2 + t2 + u2) + · · · , (4.18)

A+++−(s, t) = G3stu+G5stu(s
2 + t2 + u2) + · · · , (4.19)

A++++(s, t) = H2(s
2 + t2 + u2) +H3stu+H4(s

2 + t2 + u2)2 + · · · . (4.20)

Expanding these expressions in terms of v = s+ t
2 and t, we can match one of Fi, Hi, Gi to

multiple gi,j1234. We can choose one of them to formulate the moment problem, disregarding

the ones with gi<N,j
1234 , and use the rest as null constraints. Let us take A++++ for example.

We can re-write it in terms of v and t:

A++++ = 2H2v
2 +

3H2

2
t2 +

H3

4
t3 −H3v

2t+ 4H4v
4 + 6H4v

2t2 +
9H4

4
t4 + · · · (4.21)

Matching to the v and t coefficients at, say, the fourth order, we get H4 = 1
4g

4,0
++++ =

1
6g

2,2
++++ = 4

9g
0,4
++++. In this case, we use H4 =

1
4g

4,0
++++ to get the moment formulation for

H4 and use 1
4g

4,0
++++ = 1

6g
2,2
++++ as one null constraint, discarding 1

6g
2,2 = 4

9g
0,4 because it

contains g0,4.

Thanks to the tu crossing symmetry and selection rules, some of the partial wave com-

ponents of the spectral functions ρ1 = ImA++++, ρ2 = ImA+++− and ρ3,s = ImA++−−
vanish identically, which simplifies the computations. Specifically, ρℓ1 and ρℓ3,s are nonzero

only for ℓ = 0, 2, 4, · · · ; ρℓ2 and ρℓ3,u + ρℓ3,t are nonzero only for ℓ = 2, 4, 6, · · · ; ρℓ3,u − ρℓ3,t is

nonzero only for ℓ = 3, 5, 7, · · · .
As discussed in Section 2.2.2, for a field theory with spin, its moment formulation

is slightly different from that of pure scalars. This is due to the appearance of non-

integer powers of polynomials of moment variables within the dispersive integrals. A simple
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Figure 7. Positivity bounds on amplitude coefficients in the H3-F3 and F4,1 + 2F4,2-H2 planes in

the Photon EFT. Here we choose the truncation orders: G = 5, ℓM = 20 and i + j ≤ 5 for null

constraints.

solution is to introduce extra moment variables. For the pure massless spin-1 case, we only

need to introduce the extra variable x3 =
√

x2(x2 − 2x1), which means we need to define

a tri-variate moment sequence

bγ1,γ2,γ31234 =

∫
K(3)

b

xγ21 xγ22 xγ33 ρ′′1234(x1, x2, x3)dx1dx2dx3. (4.22)

as discussed in Section 2.2.2. This will cause the Hankel matrices of bγ1,γ2,γ31234 to become

larger. In this case, the sufficient set of base polynomials to use is given by:

x1, 1− x1, x2 − ℓM (ℓM + 1)x1, x
2
3 − x22 + 2x1x2,−(x23 − x22 + 2x1x2), x1(1− x1),

x1(x2 − ℓM (ℓM + 1)x1), (1− x1)(x2 − ℓM (ℓM + 1)x1), x1(x
2
3 − x22 + 2x1x2),

(1− x1)(x
2
3 − x22 + 2x1x2),−x1(x

2
3 − x22 + 2x1x2),−(1− x1)(x

2
3 − x22 + 2x1x2). (4.23)

Following the reasoning in Section 3.2, we shall use bγ1,γ2,γ31234 with 0 ≤ γ1 + γ2 + γ3 ≤ G to

construct the Hankel matrices. In Figure 7, we plot the positivity bounds for the ratios of

the EFT coefficients H3/F2 and F3/F2 as well as F4,1 + 2F4,2/F2 and H2/F2, which are in

agreement with those of Ref. [43].

4.4 Gravitational EFT

Now, we turn to the case of a spin-2 EFT. Instead of constraining ratios of the EFT

coefficients, in this case, we will apply the L-moment formulation for multiple degrees of

freedom (see Section 3.3) to obtain enclosed bounds for the EFT coefficients themselves.

While the positivity bounds in the last subsections only use the positivity part of UV

partial wave unitarity, we now also use the upper bounds on the UV partial waves.

The leading Lagrangian terms of a generic pure gravitational EFT in 4D can be written

as (see, e.g., [13])

S =
1

16πGN

∫
dx4

√
−g

(
R+

λ3

3!
R(3) +

λ4

23
(R(2))2 +

λ̃4

23
(RR̃)2 + · · ·

)
(4.24)
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where R(2) = RµνκλRµνκλ, R
(3) = RµνκλRκλαγR

αγ
µν and RR̃ = 1

2R
µναβϵαβ

γδRγδµν . We

consider 2-to-2 tree-level scatterings around Minkowski space for the spin-2 fields hµν :

gµν = ηµν+κhµν , where κ
2 = 32πGN . With the explicit leading terms of the Lagrangian, it

is easy to see that the independent scattering amplitudes for this case can be parameterized

by Eq. (4.17) with η = 2 and

F (s|t, u) = 8πGN

stu
+ α1

1

s
+ α2

t2

s
+
∑
k,q

Fk,qs
k−qtq , (4.25)

G(s, t, u) =
α3

stu
+
∑
k,q

Gk,qs
k−qtq , (4.26)

H(s, t, u) =
∑
k,q

Hk,qs
k−qtq . (4.27)

where αi, Fk,q, Gk,q and Hk,q are EFT coefficients. With this setup, the null constraints

can be easily extracted. (Here, we choose the subtraction order Ns = 3 because we are

considering 4D gravity.) Then, we can follow the method described in Section 3.3 to derive

the enclosed bounds on the lowest order EFT coefficients themselves.
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Figure 8. Bounds on F1,0 and F0,0 using both the positivity part and the upper bounds of

partial wave unitarity. The blue region is computed from the L-moment formulation for a single

DoF without null constraints but with the extra assumption that λ3 = 0 in Eq. (4.24). The green

region is from the L-moment formulation for a single DoF without the λ3 = 0 condition but with

null constraints from A++−−(s, t) = A++−−(s, u) involving gi,j1234, i + j ≤ 7. These two regions

are in agreement with Ref. [42]. The blue region is from our matrix L-moment approach for multi-

DoFs without the λ3 = 0 condition but with null constraints from all crossing relations involving

gi,j1234, i+ j ≤ 7.

The bounds on F1,0 and F0,0 have previously been computed with the L-moment for-

mulation for a single DoF using the technique of Minkowski sums as well as numerically

with linear programming [42]. In Figure 8, we have reproduced these results in our ap-

proach: (1) the special case where the cubic curvature term R(3) is absent in the effective

Lagrangian, which in effect gives rise to a null condition F1,1 = α2 = 0, without using any
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Figure 9. Bounds on F4,0 and F4,4 for λ3 = 0 (see Eq. (4.24)) using both the positivity part

and the upper bounds of partial wave unitarity. For the red region, we only impose null constraints

from A++−−(s, t) = A++−−(s, u) involving gi,j1234, i + j ≤ 8. For the blue region, we impose null

constraints from all available crossing symmetries involving gi,j1234, i+ j ≤ 8.

null constraints; (2) the case with a nonzero cubic curvature term R(3), using only the null

constraints from the following crossing relation

A++−−(s, t) = A++−−(s, u). (4.28)

For the (1) case, more specifically, we obtain the following upper bound on F0,0

max

(
F0,0

(4π)2

)
= 0.33783 (4.29)

which agrees with that of Ref. [42] to at least three decimal places. Furthermore, the matrix

moment formulation allows us to use the null constraints from all the crossing relations,

which, as we can see in Figure 8, gives rise to much stronger bounds for the case with a

nonzero cubic curvature term R(3). Similarly, we have also computed the bounds on F4,0

and F4,4 as another example to showcase the improvement due to the use of all the crossing

relations; See Figure 9.

5 Inverse problem: from IR coefficients to UV spectrum

As already mentioned, mathematically, a moment problem asks whether there exists a

possible measure µij for a given moment sequence {mγ1γ2
ij | (γ1, γ2) ∈ Θ} such that an

integral representation (3.1) exists [60]. If there exists a measure for such integrals, it is

said that the moment problem is solvable, and this measure is a representing measure. In

other words, the solvability condition discussed in Section 3 is the necessary and sufficient

condition for the existence of a representing measure. Physically, solving a specific moment

problem is to determine whether there exists a UV spectrum for the given values of the

EFT coefficients. Additionally, we may also ask whether it is possible to reconstruct a UV

– 32 –



spectrum by the given set of EFT coefficients and whether the inferred UV spectrum is

unique or the determinacy of the moment problem.

