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Abstract—Recent years have seen a notable increase in the
frequency and intensity of extreme weather events. With a
rising number of power outages caused by these events, accurate
prediction of power line outages is essential for safe and reliable
operation of power grids. The Bayesian network is a probabilistic
model that is very effective for predicting line outages under
weather-related uncertainties. However, most existing studies in
this area offer general risk assessments, but fall short of providing
specific outage probabilities. In this work, we introduce a novel
approach for predicting transmission line outage probabilities
using a Bayesian network combined with Peter-Clark (PC)
structural learning. Our approach not only enables precise outage
probability calculations, but also demonstrates better scalability
and robust performance, even with limited data. Case studies
using data from BPA and NOAA show the effectiveness of
this approach, while comparisons with several existing methods
further highlight its advantages.

Index Terms—Bayesian network, PC algorithm, structural
learning, outage probability, extreme weather events.

I. INTRODUCTION

With climate change intensifying globally, extreme weather
events become more frequent and impactful than ever before.
As of November 1, 2024, the United States has been hit
with 24 separate billion-dollar disasters [1], which include
severe weather events such as storms, cyclones, and wildfires.
As a result, there has been a substantial increase in power
device outages, which poses risks to the reliability of power
systems [2]. For example, extremely high temperatures and
heat waves limit the transmission line capability, leading to
line sagging and even causing high impedance faults [3].
Storms and hurricanes can cause faults and damage power
lines. Cold waves can lead to failures in overhead lines and
towers [4], including outdoor transformers and switchgear.

Although there have been existing studies that explore
weather-related outage prediction for power devices, most
approaches provide only general risk levels for power equip-
ment, not specific outage probabilities [5], which limits their
applicability and effectiveness for system-level reliability and
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resilience analysis. The prediction of weather-related outages
is often based on data-driven modeling techniques. For exam-
ple, a logistic regression model is adopted for operational reli-
ability prediction considering multiple meteorological factors
in [6]. Fragility curves deduced from weather-related outage
databases are used to estimate component failure probability
in [2]. The application of the CatBoost algorithm, random
forest, support vector machine, and neural network methods
for predicting outages under severe weather conditions has
been also explored in [7]. Other research considers weather-
dependent outage mechanisms and proposes weather outage
rate models that take into account line conductor temperatures
[8], and wind speed and lightning [9]. However, these methods
need a large outage dataset to perform well, but such datasets
are typically limited in real-world scenarios.

To address the aforementioned issues of the existing ap-
proaches, in this paper, we propose a novel transmission
lines outage probability prediction method using a Peter-Clark
(PC) structural learning-based Bayesian network. The major
contributions of this paper include the following:

1) The proposed method leverages data-driven machine
learning techniques to analyze the correlations among various
meteorological factors and their impact on transmission line
outages. Instead of merely providing several risk levels, it
enables the precise calculation of outage probabilities.

2) To the best of our knowledge, the PC algorithm is applied
for the first time in the reliability prediction of transmission
lines for improved efficiency and scalability.

3) The proposed method works effectively even with limited
outage data and outperforms other existing methods, which
highlights its robustness.

The rest of this paper is organized as follows. The fun-
damentals and basic concepts of the Bayesian network are
first introduced in Section II. After that, the PC algorithm for
structural learning of the Bayesian network is presented in
Section III. In Section IV, we use case studies with realistic
data to illustrate how the algorithm can be applied to predict
transmission line outage probabilities. Lastly, the conclusions
are presented in Section V.
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II. BAYESIAN NETWORK PREDICTION

We start by covering some fundamentals and basic concepts
of Bayesian network prediction to better explain how the PC
algorithm can be applied to improve efficiency and scalability
in Bayesian network structure learning. These concepts include
Bayes’ theorem, conditional independence, and Bayesian net-
work, which will later help us illustrate the PC structure
learning process.

A. Bayes’ Theorem

Bayes’ theorem [10] gives a mathematical rule for inverting
conditional probabilities, which allows us to find the probabil-
ity of a cause given an observed effect. The theorem can be
mathematically expressed as:

P (A | B) =
P (B | A)P (A)

P (B)
(1)

The likelihood function P (B | A) represents the probability of
the evidence B given that A is true, the posterior probability
P (A | B) represents the probability of A after considering the
evidence B, P (A) is the prior probability, and P (B) is the
probability of the evidence.