In this section, we shall discuss how to reverse engineer the UV model from the IR

information of the EFT. We will start with a toy (mathematical) example of truncated

Hamburger moment problem. In Section 5.2, we connect the problem of reconstructing

the UV mass spectrum from the forward amplitude to a Hausdorff moment problem and

demonstrate the reconstruction with the the Veneziano amplitude. In Section 5.3, we gen-

eralize the problem to the case of a non-forward amplitude, which allows us to reconstruct

the UV spectrum of the masses and couplings from a given IR moment sequence. In Section

5.3.1, we demonstrate how to derive the moment sequence from the EFT coefficients in

the amplitude. In Section 5.4, we briefly discuss the mathematical concept of determinacy

of a moment problem and its connections to uniqueness of the inferred UV spectrum. In

Section 5.5, we illustrate the concepts and the methods in the UV reconstruction with

explicit examples.

5.1 Toy example: Truncated Hamburger

Let us first illustrate how to compute the representing measure or the UV spectrum with

a toy example. Suppose there is a solvable Θ(3)-truncated Hamburger (uni-variate, 1 × 1

matrix) moment sequence {m0,m1,m2,m3 }, which means they has the following integral

representation with at least one possible measure µ

mγ =

∫
R
xγdµ, γ = 0, 1, 2, 3. (5.1)

From Section 3.2, we know the following Hankel matrix shall be PSD (m in Hm
1 will be

omitted if there is no ambiguity):

H1(2) ≡

(
m0 m1

m1 m2

)
. (5.2)

Besides, the Hankel matrix shall have an eventual flat PSD extension. For simplicity, we

further assume that, given the first 4 moments, there exists an m4 such that the extended

Hankel matrix

H1(4) ≡

m0 m1 m2

m1 m2 m3

m2 m3 m4

 (5.3)

satisfies H1(4) ⪰ 0 and H1(4) is flat, i.e., rankH1(4) = rankH1(2). Moreover, we also

assume that rankH1(2) = 2, which implies m0 > 0, m2 > 0, m0m2 − (m1)2 > 0. Then, the

rank equality condition fixes this fictitious m4.

Given these assumptions, it is possible to prove this moment problem is really solvable

by actually finding a possible set { (Tn, ωn) } such that the corresponding measure admits

the following representation with delta functions

dµ =
∑
n

Tnδ(x− ωn)dx ⇒ mγ =
∑
n

Tnωγ
n, γ = 0, 1, 2, 3, 4. (5.4)
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where Tn are non-negative real numbers and ωn are real numbers. A measure like this,

which consists of a sum of delta functions, is called an atomic measure. To see this, note

that, as a result of rank(H1(4)) = rank(H1(2)), it will always be possible to define a real,

1× 2 matrix W ≡ (Wx2,1,Wx2,x)
T via the following equation(
m0 m1

m1 m2

)(
Wx2,1

Wx2,x

)
=

(
m2

m3

)
. (5.5)

Once the W matrix is obtained, we can choose ωn to be the roots of the following equation

(
1 ω
)
·

(
Wx2,1

Wx2,x

)
= ω2. (5.6)

Indeed, with these ωn, Eq. (5.5) is automatically satisfied if mγ =
∑

n T
nωγ

n is plugged into

Eq. (5.5). Also, W 2
x2,x+4Wx2,1 can be shown to be PSD by the solution of Eq. (5.5), which

means that ωn are always real roots. (If the intergration region were a general semialgebraic

set K, instead of R, this would give rise to roots ωn living within K [65].)

Having found ωn, T
n can be obtained by solving

V (ω1, ω2; {(0), (1)})

(
T 1

T 2

)
=

(
m0

m1

)
(5.7)

where V (ω1, ω2; {(0), (1)}) is a Vandermonde matrix

V (ω1, ω2; {(0), (1)}) =

(
(ω1)

0 (ω2)
0

(ω1)
1 (ω2)

1

)
(5.8)

Tn can be verified to be indeed PSD

T 1 =
−m1 +m0ω2

ω2 − ω1
≥ 0, T 2 =

m1 −m0ω1

ω2 − ω1
≥ 0. (5.9)

With the above choice of { (Tn, ωn) }, as one can easily verify, m0, m1, m2 and m3 indeed

admit the following integral representations

mγ =

∫
R
xγdµ, dµ =

(
T 1δ(x− ω1) + T 2δ(x− ω2)

)
dx. (5.10)

Due to the condition rankH1(4) = rankH1(2) = 2, m4 is in fact uniquely determined:

m4 =
(m2)3 − 2m1m2m3 + 3m0(m3)2

m0m2 − (m1)2
. (5.11)

Alternatively, we may also write it as m4 = T 1(ω1)
4 + T 2(ω2)

4, meaning that m4 has the

same representing measure.

In other words, for this truncated Hamburger problem with an odd integer truncation

order G = 3 (thus H1(G) = H1(G − 1)), we can find an eventual flat extension with
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least atoms 4 such that rankH1(G − 1) = rankH1(G + 1), if H1(G − 1) ⪰ 0 is satisfied.

Generally speaking, with a given order of truncation, this method allows us to capture the

UV spectrum to a certain order for the lowest lying modes, and as the truncation order

increases, we shall see more modes to be accurately determined. A caveat is that there

can also be some other non-minimal eventual flat extensions, and also a moment problem

may not have a minimal flat extension, i.e., which means our representing measure satisfies

rankH1(∞) = rankH1(G).

The simplicity of this toy model is that the moment integration range is R, so we only

need to evaluate the H1 matrices. In principle, for a generic (semialgeraic) set K, one may

need to deal with more Hankel matrices. However, as we shall discuss later, for a moment

sequence that remains determinate even if K is relaxed to R, it is sufficient to only evaluate

the H1 matrices.

5.2 UV mass spectrum from EFT at t = 0

If the integration region K of the uni-variate problem is restricted to the interval [0, 1]

(instead of R), we arrive at the Hausdorff moment problem, which, as already mentioned,

has a direct physics bearing: it arises directly from the forward limit of the 2-to-2 scattering

of a scalar field theory. To be concrete, the EFT coefficients of the forward-limit of 2-to-2

scattering amplitude could be expressed as a sum of moments mγ1 , which are given by

mγ1 =

∫ 1

0
xγ11 dµ, (5.12)

where x1 = Λ2/s′ and dµ = xNs−1
1 AbsA(Λ2/x1, 0)dx1. Then, the existence of an atomic

measure constructed by delta functions (see Eq. (5.4)) means that we can find a UV

completion with a number of particles with mass MI :

A(s, 0) ∼
∑
I

T I

M2
I − s

. (5.13)

In this sense, the solution of the moment problem or the representing measure provides a

possible UV completion of the EFT. Thus, this method allows us to re-construct a possible

UV mass spectrum and couplings from the IR data.

Additionally, every solvable Hausdorff moment sequence {mγ } satisfies Carleman’s

condition [60]

∞∑
γ=1

(m2γ)
− 1

2γ = ∞, (5.14)

which is easy to see by noting the fact that mγ ≥ mγ+1, because of Eq. (5.12) and x1 ∈ [0, 1],

leading to
∑∞

γ=1(m
2γ)

− 1
2γ ≥

∑∞
γ=1(m

0)
− 1

2γ = ∞. This means that every solvable full Haus-

dorff moment problem has a unique representing measure. In other words, the forward-limit

4Note that we can write H1(∞) =
∑

n(1, xn, x
2
n, · · · )TTn(1, xn, x

2
n, · · · ), so rankH1(∞) measures the

number of delta functions.
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UV mass spectrum we can construct is unique. The uniqueness of the moment problem

away from the forward limit will be discussed in Section 5.4. For a truncated Hausdorff

moment problem, however, multiple representing measures may exist. Intuitively, this can

be understood because the measure function contains an infinite number of degrees of free-

dom, so there are many ways to accommodate a finite moment sequence with different

representing measures. For the forward-limit, it is sufficient to choose a representing mea-

sure with a minimal number of delta functions. As the truncation order increases, as we

shall see in the example below, the representing measure will increasingly approach the

unique measure from the full moment problem.

5.2.1 Veneziano amplitude

Let us inject a UV model and show how to recover the UV model from the truncated IR

data. For concreteness, we consider a model whose full moment sequence is given by

mγ =
∞∑
I=1

(
1

I

)2(1

I

)γ

= ζ(γ + 2), (5.15)

where ζ(z) is the Riemann zeta function. This injected UV model is acutally nothing

but the Veneziano amplitude in the tree-level open string scattering with the color and

kinematic factors stripped. To see this, note that the Veneziano amplitude with zero

Regge intercept is given by

AVen(s, t) =
Γ(−s)Γ(−t)

Γ(1− s− t)
=

1

st
exp

∑
k≥2

ζ(k)

k

[
sk + tk − (s+ t)k

] . (5.16)

which has a pole 1/(st) in the forward limit. The pole subtracted Veneziano amplitude at

t = 0 can be written as

ÃVen(s, 0) =
∑
k≥2

ζ(k)sk =
∞∑
I=1

1/I

I − s
, (5.17)

which yields the above moment sequence. Here we have chosen the mass units such that

the Regge slope α′ = 1.

Suppose only the first few EFT coefficients {mγ } are known where γ ≤ G, G being an

odd integer, so we can precisely evaluate the Hankel matrix H1(G). For this special case,

it is always possible to find a fictitious mG+1 such that the Hankel matrix H1(G+ 1) is a

flat extension of H1(G):

rankH1(G+ 1) = rankH1(G). (5.18)

This means that it is always possible to find a minimal representing measure. While the

flatness condition already guarantees the PSD of H1(G+1), it happens that this fictitious

mG+1 also makes Hx(G+ 1) and H1−x(G+ 1) PSD. However, this is not true generically,

as we will shortly demonstrate with a simple example.
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Figure 10. UV mass spectra reconstructed from truncated sets of EFT coefficients for the forward

limit of the Veneziano amplitude; see Eq. (5.15). M2
I denotes the mass of the UV particle, and T I

denotes the “coupling strength”(see Eq. (5.13) for its definition). The true spectrum lies on the

dashed line, Eq. (5.15), while the crosses are the reconstructed UV spectra from EFT coefficients

{ gi,0 } truncated up to order i ≤ G+ 2.

We emphasize that the true value of the order-(G+ 1) moment mG+1 = ζ(G+ 3) can

not satisfy the minimal flatness condition, because the flatness condition is in essence the

condition used to obtain the minimal representing measure for the first several moments

from infinitely many representing measures of the solvable truncated moment problem.

Also, in general, it may not be possible to find mG+1 such that H1(G + 1) is flat and

Hx(G+ 1) and H1−x(G+ 1) are both PSD simultaneously, in which case one should go to

a higher order. If the moments are reasonable/solvable, i.e., within the positivity bounds,

it is always possible to find a larger G′ such that H1(G
′) is flat. For the problem at hand,

however, if all the leading (odd order) moments are known precisely, it happens that a flat

extension can be found at each order.

Recalling x1 = 1/s′ (here Λ = 1) and following the algorithm outlined in Eqs. (5.5-

5.11), we can reverse-engineer the measure from a truncated set of EFT coefficients

dµ ∼
∑
I=1

T Iδ(s′ −M2
I )ds

′, (5.19)

In Figure 10, we plot how the UV mass spectrum obtained from the IR coefficients ap-

proximate the underlying true UV spectrum T I = 1/I = 1/M2
I , M2

I = 1, 2, · · · . As the

truncated order G increases, the reconstructed UV mass spectrum can more accurately

capture a growing number of low-lying modes in the true mass spectrum.

Note that additional UV information may not be necessary for the reserve engineering.

For example, the Veneziano amplitude has a mass gap between the lowest lying UV modes

(located at M2
I = 1) and the heavier modes (located above M2

I = 2). If this information is

incorporated into our moment problem, rather than having the semialgebraic set K = [0, 1],
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the measure is instead defined on

K = {x1 | x1(1− x1) ≥ 0, (x1 − 1)(x1 − 1/2) ≥ 0 } = [0, 1/2] ∪ {1} (5.20)

For this case, the PSD of Hankel matrix H(x1−1)(x1−1/2) is required, which is more difficult

to solve numerically. However, just as we have seen in Figure 10, the numerical result still

matches the real spectrum, largely thanks to the determinacy property of the Hausdorff

moment problem. So, when possible, it is preferable to use sufficient but loose constraints

to compute the spectrum.

5.3 UV reconstruction for t ̸= 0

Now we turn to the reverse engineering of the UV theory for the general case of a multi-

field theory away from the forward limit. For an arbitrary set of EFT coefficients, we

wish to seek a UV amplitude with countable UV particles that can realize this EFT at low

energies. As we shall see, such a UV amplitude can always be found if the set of coefficients

are within the positivity bounds; that is, if the corresponding PSD Hankel matrices admit

eventual flat extensions.

We will see that for a multi-field theory, it is always possible to find a representing

measure of the following form

dµij(x1, x2) =
∑
n

Tn
ij δ(x1 − ω1n)δ(x2 − ω2n)dx1dx2 (5.21)

=
∑
I,ℓ

T I,ℓ
1234δ

(
x1 −

Λ2

M2
I

)
δ
(
x2 −

Λ2

M2
I

ℓ(ℓ+ 1)
)
dx1dx2 (5.22)

=
∑
I,ℓ

T I,ℓ
1234δ(s

′ −M2
I )δ(J

2 − ℓ(ℓ+ 1))ds′dJ2 (5.23)

for any given full moment sequence { bγ1γ2ij }. In the second line above, we have translated

back to the amplitude language and separate the summation index n into I and ℓ, denoting

the mass and spin respectively. However, ultimately, we are interested in reconstructing the

UV spectrum for any given values of all EFT coefficients, rather than moments { bγ1γ2ij }.
As we see in Eq. (2.23), because of the simultaneous presence of the s and u channel,

the conversion from the moments to the EFT coefficients is not straightforward. We will

address this subtlety shortly in Section 5.3.1.

Once we have obtained (Tn
ij , ω1n, ω2n) or (T

I,ℓ
1234,M

2
I , ℓ), using the definition (Eq. (2.21)

and Eq. (2.22)), the UV spectral functions of the theory can be written as

AbsAℓ
1234(s

′) =
1

8π(2ℓ+ 1)

∑
I

T I,ℓ
1234 πδ(s′ −M2

I ), for s′ ≥ Λ2 , (5.24)

where T I,ℓ
1234 ≡ (1/2)Λ2(M2

I /Λ
2)Ns+1T I,ℓ

1234. This means that the UV amplitude contains

heavy particles with mass MI , spin ℓ, and coupling strength T I,ℓ
1234 respectively:

A
(UV)
1234(s, t) = poles +

∑
I,ℓ

T I,ℓ
1234d

ℓ
h12,h34

(cos θ)

M2
I − s− iϵ

+ (crossing terms), (5.25)
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and the dispersive relation gives the IR behaviour

A
(IR)
1234(s, t) =

λ1234

−s
+

λ1324

−t
+

λ1432

−u
+A

(0)
1234(t) +A

(1)
1234(t)s (5.26)

+
∑
I,ℓ

(
T I,ℓ
1234

M2
I − s

(s+ t/2)2

(M2
I + t/2)2

dℓh12h43

(
1 +

2t

M2
I

)
+

T I,ℓ
1432

M2
I − u

(u+ t/2)2

(M2
I + t/2)2

dℓh14h23

(
1 +

2t

M2
I

))
,

In general, there are crossing symmetric terms, unless it is a dual amplitude such as those

in string theory.

Let us now outline the exact procedure for finding the moment measure using the

Curto-Fialkow method [67] (see [65] for the generalization to the matrix moment problem),

assuming that we have found the flat extensions of the Hankel matrices. It is essentially

generalization of the steps illustrated in the toy example in Section 5.1.

(1) Assuming Hankel matrix H1(G) is flat at truncation order G + 2, we define the

(⌊G/2⌋)(⌊G/2⌋+ 1)/2× (⌊G/2⌋+ 1) W -matrix as follows∑
β1β2 j

(
H1(G)

)α1α2,β1β2

ij
W β1β2,γ1γ2

jm = Bα1α2,γ1γ2
im (5.27)

where the indices take values within the range β1 + β2 ≤ ⌊G/2⌋ and γ1 + γ2 = ⌊G/2⌋+ 1.

The matrix B, which is of the same dimension as W , is defined by

H1(G+ 2) =

(
H1(G) B

BT C

)
. (5.28)

As long as there exists a flat extension, one can prove that W must have a solution, which

can be expressed in terms of the moments mγ1γ2
ij .

(2) Having found the solution for W , we then compute Ω = (ω1, ω2) by solving

Det
ij

(∑
α1α2

(ω1)
α1(ω2)

α2Wα1α2,β1β2

ij

)
= (ω1)

β1(ω2)
β2 . (5.29)

Suppose that there are nM solutions labeled by Ωn, n = 1, 2, ..., nM. One can show that

Ωn must live within the semialgebraic set K of our moment problem [81]. Ωn specifies the

energy scales and spins of the UV particles.