B. Conditional Independence

Conditional independence is another important concept in
causal inference analysis [11]. It states that two events A
and B, are conditionally independent given an event C with
P (C) > 0 if

P (A ∩B | C) = P (A | C)P (B | C) (2)

Hence, when given C, the occurrence of A does not provide
any additional information about the occurrence of B.

C. Bayesian Network

A Bayesian network is a probabilistic graphical model that
represents a set of random variables and their conditional
dependencies via a directed acyclic graph (DAG). Among all
Bayesian networks, the Naive Bayes classifier is a specific
type of Bayesian network in which each feature is directly
connected to the class variable but is independent of the other
features (see Fig. 1). This structure simplifies the model to a
single-layer network, where the class node is the parent of all
feature nodes, making it a “naive” simplification of a Bayesian
network. Accordingly, the Naive Bayes classifier uses Bayes’
Theorem to calculate the posterior probability of a class k ∈ K
given its features:

P (Ck |X = x) =
P (Ck)

∏n
i=1 P (Xi = xi | Ck)

P (X = x)
(3)

in which P (Ck | X = x) denotes the probability of class
Ck given the feature vector x; P (Ck) denotes the prior
probability of class Ck;

∏n
i=1 P (Xi = xi | Ck) represents the

product of all features based on the Naive Bayes assumption
of conditional independence; P (X = x) is the probability of
the feature vector x.

Fig. 1. The general structure of a Naive Bayes classifier.

Considering the Markov property of Bayesian network, the
factorization of the Bayesian network can be represented as
follows:

P (X1, ..., Xn) =

n∏
i=1

P (Xi | Pa(Xi)) (4)

in which Xi are the variables of the Bayesian network, and
Pa(Xi) is the set of parent nodes of variable Xi.

An advantage of Naive Bayes is that it requires only a
small amount of training data to estimate the parameters
necessary for classification. Since the probabilities can be
computed directly, no iterative process is required, which helps
to reduce problems caused by the curse of dimensionality.
However, Naive Bayes often fails to produce a good estimate
for the correct class probabilities. Although the output of a
Naive Bayes classifier is a probability score, it represents a
value proportional to the true probability rather than the true
probability itself.

Moreover, the assumption of conditional independence
among all features often does not hold, as features show
some form of dependency in most situations. Therefore, it is
essential to apply causal discovery algorithms to determine the
dependencies among various meteorological factors, which can
improve the accuracy and scalability of the Bayesian network
for line outage prediction tasks.

III. PC STRUCTURAL LEARNING

The Peter-Clark (PC) algorithm [12] is a powerful and
efficient tool for learning the structure of Bayesian networks.
The PC algorithm stands out for its efficiency when compared
with other causal discovery algorithms, because it restricts
the search space for conditional independence tests by pro-
gressively deleting irrelevant connections from an initially
fully connected undirected graph. The algorithm only requires
independence tests among directly connected nodes, and thus
significantly reduces the total number of tests needed.

The detailed process of using the PC algorithm for Bayesian
network structure learning is explained below and also summa-
rized in Algorithm 1. The algorithm begins with a complete
undirected graph, where the input includes variables X =
{X1, X2, ..., Xn}. Following that, a conditional independence
test is performed on the complete graph over X . For each con-
nected pair Xi and Xj , if the cardinality of Adj(C,Xi)\{Xj}
is at least n, we check for conditional independence, and
remove the edge if conditional independence is confirmed.
Repeat the process until the cardinality is less than n for
any pair {Xi, Xj}. The algorithm then removes edges from



Algorithm 1 PC algorithm for Bayesian structure learning
Inputs: Variables X = {X1, X2, ..., Xn}
Outputs: A DAG C representing the conditional indepen-

dence structure of X
1: Initialization: Form a complete undirected graph C where

each pair of variables in X is connected by an edge.
2: Initialization: n = 0
3: while there exists an edge between Xi and Xj in C such

that |Adj(C,Xi) \ {Xj}| ≥ n do
4: for all pairs of variables (Xi, Xj) in C do
5: for all subsets S ⊆ adj(C,Xi) \ {Xj} with |S| = n

do
6: if Xi, Xj are conditionally independent given S

then
7: Remove edge Xi −Xj from C
8: end if
9: end for

10: end for
11: n = n+ 1
12: end while
13: for all pairs of non-adjacent nodes (Xi, Xk) both adjacent

to Xj do
14: if separating set S of (Xi, Xk) does not contain Xj

then
15: Orient Xi −Xj −Xk as Xi → Xj ← Xk

16: end if
17: end for
18: for all Xi → Xj → Xk do
19: if Xi and Xk are adjacent then
20: Orient Xi −Xk as Xi → Xk