(3) Then, we can compute the coupling strength Tn
ij by solving

V (Ω1,Ω2, · · · ,ΩnM ; Ξ)


T 1
jk

T 2
jk
...

TnM
jk

 =


mγ11γ21

ik

mγ12γ22
ik
...

m
γ1nM

γ2nM
ik

 (5.30)

where the generalized Vandermonde matrix is defined as

V (Ω1,Ω2, · · · ,ΩnM ; Ξ) =


ωγ11
11 ωγ21

21 Iij ωγ11
12 ωγ21

22 Iij · · · ωγ11
1n ωγ21

2n Iij
ωγ12
11 ωγ22

21 Iij ωγ12
12 ωγ22

22 Iij · · · ωγ12
1nM

ωγ22
2nM

Iij
...

...
. . .

...

ω
γ1nM
11 ω

γ2nM
21 Iij ω

γ1nM
12 ω

γ2nM
22 Iij · · · ω

γ1nM
1nM

ω
γ2nM
2nM

Iij

 (5.31)
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where Iij is the identity matrix. There is some freedom in choosing the set

Ξ = { (γ11, γ21), (γ12, γ22) · · · , (γ1n, γ2n) } . (5.32)

However, as long as it is chosen in a way to make sure that V (Ω1,Ω2, · · · ,Ωn; Λ) is invert-

ible, it amounts to the same Tn
ij . In fact, such a set always exists and Tn

ij are guaranteed to

be positive. The positivity of Tn
ij ensures that the UV particles are not plagued by ghost

instabilities.

5.3.1 From EFT coefficients to moments

In the preceding discussion, we glossed over the subtlety of how to uniquely determine the

bi-variate moment sequence from the EFT coefficients. Let us now specify the explicit

procedures to do so.

Λ2i+2jgi,j j = 0 j = 1 j = 2 j = · · ·
i+ j = 2 b0,0 × × ×
i+ j = 3 0 b0,1 − 3

2b
1,0 × ×

i+ j = 4 b2,0 0 1
4b

0,2 − 2b1,1 + 3
2b

2,0 ×
i+ j = 5 0 b2,1 − 5

2b
3,0 0 · · ·

i+ j = 6 b4,0 0 1
4b

2,2 − 3b3,1 + 15
4 b

4,0 · · ·
i+ j = 7 0 b4,1 − 7

2b
5,0 0 · · ·

i+ j = 8 b6,0 0 1
4b

4,2 − 4b5,1 + 7b6,0 · · ·
i+ j = 9 0 b6,1 − 11

2 b
7,0 0 · · ·

i+ j = 10 b8,0 0 1
4b

6,2 − 5b7,1 + 45
4 b

8,0 · · ·
i+ j = 11 0 b8,1 − 11

2 b
9,0 0 · · ·

i+ j = 12 b10,0 0 1
4b

8,2 − 6b9,1 + 33
2 b

10,0 · · ·

Table 2. Relations between gi,j and bγ1,γ2 for the single scalar case in the pure bi-variate formu-

lation. For example, g3,0 = 0 and Λ6g2,1 = b0,1 − 3
2b

1,0.

At first glance, since a sum rule contains both the s and u channel part, the map

from the EFT coefficients to the moment sequence does not seem to be invertible. For

concreteness, let us take the single scalar case for example and work with a pure bi-variate

formulation (setting ℓM = 0 in Eq. (2.23) and without aγ1). For this case, the sum rules

(2.23) become 5

gi,j =
∑
γ′
2

V
(γ)
γ2,γ′

2
bγ1,γ

′
2 + (u-channel), (5.34)

5Remember that the sum rules for the single scalar case can be written explicitly as

gi,j ≡ 1 + (−1)i

2(Λ2)i+j

∫ j∑
k=0

xi+j−k−2
1

∏k
l=1(x2 − l(l − 1)x1)

(k!)2
(−2)j−k(j − k + i)!

(j − k)!i!
ρ(x1, x2)dx1dx2. (5.33)
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where now bγ1γ2 are defined by

bγ1γ2 ≡
∫

xγ11 xγ22

∞∑
ℓ=0

σℓ(x1)δ
(
x2 − ℓ(ℓ+ 1)x1

)
dx1dx2. (5.35)

The first few explicit relations between EFT coefficients gi,j and the moments bγ1,γ2 are

shown in Table 2. The general expression for the first three columns are given by

Λ4ig2i,0 = b2i−2,0, Λ4i+2g2i,1 = b2i−2,1 − 2i+ 1

2
b2i−1,0,

Λ4i+4g2i,2 =
1

4
b2i−2,2 − (i+ 1)b2i−1,1 +

(2i+ 1)(i+ 1)

4
b2i,0. (5.36)

We see that half of the entries are zero: g2i+1,j = 0, making it impossible to express bγ1γ2

in term of gi,j from this table alone. For instance, as we can see in the table, for i+ j ≤ 3,

we have Λ4g2,0 = b0,0, g3,0 = 0 and Λ6g2,1 = b0,1 − 3
2b

1,0. Therefore, without further

input, it is impossible to express b0,0, b1,0, b0,1 as linear combinations of g2,0, g3,0, g2,1.

More generally, we can not express b2γ+1,0 in terms of gi,j only, as g2i,1 is equal to a linear

combination of b2γ+1,0 and b2γ,1, and similarly for some other bγ1,γ2 .

However, by further taking into account the spectral information or the positivity of

the Hankel matrices, we can determine bγ1,γ2 from gi,j , as we will demonstrate below.

Method 1:

Let us first specify the procedure to determine all the moments with further spectral

information. This relies on the fact that the first moment variable x1 = Λ2/s′ is defined

on [0, 1]. First, note that by defining a new moment variable x′1 = (x1)
2, we can express

the moments b2γ,0 as:

b2γ,0 =

∫ 1

0
(x′1)

γρ′0(x
′
1)dx

′
1 with ρ′0(x

′
1) ≡

∞∑
ℓ=0

σℓ
(√

x′1

)
/
(
2
√
x′1

)
(5.37)

where σℓ is defined in Eq. (2.21). This formulation leads to a Hausdorf moment problem,

which, as discussed in Section 5.2, allows us to write the modified spectral function as a

sum of delta functions of x′1:

ρ′0(x
′
1) =

∑
I

T I
0 δ(x′1 − Λ4/M4

I ) (5.38)

with some calculable (T I
0 ,MI). That is, we can solve this Hausdorf moment problem

explicitly to get the spectrum (T I
0 ,MI), which will be used to determine b2γ+1,0. Since x1

is positive, we can change the delta functions of x′1 into delta functions of x1, and get the

following relation

∞∑
ℓ=0

σℓ (x1) =
∑
I

T I
0 δ(x1 − Λ2/M2

I ) (5.39)
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As mentioned in Section 5.2, the UV spectrum obtained in this way is unique. Thus, the

key observation is that we can determine the moment sequence { b2γ+1,0 } using this UV

spectrum:

b2γ+1,0 =

∫ 1

0
x2γ+1
1

( ∞∑
ℓ=0

σℓ (x1)

)
dx1 =

∑
I

T I
0 (Λ

2/M2
I )

2γ+1 (5.40)

With b2γ+1,0 determined, one can now infer the value of b2γ,1 from the relation b2n−2,1 =

Λ4n+2g2n,1 + 2n+1
2 b2n−1,0 (see Table 2 or Eq. (5.36)). Now, the b2γ,1 moment itself has the

following dispersive relation:

b2γ,1 =

∫ 1

0
(x′1)

γρ′1(x
′
1)dx

′
1 with ρ′1(x

′
1) ≡

∞∑
ℓ=0

ℓ(ℓ+ 1)σℓ
(√

x′1

)
/(2
√

x′1) (5.41)

(Note that although ρ′1(x
′
1) is similar to ρ′0(x

′
1), in general, one can not infer ρ′1(x

′
1) from

ρ′0(x
′
1).) In this formulation, b2γ,1 again is a Hausdorff problem, so we can write ρ′1(x

′
1) as

ρ′1(x
′
1) =

∑
I

T I
1 δ(x′1 − Λ4/M4

I ) (5.42)

Using the spectrum (T I
1 ,MI) and repeating the previous procedure, we can determine the

moments b2γ+1,1, thus the entire bγ,1 sequence. Similarly, the other moments bγ1,γ2 with

γ2 ≥ 2 can also be determined analogously.

In practice, we usually only know a few EFT coefficients, so the Hausdorff spectra

mentioned above are truncated ones. In this case, as mentioned, it is suffice to choose a

spectrum with the least number of delta functions. With more EFT coefficients included,

the obtained moments will increasingly approach the true moments, as we will see in Section

5.5.4.

Method 2:

An alternative approach to effectively determine bγ1,γ2 from gi,j , which is often easier

to implement numerically, is to constrain the extra undetermined moments using the PSD

of the Hankel matrices. Specifically, by numerically running SDPs, we can constrain a

given bγ1,γ2 from both above and below, and as we include more EFT coefficients, the gap

between the upper and lower bounds on this bγ1,γ2 shrinks. As we will see in Section 5.5.4,

this method can often determine the moments to a good precision, closely approaching

the first method. Concretely, if we want to determine a given bγ1,γ2 from a set of EFT

coefficients, we can compute its maximum and minimum, subject to the relevant relations

in Table 2 along with the PSD conditions of the Hankel matrices truncated to include all

the bγ1,γ2 involved in the relevant gij and bγ1,γ2 relations. That is, we can compute the
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minimum of bγ1,γ2 by the following SDP

minimize bγ1,γ2 (5.43)

such that g2,0 = b0,0, g2,1 = b0,1 − 3

2
b1,0, · · ·

b1,0 b2,0 b1,1 · · ·
b2,0 b3,0 b2,1 · · ·
b1,1 b2,1 b1,2 · · ·
...

...
...

. . .

 ⪰ 0,


b0,0 − b1,0 b1,0 − b2,0 b0,1 − b1,1 · · ·
b1,0 − b2,0 b2,0 − b3,0 b1,1 − b2,1 · · ·
b0,1 − b1,1 b1,1 − b2,1 b0,2 − b1,2 · · ·

...
...

...
. . .

 ⪰ 0, · · ·

and similarly for the maximum. The maximum and minimum quickly approach each other

as we include more EFT coefficients.

5.4 Determinacy/Uniqueness

We have specified how to construct a UV spectrum (or representing measure) for a given set

of EFT coefficients (or a given moment sequence). One may wonder whether the obtained

spectrum (or measure) is unique. This is often called the determinacy problem of the

moments. Let us see how the existing results in this problem can be used for the case of a

single scalar field.

To this end, we shall separate the bi-variate moment sequence into a set of uni-variate

moment sequences for different UV masses, and we will be concerned with the determinacy

of the spin moment sequences. This is because, as we saw in Section 5.2 in the forward

limit, the mass spectrum is always unique (in the full moment problem).

Let us define these uni-variant spin moments and express them in terms of the bi-

variant moments. Suppose the UV spectrum is given by the masses MI and couplings T I,ℓ,

which leads to the following representing measure

ρ(x1, x2) =
∑
I,ℓ

T I,ℓ δ

(
x1 −

Λ2

M2
I

)
δ

(
x2 −

Λ2

M2
I

ℓ(ℓ+ 1)

)
. (5.44)

For each UV mass, we can define the following uni-variate moment sequence

cγ2I ≡
∞∑
ℓ=0

T I,ℓ
(
ℓ(ℓ+ 1)

)γ2
≡
∫ ∞

0
(J2)γ2 ρ̂I(J

2)dJ2, (5.45)

where ρ̂I(J
2) ≡

∑∞
ℓ=0 T

I,ℓδ(J2− ℓ(ℓ+1)). Then, the bi-variant moments are related to cγ2I
by

bγ1,γ2 =
∑
I

(Λ2/M2
I )

γ1+γ2cγ2I (5.46)
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Since the Vandermonde matrix is invertible, we can write cγ2I in terms of bγ1,γ2


cγ21
cγ22
cγ23
...

 = diag

(
Λ2

M2
1

,
Λ2

M2
2

,
Λ2

M2
3

, · · ·
)−γ2



1 1 1 · · ·
Λ2

M2
1

Λ2

M2
2

Λ2

M2
3

· · ·

Λ4

M4
1

Λ4

M4
2

Λ4

M4
3

· · ·

...
...

...
. . .



−1
b0,γ2

b1,γ2

b2,γ2

...

 (5.47)

We shall then try to determine whether the moment sequences cγ2I have unique UV measures

in the physical problems.

In general, the determinacy of a moment problem with a more restricted range for the

moment variable is guaranteed by determinacy under a more relaxed range. For example, a

(uni-variate) Stieltjes moment problem with range [0,∞) can be thought as a special Ham-

burger moment problem, which in general has range (−∞,∞). Thus, the condition for a

solvable Stieltjes moment sequence to be determinate is weaker than the condition for the

corresponding Hamburger moment sequence to be determinate. In other words, a Stieltjes

determinate moment sequence can be Hamburger indeterminate, while a Hamburger de-

terminate moment sequence must be Stieltjes determinate. For our current problem (for a

scalar), the cγ2I moment sequence is defined on the set

{ ℓ(ℓ+ 1) | ℓ = 0, 2, 4, · · · } . (5.48)

So the determinacy conditions for this problem are weaker than those for the corresponding

Stieltjes or Hamburger moment problem. We can often use the corresponding Stieltjes or

Hamburger moment problem to check the determinacy of cγ2I .

For a Hamburger moment sequence, Carleman’s condition suggests that if cγ+1/cγ ≲
O(γ) when γ → ∞, the moment sequence is determinate on R. On the other hand, if

cγ+1/cγ ≿ O(γ) when γ → ∞, the moment sequence is not necessarily indeterminate on R.
However, the case of the Stieltjes moment problem is different. A concise summary

for the determinacy and indeterminacy criteria for the Stieltjes moment problem can be

found in Ref. [88]. In particular, we have the following results:

• A Stieltjes moment problem is determinate if its sequence satisfies cγ+1/cγ ∼ O(γ2)

when γ → ∞.

• A solvable Stieltjes moment sequence cγ is indeterminate if it has a continuous rep-

resenting measure ρ̂(x)dx satisfying −d ln ρ̂(x)/d(lnx) → +∞ when x → +∞ and

grows faster than cγ(2+ϵ)γ for some positive c and ϵ.

Therefore, the boundary between an indeterminate and a determinate Stieltjes moment

problem is

cγ+1/cγ ∼ cγ2 when γ → ∞, c > 0. (5.49)
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For our current problem with the set (5.48), which is a subset of [0,∞), this criterion acts

as a sufficient condition for each cγI .

A tantalizing aspect of this determinacy boundary is that it seems to be aligned with

the Froissart bound for the amplitude. To see this, note that a spectral density of the

form ρ̂I(J
2) ∼ exp(−cI(J

2)1/2) with cI > 0 lies at the boundary of condition (5.49), which

can be checked by substituting it into Eq. (5.44). On the other hand, the Froissart bound

implies that at large ℓ and small x1 we have [89]

ρ̂I ∼ Im aℓ(x1) ∼ exp (−2mℓMI/Λ
2), (5.50)

where m is the mass of the scattering particle. This matches the above determinacy

boundary for the fastest varying factor. However, it is possible that discrepancies arise for

the small ℓ or x1 ∼ 1 spectral measures.

5.5 Some examples

In this subsection, we will illustrate the connections between the UV spectra and the EFT

coefficients, as well as the reverse engineering from the IR through the moment formulation,

using a few specific examples

5.5.1 Multiple UV scalars

Let us begin with a simple case where the UV theory only contains a number of scalars with

mass MI . That is, we consider a renormalizable theory with a massless scalar field ϕ and

heavy scalars ΦI with mass MI , whose interacting part of the Lagrangian is schematically

given by

Lint =
1

24
λϕ4 +

1

6
ηΛϕ3 +

1

2
ηIΛϕ

2ΦI + (ϕΦΦ) + (ΦΦΦ) (5.51)

+ (ϕϕϕΦ) + (ϕϕΦΦ) + (ϕΦΦΦ) + (ΦΦΦΦ) (5.52)

where Λ is the mass of the lightest ΦI . From the UV point of view, the tree-level amplitude

for the ϕϕ → ϕϕ scattering is given by

A(s, t) = λ+ η2
Λ2

−s
+
∑
I

η2I
Λ2

M2
I − s

+ (s ↔ t) + (s ↔ u). (5.53)

From the IR point of view, it may be instructive to rewrite this amplitude as follows

A(s, t) = η2
(
Λ2

−s
+

Λ2

−t
+

Λ2

−u

)
+A(0)(t) + sA(1)(t)

+
∑
I

η2I

[
Λ2

M2
I − s

(s+ t
2)

2

(M2
I + t

2)
2
Pℓ=0

(
1 +

2t

M2
I

)
+

Λ2

M2
I − u

(u+ t
2)

2

(M2
I + t

2)
2
Pℓ=0

(
1 +

2t

M2
I

)]

This is essentially the dispersion relation where the integration over s′ becomes a sum over

spinless particles with masses M2
I .
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To see how the UV reconstruction from the EFT coefficients works, let us match the

UV amplitude with the EFT coefficients gi,j , which are defined by

A(s, t) = · · ·+
∑

i≥2,j≥0

gi,j
(
s+

t

2

)i

tj , (5.54)

where for i ≥ 2 we have

gi,0 =
1 + (−1)i

(Λ2)i

∑
I

η2I

(
Λ2

M2
I

)i+1

, gi,1 = − i+ 1

2

1 + (−1)i

(Λ2)i+1

∑
I

η2I

(
Λ2

M2
I

)i+2

,

gi,2 =
(i+ 1)(i+ 2)

8

1 + (−1)i

(Λ2)i+2

∑
I

η2I

(
Λ2

M2
I

)i+3

, · · · (5.55)

Our goal is that we start from a purely low energy point of view, only knowing these EFT

coefficients, and we wish to infer the UV theory from them.