21: end if
22: end for
23: return The new DAG C

the graph based on conditional independence tests, which
leads to an undirected graph called the “skeleton”. The next
step involves determining and updating the orientation of the
undirected edges (see Fig. 2). The process is fundamentally
based on V-structures and propagation structures, which help
prevent cycles and determine the final directions. Lastly, to
enhance the fit for rare-event prediction, modify the learned
structure by introducing a directed edge from any node without
a child to the target prediction node. As a result, the final
outcome is a DAG that captures the conditional dependencies
among all the variables in the dataset.

IV. IMPLEMENTATION AND CASE STUDIES

With the Bayesian fundamentals and PC structure learning
explained, in this section we mainly focus on case studies
with realistic datasets to showcase the detailed implementation
of the proposed algorithm for predicting transmission line
outages. The case study in this paper is carried out based on the
actual transmission line outage data from the Bonneville Power
Administration (BPA) [13] and historical hourly weather data
from the National Oceanic and Atmospheric Administration

Fig. 2. Diagram of determining the orientation of edges.

(NOAA) [14]. The Bayesian structure learning and Bayesian
network prediction are implemented using Python. All the
simulations are performed on a regular laptop with AMD CPU
@ 3.30 GHz and 32 GB of RAM.

During the numerical simulation, we utilize the outage and
weather data in Salem, Oregon, USA. The test transmission
line group includes 9 lines with operation voltages ranging
from 115kV to 230kV. From 1999 to 2023, there were a
total of 1925 outages, including 1555 plan outages and 370
auto outages. Among all these outages, 104 were weather-
related, with 61 of these being recovered immediately, and
other outages occurred at 28 different time points. In this
paper, all the analysis is performed on an hourly basis.

A. Prediction Process

The detailed process for the prediction of transmission line
outage probabilities is summarized as follows:

1) Data collection and preprocessing: Collect data from
BPA and NOAA. It should be noted that certain factors
such as wind direction are excluded in this numerical
tests. We next use interpolation methods to handle miss-
ing data or values from the NOAA data. For the BPA
transmission line outage data, we set the corresponding
timestamp of the target variable to 1 if a weather-related
outage occurs, and to 0 otherwise.

2) Data discretization: Discrete the historical data for
Bayesian network. We discretize each continuous
weather factor into 10 bins in this test as an example,
and Laplace smoothing method will be adopted if the
count of states in a particular bin is zero.

3) Imbalanced data processing: The test data includes up
to 24 years of hourly meteorological data and outage
data, while the outage data is relatively rare. To address
this imbalance, we first apply down-sampling to the ma-
jority class (i.e., normal operation without any outage) to
reduce the overall dataset size, and subsequently, we use
up-sampling techniques like SMOTE [15] to increase
the representation of the minority class (i.e., weather-
induced outages).

4) Network structure learning: Apply the PC algorithm
for Bayesian structure learning, the specific process of
which is shown in Section III.

5) Bayesian network prediction: Based on the learned
structure with modification, apply the Bayesian network
for outage probability prediction using real data.



Fig. 3. PC algorithm results for Bayesian network structure learning.

B. Numerical Validation

Based on the prediction process in Section IV-A, we test
the effectiveness of our method. The Bayesian network with
the structure learning by the PC algorithm for predicting the
outage probability of transmission lines is shown in Fig. 3,
in which the directed edges in the solid lines represent those
learned by the PC algorithm, and the dashed ones are added
manually for better prediction.

Based on the DAG shown in Fig. 3 and the definition
of conditional independence, the value of a specific variable
is conditionally dependent only on its parent nodes, and
conditionally independent of all non-parent nodes given the
value of its parent nodes. Therefore, the conditional probability
of the outage probability can be expressed as:

P (E | F ) = P (E | F6, F7, F10, F12) (5)

Here, E denotes the event of transmission lines outage, F is
the state of all meteorological factors, and Fi is the state of
meteorological factor i. Therefore, F6, F7, F10, F12 represent
pressure tendency, relative humidity, visibility, and wind gust
speed, respectively (see Fig. 3).