To proceed in a purely bi-variant formulation (ℓM = 0), we need to first convert these

EFT coefficients to the bi-variant moments bγ1,γ2 . From the dispersive sum rules, we know

that they are related by

Λ4ig2i,0 = b2i−2,0, Λ4i+2g2i,1 = b2i−2,1 − 2i+ 1

2
b2i−1,0,

Λ4i+4g2i,2 =
1

4
b2i−2,2 − 2i+ 2

2
b2i−1,1 +

(2i+ 1)(2i+ 2)

8
b2i,0, · · · . (5.56)

For the forward-limit moments where γ2 = 0, we can easily solve the relevant equations

above to get bγ1,0 in terms of gi,0, which results in

bγ1,0 =
∑
I

2η2I

(
Λ2

M2
I

)3(
Λ2

M2
I

)γ1

, γ1 = 0, 2, 4, · · · . (5.57)

From these moments, we can infer that the UV masses are MI and the UV couplings

T I = η2IΛ
2. (With the hindsight of the UV theory along with its analytical expressions, we

can determine this spectrum precisely. If we did it numerically with some truncation, we

would only approximate this spectrum numerically, following the procedure of Eqs. (5.27)

to (5.32), as we shall see in later examples.) Due to the uniqueness of the UV spectrum in

the forward limit, we can infer that for γ1 = 1, 3, 5, · · · , we must have the same spectrum,

and therefore we have

bγ1,0 =
∑
I

2η2I

(
Λ2

M2
I

)3(
Λ2

M2
I

)γ1

, γ1 = 0, 1, 2, · · · ; (5.58)

Then using the relations between gi,j and bγ1,γ2 , we can infer that bγ1,1 = 0 for γ1 =

0, 2, 4, · · · . By the determinacy of the Hausdorff moment problem again, we can infer

bγ1,1 = 0 for γ1 = 0, 1, 2, · · · . Then using the relations between gi,j and bγ1,γ2 , we can infer

bγ1,2 = 0 for γ1 = 0, 2, 4, · · · . Repeating this procedure, we get

bγ1,1 = bγ1,2 = · · · = 0, γ1 = 0, 1, 2, · · · . (5.59)
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and thus all the bi-variant moments are given by

bγ1,γ2 =
∑
ℓ=0

∑
I

2η2I

(
Λ2

M2
I

)3(
Λ2

M2
I

)γ1 (Λ2(ℓ2 + ℓ)

M2
I

)γ2

. (5.60)

=

∫
Kb

xγ11 xγ22
∑
ℓ=0

∑
I

2η2I

(
Λ2

M2
I

)3

δ
(
x1 −

Λ2

M2
I

)
δ
(
x2 −

Λ2

M2
I

ℓ(ℓ+ 1)
)
dx1dx2, (5.61)

where we have defined 00 = 1 for convenience. Comparing with Eq. (5.22), we see that this

gives a spectrum of scalars with masses MI and couplings T I,ℓ = η2IΛ
2.

5.5.2 UV vector

Now, let us consider two massless/IR scalars ϕ1 and ϕ2, with the injection of one UV vector

Aµ with mass M , and see how the IR coefficients can be used infer the heavy vector. The

interacting part of the UV Lagrangian for this setup is

Lint =
1

4
λϕ2

1ϕ
2
2 +

1

6
η111Mϕ3

1 +
1

6
η222Mϕ3

2 +
1

2
η112Mϕ2

1ϕ2 +
1

2
η122Mϕ1ϕ

2
2 (5.62)

+
1

2
λ11ϕ

2
1∂µA

µ +
1

2
λ22ϕ

2
2∂µA

µ + λ12ϕ1ϕ2∂µA
µ + 2λ′

12ϕ1∂µϕ2A
µ (5.63)

+ (ϕϕϕϕ) +
(
A2∂A

)
+ (AAAA)

For such a simple setup, it is sufficient to focus on the tree-level amplitude for the ϕ1ϕ2 →
ϕ1ϕ2 scattering, which is given by

A1212(s, t) = λ+ (η112η222 + η111η122)
M2

−t
+
(
η2112 + η2122

)(M2

−s
+

M2

−u

)
− 2λ′ 2

12 + (λ11λ22 − λ2
12 − λ′ 2

12)
−t

M2
+ λ′ 2

12

(
M2 + 2t

M2 − s
+

M2 + 2t

M2 − u

)
(5.64)

Without any prior knowledge of the UV information, one may need to include more scat-

tering processes. This amplitude can be re-written in the dispersion relation form as

A1212(s, t) = (η112η222 + η111η122)
M2

−t
+
(
η2112 + η2122

)(M2

−s
+

M2

−u

)
+A(0)(t) + sA(1)(t)

+
λ′ 2
12M

2

M2 − s

(s+ t
2)

2

(Mk +
t
2)

2
Pℓ=1

(
1 +

2t

M2

)
+

λ′ 2
12M

2

M2 − u

(s+ t
2)

2

(M2 + t
2)

2
Pℓ=1

(
1 +

2t

M2

)
. (5.65)

We see that the UV spectrum contains only one vector with mass M , which is also the

EFT cutoff Λ = M . Matching this amplitude to the EFT expansion A1212(s, t) = · · · +∑
i≥2,j≥0 g

i,j
1212

(
s+ t

2

)i
tj , we get the EFT coefficients

gi,j1212 = gi,jS +
2

M2
gi,j−1
S , i ≥ 2, j ≥ 1, (5.66)

where the “scalar” coefficients gi,jS are defined via

M2

M2 − s
+

M2

M2 − u
= · · ·+

∑
i≥2,j≥0

gi,jS

(
s+

t

2

)i

tj . (5.67)
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In the scalar theory, we can find that (with the convention 00 = 1)

bγ1,γ2S = 2λ′ 2
12

(
M2

M2

)γ1 (0× (0 + 1)M2

M2

)γ2

. (5.68)

To reconstruct the UV spectrum from these low energy coefficients, we first extract

the bi-variant moments bγ1,γ2 from them. Again, this is done by utilizing the sum rules

M4ig2i,0 = b2i−2,0, M4i+2g2i,1 = b2i−2,1 − 2i+ 1

2
b2i−1,0,

M4i+4g2i,2 =
1

4
b2i−2,2 − 2i+ 2

2
b2i−1,1 +

(2i+ 1)(2i+ 2)

8
b2i,0, · · · (5.69)

and the spectral representations of bγ1,γ2 for fixed γ2, as specified in Section 5.3.1 or more

explicitly in the previous subsection. By an explicit computation, we can easily find that

for the first few γ2 the moments are given by

bγ1,γ2 = 2λ′ 2
12

(
M2

M2

)γ1 (1× (1 + 1)M2

M2

)γ2

(5.70)

=

∫
Kb

xγ11 xγ22
∑
ℓ=1

2λ′ 2
12δ
(
x1 −

M2

M2

)
δ
(
x2 −

M2

M2
ℓ(ℓ+ 1)

)
dx1dx2, (5.71)

from which we easily can read the mass and the spin of the UV particle, which are M and

1 respectively.

Incidentally, another simple way to infer the UV spectrum is to use the relation gi,j1212 =

gi,jS + 2
M2 g

i,j−1
S , i ≥ 2, j ≥ 1, along with the following generic scalar sum rule

gi,j1234 ≡ 1 + (−1)i

2(M2)i+j

∫ j∑
k=0

xi+j−k−2
1

∏k
l=1(x2 − l(l − 1)x1)

(k!)2

× (−2)j−k(j − k + i)!