Using Bayes’ theorem, (5) can be further formulated as:

P (E | F6, F7, F10, F12) =
P (E∩F6∩F7∩F10∩F12)

P (F6,F7,F10,F12)
(6)

Considering the Markov property of the Bayesian network, the
factorization of the two joint distributions in (6) can be given
as the following:

P (E ∩ F6 ∩ F7 ∩ F10 ∩ F12) = P (F6) · P (F7 | F6)

·P (F10 | F6, F7) · P (F12 | F6, F7, F10)

·P (E | F6, F7, F10, F12)

(7)

P (F6, F7, F10, F12) = P (F6 | F5) · P (F7 | F5, F3, F13)

·P (F10 | F4) · P (F12 | F13)
(8)

Accordingly, the conditional outage probability of transmis-
sion lines under specific weather conditions can be calculated
using maximum likelihood estimation. The prediction results
of our proposed method are shown in Fig. 4. A single
day is selected for illustration with an outage occurring at
around 14:48. While all the meteorological factors have been
considered for the outage prediction, for visualization and
demonstration purposes, we specifically select two meteoro-
logical factors: wind gust speed and visibility. Results show

Fig. 4. Bayesian prediction results using PC algorithm for structure learning.

TABLE I
COMPARISON OF DIFFERENT OUTAGE PREDICTION METHODS

that at 14:00 and 15:00, the predicted outage probabilities are
much higher than normal levels, and thus preventive actions
are recommended for implementation before this period.

C. Comparison Studies

For weather-related line outage predictions, there are plenty
of machine learning algorithms that are applicable. Out of all
these available algorithms, in this work, we select the more
commonly used neural network (NN) and logistic regression
(LR) to compare with the proposed Bayesian network method.
To demonstrate the advantages of our proposed method, we
will compare its performance with both NN and LR. For
clearer comparison, we first select several metrics in clas-
sification problems for evaluation: True Positives (TP) are
events correctly predicted as positive, True Negatives (TN) are
correctly predicted as negative, False Positives (FP) are events
incorrectly predicted as positive when they were actually
negative, and False Negatives (FN) are events incorrectly
predicted as negative when they were actually positive.

For transmission line outage probability prediction, consid-
ering the risks of power outages and the costs of preven-
tive measures, we will focus on the metrics of TP and FP.
Therefore, precision, recall, and F1-score are also selected
as evaluation metrics. Specifically, precision is defined as the
proportion of TP to the amount of total positives that the model
predicts.

Precision =
TP

TP + FP
(9)

Recall focuses on how good the model is at finding all the
positives.

Recall =
TP

TP + FN
(10)



Fig. 5. Comparison of F1-scores different outage prediction methods.

TABLE II
COMPARISON OF DIFFERENT METHODS WITH IMBALANCED DATA

F1-score is the harmonic mean of the precision and recall,
which reflects a strong performance in recognizing positive
cases while minimizing FP and FN. It is particularly useful
for evaluating balanced performance, especially in predictions
with imbalanced data.

F1-score = 2 · Precision · Recall
Precision + Recall

(11)

We randomly select 5% of the data for algorithm validation,
while ensuring that all outage records are included in the
validation dataset due to the rarity of outages. The performance
comparisons of different outage prediction methods with the
best F1-score are shown in TABLE I. It is clear that at
the highest F1-score for each method, our proposed method
demonstrates the best performance across precision, recall,
and F1-score metrics. In addition, the overall performance
indicated by F1-score, is demonstrated in Fig. 5. our proposed
method achieves the highest score in most cases, which indi-
cates that our method has good performance in both precision
and recall rate.

To further verify the robustness of the algorithm, we also
validate the performance of these methods using imbalanced
data. That is, the up-sampling process is not applied for
learning, training or regression datasets in the test, and the cor-
responding results are provided in TABLE II. Our method also
outperforms other methods, which highlights its robustness
under different scenarios. By improving the outage prediction
performance, the proposed Bayesian learning algorithm can
help utilities effectively reduce resources required for preven-
tive measurements and the operational costs when responding
to the predicted outages.

V. CONCLUSIONS AND FUTURE WORK

Climate change has caused an increasing number of severe
weather events in recent years, which poses threats to the

resilient operation of power grids. To better prepare the grids
for potential emergencies, it is critical to develop an accurate
probability model for these weather-related power outages.
Traditional methods for line outage predictions typically offer
a risk level but lack the ability to provide precise probabilities.
In this work, we propose a novel Peter-Clark (PC) structural
learning-based Bayesian network to address this limitation.
In addition, the PC structural learning design enhances the
efficiency and scalability in obtaining the Bayesian network,
allowing it to perform effectively even with limited outage
data. Case studies using realistic data from BPA and NOAA
have demonstrated the effectiveness of the proposed algo-
rithm, and comparisons with several existing methods further
highlight its advantages. Future research includes applying
the proposed method and prediction results to system-level
resilience-related operation and control problems. To that end,
we plan to also incorporate economic losses and social equity
aspects during extreme events into the future studies.

REFERENCES

[1] National Oceanic and Atmospheric Administration, “Billion-dollar
weather and climate disasters,” https://www.ncei.noaa.gov/access/
billions, (Accessed Nov. 4, 2024).

[2] X. Ke, H. Ren, Q. Huang, P. Etingov, and Z. Hou, “Data mining
and machine learning for power system monitoring, understanding, and
impact evaluation,” Intelligent Data Mining and Analysis in Power and
Energy Systems: Models and Applications for Smarter Efficient Power
Systems, pp. 405–431, 2022.

[3] Y. Zhou, Y. Dong, and R. Yang, “A data-driven approach for high-
impedance fault localization in distribution systems,” in IEEE Power &
Energy Society General Meeting (PESGM), 2024, pp. 1–5.

[4] M. Panteli and P. Mancarella, “Influence of extreme weather and
climate change on the resilience of power systems: Impacts and possible
mitigation strategies,” Electric Power Systems Research, vol. 127, pp.
259–270, 2015.

[5] F. Yang, P. Watson, M. Koukoula, and E. N. Anagnostou, “Enhancing
weather-related power outage prediction by event severity classification,”
IEEE Access, vol. 8, pp. 60 029–60 042, 2020.

[6] X. Chen, J. Tang, Q. Chang, and W. Li, “A data-driven method
for operational reliability prediction on electric devices considering
multiple meteorological factors,” in 2018 International Conference on
Probabilistic Methods Applied to Power Systems. IEEE, 2018, pp. 1–6.

[7] R. Baembitov, M. Kezunovic, D. Saranovic, and Z. Obradovic, “Sensi-
tivity analysis of machine learning algorithms for outage risk prediction,”
in 57th Hawaii International Conference on System Sciences. IEEE,
2024, pp. 3150–3159.

[8] R. Yao and K. Sun, “Toward simulation and risk assessment of weather-
related outages,” IEEE Transactions on Smart Grid, vol. 10, no. 4, pp.
4391–4400, 2018.

[9] K. Alvehag and L. Soder, “A reliability model for distribution systems
incorporating seasonal variations in severe weather,” IEEE Transactions
on Power Delivery, vol. 26, no. 2, pp. 910–919, 2010.

[10] H. Pishro-Nik, Introduction to probability, statistics, and random pro-
cesses. Kappa Research, LLC Blue Bell, PA, USA, 2014.

[11] A. P. Dawid, “Conditional independence for statistical operations,” The
Annals of Statistics, vol. 8, no. 3, pp. 598–617, 1980.

[12] P. Spirtes, C. Glymour, and R. Scheines, Causation, prediction, and
search. MIT press, 2001.

[13] Bonneville Power Administration, “Outage and reliability reports,” https:
//transmission.bpa.gov/business/operations/outages, (Accessed Apr. 17,
2024).

[14] National Oceanic and Atmospheric Administration, “Global historical
climatology network-hourly,” https://www.ncei.noaa.gov/access/search/
dataset-search, (Accessed Apr. 24, 2024).

[15] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

https://www.ncei.noaa.gov/access/billions
https://www.ncei.noaa.gov/access/billions
https://transmission.bpa.gov/business/operations/outages
https://transmission.bpa.gov/business/operations/outages
https://www.ncei.noaa.gov/access/search/dataset-search
https://www.ncei.noaa.gov/access/search/dataset-search

	Introduction
	Bayesian Network Prediction
	Bayes' Theorem
	Conditional Independence
	Bayesian Network

	PC Structural Learning
	Implementation and Case Studies
	Prediction Process
	Numerical Validation
	Comparison Studies

	Conclusions and Future Work
	References