(j − k)!i!
ρ1234(x1, x2)dx1dx2. (5.72)

To see this, note that for gi,jS , we have ρS(x1, x2) = 2λ′ 2
12δ(x1 − 1)δ(x2 − 0). Substituting

the sum rule for gi,jS into gi,j1212 = gi,jS + 2
M2 g

i,j−1
S , we easily get

gi,j+1
1212 = 2λ′ 2

12

1 + (−1)i

2(M2)i+j+1

j∑
k=0

∏k
l=1(2− l(l − 1))

(k!)2
(−2)j−k(j − k + i)!

(j − k)!i!
(5.73)

=
1 + (−1)i

2(M2)i+j

∫ j∑
k=0

xi+j−k−2
1

∏k
l=1(x2 − l(l − 1)x1)

(k!)2
(−2)j−k(j − k + i)!

(j − k)!i!
ρ1212dx1dx2.

where we have defined ρ1212 ≡ 2λ′ 2
12δ(x1 − 1)δ(x2 − 2x1) to arrive at the last equality.

From this spectral function, we can read that the UV spectrum only contains a UV vector

particle with mass M .
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5.5.3 stu kink theory

The stu kink theory [7] lies at the intersection between the two smooth boundaries of the

positivity bounds for the scalar EFT. Let us now reconstruct the spectrum of this theory

from a truncated series of the (exactly determined) EFT coefficients.

The stu kink theory is defined by the following 2-to-2 scattering amplitude

A(s, t) =
Λ6

(Λ2 − s)(Λ2 − t)(Λ2 − u)
− γstu

(
Λ2

Λ2 − s
+

Λ2

Λ2 − t
+

Λ2

Λ2 − u

)
(5.74)

= 1− 3γstu + (1− 2γstu)
s2 + st+ t2

Λ4
+ (−1 + 3γstu)

s2t+ st2

Λ6
+ ... (5.75)

where γstu = 4 ln 2/9 in 4D. The γstu term in Eq. (5.74) subtracts the UV massive spin-0

component. We are considering massless scalar scattering in the IR, so s+ t+ u = 0, and

the gi,j coefficients can be extracted from Eq. (5.75). Despite being simple, this UV theory

consists of an infinite tower of higher spin-ℓ particles with mass Mℓ = Λ, ℓ = 2, 4, 6, ..., and

coupling strength

T ℓ =
π

2
(2ℓ+ 1)

∫ 1

−1
Pℓ(z)

(
4

9− z2
− 4 ln 2

9

)
dz. (5.76)

The odd ℓ are absent due to the tu crossing symmetry. The coupling strength can be

extracted by replacing s with s + iϵ in the amplitude and making use of the identity

Im(1/(s−s∗− iϵ)) = −πδ(s−s∗). Here, T ℓ is not normalized and
∑∞

ℓ=0 T ℓ = 1−(8 ln 2)/9.

Given the explicit form of the UV theory, it is easy to get the bi-variant moments bγ1,γ2

for the theory via the dispersive sum rules:

bγ1,γ2 =
π

2
lim
ξ→1−

[(
1 + 2ξ

d

dξ

)2γ2+1

F (ξ)

]
− 4π ln 2

9
δγ2,0. (5.77)

where

F (ξ) ≡
∞∑
ℓ=0

∫ 1

−1
Pℓ(z)ξ

ℓ 4

9− z2
dz =

∫ 1

−1

4√
1− 2zξ + ξ2(9− z2)

dz (5.78)

The last integration in the F (ξ) definition is elementary and can be carried out analyti-

cally. In this case, it is also straightforward to extract the moments bγ1,γ2 from the EFT

coefficients, which proceeds as follows. First, from the sum rules, we directly get

g2,0 = Λ4g4,0 = Λ8g6,0 = · · · =⇒ b0,0 = b2,0 = b4,0 = · · · . (5.79)

Recall that the PSD of Hankel matrices implies (b1,0)2 ≤ b0,0b2,0 and b0,0 ≥ b1,0 ≥ b2,0,

which, combined with b0,0 = b2,0 and the sum rules, leads to b0,0 = b1,0 = b2,0. Similarly,

we can further infer that bγ1,0 = b0,0. Then, using the spectral reconstruction method of

5.3.1, we see that there is only one UV mass scale Λ, which in turn means that

bγ1,γ2 = b0,γ2 . (5.80)
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Figure 11. cγ+1/cγ dependence on γ. This shows that the stu kink theory is Stieltjes determinate,

and thus the obtained UV spectrum is unique.

Again, from the sum rules, we can write b0,γ2 as a linear combination of g2,j . This indeed

gives the same moment sequence as in Eq. (5.77).

Since the UV particles have the same mass Mℓ = Λ = 1, when converting the bi-

variant moments bγ1,γ2 to uni-variant moments ci,γ2 as in Eq. (5.46), there will be only one

uni-variate moment sequence:

cγ2 =
π

2
lim
ξ→1−

[(
1 + 2ξ

d

dξ

)2γ2+1

F (ξ)

]
− 4π ln 2

9
δγ2,0. (5.81)

It is easy to numerically verify that the ratio cγ+1/cγ quickly converges a power-law behavior

cγ+1/cγ ∼ O(γ2), (5.82)

one can see from Figure 11. This suggests that the cγ moment sequence for the stu

kink theory is Stieltjes determinate. (In fact, since there is no UV scalar particle, the

cγ moment sequence is actually also Hamburger determinate. Also, since all marginal

moment sequences (bγ1,0 and b0,γ2) of bγ1,γ2 is determinate on R, bγ1,γ2 is determinate on

R2 [60].) Therefore, the representing measure or the UV spectrum reconstructed from the

EFT coefficients originated in the stu kink theory is unique. Of course, numerically, we

will see that the reverse engineered UV spectrum indeed approaches the underlying theory

quickly.

Now, let us reconstruct the UV spectrum from the moment sequence bγ1,γ2 , following

the procedure of Eqs. (5.27) to (5.32). As usually happens, suppose we only know the first

few moments bγ1,γ2 with γ1 + γ2 ≤ 2G+ 1 from the low energy EFT:

b0,0, b1,0, b0,1, b2,0, b1,1, b0,2, ..., b2G+1,0, ..., b0,2G+1, (5.83)

and for our purposes let us assume that our experiments are so precise that we know them

almost exactly as prescribed by Eq. (5.77). Knowing only the numerical values of these

bγ1,γ2 , we hope to numerically reconstruct the UV spectrum (5.76). As a first step, to

optimize the results, we should seek a flat extension for the truncated bi-variate moment
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Figure 12. Coupling T ℓ (see Eq. (5.24) and Eq. (5.76)) of the stu kink theory reverse engineered

from the truncated EFT coefficients with truncation order G. D in the right subplot is the distance

of a particular data point to the corresponding true spectral pole shown in the left subplot.

problem with some extra moments bγ1,γ2 , γ1 + γ2 = 2G + 2, satisfying the flat extension

condition

rankH1(2G+ 1) = rankH1(2G+ 2). (5.84)

Due to bγ1,γ2 being determinate, even without the positivity of other Hankel matrices, we

can still get the correct spectrum. With the moment sequence flatly extended, we can

follow the algorithm outlined in Section 5.3 to reconstruct the couplings T ℓ, as shown in

Figure 12. To measure the accuracy of the reconstructed spectrum, we define the distance,

D, of a particular data point to the corresponding spectral pole, and the numerical results

are shown in the right subplot of Figure 12. We see that as the truncation order increases,

more UV poles can be accurately reconstructed.

5.5.4 Virasoro amplitude

Now, we will use the Virasoro amplitude with zero Regge intercept as an example to illus-

trate the two methods mentioned in Section 5.3.1 to infer the bγ1,γ2 moments from the EFT

coefficients gi,j . Then, we will use the numerically obtained moments to reconstruct the

spectrum of the Visrasoro amplitude. The Virasoro amplitude describes 2-to-2 scattering

between tree-level closed strings, which with the kinematic prefactor stripped is given by:

AVis(s, t, u) ≡
Γ(−s)Γ(−t)Γ(−u)

Γ(1 + s)Γ(1 + t)Γ(1 + u)
(5.85)

subject to the on-shell constraint s+ t+u = 0. The coefficients gi,j in the IR behavior can

be extracted from

AVis(s, t, u) =
1

stu
+
∑
i,j≥0

gi,jvitj . (5.86)
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=
1

stu
Exp

( ∞∑
k=1

2ζ(2k + 1)

2k + 1
(s2k+1 + t2k+1 + u2k+1)

)
(5.87)

In the last example, as there is only one UV mass scale, we were able to analytically

infer the moments bγ1,γ2 from the EFT coefficients. Generically, however, with many UV

mass scales, this step needs to be performed numerically. So it is instructive to explicitly

demonstrate the numerical accuracy of the whole UV reconstruction chain including the

conversion from the EFT coefficients to the moments.

Let us first convert the EFT coefficients to the moments. To this end, note that we

directly get

b2γ,0 = g2γ+2,0 (5.88)

from Table 2. As mentioned in Section 5.3.1, it is not straightforward to get the b2γ+1,0

moments from the EFT coefficients. To obtain them, we can use the extra spectral informa-

tion from b2γ,0, and find the measure consisting of the least number of delta functions from

the known g2i,0. For example, suppose we can extract g2,0, g4,0, g6,0, g8,0 from the EFT,

that is, we know b0,0, b2,0, b4,0, b6,0. To find the flat extension for the Hausdorff moment

problem, we can solve the following equation to get b8,0

rank

b0,0 b2,0 b4,0

b2,0 b4,0 b6,0

b4,0 b6,0 b8,0

 = rank

(
b0,0 b2,0

b2,0 b4,0

)
= 2 (5.89)

With this set of b0,0, b2,0, b4,0, b6,0, b8,0, we can find an atomic measure by the method

introduced in Section 5.2. Then, we can use this spectrum to get b2γ+1,0, as prescribed

in Eq. (5.40), truncated to an order similar to that in the even order moments. With all

the leading orders of bγ,0 known, we can then proceed to compute bγ,1. From the known

bγ,0 and the gij-bγ1,γ2 relations in Table 2, we can get b2γ,1, and the highest order of b2γ,1

is chosen to satisfy the flatness condition. This allows us to construct another atomic

measure, from which we can extract b2γ+1,1. These steps can be repeated for higher order

bγ1,γ2 .

Let us compare these reconstructed bγ1,γ2 via this spectral method with the “true”

values in Figure 13. With the benefits of knowing the UV theory, we know that b2γ+1,0 =

2ζ(2γ+6), which are chosen as the true values in Figure 13. For bγ1,1, we choose the “true”

values to be the ones constructed with the highest order truncation of the gi,j coefficients.

We see that this method works very well as the truncation order of the EFT coefficients

increases.

Another method mentioned in Section 2 is a more numerical approach. With the

second method, we constrain each of the bγ1,γ2 coefficients from both sides by directly

implementing SDPs, such as that of Eq. (5.43), with the positivity of the Hankel matrices

and the gi,j-bγ1,γ2 relations in Table 2. As an illustration, in Figure 14, we use this method

to compute the upper and lower bounds on the first few bγ1,γ2 . We see that as the truncation

order G = max(i+j) of the EFT coefficients gi,j increases, both the upper and lower bounds

quickly converge to the true values.
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Figure 13. Relative errors for the reconstructed b2γ+1,0 and b2γ+1,1 from EFT coefficients gi,j , i+

j ≤ G using the spectral method. For b2γ+1,0, the true values are the ones from the known UV

theory, while the “true” values for b2γ+1,1 are chosen to be the most accurately reconstructed ones.
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Figure 14. Relative errors for b2γ+1,0 and b2γ+1,1 from EFT coefficients gi,j , i + j ≤ G using

the SDP method. For b2γ+1,0, the true values are the ones from the known UV theory, while the

“true” values for b2γ+1,1 are chosen to be the average of the maximum and minimum values.

Now, let us use the obtained moments bγ1,γ2 to reconstruct the UV spectrum of the

Visrasoro amplitude with the Curto-Fialkow method (see Section 5.3). For this problem,

it is easier to implement the second method above, and the results are shown in Figure 15.

We find that an increasing number of UV masses and spins can be accurately captured as

more EFT coefficients are used. In particular, those with ℓ = 0 and the lowest masses for

higher ℓ values are the easiest to capture.

Assuming the spectrum can determined to high orders, we can verify A posteriori that

the UV spectrum is unique. To see this, simply note that, due to ℓ ≤ 2I − 2, for every UV

mass M2
I = I, the moment sequence cγI satisfies cγ+1

I /cγI ∼ const. This growth is slower

than the determinancy upper bound: cγ+1/cγ ∼ O(γ2) for large γ.
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[75] J. Cimprič and A. Zalar, Moment problems for operator polynomials, Journal of

Mathematical Analysis and Applications 401 (May, 2013) 307–316.

[76] F. Guo and J. Wang, A moment-sos hierarchy for robust polynomial matrix inequality

optimization with sos-convexity, 2023.

[77] C. Hol and C. Scherer, Sum of squares relaxations for robust polynomial semi-definite

programs, IFAC Proceedings Volumes 38 (2005) 451–456.

[78] J. Cimpric, Strict positivstellensätze for matrix polynomials with scalar constraints, 2010.

[79] J. Stochel, Solving the truncated moment problem solves the full moment problem, Glasgow

Mathematical Journal 43 (2001) 335–341.

[80] D. P. Kimsey, An operator-valued generalization of tchakaloff’s theorem, Journal of

Functional Analysis 266 (2014) 1170–1184.

[81] R. Curto and L. Fialkow, The truncated complex k-moment problem, Transactions of the

American mathematical society 352 (2000) 2825–2855.

[82] M. F. Paulos, J. Penedones, J. Toledo, B. C. van Rees and P. Vieira, The S-matrix bootstrap.

Part III: higher dimensional amplitudes, JHEP 12 (2019) 040, [1708.06765].

[83] A. Homrich, J. a. Penedones, J. Toledo, B. C. van Rees and P. Vieira, The S-matrix

Bootstrap IV: Multiple Amplitudes, JHEP 11 (2019) 076, [1905.06905].

[84] N. I. Akhiezer and M. G. Krein, Some questions in the theory of moments, 1962.

[85] Q. Chen, K. Mimasu, T. A. Wu, G.-D. Zhang and S.-Y. Zhou, Capping the positivity cone:

dimension-8 Higgs operators in the SMEFT, JHEP 03 (2024) 180, [2309.15922].

[86] M. Fabbrichesi, E. Gabrielli and G. Lanfranchi, The Dark Photon, 2005.01515.

[87] J. Henriksson, B. McPeak, F. Russo and A. Vichi, Rigorous bounds on light-by-light

scattering, JHEP 06 (2022) 158, [2107.13009].

[88] G. D. Lin, Recent developments on the moment problem, Journal of Statistical Distributions

and Applications 4 (July, 2017) .

[89] V. N. Gribov, High energy hadron scattering, p. 8–21. Cambridge Monographs on

Mathematical Physics. Cambridge University Press, 2003.

– 58 –

http://dx.doi.org/10.1007/BFb0101043
http://dx.doi.org/10.1103/PhysRev.135.B1375
http://dx.doi.org/10.1016/j.jmaa.2012.12.027
http://dx.doi.org/10.1016/j.jmaa.2012.12.027
http://dx.doi.org/https://doi.org/10.3182/20050703-6-CZ-1902.01020
http://dx.doi.org/10.1017/S0017089501030130
http://dx.doi.org/10.1017/S0017089501030130
http://dx.doi.org/10.1007/JHEP12(2019)040
https://arxiv.org/abs/1708.06765
http://dx.doi.org/10.1007/JHEP11(2019)076
https://arxiv.org/abs/1905.06905
http://dx.doi.org/10.1007/JHEP03(2024)180
https://arxiv.org/abs/2309.15922
https://arxiv.org/abs/2005.01515
http://dx.doi.org/10.1007/JHEP06(2022)158
https://arxiv.org/abs/2107.13009
http://dx.doi.org/10.1186/s40488-017-0059-2
http://dx.doi.org/10.1186/s40488-017-0059-2

	Introduction and Summary
	Sum rules as matrix moment problem
	Dispersive sum rules
	Matrix moment problem formulation
	Multi-scalar
	Fields with spin


	Solvability of matrix moment problem
	Full matrix moment problem
	Truncated moment problem and flat extension
	L-moment problem for multiple DoFs

	Bounds on EFT models
	Single scalar
	Double Z2 bi-scalar
	Photon EFT
	Gravitational EFT

	Inverse problem: from IR coefficients to UV spectrum
	Toy example: Truncated Hamburger
	UV mass spectrum from EFT at t=0
	Veneziano amplitude

	UV reconstruction for t=0
	From EFT coefficients to moments

	Determinacy/Uniqueness
	Some examples
	Multiple UV scalars
	UV vector
	stu kink theory
	Virasoro amplitude



